1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #include "gt/intel_gt_regs.h" 42 43 #if defined(VERBOSE_DEBUG) 44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 45 #else 46 #define gvt_vdbg_mm(fmt, args...) 47 #endif 48 49 static bool enable_out_of_sync = false; 50 static int preallocated_oos_pages = 8192; 51 52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn) 53 { 54 struct kvm *kvm = vgpu->vfio_device.kvm; 55 int idx; 56 bool ret; 57 58 if (!vgpu->attached) 59 return false; 60 61 idx = srcu_read_lock(&kvm->srcu); 62 ret = kvm_is_visible_gfn(kvm, gfn); 63 srcu_read_unlock(&kvm->srcu, idx); 64 65 return ret; 66 } 67 68 /* 69 * validate a gm address and related range size, 70 * translate it to host gm address 71 */ 72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 73 { 74 if (size == 0) 75 return vgpu_gmadr_is_valid(vgpu, addr); 76 77 if (vgpu_gmadr_is_aperture(vgpu, addr) && 78 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 79 return true; 80 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 81 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 82 return true; 83 84 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 85 addr, size); 86 return false; 87 } 88 89 /* translate a guest gmadr to host gmadr */ 90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 95 "invalid guest gmadr %llx\n", g_addr)) 96 return -EACCES; 97 98 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 99 *h_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (g_addr - vgpu_aperture_offset(vgpu)); 101 else 102 *h_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (g_addr - vgpu_hidden_offset(vgpu)); 104 return 0; 105 } 106 107 /* translate a host gmadr to guest gmadr */ 108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 109 { 110 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 111 112 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 113 "invalid host gmadr %llx\n", h_addr)) 114 return -EACCES; 115 116 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 117 *g_addr = vgpu_aperture_gmadr_base(vgpu) 118 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 119 else 120 *g_addr = vgpu_hidden_gmadr_base(vgpu) 121 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 122 return 0; 123 } 124 125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 126 unsigned long *h_index) 127 { 128 u64 h_addr; 129 int ret; 130 131 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 132 &h_addr); 133 if (ret) 134 return ret; 135 136 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 137 return 0; 138 } 139 140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 141 unsigned long *g_index) 142 { 143 u64 g_addr; 144 int ret; 145 146 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 147 &g_addr); 148 if (ret) 149 return ret; 150 151 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 152 return 0; 153 } 154 155 #define gtt_type_is_entry(type) \ 156 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 157 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 158 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 159 160 #define gtt_type_is_pt(type) \ 161 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 162 163 #define gtt_type_is_pte_pt(type) \ 164 (type == GTT_TYPE_PPGTT_PTE_PT) 165 166 #define gtt_type_is_root_pointer(type) \ 167 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 168 169 #define gtt_init_entry(e, t, p, v) do { \ 170 (e)->type = t; \ 171 (e)->pdev = p; \ 172 memcpy(&(e)->val64, &v, sizeof(v)); \ 173 } while (0) 174 175 /* 176 * Mappings between GTT_TYPE* enumerations. 177 * Following information can be found according to the given type: 178 * - type of next level page table 179 * - type of entry inside this level page table 180 * - type of entry with PSE set 181 * 182 * If the given type doesn't have such a kind of information, 183 * e.g. give a l4 root entry type, then request to get its PSE type, 184 * give a PTE page table type, then request to get its next level page 185 * table type, as we know l4 root entry doesn't have a PSE bit, 186 * and a PTE page table doesn't have a next level page table type, 187 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 188 * page table. 189 */ 190 191 struct gtt_type_table_entry { 192 int entry_type; 193 int pt_type; 194 int next_pt_type; 195 int pse_entry_type; 196 }; 197 198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 199 [type] = { \ 200 .entry_type = e_type, \ 201 .pt_type = cpt_type, \ 202 .next_pt_type = npt_type, \ 203 .pse_entry_type = pse_type, \ 204 } 205 206 static const struct gtt_type_table_entry gtt_type_table[] = { 207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 208 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 209 GTT_TYPE_INVALID, 210 GTT_TYPE_PPGTT_PML4_PT, 211 GTT_TYPE_INVALID), 212 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 213 GTT_TYPE_PPGTT_PML4_ENTRY, 214 GTT_TYPE_PPGTT_PML4_PT, 215 GTT_TYPE_PPGTT_PDP_PT, 216 GTT_TYPE_INVALID), 217 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 218 GTT_TYPE_PPGTT_PML4_ENTRY, 219 GTT_TYPE_PPGTT_PML4_PT, 220 GTT_TYPE_PPGTT_PDP_PT, 221 GTT_TYPE_INVALID), 222 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 223 GTT_TYPE_PPGTT_PDP_ENTRY, 224 GTT_TYPE_PPGTT_PDP_PT, 225 GTT_TYPE_PPGTT_PDE_PT, 226 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 227 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 228 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 229 GTT_TYPE_INVALID, 230 GTT_TYPE_PPGTT_PDE_PT, 231 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 233 GTT_TYPE_PPGTT_PDP_ENTRY, 234 GTT_TYPE_PPGTT_PDP_PT, 235 GTT_TYPE_PPGTT_PDE_PT, 236 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 238 GTT_TYPE_PPGTT_PDE_ENTRY, 239 GTT_TYPE_PPGTT_PDE_PT, 240 GTT_TYPE_PPGTT_PTE_PT, 241 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 243 GTT_TYPE_PPGTT_PDE_ENTRY, 244 GTT_TYPE_PPGTT_PDE_PT, 245 GTT_TYPE_PPGTT_PTE_PT, 246 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 247 /* We take IPS bit as 'PSE' for PTE level. */ 248 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 249 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 250 GTT_TYPE_PPGTT_PTE_PT, 251 GTT_TYPE_INVALID, 252 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 253 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 254 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 255 GTT_TYPE_PPGTT_PTE_PT, 256 GTT_TYPE_INVALID, 257 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 258 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 259 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 260 GTT_TYPE_PPGTT_PTE_PT, 261 GTT_TYPE_INVALID, 262 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 263 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 264 GTT_TYPE_PPGTT_PDE_ENTRY, 265 GTT_TYPE_PPGTT_PDE_PT, 266 GTT_TYPE_INVALID, 267 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 268 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 269 GTT_TYPE_PPGTT_PDP_ENTRY, 270 GTT_TYPE_PPGTT_PDP_PT, 271 GTT_TYPE_INVALID, 272 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 273 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 274 GTT_TYPE_GGTT_PTE, 275 GTT_TYPE_INVALID, 276 GTT_TYPE_INVALID, 277 GTT_TYPE_INVALID), 278 }; 279 280 static inline int get_next_pt_type(int type) 281 { 282 return gtt_type_table[type].next_pt_type; 283 } 284 285 static inline int get_entry_type(int type) 286 { 287 return gtt_type_table[type].entry_type; 288 } 289 290 static inline int get_pse_type(int type) 291 { 292 return gtt_type_table[type].pse_entry_type; 293 } 294 295 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 296 { 297 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 298 299 return readq(addr); 300 } 301 302 static void ggtt_invalidate(struct intel_gt *gt) 303 { 304 mmio_hw_access_pre(gt); 305 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 306 mmio_hw_access_post(gt); 307 } 308 309 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 310 { 311 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 312 313 writeq(pte, addr); 314 } 315 316 static inline int gtt_get_entry64(void *pt, 317 struct intel_gvt_gtt_entry *e, 318 unsigned long index, bool hypervisor_access, unsigned long gpa, 319 struct intel_vgpu *vgpu) 320 { 321 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 322 int ret; 323 324 if (WARN_ON(info->gtt_entry_size != 8)) 325 return -EINVAL; 326 327 if (hypervisor_access) { 328 ret = intel_gvt_read_gpa(vgpu, gpa + 329 (index << info->gtt_entry_size_shift), 330 &e->val64, 8); 331 if (WARN_ON(ret)) 332 return ret; 333 } else if (!pt) { 334 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 335 } else { 336 e->val64 = *((u64 *)pt + index); 337 } 338 return 0; 339 } 340 341 static inline int gtt_set_entry64(void *pt, 342 struct intel_gvt_gtt_entry *e, 343 unsigned long index, bool hypervisor_access, unsigned long gpa, 344 struct intel_vgpu *vgpu) 345 { 346 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 347 int ret; 348 349 if (WARN_ON(info->gtt_entry_size != 8)) 350 return -EINVAL; 351 352 if (hypervisor_access) { 353 ret = intel_gvt_write_gpa(vgpu, gpa + 354 (index << info->gtt_entry_size_shift), 355 &e->val64, 8); 356 if (WARN_ON(ret)) 357 return ret; 358 } else if (!pt) { 359 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 360 } else { 361 *((u64 *)pt + index) = e->val64; 362 } 363 return 0; 364 } 365 366 #define GTT_HAW 46 367 368 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 369 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 370 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 371 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 372 373 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 374 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 375 376 #define GTT_64K_PTE_STRIDE 16 377 378 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 379 { 380 unsigned long pfn; 381 382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 383 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 384 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 385 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 386 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 387 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 388 else 389 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 390 return pfn; 391 } 392 393 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 394 { 395 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 396 e->val64 &= ~ADDR_1G_MASK; 397 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 398 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 399 e->val64 &= ~ADDR_2M_MASK; 400 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 401 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 402 e->val64 &= ~ADDR_64K_MASK; 403 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 404 } else { 405 e->val64 &= ~ADDR_4K_MASK; 406 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 407 } 408 409 e->val64 |= (pfn << PAGE_SHIFT); 410 } 411 412 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 413 { 414 return !!(e->val64 & _PAGE_PSE); 415 } 416 417 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 418 { 419 if (gen8_gtt_test_pse(e)) { 420 switch (e->type) { 421 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 422 e->val64 &= ~_PAGE_PSE; 423 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 424 break; 425 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 426 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 427 e->val64 &= ~_PAGE_PSE; 428 break; 429 default: 430 WARN_ON(1); 431 } 432 } 433 } 434 435 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 436 { 437 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 438 return false; 439 440 return !!(e->val64 & GEN8_PDE_IPS_64K); 441 } 442 443 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 444 { 445 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 446 return; 447 448 e->val64 &= ~GEN8_PDE_IPS_64K; 449 } 450 451 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 452 { 453 /* 454 * i915 writes PDP root pointer registers without present bit, 455 * it also works, so we need to treat root pointer entry 456 * specifically. 457 */ 458 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 459 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 460 return (e->val64 != 0); 461 else 462 return (e->val64 & GEN8_PAGE_PRESENT); 463 } 464 465 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 466 { 467 e->val64 &= ~GEN8_PAGE_PRESENT; 468 } 469 470 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 471 { 472 e->val64 |= GEN8_PAGE_PRESENT; 473 } 474 475 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 476 { 477 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 478 } 479 480 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 481 { 482 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 483 } 484 485 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 486 { 487 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 488 } 489 490 /* 491 * Per-platform GMA routines. 492 */ 493 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 494 { 495 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 496 497 trace_gma_index(__func__, gma, x); 498 return x; 499 } 500 501 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 502 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 503 { \ 504 unsigned long x = (exp); \ 505 trace_gma_index(__func__, gma, x); \ 506 return x; \ 507 } 508 509 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 510 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 511 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 512 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 513 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 514 515 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 516 .get_entry = gtt_get_entry64, 517 .set_entry = gtt_set_entry64, 518 .clear_present = gtt_entry_clear_present, 519 .set_present = gtt_entry_set_present, 520 .test_present = gen8_gtt_test_present, 521 .test_pse = gen8_gtt_test_pse, 522 .clear_pse = gen8_gtt_clear_pse, 523 .clear_ips = gen8_gtt_clear_ips, 524 .test_ips = gen8_gtt_test_ips, 525 .clear_64k_splited = gen8_gtt_clear_64k_splited, 526 .set_64k_splited = gen8_gtt_set_64k_splited, 527 .test_64k_splited = gen8_gtt_test_64k_splited, 528 .get_pfn = gen8_gtt_get_pfn, 529 .set_pfn = gen8_gtt_set_pfn, 530 }; 531 532 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 533 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 534 .gma_to_pte_index = gen8_gma_to_pte_index, 535 .gma_to_pde_index = gen8_gma_to_pde_index, 536 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 537 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 538 .gma_to_pml4_index = gen8_gma_to_pml4_index, 539 }; 540 541 /* Update entry type per pse and ips bit. */ 542 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops, 543 struct intel_gvt_gtt_entry *entry, bool ips) 544 { 545 switch (entry->type) { 546 case GTT_TYPE_PPGTT_PDE_ENTRY: 547 case GTT_TYPE_PPGTT_PDP_ENTRY: 548 if (pte_ops->test_pse(entry)) 549 entry->type = get_pse_type(entry->type); 550 break; 551 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 552 if (ips) 553 entry->type = get_pse_type(entry->type); 554 break; 555 default: 556 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 557 } 558 559 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 560 } 561 562 /* 563 * MM helpers. 564 */ 565 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 566 struct intel_gvt_gtt_entry *entry, unsigned long index, 567 bool guest) 568 { 569 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 570 571 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 572 573 entry->type = mm->ppgtt_mm.root_entry_type; 574 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 575 mm->ppgtt_mm.shadow_pdps, 576 entry, index, false, 0, mm->vgpu); 577 update_entry_type_for_real(pte_ops, entry, false); 578 } 579 580 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 581 struct intel_gvt_gtt_entry *entry, unsigned long index) 582 { 583 _ppgtt_get_root_entry(mm, entry, index, true); 584 } 585 586 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 587 struct intel_gvt_gtt_entry *entry, unsigned long index) 588 { 589 _ppgtt_get_root_entry(mm, entry, index, false); 590 } 591 592 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 593 struct intel_gvt_gtt_entry *entry, unsigned long index, 594 bool guest) 595 { 596 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 597 598 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 599 mm->ppgtt_mm.shadow_pdps, 600 entry, index, false, 0, mm->vgpu); 601 } 602 603 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 604 struct intel_gvt_gtt_entry *entry, unsigned long index) 605 { 606 _ppgtt_set_root_entry(mm, entry, index, false); 607 } 608 609 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 610 struct intel_gvt_gtt_entry *entry, unsigned long index) 611 { 612 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 613 614 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 615 616 entry->type = GTT_TYPE_GGTT_PTE; 617 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 618 false, 0, mm->vgpu); 619 } 620 621 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 622 struct intel_gvt_gtt_entry *entry, unsigned long index) 623 { 624 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 625 626 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 627 628 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 629 false, 0, mm->vgpu); 630 } 631 632 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 633 struct intel_gvt_gtt_entry *entry, unsigned long index) 634 { 635 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 636 637 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 638 639 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 640 } 641 642 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 643 struct intel_gvt_gtt_entry *entry, unsigned long index) 644 { 645 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 646 unsigned long offset = index; 647 648 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 649 650 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 651 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 652 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 653 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 654 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 655 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 656 } 657 658 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 659 } 660 661 /* 662 * PPGTT shadow page table helpers. 663 */ 664 static inline int ppgtt_spt_get_entry( 665 struct intel_vgpu_ppgtt_spt *spt, 666 void *page_table, int type, 667 struct intel_gvt_gtt_entry *e, unsigned long index, 668 bool guest) 669 { 670 struct intel_gvt *gvt = spt->vgpu->gvt; 671 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 672 int ret; 673 674 e->type = get_entry_type(type); 675 676 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 677 return -EINVAL; 678 679 ret = ops->get_entry(page_table, e, index, guest, 680 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 681 spt->vgpu); 682 if (ret) 683 return ret; 684 685 update_entry_type_for_real(ops, e, guest ? 686 spt->guest_page.pde_ips : false); 687 688 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 689 type, e->type, index, e->val64); 690 return 0; 691 } 692 693 static inline int ppgtt_spt_set_entry( 694 struct intel_vgpu_ppgtt_spt *spt, 695 void *page_table, int type, 696 struct intel_gvt_gtt_entry *e, unsigned long index, 697 bool guest) 698 { 699 struct intel_gvt *gvt = spt->vgpu->gvt; 700 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 701 702 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 703 return -EINVAL; 704 705 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 706 type, e->type, index, e->val64); 707 708 return ops->set_entry(page_table, e, index, guest, 709 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 710 spt->vgpu); 711 } 712 713 #define ppgtt_get_guest_entry(spt, e, index) \ 714 ppgtt_spt_get_entry(spt, NULL, \ 715 spt->guest_page.type, e, index, true) 716 717 #define ppgtt_set_guest_entry(spt, e, index) \ 718 ppgtt_spt_set_entry(spt, NULL, \ 719 spt->guest_page.type, e, index, true) 720 721 #define ppgtt_get_shadow_entry(spt, e, index) \ 722 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 723 spt->shadow_page.type, e, index, false) 724 725 #define ppgtt_set_shadow_entry(spt, e, index) \ 726 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 727 spt->shadow_page.type, e, index, false) 728 729 static void *alloc_spt(gfp_t gfp_mask) 730 { 731 struct intel_vgpu_ppgtt_spt *spt; 732 733 spt = kzalloc(sizeof(*spt), gfp_mask); 734 if (!spt) 735 return NULL; 736 737 spt->shadow_page.page = alloc_page(gfp_mask); 738 if (!spt->shadow_page.page) { 739 kfree(spt); 740 return NULL; 741 } 742 return spt; 743 } 744 745 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 746 { 747 __free_page(spt->shadow_page.page); 748 kfree(spt); 749 } 750 751 static int detach_oos_page(struct intel_vgpu *vgpu, 752 struct intel_vgpu_oos_page *oos_page); 753 754 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 755 { 756 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; 757 758 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 759 760 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 761 DMA_BIDIRECTIONAL); 762 763 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 764 765 if (spt->guest_page.gfn) { 766 if (spt->guest_page.oos_page) 767 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 768 769 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 770 } 771 772 list_del_init(&spt->post_shadow_list); 773 free_spt(spt); 774 } 775 776 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 777 { 778 struct intel_vgpu_ppgtt_spt *spt, *spn; 779 struct radix_tree_iter iter; 780 LIST_HEAD(all_spt); 781 void __rcu **slot; 782 783 rcu_read_lock(); 784 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 785 spt = radix_tree_deref_slot(slot); 786 list_move(&spt->post_shadow_list, &all_spt); 787 } 788 rcu_read_unlock(); 789 790 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 791 ppgtt_free_spt(spt); 792 } 793 794 static int ppgtt_handle_guest_write_page_table_bytes( 795 struct intel_vgpu_ppgtt_spt *spt, 796 u64 pa, void *p_data, int bytes); 797 798 static int ppgtt_write_protection_handler( 799 struct intel_vgpu_page_track *page_track, 800 u64 gpa, void *data, int bytes) 801 { 802 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 803 804 int ret; 805 806 if (bytes != 4 && bytes != 8) 807 return -EINVAL; 808 809 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 810 if (ret) 811 return ret; 812 return ret; 813 } 814 815 /* Find a spt by guest gfn. */ 816 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 817 struct intel_vgpu *vgpu, unsigned long gfn) 818 { 819 struct intel_vgpu_page_track *track; 820 821 track = intel_vgpu_find_page_track(vgpu, gfn); 822 if (track && track->handler == ppgtt_write_protection_handler) 823 return track->priv_data; 824 825 return NULL; 826 } 827 828 /* Find the spt by shadow page mfn. */ 829 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 830 struct intel_vgpu *vgpu, unsigned long mfn) 831 { 832 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 833 } 834 835 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 836 837 /* Allocate shadow page table without guest page. */ 838 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 839 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 840 { 841 struct device *kdev = vgpu->gvt->gt->i915->drm.dev; 842 struct intel_vgpu_ppgtt_spt *spt = NULL; 843 dma_addr_t daddr; 844 int ret; 845 846 retry: 847 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 848 if (!spt) { 849 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 850 goto retry; 851 852 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 853 return ERR_PTR(-ENOMEM); 854 } 855 856 spt->vgpu = vgpu; 857 atomic_set(&spt->refcount, 1); 858 INIT_LIST_HEAD(&spt->post_shadow_list); 859 860 /* 861 * Init shadow_page. 862 */ 863 spt->shadow_page.type = type; 864 daddr = dma_map_page(kdev, spt->shadow_page.page, 865 0, 4096, DMA_BIDIRECTIONAL); 866 if (dma_mapping_error(kdev, daddr)) { 867 gvt_vgpu_err("fail to map dma addr\n"); 868 ret = -EINVAL; 869 goto err_free_spt; 870 } 871 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 872 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 873 874 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 875 if (ret) 876 goto err_unmap_dma; 877 878 return spt; 879 880 err_unmap_dma: 881 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL); 882 err_free_spt: 883 free_spt(spt); 884 return ERR_PTR(ret); 885 } 886 887 /* Allocate shadow page table associated with specific gfn. */ 888 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 889 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 890 unsigned long gfn, bool guest_pde_ips) 891 { 892 struct intel_vgpu_ppgtt_spt *spt; 893 int ret; 894 895 spt = ppgtt_alloc_spt(vgpu, type); 896 if (IS_ERR(spt)) 897 return spt; 898 899 /* 900 * Init guest_page. 901 */ 902 ret = intel_vgpu_register_page_track(vgpu, gfn, 903 ppgtt_write_protection_handler, spt); 904 if (ret) { 905 ppgtt_free_spt(spt); 906 return ERR_PTR(ret); 907 } 908 909 spt->guest_page.type = type; 910 spt->guest_page.gfn = gfn; 911 spt->guest_page.pde_ips = guest_pde_ips; 912 913 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 914 915 return spt; 916 } 917 918 #define pt_entry_size_shift(spt) \ 919 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 920 921 #define pt_entries(spt) \ 922 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 923 924 #define for_each_present_guest_entry(spt, e, i) \ 925 for (i = 0; i < pt_entries(spt); \ 926 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 927 if (!ppgtt_get_guest_entry(spt, e, i) && \ 928 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 929 930 #define for_each_present_shadow_entry(spt, e, i) \ 931 for (i = 0; i < pt_entries(spt); \ 932 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 933 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 934 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 935 936 #define for_each_shadow_entry(spt, e, i) \ 937 for (i = 0; i < pt_entries(spt); \ 938 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 939 if (!ppgtt_get_shadow_entry(spt, e, i)) 940 941 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 942 { 943 int v = atomic_read(&spt->refcount); 944 945 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 946 atomic_inc(&spt->refcount); 947 } 948 949 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 950 { 951 int v = atomic_read(&spt->refcount); 952 953 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 954 return atomic_dec_return(&spt->refcount); 955 } 956 957 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 958 959 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 960 struct intel_gvt_gtt_entry *e) 961 { 962 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 963 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 964 struct intel_vgpu_ppgtt_spt *s; 965 enum intel_gvt_gtt_type cur_pt_type; 966 967 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 968 969 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 970 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 971 cur_pt_type = get_next_pt_type(e->type); 972 973 if (!gtt_type_is_pt(cur_pt_type) || 974 !gtt_type_is_pt(cur_pt_type + 1)) { 975 drm_WARN(&i915->drm, 1, 976 "Invalid page table type, cur_pt_type is: %d\n", 977 cur_pt_type); 978 return -EINVAL; 979 } 980 981 cur_pt_type += 1; 982 983 if (ops->get_pfn(e) == 984 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 985 return 0; 986 } 987 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 988 if (!s) { 989 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 990 ops->get_pfn(e)); 991 return -ENXIO; 992 } 993 return ppgtt_invalidate_spt(s); 994 } 995 996 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 997 struct intel_gvt_gtt_entry *entry) 998 { 999 struct intel_vgpu *vgpu = spt->vgpu; 1000 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1001 unsigned long pfn; 1002 int type; 1003 1004 pfn = ops->get_pfn(entry); 1005 type = spt->shadow_page.type; 1006 1007 /* Uninitialized spte or unshadowed spte. */ 1008 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 1009 return; 1010 1011 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 1012 } 1013 1014 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1015 { 1016 struct intel_vgpu *vgpu = spt->vgpu; 1017 struct intel_gvt_gtt_entry e; 1018 unsigned long index; 1019 int ret; 1020 1021 trace_spt_change(spt->vgpu->id, "die", spt, 1022 spt->guest_page.gfn, spt->shadow_page.type); 1023 1024 if (ppgtt_put_spt(spt) > 0) 1025 return 0; 1026 1027 for_each_present_shadow_entry(spt, &e, index) { 1028 switch (e.type) { 1029 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1030 gvt_vdbg_mm("invalidate 4K entry\n"); 1031 ppgtt_invalidate_pte(spt, &e); 1032 break; 1033 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1034 /* We don't setup 64K shadow entry so far. */ 1035 WARN(1, "suspicious 64K gtt entry\n"); 1036 continue; 1037 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1038 gvt_vdbg_mm("invalidate 2M entry\n"); 1039 continue; 1040 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1041 WARN(1, "GVT doesn't support 1GB page\n"); 1042 continue; 1043 case GTT_TYPE_PPGTT_PML4_ENTRY: 1044 case GTT_TYPE_PPGTT_PDP_ENTRY: 1045 case GTT_TYPE_PPGTT_PDE_ENTRY: 1046 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1047 ret = ppgtt_invalidate_spt_by_shadow_entry( 1048 spt->vgpu, &e); 1049 if (ret) 1050 goto fail; 1051 break; 1052 default: 1053 GEM_BUG_ON(1); 1054 } 1055 } 1056 1057 trace_spt_change(spt->vgpu->id, "release", spt, 1058 spt->guest_page.gfn, spt->shadow_page.type); 1059 ppgtt_free_spt(spt); 1060 return 0; 1061 fail: 1062 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1063 spt, e.val64, e.type); 1064 return ret; 1065 } 1066 1067 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1068 { 1069 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1070 1071 if (GRAPHICS_VER(dev_priv) == 9) { 1072 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1073 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1074 1075 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1076 } else if (GRAPHICS_VER(dev_priv) >= 11) { 1077 /* 64K paging only controlled by IPS bit in PTE now. */ 1078 return true; 1079 } else 1080 return false; 1081 } 1082 1083 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1084 1085 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1086 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1087 { 1088 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1089 struct intel_vgpu_ppgtt_spt *spt = NULL; 1090 bool ips = false; 1091 int ret; 1092 1093 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1094 1095 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1096 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1097 1098 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1099 if (spt) { 1100 ppgtt_get_spt(spt); 1101 1102 if (ips != spt->guest_page.pde_ips) { 1103 spt->guest_page.pde_ips = ips; 1104 1105 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1106 clear_page(spt->shadow_page.vaddr); 1107 ret = ppgtt_populate_spt(spt); 1108 if (ret) { 1109 ppgtt_put_spt(spt); 1110 goto err; 1111 } 1112 } 1113 } else { 1114 int type = get_next_pt_type(we->type); 1115 1116 if (!gtt_type_is_pt(type)) { 1117 ret = -EINVAL; 1118 goto err; 1119 } 1120 1121 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1122 if (IS_ERR(spt)) { 1123 ret = PTR_ERR(spt); 1124 goto err; 1125 } 1126 1127 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1128 if (ret) 1129 goto err_free_spt; 1130 1131 ret = ppgtt_populate_spt(spt); 1132 if (ret) 1133 goto err_free_spt; 1134 1135 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1136 spt->shadow_page.type); 1137 } 1138 return spt; 1139 1140 err_free_spt: 1141 ppgtt_free_spt(spt); 1142 spt = NULL; 1143 err: 1144 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1145 spt, we->val64, we->type); 1146 return ERR_PTR(ret); 1147 } 1148 1149 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1150 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1151 { 1152 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1153 1154 se->type = ge->type; 1155 se->val64 = ge->val64; 1156 1157 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1158 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1159 ops->clear_ips(se); 1160 1161 ops->set_pfn(se, s->shadow_page.mfn); 1162 } 1163 1164 /* 1165 * Check if can do 2M page 1166 * @vgpu: target vgpu 1167 * @entry: target pfn's gtt entry 1168 * 1169 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, 1170 * negative if found err. 1171 */ 1172 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1173 struct intel_gvt_gtt_entry *entry) 1174 { 1175 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1176 kvm_pfn_t pfn; 1177 1178 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1179 return 0; 1180 1181 if (!vgpu->attached) 1182 return -EINVAL; 1183 pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry)); 1184 if (is_error_noslot_pfn(pfn)) 1185 return -EINVAL; 1186 return PageTransHuge(pfn_to_page(pfn)); 1187 } 1188 1189 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1190 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1191 struct intel_gvt_gtt_entry *se) 1192 { 1193 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1194 struct intel_vgpu_ppgtt_spt *sub_spt; 1195 struct intel_gvt_gtt_entry sub_se; 1196 unsigned long start_gfn; 1197 dma_addr_t dma_addr; 1198 unsigned long sub_index; 1199 int ret; 1200 1201 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1202 1203 start_gfn = ops->get_pfn(se); 1204 1205 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1206 if (IS_ERR(sub_spt)) 1207 return PTR_ERR(sub_spt); 1208 1209 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1210 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index, 1211 PAGE_SIZE, &dma_addr); 1212 if (ret) { 1213 ppgtt_invalidate_spt(spt); 1214 return ret; 1215 } 1216 sub_se.val64 = se->val64; 1217 1218 /* Copy the PAT field from PDE. */ 1219 sub_se.val64 &= ~_PAGE_PAT; 1220 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1221 1222 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1223 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1224 } 1225 1226 /* Clear dirty field. */ 1227 se->val64 &= ~_PAGE_DIRTY; 1228 1229 ops->clear_pse(se); 1230 ops->clear_ips(se); 1231 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1232 ppgtt_set_shadow_entry(spt, se, index); 1233 return 0; 1234 } 1235 1236 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1237 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1238 struct intel_gvt_gtt_entry *se) 1239 { 1240 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1241 struct intel_gvt_gtt_entry entry = *se; 1242 unsigned long start_gfn; 1243 dma_addr_t dma_addr; 1244 int i, ret; 1245 1246 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1247 1248 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1249 1250 start_gfn = ops->get_pfn(se); 1251 1252 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1253 ops->set_64k_splited(&entry); 1254 1255 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1256 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i, 1257 PAGE_SIZE, &dma_addr); 1258 if (ret) 1259 return ret; 1260 1261 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1262 ppgtt_set_shadow_entry(spt, &entry, index + i); 1263 } 1264 return 0; 1265 } 1266 1267 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1268 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1269 struct intel_gvt_gtt_entry *ge) 1270 { 1271 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1272 struct intel_gvt_gtt_entry se = *ge; 1273 unsigned long gfn, page_size = PAGE_SIZE; 1274 dma_addr_t dma_addr; 1275 int ret; 1276 1277 if (!pte_ops->test_present(ge)) 1278 return 0; 1279 1280 gfn = pte_ops->get_pfn(ge); 1281 1282 switch (ge->type) { 1283 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1284 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1285 break; 1286 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1287 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1288 /* 1289 * The layout of 64K page is special, the page size is 1290 * controlled by uper PDE. To be simple, we always split 1291 * 64K page to smaller 4K pages in shadow PT. 1292 */ 1293 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1294 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1295 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1296 ret = is_2MB_gtt_possible(vgpu, ge); 1297 if (ret == 0) 1298 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1299 else if (ret < 0) 1300 return ret; 1301 page_size = I915_GTT_PAGE_SIZE_2M; 1302 break; 1303 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1304 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1305 return -EINVAL; 1306 default: 1307 GEM_BUG_ON(1); 1308 } 1309 1310 /* direct shadow */ 1311 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr); 1312 if (ret) 1313 return -ENXIO; 1314 1315 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1316 ppgtt_set_shadow_entry(spt, &se, index); 1317 return 0; 1318 } 1319 1320 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1321 { 1322 struct intel_vgpu *vgpu = spt->vgpu; 1323 struct intel_gvt *gvt = vgpu->gvt; 1324 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1325 struct intel_vgpu_ppgtt_spt *s; 1326 struct intel_gvt_gtt_entry se, ge; 1327 unsigned long gfn, i; 1328 int ret; 1329 1330 trace_spt_change(spt->vgpu->id, "born", spt, 1331 spt->guest_page.gfn, spt->shadow_page.type); 1332 1333 for_each_present_guest_entry(spt, &ge, i) { 1334 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1335 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1336 if (IS_ERR(s)) { 1337 ret = PTR_ERR(s); 1338 goto fail; 1339 } 1340 ppgtt_get_shadow_entry(spt, &se, i); 1341 ppgtt_generate_shadow_entry(&se, s, &ge); 1342 ppgtt_set_shadow_entry(spt, &se, i); 1343 } else { 1344 gfn = ops->get_pfn(&ge); 1345 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 1346 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1347 ppgtt_set_shadow_entry(spt, &se, i); 1348 continue; 1349 } 1350 1351 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1352 if (ret) 1353 goto fail; 1354 } 1355 } 1356 return 0; 1357 fail: 1358 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1359 spt, ge.val64, ge.type); 1360 return ret; 1361 } 1362 1363 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1364 struct intel_gvt_gtt_entry *se, unsigned long index) 1365 { 1366 struct intel_vgpu *vgpu = spt->vgpu; 1367 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1368 int ret; 1369 1370 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1371 spt->shadow_page.type, se->val64, index); 1372 1373 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1374 se->type, index, se->val64); 1375 1376 if (!ops->test_present(se)) 1377 return 0; 1378 1379 if (ops->get_pfn(se) == 1380 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1381 return 0; 1382 1383 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1384 struct intel_vgpu_ppgtt_spt *s = 1385 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1386 if (!s) { 1387 gvt_vgpu_err("fail to find guest page\n"); 1388 ret = -ENXIO; 1389 goto fail; 1390 } 1391 ret = ppgtt_invalidate_spt(s); 1392 if (ret) 1393 goto fail; 1394 } else { 1395 /* We don't setup 64K shadow entry so far. */ 1396 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1397 "suspicious 64K entry\n"); 1398 ppgtt_invalidate_pte(spt, se); 1399 } 1400 1401 return 0; 1402 fail: 1403 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1404 spt, se->val64, se->type); 1405 return ret; 1406 } 1407 1408 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1409 struct intel_gvt_gtt_entry *we, unsigned long index) 1410 { 1411 struct intel_vgpu *vgpu = spt->vgpu; 1412 struct intel_gvt_gtt_entry m; 1413 struct intel_vgpu_ppgtt_spt *s; 1414 int ret; 1415 1416 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1417 we->val64, index); 1418 1419 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1420 we->type, index, we->val64); 1421 1422 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1423 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1424 if (IS_ERR(s)) { 1425 ret = PTR_ERR(s); 1426 goto fail; 1427 } 1428 ppgtt_get_shadow_entry(spt, &m, index); 1429 ppgtt_generate_shadow_entry(&m, s, we); 1430 ppgtt_set_shadow_entry(spt, &m, index); 1431 } else { 1432 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1433 if (ret) 1434 goto fail; 1435 } 1436 return 0; 1437 fail: 1438 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1439 spt, we->val64, we->type); 1440 return ret; 1441 } 1442 1443 static int sync_oos_page(struct intel_vgpu *vgpu, 1444 struct intel_vgpu_oos_page *oos_page) 1445 { 1446 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1447 struct intel_gvt *gvt = vgpu->gvt; 1448 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1449 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1450 struct intel_gvt_gtt_entry old, new; 1451 int index; 1452 int ret; 1453 1454 trace_oos_change(vgpu->id, "sync", oos_page->id, 1455 spt, spt->guest_page.type); 1456 1457 old.type = new.type = get_entry_type(spt->guest_page.type); 1458 old.val64 = new.val64 = 0; 1459 1460 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1461 info->gtt_entry_size_shift); index++) { 1462 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1463 ops->get_entry(NULL, &new, index, true, 1464 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1465 1466 if (old.val64 == new.val64 1467 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1468 continue; 1469 1470 trace_oos_sync(vgpu->id, oos_page->id, 1471 spt, spt->guest_page.type, 1472 new.val64, index); 1473 1474 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1475 if (ret) 1476 return ret; 1477 1478 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1479 } 1480 1481 spt->guest_page.write_cnt = 0; 1482 list_del_init(&spt->post_shadow_list); 1483 return 0; 1484 } 1485 1486 static int detach_oos_page(struct intel_vgpu *vgpu, 1487 struct intel_vgpu_oos_page *oos_page) 1488 { 1489 struct intel_gvt *gvt = vgpu->gvt; 1490 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1491 1492 trace_oos_change(vgpu->id, "detach", oos_page->id, 1493 spt, spt->guest_page.type); 1494 1495 spt->guest_page.write_cnt = 0; 1496 spt->guest_page.oos_page = NULL; 1497 oos_page->spt = NULL; 1498 1499 list_del_init(&oos_page->vm_list); 1500 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1501 1502 return 0; 1503 } 1504 1505 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1506 struct intel_vgpu_ppgtt_spt *spt) 1507 { 1508 struct intel_gvt *gvt = spt->vgpu->gvt; 1509 int ret; 1510 1511 ret = intel_gvt_read_gpa(spt->vgpu, 1512 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1513 oos_page->mem, I915_GTT_PAGE_SIZE); 1514 if (ret) 1515 return ret; 1516 1517 oos_page->spt = spt; 1518 spt->guest_page.oos_page = oos_page; 1519 1520 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1521 1522 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1523 spt, spt->guest_page.type); 1524 return 0; 1525 } 1526 1527 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1528 { 1529 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1530 int ret; 1531 1532 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1533 if (ret) 1534 return ret; 1535 1536 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1537 spt, spt->guest_page.type); 1538 1539 list_del_init(&oos_page->vm_list); 1540 return sync_oos_page(spt->vgpu, oos_page); 1541 } 1542 1543 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1544 { 1545 struct intel_gvt *gvt = spt->vgpu->gvt; 1546 struct intel_gvt_gtt *gtt = &gvt->gtt; 1547 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1548 int ret; 1549 1550 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1551 1552 if (list_empty(>t->oos_page_free_list_head)) { 1553 oos_page = container_of(gtt->oos_page_use_list_head.next, 1554 struct intel_vgpu_oos_page, list); 1555 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1556 if (ret) 1557 return ret; 1558 ret = detach_oos_page(spt->vgpu, oos_page); 1559 if (ret) 1560 return ret; 1561 } else 1562 oos_page = container_of(gtt->oos_page_free_list_head.next, 1563 struct intel_vgpu_oos_page, list); 1564 return attach_oos_page(oos_page, spt); 1565 } 1566 1567 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1568 { 1569 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1570 1571 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1572 return -EINVAL; 1573 1574 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1575 spt, spt->guest_page.type); 1576 1577 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1578 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1579 } 1580 1581 /** 1582 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1583 * @vgpu: a vGPU 1584 * 1585 * This function is called before submitting a guest workload to host, 1586 * to sync all the out-of-synced shadow for vGPU 1587 * 1588 * Returns: 1589 * Zero on success, negative error code if failed. 1590 */ 1591 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1592 { 1593 struct list_head *pos, *n; 1594 struct intel_vgpu_oos_page *oos_page; 1595 int ret; 1596 1597 if (!enable_out_of_sync) 1598 return 0; 1599 1600 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1601 oos_page = container_of(pos, 1602 struct intel_vgpu_oos_page, vm_list); 1603 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1604 if (ret) 1605 return ret; 1606 } 1607 return 0; 1608 } 1609 1610 /* 1611 * The heart of PPGTT shadow page table. 1612 */ 1613 static int ppgtt_handle_guest_write_page_table( 1614 struct intel_vgpu_ppgtt_spt *spt, 1615 struct intel_gvt_gtt_entry *we, unsigned long index) 1616 { 1617 struct intel_vgpu *vgpu = spt->vgpu; 1618 int type = spt->shadow_page.type; 1619 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1620 struct intel_gvt_gtt_entry old_se; 1621 int new_present; 1622 int i, ret; 1623 1624 new_present = ops->test_present(we); 1625 1626 /* 1627 * Adding the new entry first and then removing the old one, that can 1628 * guarantee the ppgtt table is validated during the window between 1629 * adding and removal. 1630 */ 1631 ppgtt_get_shadow_entry(spt, &old_se, index); 1632 1633 if (new_present) { 1634 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1635 if (ret) 1636 goto fail; 1637 } 1638 1639 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1640 if (ret) 1641 goto fail; 1642 1643 if (!new_present) { 1644 /* For 64KB splited entries, we need clear them all. */ 1645 if (ops->test_64k_splited(&old_se) && 1646 !(index % GTT_64K_PTE_STRIDE)) { 1647 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1648 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1649 ops->clear_64k_splited(&old_se); 1650 ops->set_pfn(&old_se, 1651 vgpu->gtt.scratch_pt[type].page_mfn); 1652 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1653 } 1654 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1655 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1656 ops->clear_pse(&old_se); 1657 ops->set_pfn(&old_se, 1658 vgpu->gtt.scratch_pt[type].page_mfn); 1659 ppgtt_set_shadow_entry(spt, &old_se, index); 1660 } else { 1661 ops->set_pfn(&old_se, 1662 vgpu->gtt.scratch_pt[type].page_mfn); 1663 ppgtt_set_shadow_entry(spt, &old_se, index); 1664 } 1665 } 1666 1667 return 0; 1668 fail: 1669 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1670 spt, we->val64, we->type); 1671 return ret; 1672 } 1673 1674 1675 1676 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1677 { 1678 return enable_out_of_sync 1679 && gtt_type_is_pte_pt(spt->guest_page.type) 1680 && spt->guest_page.write_cnt >= 2; 1681 } 1682 1683 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1684 unsigned long index) 1685 { 1686 set_bit(index, spt->post_shadow_bitmap); 1687 if (!list_empty(&spt->post_shadow_list)) 1688 return; 1689 1690 list_add_tail(&spt->post_shadow_list, 1691 &spt->vgpu->gtt.post_shadow_list_head); 1692 } 1693 1694 /** 1695 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1696 * @vgpu: a vGPU 1697 * 1698 * This function is called before submitting a guest workload to host, 1699 * to flush all the post shadows for a vGPU. 1700 * 1701 * Returns: 1702 * Zero on success, negative error code if failed. 1703 */ 1704 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1705 { 1706 struct list_head *pos, *n; 1707 struct intel_vgpu_ppgtt_spt *spt; 1708 struct intel_gvt_gtt_entry ge; 1709 unsigned long index; 1710 int ret; 1711 1712 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1713 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1714 post_shadow_list); 1715 1716 for_each_set_bit(index, spt->post_shadow_bitmap, 1717 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1718 ppgtt_get_guest_entry(spt, &ge, index); 1719 1720 ret = ppgtt_handle_guest_write_page_table(spt, 1721 &ge, index); 1722 if (ret) 1723 return ret; 1724 clear_bit(index, spt->post_shadow_bitmap); 1725 } 1726 list_del_init(&spt->post_shadow_list); 1727 } 1728 return 0; 1729 } 1730 1731 static int ppgtt_handle_guest_write_page_table_bytes( 1732 struct intel_vgpu_ppgtt_spt *spt, 1733 u64 pa, void *p_data, int bytes) 1734 { 1735 struct intel_vgpu *vgpu = spt->vgpu; 1736 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1737 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1738 struct intel_gvt_gtt_entry we, se; 1739 unsigned long index; 1740 int ret; 1741 1742 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1743 1744 ppgtt_get_guest_entry(spt, &we, index); 1745 1746 /* 1747 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1748 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1749 * ignored. 1750 */ 1751 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1752 (index % GTT_64K_PTE_STRIDE)) { 1753 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1754 index); 1755 return 0; 1756 } 1757 1758 if (bytes == info->gtt_entry_size) { 1759 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1760 if (ret) 1761 return ret; 1762 } else { 1763 if (!test_bit(index, spt->post_shadow_bitmap)) { 1764 int type = spt->shadow_page.type; 1765 1766 ppgtt_get_shadow_entry(spt, &se, index); 1767 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1768 if (ret) 1769 return ret; 1770 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1771 ppgtt_set_shadow_entry(spt, &se, index); 1772 } 1773 ppgtt_set_post_shadow(spt, index); 1774 } 1775 1776 if (!enable_out_of_sync) 1777 return 0; 1778 1779 spt->guest_page.write_cnt++; 1780 1781 if (spt->guest_page.oos_page) 1782 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1783 false, 0, vgpu); 1784 1785 if (can_do_out_of_sync(spt)) { 1786 if (!spt->guest_page.oos_page) 1787 ppgtt_allocate_oos_page(spt); 1788 1789 ret = ppgtt_set_guest_page_oos(spt); 1790 if (ret < 0) 1791 return ret; 1792 } 1793 return 0; 1794 } 1795 1796 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1797 { 1798 struct intel_vgpu *vgpu = mm->vgpu; 1799 struct intel_gvt *gvt = vgpu->gvt; 1800 struct intel_gvt_gtt *gtt = &gvt->gtt; 1801 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1802 struct intel_gvt_gtt_entry se; 1803 int index; 1804 1805 if (!mm->ppgtt_mm.shadowed) 1806 return; 1807 1808 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1809 ppgtt_get_shadow_root_entry(mm, &se, index); 1810 1811 if (!ops->test_present(&se)) 1812 continue; 1813 1814 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1815 se.val64 = 0; 1816 ppgtt_set_shadow_root_entry(mm, &se, index); 1817 1818 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1819 NULL, se.type, se.val64, index); 1820 } 1821 1822 mm->ppgtt_mm.shadowed = false; 1823 } 1824 1825 1826 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1827 { 1828 struct intel_vgpu *vgpu = mm->vgpu; 1829 struct intel_gvt *gvt = vgpu->gvt; 1830 struct intel_gvt_gtt *gtt = &gvt->gtt; 1831 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1832 struct intel_vgpu_ppgtt_spt *spt; 1833 struct intel_gvt_gtt_entry ge, se; 1834 int index, ret; 1835 1836 if (mm->ppgtt_mm.shadowed) 1837 return 0; 1838 1839 mm->ppgtt_mm.shadowed = true; 1840 1841 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1842 ppgtt_get_guest_root_entry(mm, &ge, index); 1843 1844 if (!ops->test_present(&ge)) 1845 continue; 1846 1847 trace_spt_guest_change(vgpu->id, __func__, NULL, 1848 ge.type, ge.val64, index); 1849 1850 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1851 if (IS_ERR(spt)) { 1852 gvt_vgpu_err("fail to populate guest root pointer\n"); 1853 ret = PTR_ERR(spt); 1854 goto fail; 1855 } 1856 ppgtt_generate_shadow_entry(&se, spt, &ge); 1857 ppgtt_set_shadow_root_entry(mm, &se, index); 1858 1859 trace_spt_guest_change(vgpu->id, "populate root pointer", 1860 NULL, se.type, se.val64, index); 1861 } 1862 1863 return 0; 1864 fail: 1865 invalidate_ppgtt_mm(mm); 1866 return ret; 1867 } 1868 1869 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1870 { 1871 struct intel_vgpu_mm *mm; 1872 1873 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1874 if (!mm) 1875 return NULL; 1876 1877 mm->vgpu = vgpu; 1878 kref_init(&mm->ref); 1879 atomic_set(&mm->pincount, 0); 1880 1881 return mm; 1882 } 1883 1884 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1885 { 1886 kfree(mm); 1887 } 1888 1889 /** 1890 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1891 * @vgpu: a vGPU 1892 * @root_entry_type: ppgtt root entry type 1893 * @pdps: guest pdps. 1894 * 1895 * This function is used to create a ppgtt mm object for a vGPU. 1896 * 1897 * Returns: 1898 * Zero on success, negative error code in pointer if failed. 1899 */ 1900 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1901 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1902 { 1903 struct intel_gvt *gvt = vgpu->gvt; 1904 struct intel_vgpu_mm *mm; 1905 int ret; 1906 1907 mm = vgpu_alloc_mm(vgpu); 1908 if (!mm) 1909 return ERR_PTR(-ENOMEM); 1910 1911 mm->type = INTEL_GVT_MM_PPGTT; 1912 1913 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1914 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1915 mm->ppgtt_mm.root_entry_type = root_entry_type; 1916 1917 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1918 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1919 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1920 1921 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1922 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1923 else 1924 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1925 sizeof(mm->ppgtt_mm.guest_pdps)); 1926 1927 ret = shadow_ppgtt_mm(mm); 1928 if (ret) { 1929 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1930 vgpu_free_mm(mm); 1931 return ERR_PTR(ret); 1932 } 1933 1934 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1935 1936 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1937 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1938 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1939 1940 return mm; 1941 } 1942 1943 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1944 { 1945 struct intel_vgpu_mm *mm; 1946 unsigned long nr_entries; 1947 1948 mm = vgpu_alloc_mm(vgpu); 1949 if (!mm) 1950 return ERR_PTR(-ENOMEM); 1951 1952 mm->type = INTEL_GVT_MM_GGTT; 1953 1954 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1955 mm->ggtt_mm.virtual_ggtt = 1956 vzalloc(array_size(nr_entries, 1957 vgpu->gvt->device_info.gtt_entry_size)); 1958 if (!mm->ggtt_mm.virtual_ggtt) { 1959 vgpu_free_mm(mm); 1960 return ERR_PTR(-ENOMEM); 1961 } 1962 1963 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1964 if (!mm->ggtt_mm.host_ggtt_aperture) { 1965 vfree(mm->ggtt_mm.virtual_ggtt); 1966 vgpu_free_mm(mm); 1967 return ERR_PTR(-ENOMEM); 1968 } 1969 1970 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1971 if (!mm->ggtt_mm.host_ggtt_hidden) { 1972 vfree(mm->ggtt_mm.host_ggtt_aperture); 1973 vfree(mm->ggtt_mm.virtual_ggtt); 1974 vgpu_free_mm(mm); 1975 return ERR_PTR(-ENOMEM); 1976 } 1977 1978 return mm; 1979 } 1980 1981 /** 1982 * _intel_vgpu_mm_release - destroy a mm object 1983 * @mm_ref: a kref object 1984 * 1985 * This function is used to destroy a mm object for vGPU 1986 * 1987 */ 1988 void _intel_vgpu_mm_release(struct kref *mm_ref) 1989 { 1990 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1991 1992 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1993 gvt_err("vgpu mm pin count bug detected\n"); 1994 1995 if (mm->type == INTEL_GVT_MM_PPGTT) { 1996 list_del(&mm->ppgtt_mm.list); 1997 1998 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1999 list_del(&mm->ppgtt_mm.lru_list); 2000 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2001 2002 invalidate_ppgtt_mm(mm); 2003 } else { 2004 vfree(mm->ggtt_mm.virtual_ggtt); 2005 vfree(mm->ggtt_mm.host_ggtt_aperture); 2006 vfree(mm->ggtt_mm.host_ggtt_hidden); 2007 } 2008 2009 vgpu_free_mm(mm); 2010 } 2011 2012 /** 2013 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2014 * @mm: a vGPU mm object 2015 * 2016 * This function is called when user doesn't want to use a vGPU mm object 2017 */ 2018 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2019 { 2020 atomic_dec_if_positive(&mm->pincount); 2021 } 2022 2023 /** 2024 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2025 * @mm: target vgpu mm 2026 * 2027 * This function is called when user wants to use a vGPU mm object. If this 2028 * mm object hasn't been shadowed yet, the shadow will be populated at this 2029 * time. 2030 * 2031 * Returns: 2032 * Zero on success, negative error code if failed. 2033 */ 2034 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2035 { 2036 int ret; 2037 2038 atomic_inc(&mm->pincount); 2039 2040 if (mm->type == INTEL_GVT_MM_PPGTT) { 2041 ret = shadow_ppgtt_mm(mm); 2042 if (ret) 2043 return ret; 2044 2045 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2046 list_move_tail(&mm->ppgtt_mm.lru_list, 2047 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2048 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2049 } 2050 2051 return 0; 2052 } 2053 2054 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2055 { 2056 struct intel_vgpu_mm *mm; 2057 struct list_head *pos, *n; 2058 2059 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2060 2061 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2062 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2063 2064 if (atomic_read(&mm->pincount)) 2065 continue; 2066 2067 list_del_init(&mm->ppgtt_mm.lru_list); 2068 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2069 invalidate_ppgtt_mm(mm); 2070 return 1; 2071 } 2072 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2073 return 0; 2074 } 2075 2076 /* 2077 * GMA translation APIs. 2078 */ 2079 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2080 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2081 { 2082 struct intel_vgpu *vgpu = mm->vgpu; 2083 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2084 struct intel_vgpu_ppgtt_spt *s; 2085 2086 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2087 if (!s) 2088 return -ENXIO; 2089 2090 if (!guest) 2091 ppgtt_get_shadow_entry(s, e, index); 2092 else 2093 ppgtt_get_guest_entry(s, e, index); 2094 return 0; 2095 } 2096 2097 /** 2098 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2099 * @mm: mm object. could be a PPGTT or GGTT mm object 2100 * @gma: graphics memory address in this mm object 2101 * 2102 * This function is used to translate a graphics memory address in specific 2103 * graphics memory space to guest physical address. 2104 * 2105 * Returns: 2106 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2107 */ 2108 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2109 { 2110 struct intel_vgpu *vgpu = mm->vgpu; 2111 struct intel_gvt *gvt = vgpu->gvt; 2112 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2113 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2114 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2115 unsigned long gma_index[4]; 2116 struct intel_gvt_gtt_entry e; 2117 int i, levels = 0; 2118 int ret; 2119 2120 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2121 mm->type != INTEL_GVT_MM_PPGTT); 2122 2123 if (mm->type == INTEL_GVT_MM_GGTT) { 2124 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2125 goto err; 2126 2127 ggtt_get_guest_entry(mm, &e, 2128 gma_ops->gma_to_ggtt_pte_index(gma)); 2129 2130 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2131 + (gma & ~I915_GTT_PAGE_MASK); 2132 2133 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2134 } else { 2135 switch (mm->ppgtt_mm.root_entry_type) { 2136 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2137 ppgtt_get_shadow_root_entry(mm, &e, 0); 2138 2139 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2140 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2141 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2142 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2143 levels = 4; 2144 break; 2145 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2146 ppgtt_get_shadow_root_entry(mm, &e, 2147 gma_ops->gma_to_l3_pdp_index(gma)); 2148 2149 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2150 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2151 levels = 2; 2152 break; 2153 default: 2154 GEM_BUG_ON(1); 2155 } 2156 2157 /* walk the shadow page table and get gpa from guest entry */ 2158 for (i = 0; i < levels; i++) { 2159 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2160 (i == levels - 1)); 2161 if (ret) 2162 goto err; 2163 2164 if (!pte_ops->test_present(&e)) { 2165 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2166 goto err; 2167 } 2168 } 2169 2170 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2171 (gma & ~I915_GTT_PAGE_MASK); 2172 trace_gma_translate(vgpu->id, "ppgtt", 0, 2173 mm->ppgtt_mm.root_entry_type, gma, gpa); 2174 } 2175 2176 return gpa; 2177 err: 2178 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2179 return INTEL_GVT_INVALID_ADDR; 2180 } 2181 2182 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2183 unsigned int off, void *p_data, unsigned int bytes) 2184 { 2185 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2186 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2187 unsigned long index = off >> info->gtt_entry_size_shift; 2188 unsigned long gma; 2189 struct intel_gvt_gtt_entry e; 2190 2191 if (bytes != 4 && bytes != 8) 2192 return -EINVAL; 2193 2194 gma = index << I915_GTT_PAGE_SHIFT; 2195 if (!intel_gvt_ggtt_validate_range(vgpu, 2196 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2197 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2198 memset(p_data, 0, bytes); 2199 return 0; 2200 } 2201 2202 ggtt_get_guest_entry(ggtt_mm, &e, index); 2203 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2204 bytes); 2205 return 0; 2206 } 2207 2208 /** 2209 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read 2210 * @vgpu: a vGPU 2211 * @off: register offset 2212 * @p_data: data will be returned to guest 2213 * @bytes: data length 2214 * 2215 * This function is used to emulate the GTT MMIO register read 2216 * 2217 * Returns: 2218 * Zero on success, error code if failed. 2219 */ 2220 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2221 void *p_data, unsigned int bytes) 2222 { 2223 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2224 int ret; 2225 2226 if (bytes != 4 && bytes != 8) 2227 return -EINVAL; 2228 2229 off -= info->gtt_start_offset; 2230 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2231 return ret; 2232 } 2233 2234 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2235 struct intel_gvt_gtt_entry *entry) 2236 { 2237 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2238 unsigned long pfn; 2239 2240 pfn = pte_ops->get_pfn(entry); 2241 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2242 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 2243 } 2244 2245 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2246 void *p_data, unsigned int bytes) 2247 { 2248 struct intel_gvt *gvt = vgpu->gvt; 2249 const struct intel_gvt_device_info *info = &gvt->device_info; 2250 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2251 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2252 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2253 unsigned long gma, gfn; 2254 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2255 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2256 dma_addr_t dma_addr; 2257 int ret; 2258 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2259 bool partial_update = false; 2260 2261 if (bytes != 4 && bytes != 8) 2262 return -EINVAL; 2263 2264 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2265 2266 /* the VM may configure the whole GM space when ballooning is used */ 2267 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2268 return 0; 2269 2270 e.type = GTT_TYPE_GGTT_PTE; 2271 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2272 bytes); 2273 2274 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2275 * write, save the first 4 bytes in a list and update virtual 2276 * PTE. Only update shadow PTE when the second 4 bytes comes. 2277 */ 2278 if (bytes < info->gtt_entry_size) { 2279 bool found = false; 2280 2281 list_for_each_entry_safe(pos, n, 2282 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2283 if (g_gtt_index == pos->offset >> 2284 info->gtt_entry_size_shift) { 2285 if (off != pos->offset) { 2286 /* the second partial part*/ 2287 int last_off = pos->offset & 2288 (info->gtt_entry_size - 1); 2289 2290 memcpy((void *)&e.val64 + last_off, 2291 (void *)&pos->data + last_off, 2292 bytes); 2293 2294 list_del(&pos->list); 2295 kfree(pos); 2296 found = true; 2297 break; 2298 } 2299 2300 /* update of the first partial part */ 2301 pos->data = e.val64; 2302 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2303 return 0; 2304 } 2305 } 2306 2307 if (!found) { 2308 /* the first partial part */ 2309 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2310 if (!partial_pte) 2311 return -ENOMEM; 2312 partial_pte->offset = off; 2313 partial_pte->data = e.val64; 2314 list_add_tail(&partial_pte->list, 2315 &ggtt_mm->ggtt_mm.partial_pte_list); 2316 partial_update = true; 2317 } 2318 } 2319 2320 if (!partial_update && (ops->test_present(&e))) { 2321 gfn = ops->get_pfn(&e); 2322 m.val64 = e.val64; 2323 m.type = e.type; 2324 2325 /* one PTE update may be issued in multiple writes and the 2326 * first write may not construct a valid gfn 2327 */ 2328 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 2329 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2330 goto out; 2331 } 2332 2333 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, 2334 &dma_addr); 2335 if (ret) { 2336 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2337 /* guest driver may read/write the entry when partial 2338 * update the entry in this situation p2m will fail 2339 * setting the shadow entry to point to a scratch page 2340 */ 2341 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2342 } else 2343 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2344 } else { 2345 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2346 ops->clear_present(&m); 2347 } 2348 2349 out: 2350 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2351 2352 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2353 ggtt_invalidate_pte(vgpu, &e); 2354 2355 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2356 ggtt_invalidate(gvt->gt); 2357 return 0; 2358 } 2359 2360 /* 2361 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2362 * @vgpu: a vGPU 2363 * @off: register offset 2364 * @p_data: data from guest write 2365 * @bytes: data length 2366 * 2367 * This function is used to emulate the GTT MMIO register write 2368 * 2369 * Returns: 2370 * Zero on success, error code if failed. 2371 */ 2372 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2373 unsigned int off, void *p_data, unsigned int bytes) 2374 { 2375 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2376 int ret; 2377 struct intel_vgpu_submission *s = &vgpu->submission; 2378 struct intel_engine_cs *engine; 2379 int i; 2380 2381 if (bytes != 4 && bytes != 8) 2382 return -EINVAL; 2383 2384 off -= info->gtt_start_offset; 2385 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2386 2387 /* if ggtt of last submitted context is written, 2388 * that context is probably got unpinned. 2389 * Set last shadowed ctx to invalid. 2390 */ 2391 for_each_engine(engine, vgpu->gvt->gt, i) { 2392 if (!s->last_ctx[i].valid) 2393 continue; 2394 2395 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2396 s->last_ctx[i].valid = false; 2397 } 2398 return ret; 2399 } 2400 2401 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2402 enum intel_gvt_gtt_type type) 2403 { 2404 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2405 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2406 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2407 int page_entry_num = I915_GTT_PAGE_SIZE >> 2408 vgpu->gvt->device_info.gtt_entry_size_shift; 2409 void *scratch_pt; 2410 int i; 2411 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2412 dma_addr_t daddr; 2413 2414 if (drm_WARN_ON(&i915->drm, 2415 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2416 return -EINVAL; 2417 2418 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2419 if (!scratch_pt) { 2420 gvt_vgpu_err("fail to allocate scratch page\n"); 2421 return -ENOMEM; 2422 } 2423 2424 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL); 2425 if (dma_mapping_error(dev, daddr)) { 2426 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2427 __free_page(virt_to_page(scratch_pt)); 2428 return -ENOMEM; 2429 } 2430 gtt->scratch_pt[type].page_mfn = 2431 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2432 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2433 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2434 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2435 2436 /* Build the tree by full filled the scratch pt with the entries which 2437 * point to the next level scratch pt or scratch page. The 2438 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2439 * 'type' pt. 2440 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2441 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2442 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2443 */ 2444 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2445 struct intel_gvt_gtt_entry se; 2446 2447 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2448 se.type = get_entry_type(type - 1); 2449 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2450 2451 /* The entry parameters like present/writeable/cache type 2452 * set to the same as i915's scratch page tree. 2453 */ 2454 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 2455 if (type == GTT_TYPE_PPGTT_PDE_PT) 2456 se.val64 |= PPAT_CACHED; 2457 2458 for (i = 0; i < page_entry_num; i++) 2459 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2466 { 2467 int i; 2468 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2469 dma_addr_t daddr; 2470 2471 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2472 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2473 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2474 I915_GTT_PAGE_SHIFT); 2475 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2476 __free_page(vgpu->gtt.scratch_pt[i].page); 2477 vgpu->gtt.scratch_pt[i].page = NULL; 2478 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2479 } 2480 } 2481 2482 return 0; 2483 } 2484 2485 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2486 { 2487 int i, ret; 2488 2489 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2490 ret = alloc_scratch_pages(vgpu, i); 2491 if (ret) 2492 goto err; 2493 } 2494 2495 return 0; 2496 2497 err: 2498 release_scratch_page_tree(vgpu); 2499 return ret; 2500 } 2501 2502 /** 2503 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2504 * @vgpu: a vGPU 2505 * 2506 * This function is used to initialize per-vGPU graphics memory virtualization 2507 * components. 2508 * 2509 * Returns: 2510 * Zero on success, error code if failed. 2511 */ 2512 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2513 { 2514 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2515 2516 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2517 2518 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2519 INIT_LIST_HEAD(>t->oos_page_list_head); 2520 INIT_LIST_HEAD(>t->post_shadow_list_head); 2521 2522 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2523 if (IS_ERR(gtt->ggtt_mm)) { 2524 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2525 return PTR_ERR(gtt->ggtt_mm); 2526 } 2527 2528 intel_vgpu_reset_ggtt(vgpu, false); 2529 2530 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2531 2532 return create_scratch_page_tree(vgpu); 2533 } 2534 2535 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2536 { 2537 struct list_head *pos, *n; 2538 struct intel_vgpu_mm *mm; 2539 2540 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2541 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2542 intel_vgpu_destroy_mm(mm); 2543 } 2544 2545 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2546 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2547 2548 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2549 gvt_err("Why we still has spt not freed?\n"); 2550 ppgtt_free_all_spt(vgpu); 2551 } 2552 } 2553 2554 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2555 { 2556 struct intel_gvt_partial_pte *pos, *next; 2557 2558 list_for_each_entry_safe(pos, next, 2559 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2560 list) { 2561 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2562 pos->offset, pos->data); 2563 kfree(pos); 2564 } 2565 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2566 vgpu->gtt.ggtt_mm = NULL; 2567 } 2568 2569 /** 2570 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2571 * @vgpu: a vGPU 2572 * 2573 * This function is used to clean up per-vGPU graphics memory virtualization 2574 * components. 2575 * 2576 * Returns: 2577 * Zero on success, error code if failed. 2578 */ 2579 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2580 { 2581 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2582 intel_vgpu_destroy_ggtt_mm(vgpu); 2583 release_scratch_page_tree(vgpu); 2584 } 2585 2586 static void clean_spt_oos(struct intel_gvt *gvt) 2587 { 2588 struct intel_gvt_gtt *gtt = &gvt->gtt; 2589 struct list_head *pos, *n; 2590 struct intel_vgpu_oos_page *oos_page; 2591 2592 WARN(!list_empty(>t->oos_page_use_list_head), 2593 "someone is still using oos page\n"); 2594 2595 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2596 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2597 list_del(&oos_page->list); 2598 free_page((unsigned long)oos_page->mem); 2599 kfree(oos_page); 2600 } 2601 } 2602 2603 static int setup_spt_oos(struct intel_gvt *gvt) 2604 { 2605 struct intel_gvt_gtt *gtt = &gvt->gtt; 2606 struct intel_vgpu_oos_page *oos_page; 2607 int i; 2608 int ret; 2609 2610 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2611 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2612 2613 for (i = 0; i < preallocated_oos_pages; i++) { 2614 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2615 if (!oos_page) { 2616 ret = -ENOMEM; 2617 goto fail; 2618 } 2619 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2620 if (!oos_page->mem) { 2621 ret = -ENOMEM; 2622 kfree(oos_page); 2623 goto fail; 2624 } 2625 2626 INIT_LIST_HEAD(&oos_page->list); 2627 INIT_LIST_HEAD(&oos_page->vm_list); 2628 oos_page->id = i; 2629 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2630 } 2631 2632 gvt_dbg_mm("%d oos pages preallocated\n", i); 2633 2634 return 0; 2635 fail: 2636 clean_spt_oos(gvt); 2637 return ret; 2638 } 2639 2640 /** 2641 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2642 * @vgpu: a vGPU 2643 * @pdps: pdp root array 2644 * 2645 * This function is used to find a PPGTT mm object from mm object pool 2646 * 2647 * Returns: 2648 * pointer to mm object on success, NULL if failed. 2649 */ 2650 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2651 u64 pdps[]) 2652 { 2653 struct intel_vgpu_mm *mm; 2654 struct list_head *pos; 2655 2656 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2657 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2658 2659 switch (mm->ppgtt_mm.root_entry_type) { 2660 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2661 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2662 return mm; 2663 break; 2664 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2665 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2666 sizeof(mm->ppgtt_mm.guest_pdps))) 2667 return mm; 2668 break; 2669 default: 2670 GEM_BUG_ON(1); 2671 } 2672 } 2673 return NULL; 2674 } 2675 2676 /** 2677 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2678 * @vgpu: a vGPU 2679 * @root_entry_type: ppgtt root entry type 2680 * @pdps: guest pdps 2681 * 2682 * This function is used to find or create a PPGTT mm object from a guest. 2683 * 2684 * Returns: 2685 * Zero on success, negative error code if failed. 2686 */ 2687 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2688 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2689 { 2690 struct intel_vgpu_mm *mm; 2691 2692 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2693 if (mm) { 2694 intel_vgpu_mm_get(mm); 2695 } else { 2696 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2697 if (IS_ERR(mm)) 2698 gvt_vgpu_err("fail to create mm\n"); 2699 } 2700 return mm; 2701 } 2702 2703 /** 2704 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2705 * @vgpu: a vGPU 2706 * @pdps: guest pdps 2707 * 2708 * This function is used to find a PPGTT mm object from a guest and destroy it. 2709 * 2710 * Returns: 2711 * Zero on success, negative error code if failed. 2712 */ 2713 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2714 { 2715 struct intel_vgpu_mm *mm; 2716 2717 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2718 if (!mm) { 2719 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2720 return -EINVAL; 2721 } 2722 intel_vgpu_mm_put(mm); 2723 return 0; 2724 } 2725 2726 /** 2727 * intel_gvt_init_gtt - initialize mm components of a GVT device 2728 * @gvt: GVT device 2729 * 2730 * This function is called at the initialization stage, to initialize 2731 * the mm components of a GVT device. 2732 * 2733 * Returns: 2734 * zero on success, negative error code if failed. 2735 */ 2736 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2737 { 2738 int ret; 2739 void *page; 2740 struct device *dev = gvt->gt->i915->drm.dev; 2741 dma_addr_t daddr; 2742 2743 gvt_dbg_core("init gtt\n"); 2744 2745 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2746 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2747 2748 page = (void *)get_zeroed_page(GFP_KERNEL); 2749 if (!page) { 2750 gvt_err("fail to allocate scratch ggtt page\n"); 2751 return -ENOMEM; 2752 } 2753 2754 daddr = dma_map_page(dev, virt_to_page(page), 0, 2755 4096, DMA_BIDIRECTIONAL); 2756 if (dma_mapping_error(dev, daddr)) { 2757 gvt_err("fail to dmamap scratch ggtt page\n"); 2758 __free_page(virt_to_page(page)); 2759 return -ENOMEM; 2760 } 2761 2762 gvt->gtt.scratch_page = virt_to_page(page); 2763 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2764 2765 if (enable_out_of_sync) { 2766 ret = setup_spt_oos(gvt); 2767 if (ret) { 2768 gvt_err("fail to initialize SPT oos\n"); 2769 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2770 __free_page(gvt->gtt.scratch_page); 2771 return ret; 2772 } 2773 } 2774 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2775 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2776 return 0; 2777 } 2778 2779 /** 2780 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2781 * @gvt: GVT device 2782 * 2783 * This function is called at the driver unloading stage, to clean up 2784 * the mm components of a GVT device. 2785 * 2786 */ 2787 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2788 { 2789 struct device *dev = gvt->gt->i915->drm.dev; 2790 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2791 I915_GTT_PAGE_SHIFT); 2792 2793 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2794 2795 __free_page(gvt->gtt.scratch_page); 2796 2797 if (enable_out_of_sync) 2798 clean_spt_oos(gvt); 2799 } 2800 2801 /** 2802 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2803 * @vgpu: a vGPU 2804 * 2805 * This function is called when invalidate all PPGTT instances of a vGPU. 2806 * 2807 */ 2808 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2809 { 2810 struct list_head *pos, *n; 2811 struct intel_vgpu_mm *mm; 2812 2813 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2814 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2815 if (mm->type == INTEL_GVT_MM_PPGTT) { 2816 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2817 list_del_init(&mm->ppgtt_mm.lru_list); 2818 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2819 if (mm->ppgtt_mm.shadowed) 2820 invalidate_ppgtt_mm(mm); 2821 } 2822 } 2823 } 2824 2825 /** 2826 * intel_vgpu_reset_ggtt - reset the GGTT entry 2827 * @vgpu: a vGPU 2828 * @invalidate_old: invalidate old entries 2829 * 2830 * This function is called at the vGPU create stage 2831 * to reset all the GGTT entries. 2832 * 2833 */ 2834 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2835 { 2836 struct intel_gvt *gvt = vgpu->gvt; 2837 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2838 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2839 struct intel_gvt_gtt_entry old_entry; 2840 u32 index; 2841 u32 num_entries; 2842 2843 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2844 pte_ops->set_present(&entry); 2845 2846 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2847 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2848 while (num_entries--) { 2849 if (invalidate_old) { 2850 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2851 ggtt_invalidate_pte(vgpu, &old_entry); 2852 } 2853 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2854 } 2855 2856 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2857 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2858 while (num_entries--) { 2859 if (invalidate_old) { 2860 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2861 ggtt_invalidate_pte(vgpu, &old_entry); 2862 } 2863 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2864 } 2865 2866 ggtt_invalidate(gvt->gt); 2867 } 2868 2869 /** 2870 * intel_vgpu_reset_gtt - reset the all GTT related status 2871 * @vgpu: a vGPU 2872 * 2873 * This function is called from vfio core to reset reset all 2874 * GTT related status, including GGTT, PPGTT, scratch page. 2875 * 2876 */ 2877 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2878 { 2879 /* Shadow pages are only created when there is no page 2880 * table tracking data, so remove page tracking data after 2881 * removing the shadow pages. 2882 */ 2883 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2884 intel_vgpu_reset_ggtt(vgpu, true); 2885 } 2886 2887 /** 2888 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2889 * @gvt: intel gvt device 2890 * 2891 * This function is called at driver resume stage to restore 2892 * GGTT entries of every vGPU. 2893 * 2894 */ 2895 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2896 { 2897 struct intel_vgpu *vgpu; 2898 struct intel_vgpu_mm *mm; 2899 int id; 2900 gen8_pte_t pte; 2901 u32 idx, num_low, num_hi, offset; 2902 2903 /* Restore dirty host ggtt for all vGPUs */ 2904 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2905 mm = vgpu->gtt.ggtt_mm; 2906 2907 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2908 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2909 for (idx = 0; idx < num_low; idx++) { 2910 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2911 if (pte & GEN8_PAGE_PRESENT) 2912 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2913 } 2914 2915 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2916 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2917 for (idx = 0; idx < num_hi; idx++) { 2918 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2919 if (pte & GEN8_PAGE_PRESENT) 2920 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2921 } 2922 } 2923 } 2924