xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 9376ff9b)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
220 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
221 			GTT_TYPE_PPGTT_PTE_PT,
222 			GTT_TYPE_INVALID,
223 			GTT_TYPE_INVALID),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
225 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_PT,
227 			GTT_TYPE_INVALID,
228 			GTT_TYPE_INVALID),
229 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
230 			GTT_TYPE_PPGTT_PDE_ENTRY,
231 			GTT_TYPE_PPGTT_PDE_PT,
232 			GTT_TYPE_INVALID,
233 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
234 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
235 			GTT_TYPE_PPGTT_PDP_ENTRY,
236 			GTT_TYPE_PPGTT_PDP_PT,
237 			GTT_TYPE_INVALID,
238 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
239 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
240 			GTT_TYPE_GGTT_PTE,
241 			GTT_TYPE_INVALID,
242 			GTT_TYPE_INVALID,
243 			GTT_TYPE_INVALID),
244 };
245 
246 static inline int get_next_pt_type(int type)
247 {
248 	return gtt_type_table[type].next_pt_type;
249 }
250 
251 static inline int get_pt_type(int type)
252 {
253 	return gtt_type_table[type].pt_type;
254 }
255 
256 static inline int get_entry_type(int type)
257 {
258 	return gtt_type_table[type].entry_type;
259 }
260 
261 static inline int get_pse_type(int type)
262 {
263 	return gtt_type_table[type].pse_entry_type;
264 }
265 
266 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
267 {
268 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
269 
270 	return readq(addr);
271 }
272 
273 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
274 {
275 	mmio_hw_access_pre(dev_priv);
276 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
277 	mmio_hw_access_post(dev_priv);
278 }
279 
280 static void write_pte64(struct drm_i915_private *dev_priv,
281 		unsigned long index, u64 pte)
282 {
283 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
284 
285 	writeq(pte, addr);
286 }
287 
288 static inline int gtt_get_entry64(void *pt,
289 		struct intel_gvt_gtt_entry *e,
290 		unsigned long index, bool hypervisor_access, unsigned long gpa,
291 		struct intel_vgpu *vgpu)
292 {
293 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
294 	int ret;
295 
296 	if (WARN_ON(info->gtt_entry_size != 8))
297 		return -EINVAL;
298 
299 	if (hypervisor_access) {
300 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
301 				(index << info->gtt_entry_size_shift),
302 				&e->val64, 8);
303 		if (WARN_ON(ret))
304 			return ret;
305 	} else if (!pt) {
306 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
307 	} else {
308 		e->val64 = *((u64 *)pt + index);
309 	}
310 	return 0;
311 }
312 
313 static inline int gtt_set_entry64(void *pt,
314 		struct intel_gvt_gtt_entry *e,
315 		unsigned long index, bool hypervisor_access, unsigned long gpa,
316 		struct intel_vgpu *vgpu)
317 {
318 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
319 	int ret;
320 
321 	if (WARN_ON(info->gtt_entry_size != 8))
322 		return -EINVAL;
323 
324 	if (hypervisor_access) {
325 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
326 				(index << info->gtt_entry_size_shift),
327 				&e->val64, 8);
328 		if (WARN_ON(ret))
329 			return ret;
330 	} else if (!pt) {
331 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
332 	} else {
333 		*((u64 *)pt + index) = e->val64;
334 	}
335 	return 0;
336 }
337 
338 #define GTT_HAW 46
339 
340 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
341 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
342 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
343 
344 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
345 {
346 	unsigned long pfn;
347 
348 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
349 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
350 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
351 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
352 	else
353 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
354 	return pfn;
355 }
356 
357 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
358 {
359 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
360 		e->val64 &= ~ADDR_1G_MASK;
361 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
362 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
363 		e->val64 &= ~ADDR_2M_MASK;
364 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
365 	} else {
366 		e->val64 &= ~ADDR_4K_MASK;
367 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
368 	}
369 
370 	e->val64 |= (pfn << PAGE_SHIFT);
371 }
372 
373 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
374 {
375 	/* Entry doesn't have PSE bit. */
376 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
377 		return false;
378 
379 	e->type = get_entry_type(e->type);
380 	if (!(e->val64 & _PAGE_PSE))
381 		return false;
382 
383 	e->type = get_pse_type(e->type);
384 	return true;
385 }
386 
387 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
388 {
389 	/*
390 	 * i915 writes PDP root pointer registers without present bit,
391 	 * it also works, so we need to treat root pointer entry
392 	 * specifically.
393 	 */
394 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
395 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
396 		return (e->val64 != 0);
397 	else
398 		return (e->val64 & _PAGE_PRESENT);
399 }
400 
401 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
402 {
403 	e->val64 &= ~_PAGE_PRESENT;
404 }
405 
406 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
407 {
408 	e->val64 |= _PAGE_PRESENT;
409 }
410 
411 /*
412  * Per-platform GMA routines.
413  */
414 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
415 {
416 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
417 
418 	trace_gma_index(__func__, gma, x);
419 	return x;
420 }
421 
422 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
423 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
424 { \
425 	unsigned long x = (exp); \
426 	trace_gma_index(__func__, gma, x); \
427 	return x; \
428 }
429 
430 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
431 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
432 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
433 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
435 
436 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
437 	.get_entry = gtt_get_entry64,
438 	.set_entry = gtt_set_entry64,
439 	.clear_present = gtt_entry_clear_present,
440 	.set_present = gtt_entry_set_present,
441 	.test_present = gen8_gtt_test_present,
442 	.test_pse = gen8_gtt_test_pse,
443 	.get_pfn = gen8_gtt_get_pfn,
444 	.set_pfn = gen8_gtt_set_pfn,
445 };
446 
447 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
448 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
449 	.gma_to_pte_index = gen8_gma_to_pte_index,
450 	.gma_to_pde_index = gen8_gma_to_pde_index,
451 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
452 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
453 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
454 };
455 
456 /*
457  * MM helpers.
458  */
459 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
460 		struct intel_gvt_gtt_entry *entry, unsigned long index,
461 		bool guest)
462 {
463 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
464 
465 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
466 
467 	entry->type = mm->ppgtt_mm.root_entry_type;
468 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
469 			   mm->ppgtt_mm.shadow_pdps,
470 			   entry, index, false, 0, mm->vgpu);
471 
472 	pte_ops->test_pse(entry);
473 }
474 
475 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
476 		struct intel_gvt_gtt_entry *entry, unsigned long index)
477 {
478 	_ppgtt_get_root_entry(mm, entry, index, true);
479 }
480 
481 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
482 		struct intel_gvt_gtt_entry *entry, unsigned long index)
483 {
484 	_ppgtt_get_root_entry(mm, entry, index, false);
485 }
486 
487 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
488 		struct intel_gvt_gtt_entry *entry, unsigned long index,
489 		bool guest)
490 {
491 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
492 
493 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
494 			   mm->ppgtt_mm.shadow_pdps,
495 			   entry, index, false, 0, mm->vgpu);
496 }
497 
498 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
499 		struct intel_gvt_gtt_entry *entry, unsigned long index)
500 {
501 	_ppgtt_set_root_entry(mm, entry, index, true);
502 }
503 
504 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
505 		struct intel_gvt_gtt_entry *entry, unsigned long index)
506 {
507 	_ppgtt_set_root_entry(mm, entry, index, false);
508 }
509 
510 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
511 		struct intel_gvt_gtt_entry *entry, unsigned long index)
512 {
513 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
514 
515 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
516 
517 	entry->type = GTT_TYPE_GGTT_PTE;
518 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
519 			   false, 0, mm->vgpu);
520 }
521 
522 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
523 		struct intel_gvt_gtt_entry *entry, unsigned long index)
524 {
525 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
526 
527 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
528 
529 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
530 			   false, 0, mm->vgpu);
531 }
532 
533 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
534 		struct intel_gvt_gtt_entry *entry, unsigned long index)
535 {
536 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
537 
538 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
539 
540 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
541 }
542 
543 /*
544  * PPGTT shadow page table helpers.
545  */
546 static inline int ppgtt_spt_get_entry(
547 		struct intel_vgpu_ppgtt_spt *spt,
548 		void *page_table, int type,
549 		struct intel_gvt_gtt_entry *e, unsigned long index,
550 		bool guest)
551 {
552 	struct intel_gvt *gvt = spt->vgpu->gvt;
553 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
554 	int ret;
555 
556 	e->type = get_entry_type(type);
557 
558 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
559 		return -EINVAL;
560 
561 	ret = ops->get_entry(page_table, e, index, guest,
562 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
563 			spt->vgpu);
564 	if (ret)
565 		return ret;
566 
567 	ops->test_pse(e);
568 
569 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
570 		    type, e->type, index, e->val64);
571 	return 0;
572 }
573 
574 static inline int ppgtt_spt_set_entry(
575 		struct intel_vgpu_ppgtt_spt *spt,
576 		void *page_table, int type,
577 		struct intel_gvt_gtt_entry *e, unsigned long index,
578 		bool guest)
579 {
580 	struct intel_gvt *gvt = spt->vgpu->gvt;
581 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
582 
583 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
584 		return -EINVAL;
585 
586 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
587 		    type, e->type, index, e->val64);
588 
589 	return ops->set_entry(page_table, e, index, guest,
590 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
591 			spt->vgpu);
592 }
593 
594 #define ppgtt_get_guest_entry(spt, e, index) \
595 	ppgtt_spt_get_entry(spt, NULL, \
596 		spt->guest_page.type, e, index, true)
597 
598 #define ppgtt_set_guest_entry(spt, e, index) \
599 	ppgtt_spt_set_entry(spt, NULL, \
600 		spt->guest_page.type, e, index, true)
601 
602 #define ppgtt_get_shadow_entry(spt, e, index) \
603 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
604 		spt->shadow_page.type, e, index, false)
605 
606 #define ppgtt_set_shadow_entry(spt, e, index) \
607 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
608 		spt->shadow_page.type, e, index, false)
609 
610 static void *alloc_spt(gfp_t gfp_mask)
611 {
612 	struct intel_vgpu_ppgtt_spt *spt;
613 
614 	spt = kzalloc(sizeof(*spt), gfp_mask);
615 	if (!spt)
616 		return NULL;
617 
618 	spt->shadow_page.page = alloc_page(gfp_mask);
619 	if (!spt->shadow_page.page) {
620 		kfree(spt);
621 		return NULL;
622 	}
623 	return spt;
624 }
625 
626 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
627 {
628 	__free_page(spt->shadow_page.page);
629 	kfree(spt);
630 }
631 
632 static int detach_oos_page(struct intel_vgpu *vgpu,
633 		struct intel_vgpu_oos_page *oos_page);
634 
635 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
636 {
637 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
638 
639 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
640 
641 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
642 		       PCI_DMA_BIDIRECTIONAL);
643 
644 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
645 
646 	if (spt->guest_page.oos_page)
647 		detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
648 
649 	intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
650 
651 	list_del_init(&spt->post_shadow_list);
652 	free_spt(spt);
653 }
654 
655 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
656 {
657 	struct intel_vgpu_ppgtt_spt *spt;
658 	struct radix_tree_iter iter;
659 	void **slot;
660 
661 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
662 		spt = radix_tree_deref_slot(slot);
663 		ppgtt_free_spt(spt);
664 	}
665 }
666 
667 static int ppgtt_handle_guest_write_page_table_bytes(
668 		struct intel_vgpu_ppgtt_spt *spt,
669 		u64 pa, void *p_data, int bytes);
670 
671 static int ppgtt_write_protection_handler(
672 		struct intel_vgpu_page_track *page_track,
673 		u64 gpa, void *data, int bytes)
674 {
675 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
676 
677 	int ret;
678 
679 	if (bytes != 4 && bytes != 8)
680 		return -EINVAL;
681 
682 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
683 	if (ret)
684 		return ret;
685 	return ret;
686 }
687 
688 /* Find a spt by guest gfn. */
689 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
690 		struct intel_vgpu *vgpu, unsigned long gfn)
691 {
692 	struct intel_vgpu_page_track *track;
693 
694 	track = intel_vgpu_find_page_track(vgpu, gfn);
695 	if (track && track->handler == ppgtt_write_protection_handler)
696 		return track->priv_data;
697 
698 	return NULL;
699 }
700 
701 /* Find the spt by shadow page mfn. */
702 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
703 		struct intel_vgpu *vgpu, unsigned long mfn)
704 {
705 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
706 }
707 
708 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
709 
710 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
711 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
712 {
713 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
714 	struct intel_vgpu_ppgtt_spt *spt = NULL;
715 	dma_addr_t daddr;
716 	int ret;
717 
718 retry:
719 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
720 	if (!spt) {
721 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
722 			goto retry;
723 
724 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
725 		return ERR_PTR(-ENOMEM);
726 	}
727 
728 	spt->vgpu = vgpu;
729 	atomic_set(&spt->refcount, 1);
730 	INIT_LIST_HEAD(&spt->post_shadow_list);
731 
732 	/*
733 	 * Init shadow_page.
734 	 */
735 	spt->shadow_page.type = type;
736 	daddr = dma_map_page(kdev, spt->shadow_page.page,
737 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
738 	if (dma_mapping_error(kdev, daddr)) {
739 		gvt_vgpu_err("fail to map dma addr\n");
740 		ret = -EINVAL;
741 		goto err_free_spt;
742 	}
743 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
744 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
745 
746 	/*
747 	 * Init guest_page.
748 	 */
749 	spt->guest_page.type = type;
750 	spt->guest_page.gfn = gfn;
751 
752 	ret = intel_vgpu_register_page_track(vgpu, spt->guest_page.gfn,
753 					ppgtt_write_protection_handler, spt);
754 	if (ret)
755 		goto err_unmap_dma;
756 
757 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
758 	if (ret)
759 		goto err_unreg_page_track;
760 
761 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
762 	return spt;
763 
764 err_unreg_page_track:
765 	intel_vgpu_unregister_page_track(vgpu, spt->guest_page.gfn);
766 err_unmap_dma:
767 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
768 err_free_spt:
769 	free_spt(spt);
770 	return ERR_PTR(ret);
771 }
772 
773 #define pt_entry_size_shift(spt) \
774 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
775 
776 #define pt_entries(spt) \
777 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
778 
779 #define for_each_present_guest_entry(spt, e, i) \
780 	for (i = 0; i < pt_entries(spt); i++) \
781 		if (!ppgtt_get_guest_entry(spt, e, i) && \
782 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
783 
784 #define for_each_present_shadow_entry(spt, e, i) \
785 	for (i = 0; i < pt_entries(spt); i++) \
786 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
787 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
788 
789 static void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
790 {
791 	int v = atomic_read(&spt->refcount);
792 
793 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
794 
795 	atomic_inc(&spt->refcount);
796 }
797 
798 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
799 
800 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
801 		struct intel_gvt_gtt_entry *e)
802 {
803 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
804 	struct intel_vgpu_ppgtt_spt *s;
805 	intel_gvt_gtt_type_t cur_pt_type;
806 
807 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
808 
809 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
810 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
811 		cur_pt_type = get_next_pt_type(e->type) + 1;
812 		if (ops->get_pfn(e) ==
813 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
814 			return 0;
815 	}
816 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
817 	if (!s) {
818 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
819 				ops->get_pfn(e));
820 		return -ENXIO;
821 	}
822 	return ppgtt_invalidate_spt(s);
823 }
824 
825 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
826 		struct intel_gvt_gtt_entry *entry)
827 {
828 	struct intel_vgpu *vgpu = spt->vgpu;
829 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
830 	unsigned long pfn;
831 	int type;
832 
833 	pfn = ops->get_pfn(entry);
834 	type = spt->shadow_page.type;
835 
836 	if (pfn == vgpu->gtt.scratch_pt[type].page_mfn)
837 		return;
838 
839 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
840 }
841 
842 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
843 {
844 	struct intel_vgpu *vgpu = spt->vgpu;
845 	struct intel_gvt_gtt_entry e;
846 	unsigned long index;
847 	int ret;
848 	int v = atomic_read(&spt->refcount);
849 
850 	trace_spt_change(spt->vgpu->id, "die", spt,
851 			spt->guest_page.gfn, spt->shadow_page.type);
852 
853 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
854 
855 	if (atomic_dec_return(&spt->refcount) > 0)
856 		return 0;
857 
858 	for_each_present_shadow_entry(spt, &e, index) {
859 		switch (e.type) {
860 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
861 			gvt_vdbg_mm("invalidate 4K entry\n");
862 			ppgtt_invalidate_pte(spt, &e);
863 			break;
864 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
865 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
866 			WARN(1, "GVT doesn't support 2M/1GB page\n");
867 			continue;
868 		case GTT_TYPE_PPGTT_PML4_ENTRY:
869 		case GTT_TYPE_PPGTT_PDP_ENTRY:
870 		case GTT_TYPE_PPGTT_PDE_ENTRY:
871 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
872 			ret = ppgtt_invalidate_spt_by_shadow_entry(
873 					spt->vgpu, &e);
874 			if (ret)
875 				goto fail;
876 			break;
877 		default:
878 			GEM_BUG_ON(1);
879 		}
880 	}
881 
882 	trace_spt_change(spt->vgpu->id, "release", spt,
883 			 spt->guest_page.gfn, spt->shadow_page.type);
884 	ppgtt_free_spt(spt);
885 	return 0;
886 fail:
887 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
888 			spt, e.val64, e.type);
889 	return ret;
890 }
891 
892 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
893 
894 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
895 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
896 {
897 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
898 	struct intel_vgpu_ppgtt_spt *spt = NULL;
899 	int ret;
900 
901 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
902 
903 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
904 	if (spt)
905 		ppgtt_get_spt(spt);
906 	else {
907 		int type = get_next_pt_type(we->type);
908 
909 		spt = ppgtt_alloc_spt(vgpu, type, ops->get_pfn(we));
910 		if (IS_ERR(spt)) {
911 			ret = PTR_ERR(spt);
912 			goto fail;
913 		}
914 
915 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
916 		if (ret)
917 			goto fail;
918 
919 		ret = ppgtt_populate_spt(spt);
920 		if (ret)
921 			goto fail;
922 
923 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
924 				 spt->shadow_page.type);
925 	}
926 	return spt;
927 fail:
928 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
929 		     spt, we->val64, we->type);
930 	return ERR_PTR(ret);
931 }
932 
933 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
934 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
935 {
936 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
937 
938 	se->type = ge->type;
939 	se->val64 = ge->val64;
940 
941 	ops->set_pfn(se, s->shadow_page.mfn);
942 }
943 
944 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
945 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
946 	struct intel_gvt_gtt_entry *ge)
947 {
948 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
949 	struct intel_gvt_gtt_entry se = *ge;
950 	unsigned long gfn;
951 	dma_addr_t dma_addr;
952 	int ret;
953 
954 	if (!pte_ops->test_present(ge))
955 		return 0;
956 
957 	gfn = pte_ops->get_pfn(ge);
958 
959 	switch (ge->type) {
960 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
961 		gvt_vdbg_mm("shadow 4K gtt entry\n");
962 		break;
963 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
964 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
965 		gvt_vgpu_err("GVT doesn't support 2M/1GB entry\n");
966 		return -EINVAL;
967 	default:
968 		GEM_BUG_ON(1);
969 	};
970 
971 	/* direct shadow */
972 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, &dma_addr);
973 	if (ret)
974 		return -ENXIO;
975 
976 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
977 	ppgtt_set_shadow_entry(spt, &se, index);
978 	return 0;
979 }
980 
981 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
982 {
983 	struct intel_vgpu *vgpu = spt->vgpu;
984 	struct intel_gvt *gvt = vgpu->gvt;
985 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
986 	struct intel_vgpu_ppgtt_spt *s;
987 	struct intel_gvt_gtt_entry se, ge;
988 	unsigned long gfn, i;
989 	int ret;
990 
991 	trace_spt_change(spt->vgpu->id, "born", spt,
992 			 spt->guest_page.gfn, spt->shadow_page.type);
993 
994 	for_each_present_guest_entry(spt, &ge, i) {
995 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
996 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
997 			if (IS_ERR(s)) {
998 				ret = PTR_ERR(s);
999 				goto fail;
1000 			}
1001 			ppgtt_get_shadow_entry(spt, &se, i);
1002 			ppgtt_generate_shadow_entry(&se, s, &ge);
1003 			ppgtt_set_shadow_entry(spt, &se, i);
1004 		} else {
1005 			gfn = ops->get_pfn(&ge);
1006 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1007 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1008 				ppgtt_set_shadow_entry(spt, &se, i);
1009 				continue;
1010 			}
1011 
1012 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1013 			if (ret)
1014 				goto fail;
1015 		}
1016 	}
1017 	return 0;
1018 fail:
1019 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1020 			spt, ge.val64, ge.type);
1021 	return ret;
1022 }
1023 
1024 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1025 		struct intel_gvt_gtt_entry *se, unsigned long index)
1026 {
1027 	struct intel_vgpu *vgpu = spt->vgpu;
1028 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1029 	int ret;
1030 
1031 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1032 			       spt->shadow_page.type, se->val64, index);
1033 
1034 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1035 		    se->type, index, se->val64);
1036 
1037 	if (!ops->test_present(se))
1038 		return 0;
1039 
1040 	if (ops->get_pfn(se) ==
1041 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1042 		return 0;
1043 
1044 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1045 		struct intel_vgpu_ppgtt_spt *s =
1046 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1047 		if (!s) {
1048 			gvt_vgpu_err("fail to find guest page\n");
1049 			ret = -ENXIO;
1050 			goto fail;
1051 		}
1052 		ret = ppgtt_invalidate_spt(s);
1053 		if (ret)
1054 			goto fail;
1055 	} else
1056 		ppgtt_invalidate_pte(spt, se);
1057 
1058 	return 0;
1059 fail:
1060 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1061 			spt, se->val64, se->type);
1062 	return ret;
1063 }
1064 
1065 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1066 		struct intel_gvt_gtt_entry *we, unsigned long index)
1067 {
1068 	struct intel_vgpu *vgpu = spt->vgpu;
1069 	struct intel_gvt_gtt_entry m;
1070 	struct intel_vgpu_ppgtt_spt *s;
1071 	int ret;
1072 
1073 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1074 			       we->val64, index);
1075 
1076 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1077 		    we->type, index, we->val64);
1078 
1079 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1080 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1081 		if (IS_ERR(s)) {
1082 			ret = PTR_ERR(s);
1083 			goto fail;
1084 		}
1085 		ppgtt_get_shadow_entry(spt, &m, index);
1086 		ppgtt_generate_shadow_entry(&m, s, we);
1087 		ppgtt_set_shadow_entry(spt, &m, index);
1088 	} else {
1089 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1090 		if (ret)
1091 			goto fail;
1092 	}
1093 	return 0;
1094 fail:
1095 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1096 		spt, we->val64, we->type);
1097 	return ret;
1098 }
1099 
1100 static int sync_oos_page(struct intel_vgpu *vgpu,
1101 		struct intel_vgpu_oos_page *oos_page)
1102 {
1103 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1104 	struct intel_gvt *gvt = vgpu->gvt;
1105 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1106 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1107 	struct intel_gvt_gtt_entry old, new;
1108 	int index;
1109 	int ret;
1110 
1111 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1112 			 spt, spt->guest_page.type);
1113 
1114 	old.type = new.type = get_entry_type(spt->guest_page.type);
1115 	old.val64 = new.val64 = 0;
1116 
1117 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1118 				info->gtt_entry_size_shift); index++) {
1119 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1120 		ops->get_entry(NULL, &new, index, true,
1121 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1122 
1123 		if (old.val64 == new.val64
1124 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1125 			continue;
1126 
1127 		trace_oos_sync(vgpu->id, oos_page->id,
1128 				spt, spt->guest_page.type,
1129 				new.val64, index);
1130 
1131 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1132 		if (ret)
1133 			return ret;
1134 
1135 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1136 	}
1137 
1138 	spt->guest_page.write_cnt = 0;
1139 	list_del_init(&spt->post_shadow_list);
1140 	return 0;
1141 }
1142 
1143 static int detach_oos_page(struct intel_vgpu *vgpu,
1144 		struct intel_vgpu_oos_page *oos_page)
1145 {
1146 	struct intel_gvt *gvt = vgpu->gvt;
1147 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1148 
1149 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1150 			 spt, spt->guest_page.type);
1151 
1152 	spt->guest_page.write_cnt = 0;
1153 	spt->guest_page.oos_page = NULL;
1154 	oos_page->spt = NULL;
1155 
1156 	list_del_init(&oos_page->vm_list);
1157 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1158 
1159 	return 0;
1160 }
1161 
1162 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1163 		struct intel_vgpu_ppgtt_spt *spt)
1164 {
1165 	struct intel_gvt *gvt = spt->vgpu->gvt;
1166 	int ret;
1167 
1168 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1169 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1170 			oos_page->mem, I915_GTT_PAGE_SIZE);
1171 	if (ret)
1172 		return ret;
1173 
1174 	oos_page->spt = spt;
1175 	spt->guest_page.oos_page = oos_page;
1176 
1177 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1178 
1179 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1180 			 spt, spt->guest_page.type);
1181 	return 0;
1182 }
1183 
1184 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1185 {
1186 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1187 	int ret;
1188 
1189 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1190 	if (ret)
1191 		return ret;
1192 
1193 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1194 			 spt, spt->guest_page.type);
1195 
1196 	list_del_init(&oos_page->vm_list);
1197 	return sync_oos_page(spt->vgpu, oos_page);
1198 }
1199 
1200 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1201 {
1202 	struct intel_gvt *gvt = spt->vgpu->gvt;
1203 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1204 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1205 	int ret;
1206 
1207 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1208 
1209 	if (list_empty(&gtt->oos_page_free_list_head)) {
1210 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1211 			struct intel_vgpu_oos_page, list);
1212 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1213 		if (ret)
1214 			return ret;
1215 		ret = detach_oos_page(spt->vgpu, oos_page);
1216 		if (ret)
1217 			return ret;
1218 	} else
1219 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1220 			struct intel_vgpu_oos_page, list);
1221 	return attach_oos_page(oos_page, spt);
1222 }
1223 
1224 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1225 {
1226 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1227 
1228 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1229 		return -EINVAL;
1230 
1231 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1232 			 spt, spt->guest_page.type);
1233 
1234 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1235 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1236 }
1237 
1238 /**
1239  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1240  * @vgpu: a vGPU
1241  *
1242  * This function is called before submitting a guest workload to host,
1243  * to sync all the out-of-synced shadow for vGPU
1244  *
1245  * Returns:
1246  * Zero on success, negative error code if failed.
1247  */
1248 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1249 {
1250 	struct list_head *pos, *n;
1251 	struct intel_vgpu_oos_page *oos_page;
1252 	int ret;
1253 
1254 	if (!enable_out_of_sync)
1255 		return 0;
1256 
1257 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1258 		oos_page = container_of(pos,
1259 				struct intel_vgpu_oos_page, vm_list);
1260 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1261 		if (ret)
1262 			return ret;
1263 	}
1264 	return 0;
1265 }
1266 
1267 /*
1268  * The heart of PPGTT shadow page table.
1269  */
1270 static int ppgtt_handle_guest_write_page_table(
1271 		struct intel_vgpu_ppgtt_spt *spt,
1272 		struct intel_gvt_gtt_entry *we, unsigned long index)
1273 {
1274 	struct intel_vgpu *vgpu = spt->vgpu;
1275 	int type = spt->shadow_page.type;
1276 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1277 	struct intel_gvt_gtt_entry old_se;
1278 	int new_present;
1279 	int ret;
1280 
1281 	new_present = ops->test_present(we);
1282 
1283 	/*
1284 	 * Adding the new entry first and then removing the old one, that can
1285 	 * guarantee the ppgtt table is validated during the window between
1286 	 * adding and removal.
1287 	 */
1288 	ppgtt_get_shadow_entry(spt, &old_se, index);
1289 
1290 	if (new_present) {
1291 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1292 		if (ret)
1293 			goto fail;
1294 	}
1295 
1296 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1297 	if (ret)
1298 		goto fail;
1299 
1300 	if (!new_present) {
1301 		ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn);
1302 		ppgtt_set_shadow_entry(spt, &old_se, index);
1303 	}
1304 
1305 	return 0;
1306 fail:
1307 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1308 			spt, we->val64, we->type);
1309 	return ret;
1310 }
1311 
1312 
1313 
1314 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1315 {
1316 	return enable_out_of_sync
1317 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1318 		&& spt->guest_page.write_cnt >= 2;
1319 }
1320 
1321 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1322 		unsigned long index)
1323 {
1324 	set_bit(index, spt->post_shadow_bitmap);
1325 	if (!list_empty(&spt->post_shadow_list))
1326 		return;
1327 
1328 	list_add_tail(&spt->post_shadow_list,
1329 			&spt->vgpu->gtt.post_shadow_list_head);
1330 }
1331 
1332 /**
1333  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1334  * @vgpu: a vGPU
1335  *
1336  * This function is called before submitting a guest workload to host,
1337  * to flush all the post shadows for a vGPU.
1338  *
1339  * Returns:
1340  * Zero on success, negative error code if failed.
1341  */
1342 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1343 {
1344 	struct list_head *pos, *n;
1345 	struct intel_vgpu_ppgtt_spt *spt;
1346 	struct intel_gvt_gtt_entry ge;
1347 	unsigned long index;
1348 	int ret;
1349 
1350 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1351 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1352 				post_shadow_list);
1353 
1354 		for_each_set_bit(index, spt->post_shadow_bitmap,
1355 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1356 			ppgtt_get_guest_entry(spt, &ge, index);
1357 
1358 			ret = ppgtt_handle_guest_write_page_table(spt,
1359 							&ge, index);
1360 			if (ret)
1361 				return ret;
1362 			clear_bit(index, spt->post_shadow_bitmap);
1363 		}
1364 		list_del_init(&spt->post_shadow_list);
1365 	}
1366 	return 0;
1367 }
1368 
1369 static int ppgtt_handle_guest_write_page_table_bytes(
1370 		struct intel_vgpu_ppgtt_spt *spt,
1371 		u64 pa, void *p_data, int bytes)
1372 {
1373 	struct intel_vgpu *vgpu = spt->vgpu;
1374 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1375 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1376 	struct intel_gvt_gtt_entry we, se;
1377 	unsigned long index;
1378 	int ret;
1379 
1380 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1381 
1382 	ppgtt_get_guest_entry(spt, &we, index);
1383 
1384 	ops->test_pse(&we);
1385 
1386 	if (bytes == info->gtt_entry_size) {
1387 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1388 		if (ret)
1389 			return ret;
1390 	} else {
1391 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1392 			int type = spt->shadow_page.type;
1393 
1394 			ppgtt_get_shadow_entry(spt, &se, index);
1395 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1396 			if (ret)
1397 				return ret;
1398 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1399 			ppgtt_set_shadow_entry(spt, &se, index);
1400 		}
1401 		ppgtt_set_post_shadow(spt, index);
1402 	}
1403 
1404 	if (!enable_out_of_sync)
1405 		return 0;
1406 
1407 	spt->guest_page.write_cnt++;
1408 
1409 	if (spt->guest_page.oos_page)
1410 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1411 				false, 0, vgpu);
1412 
1413 	if (can_do_out_of_sync(spt)) {
1414 		if (!spt->guest_page.oos_page)
1415 			ppgtt_allocate_oos_page(spt);
1416 
1417 		ret = ppgtt_set_guest_page_oos(spt);
1418 		if (ret < 0)
1419 			return ret;
1420 	}
1421 	return 0;
1422 }
1423 
1424 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1425 {
1426 	struct intel_vgpu *vgpu = mm->vgpu;
1427 	struct intel_gvt *gvt = vgpu->gvt;
1428 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1429 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1430 	struct intel_gvt_gtt_entry se;
1431 	int index;
1432 
1433 	if (!mm->ppgtt_mm.shadowed)
1434 		return;
1435 
1436 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1437 		ppgtt_get_shadow_root_entry(mm, &se, index);
1438 
1439 		if (!ops->test_present(&se))
1440 			continue;
1441 
1442 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1443 		se.val64 = 0;
1444 		ppgtt_set_shadow_root_entry(mm, &se, index);
1445 
1446 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1447 				       NULL, se.type, se.val64, index);
1448 	}
1449 
1450 	mm->ppgtt_mm.shadowed = false;
1451 }
1452 
1453 
1454 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1455 {
1456 	struct intel_vgpu *vgpu = mm->vgpu;
1457 	struct intel_gvt *gvt = vgpu->gvt;
1458 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1459 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1460 	struct intel_vgpu_ppgtt_spt *spt;
1461 	struct intel_gvt_gtt_entry ge, se;
1462 	int index, ret;
1463 
1464 	if (mm->ppgtt_mm.shadowed)
1465 		return 0;
1466 
1467 	mm->ppgtt_mm.shadowed = true;
1468 
1469 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1470 		ppgtt_get_guest_root_entry(mm, &ge, index);
1471 
1472 		if (!ops->test_present(&ge))
1473 			continue;
1474 
1475 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1476 				       ge.type, ge.val64, index);
1477 
1478 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1479 		if (IS_ERR(spt)) {
1480 			gvt_vgpu_err("fail to populate guest root pointer\n");
1481 			ret = PTR_ERR(spt);
1482 			goto fail;
1483 		}
1484 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1485 		ppgtt_set_shadow_root_entry(mm, &se, index);
1486 
1487 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1488 				       NULL, se.type, se.val64, index);
1489 	}
1490 
1491 	return 0;
1492 fail:
1493 	invalidate_ppgtt_mm(mm);
1494 	return ret;
1495 }
1496 
1497 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1498 {
1499 	struct intel_vgpu_mm *mm;
1500 
1501 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1502 	if (!mm)
1503 		return NULL;
1504 
1505 	mm->vgpu = vgpu;
1506 	kref_init(&mm->ref);
1507 	atomic_set(&mm->pincount, 0);
1508 
1509 	return mm;
1510 }
1511 
1512 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1513 {
1514 	kfree(mm);
1515 }
1516 
1517 /**
1518  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1519  * @vgpu: a vGPU
1520  * @root_entry_type: ppgtt root entry type
1521  * @pdps: guest pdps.
1522  *
1523  * This function is used to create a ppgtt mm object for a vGPU.
1524  *
1525  * Returns:
1526  * Zero on success, negative error code in pointer if failed.
1527  */
1528 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1529 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1530 {
1531 	struct intel_gvt *gvt = vgpu->gvt;
1532 	struct intel_vgpu_mm *mm;
1533 	int ret;
1534 
1535 	mm = vgpu_alloc_mm(vgpu);
1536 	if (!mm)
1537 		return ERR_PTR(-ENOMEM);
1538 
1539 	mm->type = INTEL_GVT_MM_PPGTT;
1540 
1541 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1542 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1543 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1544 
1545 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1546 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1547 
1548 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1549 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1550 	else
1551 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1552 		       sizeof(mm->ppgtt_mm.guest_pdps));
1553 
1554 	ret = shadow_ppgtt_mm(mm);
1555 	if (ret) {
1556 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1557 		vgpu_free_mm(mm);
1558 		return ERR_PTR(ret);
1559 	}
1560 
1561 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1562 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1563 	return mm;
1564 }
1565 
1566 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1567 {
1568 	struct intel_vgpu_mm *mm;
1569 	unsigned long nr_entries;
1570 
1571 	mm = vgpu_alloc_mm(vgpu);
1572 	if (!mm)
1573 		return ERR_PTR(-ENOMEM);
1574 
1575 	mm->type = INTEL_GVT_MM_GGTT;
1576 
1577 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1578 	mm->ggtt_mm.virtual_ggtt = vzalloc(nr_entries *
1579 					vgpu->gvt->device_info.gtt_entry_size);
1580 	if (!mm->ggtt_mm.virtual_ggtt) {
1581 		vgpu_free_mm(mm);
1582 		return ERR_PTR(-ENOMEM);
1583 	}
1584 
1585 	return mm;
1586 }
1587 
1588 /**
1589  * _intel_vgpu_mm_release - destroy a mm object
1590  * @mm_ref: a kref object
1591  *
1592  * This function is used to destroy a mm object for vGPU
1593  *
1594  */
1595 void _intel_vgpu_mm_release(struct kref *mm_ref)
1596 {
1597 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1598 
1599 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1600 		gvt_err("vgpu mm pin count bug detected\n");
1601 
1602 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1603 		list_del(&mm->ppgtt_mm.list);
1604 		list_del(&mm->ppgtt_mm.lru_list);
1605 		invalidate_ppgtt_mm(mm);
1606 	} else {
1607 		vfree(mm->ggtt_mm.virtual_ggtt);
1608 	}
1609 
1610 	vgpu_free_mm(mm);
1611 }
1612 
1613 /**
1614  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1615  * @mm: a vGPU mm object
1616  *
1617  * This function is called when user doesn't want to use a vGPU mm object
1618  */
1619 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1620 {
1621 	atomic_dec(&mm->pincount);
1622 }
1623 
1624 /**
1625  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1626  * @vgpu: a vGPU
1627  *
1628  * This function is called when user wants to use a vGPU mm object. If this
1629  * mm object hasn't been shadowed yet, the shadow will be populated at this
1630  * time.
1631  *
1632  * Returns:
1633  * Zero on success, negative error code if failed.
1634  */
1635 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1636 {
1637 	int ret;
1638 
1639 	atomic_inc(&mm->pincount);
1640 
1641 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1642 		ret = shadow_ppgtt_mm(mm);
1643 		if (ret)
1644 			return ret;
1645 
1646 		list_move_tail(&mm->ppgtt_mm.lru_list,
1647 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1648 
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1655 {
1656 	struct intel_vgpu_mm *mm;
1657 	struct list_head *pos, *n;
1658 
1659 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1660 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1661 
1662 		if (atomic_read(&mm->pincount))
1663 			continue;
1664 
1665 		list_del_init(&mm->ppgtt_mm.lru_list);
1666 		invalidate_ppgtt_mm(mm);
1667 		return 1;
1668 	}
1669 	return 0;
1670 }
1671 
1672 /*
1673  * GMA translation APIs.
1674  */
1675 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1676 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1677 {
1678 	struct intel_vgpu *vgpu = mm->vgpu;
1679 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1680 	struct intel_vgpu_ppgtt_spt *s;
1681 
1682 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
1683 	if (!s)
1684 		return -ENXIO;
1685 
1686 	if (!guest)
1687 		ppgtt_get_shadow_entry(s, e, index);
1688 	else
1689 		ppgtt_get_guest_entry(s, e, index);
1690 	return 0;
1691 }
1692 
1693 /**
1694  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1695  * @mm: mm object. could be a PPGTT or GGTT mm object
1696  * @gma: graphics memory address in this mm object
1697  *
1698  * This function is used to translate a graphics memory address in specific
1699  * graphics memory space to guest physical address.
1700  *
1701  * Returns:
1702  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1703  */
1704 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1705 {
1706 	struct intel_vgpu *vgpu = mm->vgpu;
1707 	struct intel_gvt *gvt = vgpu->gvt;
1708 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1709 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1710 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1711 	unsigned long gma_index[4];
1712 	struct intel_gvt_gtt_entry e;
1713 	int i, levels = 0;
1714 	int ret;
1715 
1716 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
1717 		   mm->type != INTEL_GVT_MM_PPGTT);
1718 
1719 	if (mm->type == INTEL_GVT_MM_GGTT) {
1720 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1721 			goto err;
1722 
1723 		ggtt_get_guest_entry(mm, &e,
1724 			gma_ops->gma_to_ggtt_pte_index(gma));
1725 
1726 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1727 			+ (gma & ~I915_GTT_PAGE_MASK);
1728 
1729 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1730 	} else {
1731 		switch (mm->ppgtt_mm.root_entry_type) {
1732 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
1733 			ppgtt_get_shadow_root_entry(mm, &e, 0);
1734 
1735 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1736 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1737 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
1738 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
1739 			levels = 4;
1740 			break;
1741 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
1742 			ppgtt_get_shadow_root_entry(mm, &e,
1743 					gma_ops->gma_to_l3_pdp_index(gma));
1744 
1745 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
1746 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
1747 			levels = 2;
1748 			break;
1749 		default:
1750 			GEM_BUG_ON(1);
1751 		}
1752 
1753 		/* walk the shadow page table and get gpa from guest entry */
1754 		for (i = 0; i < levels; i++) {
1755 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1756 				(i == levels - 1));
1757 			if (ret)
1758 				goto err;
1759 
1760 			if (!pte_ops->test_present(&e)) {
1761 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1762 				goto err;
1763 			}
1764 		}
1765 
1766 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
1767 					(gma & ~I915_GTT_PAGE_MASK);
1768 		trace_gma_translate(vgpu->id, "ppgtt", 0,
1769 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
1770 	}
1771 
1772 	return gpa;
1773 err:
1774 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1775 	return INTEL_GVT_INVALID_ADDR;
1776 }
1777 
1778 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
1779 	unsigned int off, void *p_data, unsigned int bytes)
1780 {
1781 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1782 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1783 	unsigned long index = off >> info->gtt_entry_size_shift;
1784 	struct intel_gvt_gtt_entry e;
1785 
1786 	if (bytes != 4 && bytes != 8)
1787 		return -EINVAL;
1788 
1789 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1790 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1791 			bytes);
1792 	return 0;
1793 }
1794 
1795 /**
1796  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1797  * @vgpu: a vGPU
1798  * @off: register offset
1799  * @p_data: data will be returned to guest
1800  * @bytes: data length
1801  *
1802  * This function is used to emulate the GTT MMIO register read
1803  *
1804  * Returns:
1805  * Zero on success, error code if failed.
1806  */
1807 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1808 	void *p_data, unsigned int bytes)
1809 {
1810 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1811 	int ret;
1812 
1813 	if (bytes != 4 && bytes != 8)
1814 		return -EINVAL;
1815 
1816 	off -= info->gtt_start_offset;
1817 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
1818 	return ret;
1819 }
1820 
1821 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1822 	void *p_data, unsigned int bytes)
1823 {
1824 	struct intel_gvt *gvt = vgpu->gvt;
1825 	const struct intel_gvt_device_info *info = &gvt->device_info;
1826 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1827 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1828 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1829 	unsigned long gma, gfn;
1830 	struct intel_gvt_gtt_entry e, m;
1831 	dma_addr_t dma_addr;
1832 	int ret;
1833 
1834 	if (bytes != 4 && bytes != 8)
1835 		return -EINVAL;
1836 
1837 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1838 
1839 	/* the VM may configure the whole GM space when ballooning is used */
1840 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1841 		return 0;
1842 
1843 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1844 
1845 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1846 			bytes);
1847 	m = e;
1848 
1849 	if (ops->test_present(&e)) {
1850 		gfn = ops->get_pfn(&e);
1851 
1852 		/* one PTE update may be issued in multiple writes and the
1853 		 * first write may not construct a valid gfn
1854 		 */
1855 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1856 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1857 			goto out;
1858 		}
1859 
1860 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
1861 							      &dma_addr);
1862 		if (ret) {
1863 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
1864 			/* guest driver may read/write the entry when partial
1865 			 * update the entry in this situation p2m will fail
1866 			 * settting the shadow entry to point to a scratch page
1867 			 */
1868 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1869 		} else
1870 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
1871 	} else
1872 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1873 
1874 out:
1875 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
1876 	ggtt_invalidate(gvt->dev_priv);
1877 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1878 	return 0;
1879 }
1880 
1881 /*
1882  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
1883  * @vgpu: a vGPU
1884  * @off: register offset
1885  * @p_data: data from guest write
1886  * @bytes: data length
1887  *
1888  * This function is used to emulate the GTT MMIO register write
1889  *
1890  * Returns:
1891  * Zero on success, error code if failed.
1892  */
1893 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
1894 		unsigned int off, void *p_data, unsigned int bytes)
1895 {
1896 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1897 	int ret;
1898 
1899 	if (bytes != 4 && bytes != 8)
1900 		return -EINVAL;
1901 
1902 	off -= info->gtt_start_offset;
1903 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
1904 	return ret;
1905 }
1906 
1907 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1908 		intel_gvt_gtt_type_t type)
1909 {
1910 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1911 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1912 	int page_entry_num = I915_GTT_PAGE_SIZE >>
1913 				vgpu->gvt->device_info.gtt_entry_size_shift;
1914 	void *scratch_pt;
1915 	int i;
1916 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1917 	dma_addr_t daddr;
1918 
1919 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1920 		return -EINVAL;
1921 
1922 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1923 	if (!scratch_pt) {
1924 		gvt_vgpu_err("fail to allocate scratch page\n");
1925 		return -ENOMEM;
1926 	}
1927 
1928 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1929 			4096, PCI_DMA_BIDIRECTIONAL);
1930 	if (dma_mapping_error(dev, daddr)) {
1931 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
1932 		__free_page(virt_to_page(scratch_pt));
1933 		return -ENOMEM;
1934 	}
1935 	gtt->scratch_pt[type].page_mfn =
1936 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
1937 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1938 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1939 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1940 
1941 	/* Build the tree by full filled the scratch pt with the entries which
1942 	 * point to the next level scratch pt or scratch page. The
1943 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1944 	 * 'type' pt.
1945 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1946 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1947 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1948 	 */
1949 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1950 		struct intel_gvt_gtt_entry se;
1951 
1952 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1953 		se.type = get_entry_type(type - 1);
1954 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1955 
1956 		/* The entry parameters like present/writeable/cache type
1957 		 * set to the same as i915's scratch page tree.
1958 		 */
1959 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1960 		if (type == GTT_TYPE_PPGTT_PDE_PT)
1961 			se.val64 |= PPAT_CACHED;
1962 
1963 		for (i = 0; i < page_entry_num; i++)
1964 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1971 {
1972 	int i;
1973 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1974 	dma_addr_t daddr;
1975 
1976 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1977 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
1978 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1979 					I915_GTT_PAGE_SHIFT);
1980 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1981 			__free_page(vgpu->gtt.scratch_pt[i].page);
1982 			vgpu->gtt.scratch_pt[i].page = NULL;
1983 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
1984 		}
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1991 {
1992 	int i, ret;
1993 
1994 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1995 		ret = alloc_scratch_pages(vgpu, i);
1996 		if (ret)
1997 			goto err;
1998 	}
1999 
2000 	return 0;
2001 
2002 err:
2003 	release_scratch_page_tree(vgpu);
2004 	return ret;
2005 }
2006 
2007 /**
2008  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2009  * @vgpu: a vGPU
2010  *
2011  * This function is used to initialize per-vGPU graphics memory virtualization
2012  * components.
2013  *
2014  * Returns:
2015  * Zero on success, error code if failed.
2016  */
2017 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2018 {
2019 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2020 
2021 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2022 
2023 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2024 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2025 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2026 
2027 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2028 	if (IS_ERR(gtt->ggtt_mm)) {
2029 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2030 		return PTR_ERR(gtt->ggtt_mm);
2031 	}
2032 
2033 	intel_vgpu_reset_ggtt(vgpu);
2034 
2035 	return create_scratch_page_tree(vgpu);
2036 }
2037 
2038 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2039 {
2040 	struct list_head *pos, *n;
2041 	struct intel_vgpu_mm *mm;
2042 
2043 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2044 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2045 		intel_vgpu_destroy_mm(mm);
2046 	}
2047 
2048 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2049 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2050 
2051 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2052 		gvt_err("Why we still has spt not freed?\n");
2053 		ppgtt_free_all_spt(vgpu);
2054 	}
2055 }
2056 
2057 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2058 {
2059 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2060 	vgpu->gtt.ggtt_mm = NULL;
2061 }
2062 
2063 /**
2064  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2065  * @vgpu: a vGPU
2066  *
2067  * This function is used to clean up per-vGPU graphics memory virtualization
2068  * components.
2069  *
2070  * Returns:
2071  * Zero on success, error code if failed.
2072  */
2073 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2074 {
2075 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2076 	intel_vgpu_destroy_ggtt_mm(vgpu);
2077 	release_scratch_page_tree(vgpu);
2078 }
2079 
2080 static void clean_spt_oos(struct intel_gvt *gvt)
2081 {
2082 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2083 	struct list_head *pos, *n;
2084 	struct intel_vgpu_oos_page *oos_page;
2085 
2086 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2087 		"someone is still using oos page\n");
2088 
2089 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2090 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2091 		list_del(&oos_page->list);
2092 		kfree(oos_page);
2093 	}
2094 }
2095 
2096 static int setup_spt_oos(struct intel_gvt *gvt)
2097 {
2098 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2099 	struct intel_vgpu_oos_page *oos_page;
2100 	int i;
2101 	int ret;
2102 
2103 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2104 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2105 
2106 	for (i = 0; i < preallocated_oos_pages; i++) {
2107 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2108 		if (!oos_page) {
2109 			ret = -ENOMEM;
2110 			goto fail;
2111 		}
2112 
2113 		INIT_LIST_HEAD(&oos_page->list);
2114 		INIT_LIST_HEAD(&oos_page->vm_list);
2115 		oos_page->id = i;
2116 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2117 	}
2118 
2119 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2120 
2121 	return 0;
2122 fail:
2123 	clean_spt_oos(gvt);
2124 	return ret;
2125 }
2126 
2127 /**
2128  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2129  * @vgpu: a vGPU
2130  * @page_table_level: PPGTT page table level
2131  * @root_entry: PPGTT page table root pointers
2132  *
2133  * This function is used to find a PPGTT mm object from mm object pool
2134  *
2135  * Returns:
2136  * pointer to mm object on success, NULL if failed.
2137  */
2138 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2139 		u64 pdps[])
2140 {
2141 	struct intel_vgpu_mm *mm;
2142 	struct list_head *pos;
2143 
2144 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2145 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2146 
2147 		switch (mm->ppgtt_mm.root_entry_type) {
2148 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2149 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2150 				return mm;
2151 			break;
2152 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2153 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2154 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2155 				return mm;
2156 			break;
2157 		default:
2158 			GEM_BUG_ON(1);
2159 		}
2160 	}
2161 	return NULL;
2162 }
2163 
2164 /**
2165  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2166  * @vgpu: a vGPU
2167  * @root_entry_type: ppgtt root entry type
2168  * @pdps: guest pdps
2169  *
2170  * This function is used to find or create a PPGTT mm object from a guest.
2171  *
2172  * Returns:
2173  * Zero on success, negative error code if failed.
2174  */
2175 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2176 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2177 {
2178 	struct intel_vgpu_mm *mm;
2179 
2180 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2181 	if (mm) {
2182 		intel_vgpu_mm_get(mm);
2183 	} else {
2184 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2185 		if (IS_ERR(mm))
2186 			gvt_vgpu_err("fail to create mm\n");
2187 	}
2188 	return mm;
2189 }
2190 
2191 /**
2192  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2193  * @vgpu: a vGPU
2194  * @pdps: guest pdps
2195  *
2196  * This function is used to find a PPGTT mm object from a guest and destroy it.
2197  *
2198  * Returns:
2199  * Zero on success, negative error code if failed.
2200  */
2201 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2202 {
2203 	struct intel_vgpu_mm *mm;
2204 
2205 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2206 	if (!mm) {
2207 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2208 		return -EINVAL;
2209 	}
2210 	intel_vgpu_mm_put(mm);
2211 	return 0;
2212 }
2213 
2214 /**
2215  * intel_gvt_init_gtt - initialize mm components of a GVT device
2216  * @gvt: GVT device
2217  *
2218  * This function is called at the initialization stage, to initialize
2219  * the mm components of a GVT device.
2220  *
2221  * Returns:
2222  * zero on success, negative error code if failed.
2223  */
2224 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2225 {
2226 	int ret;
2227 	void *page;
2228 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2229 	dma_addr_t daddr;
2230 
2231 	gvt_dbg_core("init gtt\n");
2232 
2233 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2234 		|| IS_KABYLAKE(gvt->dev_priv)) {
2235 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2236 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2237 	} else {
2238 		return -ENODEV;
2239 	}
2240 
2241 	page = (void *)get_zeroed_page(GFP_KERNEL);
2242 	if (!page) {
2243 		gvt_err("fail to allocate scratch ggtt page\n");
2244 		return -ENOMEM;
2245 	}
2246 
2247 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2248 			4096, PCI_DMA_BIDIRECTIONAL);
2249 	if (dma_mapping_error(dev, daddr)) {
2250 		gvt_err("fail to dmamap scratch ggtt page\n");
2251 		__free_page(virt_to_page(page));
2252 		return -ENOMEM;
2253 	}
2254 
2255 	gvt->gtt.scratch_page = virt_to_page(page);
2256 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2257 
2258 	if (enable_out_of_sync) {
2259 		ret = setup_spt_oos(gvt);
2260 		if (ret) {
2261 			gvt_err("fail to initialize SPT oos\n");
2262 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2263 			__free_page(gvt->gtt.scratch_page);
2264 			return ret;
2265 		}
2266 	}
2267 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2268 	return 0;
2269 }
2270 
2271 /**
2272  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2273  * @gvt: GVT device
2274  *
2275  * This function is called at the driver unloading stage, to clean up the
2276  * the mm components of a GVT device.
2277  *
2278  */
2279 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2280 {
2281 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2282 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2283 					I915_GTT_PAGE_SHIFT);
2284 
2285 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2286 
2287 	__free_page(gvt->gtt.scratch_page);
2288 
2289 	if (enable_out_of_sync)
2290 		clean_spt_oos(gvt);
2291 }
2292 
2293 /**
2294  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2295  * @vgpu: a vGPU
2296  *
2297  * This function is called when invalidate all PPGTT instances of a vGPU.
2298  *
2299  */
2300 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2301 {
2302 	struct list_head *pos, *n;
2303 	struct intel_vgpu_mm *mm;
2304 
2305 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2306 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2307 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2308 			list_del_init(&mm->ppgtt_mm.lru_list);
2309 			if (mm->ppgtt_mm.shadowed)
2310 				invalidate_ppgtt_mm(mm);
2311 		}
2312 	}
2313 }
2314 
2315 /**
2316  * intel_vgpu_reset_ggtt - reset the GGTT entry
2317  * @vgpu: a vGPU
2318  *
2319  * This function is called at the vGPU create stage
2320  * to reset all the GGTT entries.
2321  *
2322  */
2323 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2324 {
2325 	struct intel_gvt *gvt = vgpu->gvt;
2326 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2327 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2328 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2329 	u32 index;
2330 	u32 num_entries;
2331 
2332 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2333 	pte_ops->set_present(&entry);
2334 
2335 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2336 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2337 	while (num_entries--)
2338 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2339 
2340 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2341 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2342 	while (num_entries--)
2343 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2344 
2345 	ggtt_invalidate(dev_priv);
2346 }
2347 
2348 /**
2349  * intel_vgpu_reset_gtt - reset the all GTT related status
2350  * @vgpu: a vGPU
2351  *
2352  * This function is called from vfio core to reset reset all
2353  * GTT related status, including GGTT, PPGTT, scratch page.
2354  *
2355  */
2356 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2357 {
2358 	/* Shadow pages are only created when there is no page
2359 	 * table tracking data, so remove page tracking data after
2360 	 * removing the shadow pages.
2361 	 */
2362 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2363 	intel_vgpu_reset_ggtt(vgpu);
2364 }
2365