xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 8e8e69d6)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	/* We take IPS bit as 'PSE' for PTE level. */
220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_INVALID,
224 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_INVALID,
229 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 			GTT_TYPE_PPGTT_PDE_ENTRY,
237 			GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 			GTT_TYPE_PPGTT_PDP_ENTRY,
242 			GTT_TYPE_PPGTT_PDP_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 			GTT_TYPE_GGTT_PTE,
247 			GTT_TYPE_INVALID,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_INVALID),
250 };
251 
252 static inline int get_next_pt_type(int type)
253 {
254 	return gtt_type_table[type].next_pt_type;
255 }
256 
257 static inline int get_pt_type(int type)
258 {
259 	return gtt_type_table[type].pt_type;
260 }
261 
262 static inline int get_entry_type(int type)
263 {
264 	return gtt_type_table[type].entry_type;
265 }
266 
267 static inline int get_pse_type(int type)
268 {
269 	return gtt_type_table[type].pse_entry_type;
270 }
271 
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275 
276 	return readq(addr);
277 }
278 
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281 	mmio_hw_access_pre(dev_priv);
282 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 	mmio_hw_access_post(dev_priv);
284 }
285 
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 		unsigned long index, u64 pte)
288 {
289 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290 
291 	writeq(pte, addr);
292 }
293 
294 static inline int gtt_get_entry64(void *pt,
295 		struct intel_gvt_gtt_entry *e,
296 		unsigned long index, bool hypervisor_access, unsigned long gpa,
297 		struct intel_vgpu *vgpu)
298 {
299 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 	int ret;
301 
302 	if (WARN_ON(info->gtt_entry_size != 8))
303 		return -EINVAL;
304 
305 	if (hypervisor_access) {
306 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 				(index << info->gtt_entry_size_shift),
308 				&e->val64, 8);
309 		if (WARN_ON(ret))
310 			return ret;
311 	} else if (!pt) {
312 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 	} else {
314 		e->val64 = *((u64 *)pt + index);
315 	}
316 	return 0;
317 }
318 
319 static inline int gtt_set_entry64(void *pt,
320 		struct intel_gvt_gtt_entry *e,
321 		unsigned long index, bool hypervisor_access, unsigned long gpa,
322 		struct intel_vgpu *vgpu)
323 {
324 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 	int ret;
326 
327 	if (WARN_ON(info->gtt_entry_size != 8))
328 		return -EINVAL;
329 
330 	if (hypervisor_access) {
331 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 				(index << info->gtt_entry_size_shift),
333 				&e->val64, 8);
334 		if (WARN_ON(ret))
335 			return ret;
336 	} else if (!pt) {
337 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 	} else {
339 		*((u64 *)pt + index) = e->val64;
340 	}
341 	return 0;
342 }
343 
344 #define GTT_HAW 46
345 
346 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
350 
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353 
354 #define GTT_64K_PTE_STRIDE 16
355 
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358 	unsigned long pfn;
359 
360 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 	else
367 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 	return pfn;
369 }
370 
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 		e->val64 &= ~ADDR_1G_MASK;
375 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 		e->val64 &= ~ADDR_2M_MASK;
378 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 		e->val64 &= ~ADDR_64K_MASK;
381 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 	} else {
383 		e->val64 &= ~ADDR_4K_MASK;
384 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385 	}
386 
387 	e->val64 |= (pfn << PAGE_SHIFT);
388 }
389 
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392 	return !!(e->val64 & _PAGE_PSE);
393 }
394 
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397 	if (gen8_gtt_test_pse(e)) {
398 		switch (e->type) {
399 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 			e->val64 &= ~_PAGE_PSE;
401 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 			break;
403 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 			e->val64 &= ~_PAGE_PSE;
406 			break;
407 		default:
408 			WARN_ON(1);
409 		}
410 	}
411 }
412 
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 		return false;
417 
418 	return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420 
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 		return;
425 
426 	e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428 
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431 	/*
432 	 * i915 writes PDP root pointer registers without present bit,
433 	 * it also works, so we need to treat root pointer entry
434 	 * specifically.
435 	 */
436 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 		return (e->val64 != 0);
439 	else
440 		return (e->val64 & _PAGE_PRESENT);
441 }
442 
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445 	e->val64 &= ~_PAGE_PRESENT;
446 }
447 
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450 	e->val64 |= _PAGE_PRESENT;
451 }
452 
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457 
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462 
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467 
468 /*
469  * Per-platform GMA routines.
470  */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474 
475 	trace_gma_index(__func__, gma, x);
476 	return x;
477 }
478 
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482 	unsigned long x = (exp); \
483 	trace_gma_index(__func__, gma, x); \
484 	return x; \
485 }
486 
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492 
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 	.get_entry = gtt_get_entry64,
495 	.set_entry = gtt_set_entry64,
496 	.clear_present = gtt_entry_clear_present,
497 	.set_present = gtt_entry_set_present,
498 	.test_present = gen8_gtt_test_present,
499 	.test_pse = gen8_gtt_test_pse,
500 	.clear_pse = gen8_gtt_clear_pse,
501 	.clear_ips = gen8_gtt_clear_ips,
502 	.test_ips = gen8_gtt_test_ips,
503 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
504 	.set_64k_splited = gen8_gtt_set_64k_splited,
505 	.test_64k_splited = gen8_gtt_test_64k_splited,
506 	.get_pfn = gen8_gtt_get_pfn,
507 	.set_pfn = gen8_gtt_set_pfn,
508 };
509 
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 	.gma_to_pte_index = gen8_gma_to_pte_index,
513 	.gma_to_pde_index = gen8_gma_to_pde_index,
514 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518 
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 	struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523 	switch (entry->type) {
524 	case GTT_TYPE_PPGTT_PDE_ENTRY:
525 	case GTT_TYPE_PPGTT_PDP_ENTRY:
526 		if (pte_ops->test_pse(entry))
527 			entry->type = get_pse_type(entry->type);
528 		break;
529 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 		if (ips)
531 			entry->type = get_pse_type(entry->type);
532 		break;
533 	default:
534 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535 	}
536 
537 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539 
540 /*
541  * MM helpers.
542  */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index,
545 		bool guest)
546 {
547 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548 
549 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550 
551 	entry->type = mm->ppgtt_mm.root_entry_type;
552 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 			   mm->ppgtt_mm.shadow_pdps,
554 			   entry, index, false, 0, mm->vgpu);
555 	update_entry_type_for_real(pte_ops, entry, false);
556 }
557 
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 		struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561 	_ppgtt_get_root_entry(mm, entry, index, true);
562 }
563 
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, false);
568 }
569 
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index,
572 		bool guest)
573 {
574 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575 
576 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 			   mm->ppgtt_mm.shadow_pdps,
578 			   entry, index, false, 0, mm->vgpu);
579 }
580 
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 		struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584 	_ppgtt_set_root_entry(mm, entry, index, true);
585 }
586 
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, false);
591 }
592 
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599 
600 	entry->type = GTT_TYPE_GGTT_PTE;
601 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 			   false, 0, mm->vgpu);
603 }
604 
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 		struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609 
610 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611 
612 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 			   false, 0, mm->vgpu);
614 }
615 
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620 
621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622 
623 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625 
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 
631 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 
633 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635 
636 /*
637  * PPGTT shadow page table helpers.
638  */
639 static inline int ppgtt_spt_get_entry(
640 		struct intel_vgpu_ppgtt_spt *spt,
641 		void *page_table, int type,
642 		struct intel_gvt_gtt_entry *e, unsigned long index,
643 		bool guest)
644 {
645 	struct intel_gvt *gvt = spt->vgpu->gvt;
646 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 	int ret;
648 
649 	e->type = get_entry_type(type);
650 
651 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 		return -EINVAL;
653 
654 	ret = ops->get_entry(page_table, e, index, guest,
655 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 			spt->vgpu);
657 	if (ret)
658 		return ret;
659 
660 	update_entry_type_for_real(ops, e, guest ?
661 				   spt->guest_page.pde_ips : false);
662 
663 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 		    type, e->type, index, e->val64);
665 	return 0;
666 }
667 
668 static inline int ppgtt_spt_set_entry(
669 		struct intel_vgpu_ppgtt_spt *spt,
670 		void *page_table, int type,
671 		struct intel_gvt_gtt_entry *e, unsigned long index,
672 		bool guest)
673 {
674 	struct intel_gvt *gvt = spt->vgpu->gvt;
675 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676 
677 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 		return -EINVAL;
679 
680 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 		    type, e->type, index, e->val64);
682 
683 	return ops->set_entry(page_table, e, index, guest,
684 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 			spt->vgpu);
686 }
687 
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 	ppgtt_spt_get_entry(spt, NULL, \
690 		spt->guest_page.type, e, index, true)
691 
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 	ppgtt_spt_set_entry(spt, NULL, \
694 		spt->guest_page.type, e, index, true)
695 
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 		spt->shadow_page.type, e, index, false)
699 
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 		spt->shadow_page.type, e, index, false)
703 
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706 	struct intel_vgpu_ppgtt_spt *spt;
707 
708 	spt = kzalloc(sizeof(*spt), gfp_mask);
709 	if (!spt)
710 		return NULL;
711 
712 	spt->shadow_page.page = alloc_page(gfp_mask);
713 	if (!spt->shadow_page.page) {
714 		kfree(spt);
715 		return NULL;
716 	}
717 	return spt;
718 }
719 
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722 	__free_page(spt->shadow_page.page);
723 	kfree(spt);
724 }
725 
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 		struct intel_vgpu_oos_page *oos_page);
728 
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732 
733 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734 
735 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 		       PCI_DMA_BIDIRECTIONAL);
737 
738 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739 
740 	if (spt->guest_page.gfn) {
741 		if (spt->guest_page.oos_page)
742 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743 
744 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745 	}
746 
747 	list_del_init(&spt->post_shadow_list);
748 	free_spt(spt);
749 }
750 
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753 	struct intel_vgpu_ppgtt_spt *spt, *spn;
754 	struct radix_tree_iter iter;
755 	LIST_HEAD(all_spt);
756 	void __rcu **slot;
757 
758 	rcu_read_lock();
759 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
760 		spt = radix_tree_deref_slot(slot);
761 		list_move(&spt->post_shadow_list, &all_spt);
762 	}
763 	rcu_read_unlock();
764 
765 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
766 		ppgtt_free_spt(spt);
767 }
768 
769 static int ppgtt_handle_guest_write_page_table_bytes(
770 		struct intel_vgpu_ppgtt_spt *spt,
771 		u64 pa, void *p_data, int bytes);
772 
773 static int ppgtt_write_protection_handler(
774 		struct intel_vgpu_page_track *page_track,
775 		u64 gpa, void *data, int bytes)
776 {
777 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
778 
779 	int ret;
780 
781 	if (bytes != 4 && bytes != 8)
782 		return -EINVAL;
783 
784 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
785 	if (ret)
786 		return ret;
787 	return ret;
788 }
789 
790 /* Find a spt by guest gfn. */
791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
792 		struct intel_vgpu *vgpu, unsigned long gfn)
793 {
794 	struct intel_vgpu_page_track *track;
795 
796 	track = intel_vgpu_find_page_track(vgpu, gfn);
797 	if (track && track->handler == ppgtt_write_protection_handler)
798 		return track->priv_data;
799 
800 	return NULL;
801 }
802 
803 /* Find the spt by shadow page mfn. */
804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
805 		struct intel_vgpu *vgpu, unsigned long mfn)
806 {
807 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
808 }
809 
810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
811 
812 /* Allocate shadow page table without guest page. */
813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
814 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
815 {
816 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
817 	struct intel_vgpu_ppgtt_spt *spt = NULL;
818 	dma_addr_t daddr;
819 	int ret;
820 
821 retry:
822 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
823 	if (!spt) {
824 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
825 			goto retry;
826 
827 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
828 		return ERR_PTR(-ENOMEM);
829 	}
830 
831 	spt->vgpu = vgpu;
832 	atomic_set(&spt->refcount, 1);
833 	INIT_LIST_HEAD(&spt->post_shadow_list);
834 
835 	/*
836 	 * Init shadow_page.
837 	 */
838 	spt->shadow_page.type = type;
839 	daddr = dma_map_page(kdev, spt->shadow_page.page,
840 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
841 	if (dma_mapping_error(kdev, daddr)) {
842 		gvt_vgpu_err("fail to map dma addr\n");
843 		ret = -EINVAL;
844 		goto err_free_spt;
845 	}
846 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
847 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
848 
849 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
850 	if (ret)
851 		goto err_unmap_dma;
852 
853 	return spt;
854 
855 err_unmap_dma:
856 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
857 err_free_spt:
858 	free_spt(spt);
859 	return ERR_PTR(ret);
860 }
861 
862 /* Allocate shadow page table associated with specific gfn. */
863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
864 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
865 		unsigned long gfn, bool guest_pde_ips)
866 {
867 	struct intel_vgpu_ppgtt_spt *spt;
868 	int ret;
869 
870 	spt = ppgtt_alloc_spt(vgpu, type);
871 	if (IS_ERR(spt))
872 		return spt;
873 
874 	/*
875 	 * Init guest_page.
876 	 */
877 	ret = intel_vgpu_register_page_track(vgpu, gfn,
878 			ppgtt_write_protection_handler, spt);
879 	if (ret) {
880 		ppgtt_free_spt(spt);
881 		return ERR_PTR(ret);
882 	}
883 
884 	spt->guest_page.type = type;
885 	spt->guest_page.gfn = gfn;
886 	spt->guest_page.pde_ips = guest_pde_ips;
887 
888 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
889 
890 	return spt;
891 }
892 
893 #define pt_entry_size_shift(spt) \
894 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
895 
896 #define pt_entries(spt) \
897 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
898 
899 #define for_each_present_guest_entry(spt, e, i) \
900 	for (i = 0; i < pt_entries(spt); \
901 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 		if (!ppgtt_get_guest_entry(spt, e, i) && \
903 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904 
905 #define for_each_present_shadow_entry(spt, e, i) \
906 	for (i = 0; i < pt_entries(spt); \
907 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
909 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910 
911 #define for_each_shadow_entry(spt, e, i) \
912 	for (i = 0; i < pt_entries(spt); \
913 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
914 		if (!ppgtt_get_shadow_entry(spt, e, i))
915 
916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
917 {
918 	int v = atomic_read(&spt->refcount);
919 
920 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
921 	atomic_inc(&spt->refcount);
922 }
923 
924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
925 {
926 	int v = atomic_read(&spt->refcount);
927 
928 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
929 	return atomic_dec_return(&spt->refcount);
930 }
931 
932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
933 
934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
935 		struct intel_gvt_gtt_entry *e)
936 {
937 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
938 	struct intel_vgpu_ppgtt_spt *s;
939 	enum intel_gvt_gtt_type cur_pt_type;
940 
941 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
942 
943 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
944 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
945 		cur_pt_type = get_next_pt_type(e->type) + 1;
946 		if (ops->get_pfn(e) ==
947 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
948 			return 0;
949 	}
950 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
951 	if (!s) {
952 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
953 				ops->get_pfn(e));
954 		return -ENXIO;
955 	}
956 	return ppgtt_invalidate_spt(s);
957 }
958 
959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
960 		struct intel_gvt_gtt_entry *entry)
961 {
962 	struct intel_vgpu *vgpu = spt->vgpu;
963 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964 	unsigned long pfn;
965 	int type;
966 
967 	pfn = ops->get_pfn(entry);
968 	type = spt->shadow_page.type;
969 
970 	/* Uninitialized spte or unshadowed spte. */
971 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
972 		return;
973 
974 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
975 }
976 
977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
978 {
979 	struct intel_vgpu *vgpu = spt->vgpu;
980 	struct intel_gvt_gtt_entry e;
981 	unsigned long index;
982 	int ret;
983 
984 	trace_spt_change(spt->vgpu->id, "die", spt,
985 			spt->guest_page.gfn, spt->shadow_page.type);
986 
987 	if (ppgtt_put_spt(spt) > 0)
988 		return 0;
989 
990 	for_each_present_shadow_entry(spt, &e, index) {
991 		switch (e.type) {
992 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
993 			gvt_vdbg_mm("invalidate 4K entry\n");
994 			ppgtt_invalidate_pte(spt, &e);
995 			break;
996 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
997 			/* We don't setup 64K shadow entry so far. */
998 			WARN(1, "suspicious 64K gtt entry\n");
999 			continue;
1000 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1001 			gvt_vdbg_mm("invalidate 2M entry\n");
1002 			continue;
1003 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1004 			WARN(1, "GVT doesn't support 1GB page\n");
1005 			continue;
1006 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1007 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1008 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1009 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1010 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1011 					spt->vgpu, &e);
1012 			if (ret)
1013 				goto fail;
1014 			break;
1015 		default:
1016 			GEM_BUG_ON(1);
1017 		}
1018 	}
1019 
1020 	trace_spt_change(spt->vgpu->id, "release", spt,
1021 			 spt->guest_page.gfn, spt->shadow_page.type);
1022 	ppgtt_free_spt(spt);
1023 	return 0;
1024 fail:
1025 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1026 			spt, e.val64, e.type);
1027 	return ret;
1028 }
1029 
1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1031 {
1032 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1033 
1034 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1035 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1036 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1037 
1038 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1039 	} else if (INTEL_GEN(dev_priv) >= 11) {
1040 		/* 64K paging only controlled by IPS bit in PTE now. */
1041 		return true;
1042 	} else
1043 		return false;
1044 }
1045 
1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1047 
1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1049 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1050 {
1051 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1052 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1053 	bool ips = false;
1054 	int ret;
1055 
1056 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1057 
1058 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1059 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1060 
1061 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1062 	if (spt) {
1063 		ppgtt_get_spt(spt);
1064 
1065 		if (ips != spt->guest_page.pde_ips) {
1066 			spt->guest_page.pde_ips = ips;
1067 
1068 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1069 			clear_page(spt->shadow_page.vaddr);
1070 			ret = ppgtt_populate_spt(spt);
1071 			if (ret) {
1072 				ppgtt_put_spt(spt);
1073 				goto err;
1074 			}
1075 		}
1076 	} else {
1077 		int type = get_next_pt_type(we->type);
1078 
1079 		if (!gtt_type_is_pt(type)) {
1080 			ret = -EINVAL;
1081 			goto err;
1082 		}
1083 
1084 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1085 		if (IS_ERR(spt)) {
1086 			ret = PTR_ERR(spt);
1087 			goto err;
1088 		}
1089 
1090 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1091 		if (ret)
1092 			goto err_free_spt;
1093 
1094 		ret = ppgtt_populate_spt(spt);
1095 		if (ret)
1096 			goto err_free_spt;
1097 
1098 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1099 				 spt->shadow_page.type);
1100 	}
1101 	return spt;
1102 
1103 err_free_spt:
1104 	ppgtt_free_spt(spt);
1105 err:
1106 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1107 		     spt, we->val64, we->type);
1108 	return ERR_PTR(ret);
1109 }
1110 
1111 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1112 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1113 {
1114 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1115 
1116 	se->type = ge->type;
1117 	se->val64 = ge->val64;
1118 
1119 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1120 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1121 		ops->clear_ips(se);
1122 
1123 	ops->set_pfn(se, s->shadow_page.mfn);
1124 }
1125 
1126 /**
1127  * Check if can do 2M page
1128  * @vgpu: target vgpu
1129  * @entry: target pfn's gtt entry
1130  *
1131  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1132  * negtive if found err.
1133  */
1134 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1135 	struct intel_gvt_gtt_entry *entry)
1136 {
1137 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1138 	unsigned long pfn;
1139 
1140 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1141 		return 0;
1142 
1143 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1144 	if (pfn == INTEL_GVT_INVALID_ADDR)
1145 		return -EINVAL;
1146 
1147 	return PageTransHuge(pfn_to_page(pfn));
1148 }
1149 
1150 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1151 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1152 	struct intel_gvt_gtt_entry *se)
1153 {
1154 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1155 	struct intel_vgpu_ppgtt_spt *sub_spt;
1156 	struct intel_gvt_gtt_entry sub_se;
1157 	unsigned long start_gfn;
1158 	dma_addr_t dma_addr;
1159 	unsigned long sub_index;
1160 	int ret;
1161 
1162 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1163 
1164 	start_gfn = ops->get_pfn(se);
1165 
1166 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1167 	if (IS_ERR(sub_spt))
1168 		return PTR_ERR(sub_spt);
1169 
1170 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1171 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1172 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1173 		if (ret) {
1174 			ppgtt_invalidate_spt(spt);
1175 			return ret;
1176 		}
1177 		sub_se.val64 = se->val64;
1178 
1179 		/* Copy the PAT field from PDE. */
1180 		sub_se.val64 &= ~_PAGE_PAT;
1181 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1182 
1183 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1184 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1185 	}
1186 
1187 	/* Clear dirty field. */
1188 	se->val64 &= ~_PAGE_DIRTY;
1189 
1190 	ops->clear_pse(se);
1191 	ops->clear_ips(se);
1192 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1193 	ppgtt_set_shadow_entry(spt, se, index);
1194 	return 0;
1195 }
1196 
1197 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1198 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1199 	struct intel_gvt_gtt_entry *se)
1200 {
1201 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1202 	struct intel_gvt_gtt_entry entry = *se;
1203 	unsigned long start_gfn;
1204 	dma_addr_t dma_addr;
1205 	int i, ret;
1206 
1207 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1208 
1209 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1210 
1211 	start_gfn = ops->get_pfn(se);
1212 
1213 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1214 	ops->set_64k_splited(&entry);
1215 
1216 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1217 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1218 					start_gfn + i, PAGE_SIZE, &dma_addr);
1219 		if (ret)
1220 			return ret;
1221 
1222 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1223 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1224 	}
1225 	return 0;
1226 }
1227 
1228 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1229 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1230 	struct intel_gvt_gtt_entry *ge)
1231 {
1232 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1233 	struct intel_gvt_gtt_entry se = *ge;
1234 	unsigned long gfn, page_size = PAGE_SIZE;
1235 	dma_addr_t dma_addr;
1236 	int ret;
1237 
1238 	if (!pte_ops->test_present(ge))
1239 		return 0;
1240 
1241 	gfn = pte_ops->get_pfn(ge);
1242 
1243 	switch (ge->type) {
1244 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1245 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1246 		break;
1247 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1248 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1249 		/*
1250 		 * The layout of 64K page is special, the page size is
1251 		 * controlled by uper PDE. To be simple, we always split
1252 		 * 64K page to smaller 4K pages in shadow PT.
1253 		 */
1254 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1255 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1256 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1257 		ret = is_2MB_gtt_possible(vgpu, ge);
1258 		if (ret == 0)
1259 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1260 		else if (ret < 0)
1261 			return ret;
1262 		page_size = I915_GTT_PAGE_SIZE_2M;
1263 		break;
1264 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1265 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1266 		return -EINVAL;
1267 	default:
1268 		GEM_BUG_ON(1);
1269 	};
1270 
1271 	/* direct shadow */
1272 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1273 						      &dma_addr);
1274 	if (ret)
1275 		return -ENXIO;
1276 
1277 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1278 	ppgtt_set_shadow_entry(spt, &se, index);
1279 	return 0;
1280 }
1281 
1282 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1283 {
1284 	struct intel_vgpu *vgpu = spt->vgpu;
1285 	struct intel_gvt *gvt = vgpu->gvt;
1286 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1287 	struct intel_vgpu_ppgtt_spt *s;
1288 	struct intel_gvt_gtt_entry se, ge;
1289 	unsigned long gfn, i;
1290 	int ret;
1291 
1292 	trace_spt_change(spt->vgpu->id, "born", spt,
1293 			 spt->guest_page.gfn, spt->shadow_page.type);
1294 
1295 	for_each_present_guest_entry(spt, &ge, i) {
1296 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1297 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1298 			if (IS_ERR(s)) {
1299 				ret = PTR_ERR(s);
1300 				goto fail;
1301 			}
1302 			ppgtt_get_shadow_entry(spt, &se, i);
1303 			ppgtt_generate_shadow_entry(&se, s, &ge);
1304 			ppgtt_set_shadow_entry(spt, &se, i);
1305 		} else {
1306 			gfn = ops->get_pfn(&ge);
1307 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1308 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1309 				ppgtt_set_shadow_entry(spt, &se, i);
1310 				continue;
1311 			}
1312 
1313 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1314 			if (ret)
1315 				goto fail;
1316 		}
1317 	}
1318 	return 0;
1319 fail:
1320 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1321 			spt, ge.val64, ge.type);
1322 	return ret;
1323 }
1324 
1325 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1326 		struct intel_gvt_gtt_entry *se, unsigned long index)
1327 {
1328 	struct intel_vgpu *vgpu = spt->vgpu;
1329 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1330 	int ret;
1331 
1332 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1333 			       spt->shadow_page.type, se->val64, index);
1334 
1335 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1336 		    se->type, index, se->val64);
1337 
1338 	if (!ops->test_present(se))
1339 		return 0;
1340 
1341 	if (ops->get_pfn(se) ==
1342 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1343 		return 0;
1344 
1345 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1346 		struct intel_vgpu_ppgtt_spt *s =
1347 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1348 		if (!s) {
1349 			gvt_vgpu_err("fail to find guest page\n");
1350 			ret = -ENXIO;
1351 			goto fail;
1352 		}
1353 		ret = ppgtt_invalidate_spt(s);
1354 		if (ret)
1355 			goto fail;
1356 	} else {
1357 		/* We don't setup 64K shadow entry so far. */
1358 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1359 		     "suspicious 64K entry\n");
1360 		ppgtt_invalidate_pte(spt, se);
1361 	}
1362 
1363 	return 0;
1364 fail:
1365 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1366 			spt, se->val64, se->type);
1367 	return ret;
1368 }
1369 
1370 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1371 		struct intel_gvt_gtt_entry *we, unsigned long index)
1372 {
1373 	struct intel_vgpu *vgpu = spt->vgpu;
1374 	struct intel_gvt_gtt_entry m;
1375 	struct intel_vgpu_ppgtt_spt *s;
1376 	int ret;
1377 
1378 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1379 			       we->val64, index);
1380 
1381 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1382 		    we->type, index, we->val64);
1383 
1384 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1385 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1386 		if (IS_ERR(s)) {
1387 			ret = PTR_ERR(s);
1388 			goto fail;
1389 		}
1390 		ppgtt_get_shadow_entry(spt, &m, index);
1391 		ppgtt_generate_shadow_entry(&m, s, we);
1392 		ppgtt_set_shadow_entry(spt, &m, index);
1393 	} else {
1394 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1395 		if (ret)
1396 			goto fail;
1397 	}
1398 	return 0;
1399 fail:
1400 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1401 		spt, we->val64, we->type);
1402 	return ret;
1403 }
1404 
1405 static int sync_oos_page(struct intel_vgpu *vgpu,
1406 		struct intel_vgpu_oos_page *oos_page)
1407 {
1408 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1409 	struct intel_gvt *gvt = vgpu->gvt;
1410 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1411 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1412 	struct intel_gvt_gtt_entry old, new;
1413 	int index;
1414 	int ret;
1415 
1416 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1417 			 spt, spt->guest_page.type);
1418 
1419 	old.type = new.type = get_entry_type(spt->guest_page.type);
1420 	old.val64 = new.val64 = 0;
1421 
1422 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1423 				info->gtt_entry_size_shift); index++) {
1424 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1425 		ops->get_entry(NULL, &new, index, true,
1426 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1427 
1428 		if (old.val64 == new.val64
1429 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1430 			continue;
1431 
1432 		trace_oos_sync(vgpu->id, oos_page->id,
1433 				spt, spt->guest_page.type,
1434 				new.val64, index);
1435 
1436 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1437 		if (ret)
1438 			return ret;
1439 
1440 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1441 	}
1442 
1443 	spt->guest_page.write_cnt = 0;
1444 	list_del_init(&spt->post_shadow_list);
1445 	return 0;
1446 }
1447 
1448 static int detach_oos_page(struct intel_vgpu *vgpu,
1449 		struct intel_vgpu_oos_page *oos_page)
1450 {
1451 	struct intel_gvt *gvt = vgpu->gvt;
1452 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1453 
1454 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1455 			 spt, spt->guest_page.type);
1456 
1457 	spt->guest_page.write_cnt = 0;
1458 	spt->guest_page.oos_page = NULL;
1459 	oos_page->spt = NULL;
1460 
1461 	list_del_init(&oos_page->vm_list);
1462 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1463 
1464 	return 0;
1465 }
1466 
1467 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1468 		struct intel_vgpu_ppgtt_spt *spt)
1469 {
1470 	struct intel_gvt *gvt = spt->vgpu->gvt;
1471 	int ret;
1472 
1473 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1474 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1475 			oos_page->mem, I915_GTT_PAGE_SIZE);
1476 	if (ret)
1477 		return ret;
1478 
1479 	oos_page->spt = spt;
1480 	spt->guest_page.oos_page = oos_page;
1481 
1482 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1483 
1484 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1485 			 spt, spt->guest_page.type);
1486 	return 0;
1487 }
1488 
1489 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1490 {
1491 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1492 	int ret;
1493 
1494 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1495 	if (ret)
1496 		return ret;
1497 
1498 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1499 			 spt, spt->guest_page.type);
1500 
1501 	list_del_init(&oos_page->vm_list);
1502 	return sync_oos_page(spt->vgpu, oos_page);
1503 }
1504 
1505 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1506 {
1507 	struct intel_gvt *gvt = spt->vgpu->gvt;
1508 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1509 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1510 	int ret;
1511 
1512 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1513 
1514 	if (list_empty(&gtt->oos_page_free_list_head)) {
1515 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1516 			struct intel_vgpu_oos_page, list);
1517 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1518 		if (ret)
1519 			return ret;
1520 		ret = detach_oos_page(spt->vgpu, oos_page);
1521 		if (ret)
1522 			return ret;
1523 	} else
1524 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1525 			struct intel_vgpu_oos_page, list);
1526 	return attach_oos_page(oos_page, spt);
1527 }
1528 
1529 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1530 {
1531 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532 
1533 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1534 		return -EINVAL;
1535 
1536 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1537 			 spt, spt->guest_page.type);
1538 
1539 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1540 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1541 }
1542 
1543 /**
1544  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1545  * @vgpu: a vGPU
1546  *
1547  * This function is called before submitting a guest workload to host,
1548  * to sync all the out-of-synced shadow for vGPU
1549  *
1550  * Returns:
1551  * Zero on success, negative error code if failed.
1552  */
1553 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1554 {
1555 	struct list_head *pos, *n;
1556 	struct intel_vgpu_oos_page *oos_page;
1557 	int ret;
1558 
1559 	if (!enable_out_of_sync)
1560 		return 0;
1561 
1562 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1563 		oos_page = container_of(pos,
1564 				struct intel_vgpu_oos_page, vm_list);
1565 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1566 		if (ret)
1567 			return ret;
1568 	}
1569 	return 0;
1570 }
1571 
1572 /*
1573  * The heart of PPGTT shadow page table.
1574  */
1575 static int ppgtt_handle_guest_write_page_table(
1576 		struct intel_vgpu_ppgtt_spt *spt,
1577 		struct intel_gvt_gtt_entry *we, unsigned long index)
1578 {
1579 	struct intel_vgpu *vgpu = spt->vgpu;
1580 	int type = spt->shadow_page.type;
1581 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1582 	struct intel_gvt_gtt_entry old_se;
1583 	int new_present;
1584 	int i, ret;
1585 
1586 	new_present = ops->test_present(we);
1587 
1588 	/*
1589 	 * Adding the new entry first and then removing the old one, that can
1590 	 * guarantee the ppgtt table is validated during the window between
1591 	 * adding and removal.
1592 	 */
1593 	ppgtt_get_shadow_entry(spt, &old_se, index);
1594 
1595 	if (new_present) {
1596 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1597 		if (ret)
1598 			goto fail;
1599 	}
1600 
1601 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1602 	if (ret)
1603 		goto fail;
1604 
1605 	if (!new_present) {
1606 		/* For 64KB splited entries, we need clear them all. */
1607 		if (ops->test_64k_splited(&old_se) &&
1608 		    !(index % GTT_64K_PTE_STRIDE)) {
1609 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1610 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1611 				ops->clear_64k_splited(&old_se);
1612 				ops->set_pfn(&old_se,
1613 					vgpu->gtt.scratch_pt[type].page_mfn);
1614 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1615 			}
1616 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1617 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1618 			ops->clear_pse(&old_se);
1619 			ops->set_pfn(&old_se,
1620 				     vgpu->gtt.scratch_pt[type].page_mfn);
1621 			ppgtt_set_shadow_entry(spt, &old_se, index);
1622 		} else {
1623 			ops->set_pfn(&old_se,
1624 				     vgpu->gtt.scratch_pt[type].page_mfn);
1625 			ppgtt_set_shadow_entry(spt, &old_se, index);
1626 		}
1627 	}
1628 
1629 	return 0;
1630 fail:
1631 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1632 			spt, we->val64, we->type);
1633 	return ret;
1634 }
1635 
1636 
1637 
1638 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1639 {
1640 	return enable_out_of_sync
1641 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1642 		&& spt->guest_page.write_cnt >= 2;
1643 }
1644 
1645 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1646 		unsigned long index)
1647 {
1648 	set_bit(index, spt->post_shadow_bitmap);
1649 	if (!list_empty(&spt->post_shadow_list))
1650 		return;
1651 
1652 	list_add_tail(&spt->post_shadow_list,
1653 			&spt->vgpu->gtt.post_shadow_list_head);
1654 }
1655 
1656 /**
1657  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1658  * @vgpu: a vGPU
1659  *
1660  * This function is called before submitting a guest workload to host,
1661  * to flush all the post shadows for a vGPU.
1662  *
1663  * Returns:
1664  * Zero on success, negative error code if failed.
1665  */
1666 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1667 {
1668 	struct list_head *pos, *n;
1669 	struct intel_vgpu_ppgtt_spt *spt;
1670 	struct intel_gvt_gtt_entry ge;
1671 	unsigned long index;
1672 	int ret;
1673 
1674 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1675 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1676 				post_shadow_list);
1677 
1678 		for_each_set_bit(index, spt->post_shadow_bitmap,
1679 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1680 			ppgtt_get_guest_entry(spt, &ge, index);
1681 
1682 			ret = ppgtt_handle_guest_write_page_table(spt,
1683 							&ge, index);
1684 			if (ret)
1685 				return ret;
1686 			clear_bit(index, spt->post_shadow_bitmap);
1687 		}
1688 		list_del_init(&spt->post_shadow_list);
1689 	}
1690 	return 0;
1691 }
1692 
1693 static int ppgtt_handle_guest_write_page_table_bytes(
1694 		struct intel_vgpu_ppgtt_spt *spt,
1695 		u64 pa, void *p_data, int bytes)
1696 {
1697 	struct intel_vgpu *vgpu = spt->vgpu;
1698 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1699 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1700 	struct intel_gvt_gtt_entry we, se;
1701 	unsigned long index;
1702 	int ret;
1703 
1704 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1705 
1706 	ppgtt_get_guest_entry(spt, &we, index);
1707 
1708 	/*
1709 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1710 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1711 	 * ignored.
1712 	 */
1713 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1714 	    (index % GTT_64K_PTE_STRIDE)) {
1715 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1716 			    index);
1717 		return 0;
1718 	}
1719 
1720 	if (bytes == info->gtt_entry_size) {
1721 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1722 		if (ret)
1723 			return ret;
1724 	} else {
1725 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1726 			int type = spt->shadow_page.type;
1727 
1728 			ppgtt_get_shadow_entry(spt, &se, index);
1729 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1730 			if (ret)
1731 				return ret;
1732 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1733 			ppgtt_set_shadow_entry(spt, &se, index);
1734 		}
1735 		ppgtt_set_post_shadow(spt, index);
1736 	}
1737 
1738 	if (!enable_out_of_sync)
1739 		return 0;
1740 
1741 	spt->guest_page.write_cnt++;
1742 
1743 	if (spt->guest_page.oos_page)
1744 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1745 				false, 0, vgpu);
1746 
1747 	if (can_do_out_of_sync(spt)) {
1748 		if (!spt->guest_page.oos_page)
1749 			ppgtt_allocate_oos_page(spt);
1750 
1751 		ret = ppgtt_set_guest_page_oos(spt);
1752 		if (ret < 0)
1753 			return ret;
1754 	}
1755 	return 0;
1756 }
1757 
1758 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1759 {
1760 	struct intel_vgpu *vgpu = mm->vgpu;
1761 	struct intel_gvt *gvt = vgpu->gvt;
1762 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1763 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1764 	struct intel_gvt_gtt_entry se;
1765 	int index;
1766 
1767 	if (!mm->ppgtt_mm.shadowed)
1768 		return;
1769 
1770 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1771 		ppgtt_get_shadow_root_entry(mm, &se, index);
1772 
1773 		if (!ops->test_present(&se))
1774 			continue;
1775 
1776 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1777 		se.val64 = 0;
1778 		ppgtt_set_shadow_root_entry(mm, &se, index);
1779 
1780 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1781 				       NULL, se.type, se.val64, index);
1782 	}
1783 
1784 	mm->ppgtt_mm.shadowed = false;
1785 }
1786 
1787 
1788 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1789 {
1790 	struct intel_vgpu *vgpu = mm->vgpu;
1791 	struct intel_gvt *gvt = vgpu->gvt;
1792 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1793 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1794 	struct intel_vgpu_ppgtt_spt *spt;
1795 	struct intel_gvt_gtt_entry ge, se;
1796 	int index, ret;
1797 
1798 	if (mm->ppgtt_mm.shadowed)
1799 		return 0;
1800 
1801 	mm->ppgtt_mm.shadowed = true;
1802 
1803 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1804 		ppgtt_get_guest_root_entry(mm, &ge, index);
1805 
1806 		if (!ops->test_present(&ge))
1807 			continue;
1808 
1809 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1810 				       ge.type, ge.val64, index);
1811 
1812 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1813 		if (IS_ERR(spt)) {
1814 			gvt_vgpu_err("fail to populate guest root pointer\n");
1815 			ret = PTR_ERR(spt);
1816 			goto fail;
1817 		}
1818 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1819 		ppgtt_set_shadow_root_entry(mm, &se, index);
1820 
1821 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1822 				       NULL, se.type, se.val64, index);
1823 	}
1824 
1825 	return 0;
1826 fail:
1827 	invalidate_ppgtt_mm(mm);
1828 	return ret;
1829 }
1830 
1831 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1832 {
1833 	struct intel_vgpu_mm *mm;
1834 
1835 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1836 	if (!mm)
1837 		return NULL;
1838 
1839 	mm->vgpu = vgpu;
1840 	kref_init(&mm->ref);
1841 	atomic_set(&mm->pincount, 0);
1842 
1843 	return mm;
1844 }
1845 
1846 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1847 {
1848 	kfree(mm);
1849 }
1850 
1851 /**
1852  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1853  * @vgpu: a vGPU
1854  * @root_entry_type: ppgtt root entry type
1855  * @pdps: guest pdps.
1856  *
1857  * This function is used to create a ppgtt mm object for a vGPU.
1858  *
1859  * Returns:
1860  * Zero on success, negative error code in pointer if failed.
1861  */
1862 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1863 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1864 {
1865 	struct intel_gvt *gvt = vgpu->gvt;
1866 	struct intel_vgpu_mm *mm;
1867 	int ret;
1868 
1869 	mm = vgpu_alloc_mm(vgpu);
1870 	if (!mm)
1871 		return ERR_PTR(-ENOMEM);
1872 
1873 	mm->type = INTEL_GVT_MM_PPGTT;
1874 
1875 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1876 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1877 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1878 
1879 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1880 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1881 
1882 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1883 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1884 	else
1885 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1886 		       sizeof(mm->ppgtt_mm.guest_pdps));
1887 
1888 	ret = shadow_ppgtt_mm(mm);
1889 	if (ret) {
1890 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1891 		vgpu_free_mm(mm);
1892 		return ERR_PTR(ret);
1893 	}
1894 
1895 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1896 
1897 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1898 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1899 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1900 
1901 	return mm;
1902 }
1903 
1904 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1905 {
1906 	struct intel_vgpu_mm *mm;
1907 	unsigned long nr_entries;
1908 
1909 	mm = vgpu_alloc_mm(vgpu);
1910 	if (!mm)
1911 		return ERR_PTR(-ENOMEM);
1912 
1913 	mm->type = INTEL_GVT_MM_GGTT;
1914 
1915 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1916 	mm->ggtt_mm.virtual_ggtt =
1917 		vzalloc(array_size(nr_entries,
1918 				   vgpu->gvt->device_info.gtt_entry_size));
1919 	if (!mm->ggtt_mm.virtual_ggtt) {
1920 		vgpu_free_mm(mm);
1921 		return ERR_PTR(-ENOMEM);
1922 	}
1923 
1924 	return mm;
1925 }
1926 
1927 /**
1928  * _intel_vgpu_mm_release - destroy a mm object
1929  * @mm_ref: a kref object
1930  *
1931  * This function is used to destroy a mm object for vGPU
1932  *
1933  */
1934 void _intel_vgpu_mm_release(struct kref *mm_ref)
1935 {
1936 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1937 
1938 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1939 		gvt_err("vgpu mm pin count bug detected\n");
1940 
1941 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1942 		list_del(&mm->ppgtt_mm.list);
1943 		list_del(&mm->ppgtt_mm.lru_list);
1944 		invalidate_ppgtt_mm(mm);
1945 	} else {
1946 		vfree(mm->ggtt_mm.virtual_ggtt);
1947 	}
1948 
1949 	vgpu_free_mm(mm);
1950 }
1951 
1952 /**
1953  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1954  * @mm: a vGPU mm object
1955  *
1956  * This function is called when user doesn't want to use a vGPU mm object
1957  */
1958 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1959 {
1960 	atomic_dec_if_positive(&mm->pincount);
1961 }
1962 
1963 /**
1964  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1965  * @mm: target vgpu mm
1966  *
1967  * This function is called when user wants to use a vGPU mm object. If this
1968  * mm object hasn't been shadowed yet, the shadow will be populated at this
1969  * time.
1970  *
1971  * Returns:
1972  * Zero on success, negative error code if failed.
1973  */
1974 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1975 {
1976 	int ret;
1977 
1978 	atomic_inc(&mm->pincount);
1979 
1980 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1981 		ret = shadow_ppgtt_mm(mm);
1982 		if (ret)
1983 			return ret;
1984 
1985 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1986 		list_move_tail(&mm->ppgtt_mm.lru_list,
1987 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1988 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1995 {
1996 	struct intel_vgpu_mm *mm;
1997 	struct list_head *pos, *n;
1998 
1999 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2000 
2001 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2002 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2003 
2004 		if (atomic_read(&mm->pincount))
2005 			continue;
2006 
2007 		list_del_init(&mm->ppgtt_mm.lru_list);
2008 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2009 		invalidate_ppgtt_mm(mm);
2010 		return 1;
2011 	}
2012 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2013 	return 0;
2014 }
2015 
2016 /*
2017  * GMA translation APIs.
2018  */
2019 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2020 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2021 {
2022 	struct intel_vgpu *vgpu = mm->vgpu;
2023 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2024 	struct intel_vgpu_ppgtt_spt *s;
2025 
2026 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2027 	if (!s)
2028 		return -ENXIO;
2029 
2030 	if (!guest)
2031 		ppgtt_get_shadow_entry(s, e, index);
2032 	else
2033 		ppgtt_get_guest_entry(s, e, index);
2034 	return 0;
2035 }
2036 
2037 /**
2038  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2039  * @mm: mm object. could be a PPGTT or GGTT mm object
2040  * @gma: graphics memory address in this mm object
2041  *
2042  * This function is used to translate a graphics memory address in specific
2043  * graphics memory space to guest physical address.
2044  *
2045  * Returns:
2046  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2047  */
2048 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2049 {
2050 	struct intel_vgpu *vgpu = mm->vgpu;
2051 	struct intel_gvt *gvt = vgpu->gvt;
2052 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2053 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2054 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2055 	unsigned long gma_index[4];
2056 	struct intel_gvt_gtt_entry e;
2057 	int i, levels = 0;
2058 	int ret;
2059 
2060 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2061 		   mm->type != INTEL_GVT_MM_PPGTT);
2062 
2063 	if (mm->type == INTEL_GVT_MM_GGTT) {
2064 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2065 			goto err;
2066 
2067 		ggtt_get_guest_entry(mm, &e,
2068 			gma_ops->gma_to_ggtt_pte_index(gma));
2069 
2070 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2071 			+ (gma & ~I915_GTT_PAGE_MASK);
2072 
2073 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2074 	} else {
2075 		switch (mm->ppgtt_mm.root_entry_type) {
2076 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2077 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2078 
2079 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2080 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2081 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2082 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2083 			levels = 4;
2084 			break;
2085 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2086 			ppgtt_get_shadow_root_entry(mm, &e,
2087 					gma_ops->gma_to_l3_pdp_index(gma));
2088 
2089 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2090 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2091 			levels = 2;
2092 			break;
2093 		default:
2094 			GEM_BUG_ON(1);
2095 		}
2096 
2097 		/* walk the shadow page table and get gpa from guest entry */
2098 		for (i = 0; i < levels; i++) {
2099 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2100 				(i == levels - 1));
2101 			if (ret)
2102 				goto err;
2103 
2104 			if (!pte_ops->test_present(&e)) {
2105 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2106 				goto err;
2107 			}
2108 		}
2109 
2110 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2111 					(gma & ~I915_GTT_PAGE_MASK);
2112 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2113 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2114 	}
2115 
2116 	return gpa;
2117 err:
2118 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2119 	return INTEL_GVT_INVALID_ADDR;
2120 }
2121 
2122 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2123 	unsigned int off, void *p_data, unsigned int bytes)
2124 {
2125 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2126 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2127 	unsigned long index = off >> info->gtt_entry_size_shift;
2128 	struct intel_gvt_gtt_entry e;
2129 
2130 	if (bytes != 4 && bytes != 8)
2131 		return -EINVAL;
2132 
2133 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2134 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2135 			bytes);
2136 	return 0;
2137 }
2138 
2139 /**
2140  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2141  * @vgpu: a vGPU
2142  * @off: register offset
2143  * @p_data: data will be returned to guest
2144  * @bytes: data length
2145  *
2146  * This function is used to emulate the GTT MMIO register read
2147  *
2148  * Returns:
2149  * Zero on success, error code if failed.
2150  */
2151 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2152 	void *p_data, unsigned int bytes)
2153 {
2154 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2155 	int ret;
2156 
2157 	if (bytes != 4 && bytes != 8)
2158 		return -EINVAL;
2159 
2160 	off -= info->gtt_start_offset;
2161 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2162 	return ret;
2163 }
2164 
2165 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2166 		struct intel_gvt_gtt_entry *entry)
2167 {
2168 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2169 	unsigned long pfn;
2170 
2171 	pfn = pte_ops->get_pfn(entry);
2172 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2173 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2174 						pfn << PAGE_SHIFT);
2175 }
2176 
2177 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2178 	void *p_data, unsigned int bytes)
2179 {
2180 	struct intel_gvt *gvt = vgpu->gvt;
2181 	const struct intel_gvt_device_info *info = &gvt->device_info;
2182 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2183 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2184 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2185 	unsigned long gma, gfn;
2186 	struct intel_gvt_gtt_entry e, m;
2187 	dma_addr_t dma_addr;
2188 	int ret;
2189 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2190 	bool partial_update = false;
2191 
2192 	if (bytes != 4 && bytes != 8)
2193 		return -EINVAL;
2194 
2195 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2196 
2197 	/* the VM may configure the whole GM space when ballooning is used */
2198 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2199 		return 0;
2200 
2201 	e.type = GTT_TYPE_GGTT_PTE;
2202 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2203 			bytes);
2204 
2205 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2206 	 * write, save the first 4 bytes in a list and update virtual
2207 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2208 	 */
2209 	if (bytes < info->gtt_entry_size) {
2210 		bool found = false;
2211 
2212 		list_for_each_entry_safe(pos, n,
2213 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2214 			if (g_gtt_index == pos->offset >>
2215 					info->gtt_entry_size_shift) {
2216 				if (off != pos->offset) {
2217 					/* the second partial part*/
2218 					int last_off = pos->offset &
2219 						(info->gtt_entry_size - 1);
2220 
2221 					memcpy((void *)&e.val64 + last_off,
2222 						(void *)&pos->data + last_off,
2223 						bytes);
2224 
2225 					list_del(&pos->list);
2226 					kfree(pos);
2227 					found = true;
2228 					break;
2229 				}
2230 
2231 				/* update of the first partial part */
2232 				pos->data = e.val64;
2233 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2234 				return 0;
2235 			}
2236 		}
2237 
2238 		if (!found) {
2239 			/* the first partial part */
2240 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2241 			if (!partial_pte)
2242 				return -ENOMEM;
2243 			partial_pte->offset = off;
2244 			partial_pte->data = e.val64;
2245 			list_add_tail(&partial_pte->list,
2246 				&ggtt_mm->ggtt_mm.partial_pte_list);
2247 			partial_update = true;
2248 		}
2249 	}
2250 
2251 	if (!partial_update && (ops->test_present(&e))) {
2252 		gfn = ops->get_pfn(&e);
2253 		m = e;
2254 
2255 		/* one PTE update may be issued in multiple writes and the
2256 		 * first write may not construct a valid gfn
2257 		 */
2258 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2259 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2260 			goto out;
2261 		}
2262 
2263 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2264 							PAGE_SIZE, &dma_addr);
2265 		if (ret) {
2266 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2267 			/* guest driver may read/write the entry when partial
2268 			 * update the entry in this situation p2m will fail
2269 			 * settting the shadow entry to point to a scratch page
2270 			 */
2271 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2272 		} else
2273 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2274 	} else {
2275 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2276 		ops->clear_present(&m);
2277 	}
2278 
2279 out:
2280 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2281 
2282 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2283 	ggtt_invalidate_pte(vgpu, &e);
2284 
2285 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2286 	ggtt_invalidate(gvt->dev_priv);
2287 	return 0;
2288 }
2289 
2290 /*
2291  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2292  * @vgpu: a vGPU
2293  * @off: register offset
2294  * @p_data: data from guest write
2295  * @bytes: data length
2296  *
2297  * This function is used to emulate the GTT MMIO register write
2298  *
2299  * Returns:
2300  * Zero on success, error code if failed.
2301  */
2302 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2303 		unsigned int off, void *p_data, unsigned int bytes)
2304 {
2305 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2306 	int ret;
2307 
2308 	if (bytes != 4 && bytes != 8)
2309 		return -EINVAL;
2310 
2311 	off -= info->gtt_start_offset;
2312 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2313 	return ret;
2314 }
2315 
2316 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2317 		enum intel_gvt_gtt_type type)
2318 {
2319 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2320 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2321 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2322 				vgpu->gvt->device_info.gtt_entry_size_shift;
2323 	void *scratch_pt;
2324 	int i;
2325 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2326 	dma_addr_t daddr;
2327 
2328 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2329 		return -EINVAL;
2330 
2331 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2332 	if (!scratch_pt) {
2333 		gvt_vgpu_err("fail to allocate scratch page\n");
2334 		return -ENOMEM;
2335 	}
2336 
2337 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2338 			4096, PCI_DMA_BIDIRECTIONAL);
2339 	if (dma_mapping_error(dev, daddr)) {
2340 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2341 		__free_page(virt_to_page(scratch_pt));
2342 		return -ENOMEM;
2343 	}
2344 	gtt->scratch_pt[type].page_mfn =
2345 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2346 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2347 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2348 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2349 
2350 	/* Build the tree by full filled the scratch pt with the entries which
2351 	 * point to the next level scratch pt or scratch page. The
2352 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2353 	 * 'type' pt.
2354 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2355 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2356 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2357 	 */
2358 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2359 		struct intel_gvt_gtt_entry se;
2360 
2361 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2362 		se.type = get_entry_type(type - 1);
2363 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2364 
2365 		/* The entry parameters like present/writeable/cache type
2366 		 * set to the same as i915's scratch page tree.
2367 		 */
2368 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2369 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2370 			se.val64 |= PPAT_CACHED;
2371 
2372 		for (i = 0; i < page_entry_num; i++)
2373 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2380 {
2381 	int i;
2382 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2383 	dma_addr_t daddr;
2384 
2385 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2386 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2387 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2388 					I915_GTT_PAGE_SHIFT);
2389 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2390 			__free_page(vgpu->gtt.scratch_pt[i].page);
2391 			vgpu->gtt.scratch_pt[i].page = NULL;
2392 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2393 		}
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2400 {
2401 	int i, ret;
2402 
2403 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2404 		ret = alloc_scratch_pages(vgpu, i);
2405 		if (ret)
2406 			goto err;
2407 	}
2408 
2409 	return 0;
2410 
2411 err:
2412 	release_scratch_page_tree(vgpu);
2413 	return ret;
2414 }
2415 
2416 /**
2417  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2418  * @vgpu: a vGPU
2419  *
2420  * This function is used to initialize per-vGPU graphics memory virtualization
2421  * components.
2422  *
2423  * Returns:
2424  * Zero on success, error code if failed.
2425  */
2426 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2427 {
2428 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2429 
2430 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2431 
2432 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2433 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2434 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2435 
2436 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2437 	if (IS_ERR(gtt->ggtt_mm)) {
2438 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2439 		return PTR_ERR(gtt->ggtt_mm);
2440 	}
2441 
2442 	intel_vgpu_reset_ggtt(vgpu, false);
2443 
2444 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2445 
2446 	return create_scratch_page_tree(vgpu);
2447 }
2448 
2449 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2450 {
2451 	struct list_head *pos, *n;
2452 	struct intel_vgpu_mm *mm;
2453 
2454 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2455 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2456 		intel_vgpu_destroy_mm(mm);
2457 	}
2458 
2459 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2460 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2461 
2462 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2463 		gvt_err("Why we still has spt not freed?\n");
2464 		ppgtt_free_all_spt(vgpu);
2465 	}
2466 }
2467 
2468 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2469 {
2470 	struct intel_gvt_partial_pte *pos, *next;
2471 
2472 	list_for_each_entry_safe(pos, next,
2473 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2474 				 list) {
2475 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2476 			pos->offset, pos->data);
2477 		kfree(pos);
2478 	}
2479 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2480 	vgpu->gtt.ggtt_mm = NULL;
2481 }
2482 
2483 /**
2484  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2485  * @vgpu: a vGPU
2486  *
2487  * This function is used to clean up per-vGPU graphics memory virtualization
2488  * components.
2489  *
2490  * Returns:
2491  * Zero on success, error code if failed.
2492  */
2493 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2494 {
2495 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2496 	intel_vgpu_destroy_ggtt_mm(vgpu);
2497 	release_scratch_page_tree(vgpu);
2498 }
2499 
2500 static void clean_spt_oos(struct intel_gvt *gvt)
2501 {
2502 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2503 	struct list_head *pos, *n;
2504 	struct intel_vgpu_oos_page *oos_page;
2505 
2506 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2507 		"someone is still using oos page\n");
2508 
2509 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2510 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2511 		list_del(&oos_page->list);
2512 		free_page((unsigned long)oos_page->mem);
2513 		kfree(oos_page);
2514 	}
2515 }
2516 
2517 static int setup_spt_oos(struct intel_gvt *gvt)
2518 {
2519 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2520 	struct intel_vgpu_oos_page *oos_page;
2521 	int i;
2522 	int ret;
2523 
2524 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2525 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2526 
2527 	for (i = 0; i < preallocated_oos_pages; i++) {
2528 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2529 		if (!oos_page) {
2530 			ret = -ENOMEM;
2531 			goto fail;
2532 		}
2533 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2534 		if (!oos_page->mem) {
2535 			ret = -ENOMEM;
2536 			kfree(oos_page);
2537 			goto fail;
2538 		}
2539 
2540 		INIT_LIST_HEAD(&oos_page->list);
2541 		INIT_LIST_HEAD(&oos_page->vm_list);
2542 		oos_page->id = i;
2543 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2544 	}
2545 
2546 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2547 
2548 	return 0;
2549 fail:
2550 	clean_spt_oos(gvt);
2551 	return ret;
2552 }
2553 
2554 /**
2555  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2556  * @vgpu: a vGPU
2557  * @pdps: pdp root array
2558  *
2559  * This function is used to find a PPGTT mm object from mm object pool
2560  *
2561  * Returns:
2562  * pointer to mm object on success, NULL if failed.
2563  */
2564 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2565 		u64 pdps[])
2566 {
2567 	struct intel_vgpu_mm *mm;
2568 	struct list_head *pos;
2569 
2570 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2571 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2572 
2573 		switch (mm->ppgtt_mm.root_entry_type) {
2574 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2575 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2576 				return mm;
2577 			break;
2578 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2579 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2580 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2581 				return mm;
2582 			break;
2583 		default:
2584 			GEM_BUG_ON(1);
2585 		}
2586 	}
2587 	return NULL;
2588 }
2589 
2590 /**
2591  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2592  * @vgpu: a vGPU
2593  * @root_entry_type: ppgtt root entry type
2594  * @pdps: guest pdps
2595  *
2596  * This function is used to find or create a PPGTT mm object from a guest.
2597  *
2598  * Returns:
2599  * Zero on success, negative error code if failed.
2600  */
2601 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2602 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2603 {
2604 	struct intel_vgpu_mm *mm;
2605 
2606 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2607 	if (mm) {
2608 		intel_vgpu_mm_get(mm);
2609 	} else {
2610 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2611 		if (IS_ERR(mm))
2612 			gvt_vgpu_err("fail to create mm\n");
2613 	}
2614 	return mm;
2615 }
2616 
2617 /**
2618  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2619  * @vgpu: a vGPU
2620  * @pdps: guest pdps
2621  *
2622  * This function is used to find a PPGTT mm object from a guest and destroy it.
2623  *
2624  * Returns:
2625  * Zero on success, negative error code if failed.
2626  */
2627 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2628 {
2629 	struct intel_vgpu_mm *mm;
2630 
2631 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2632 	if (!mm) {
2633 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2634 		return -EINVAL;
2635 	}
2636 	intel_vgpu_mm_put(mm);
2637 	return 0;
2638 }
2639 
2640 /**
2641  * intel_gvt_init_gtt - initialize mm components of a GVT device
2642  * @gvt: GVT device
2643  *
2644  * This function is called at the initialization stage, to initialize
2645  * the mm components of a GVT device.
2646  *
2647  * Returns:
2648  * zero on success, negative error code if failed.
2649  */
2650 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2651 {
2652 	int ret;
2653 	void *page;
2654 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2655 	dma_addr_t daddr;
2656 
2657 	gvt_dbg_core("init gtt\n");
2658 
2659 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2660 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2661 
2662 	page = (void *)get_zeroed_page(GFP_KERNEL);
2663 	if (!page) {
2664 		gvt_err("fail to allocate scratch ggtt page\n");
2665 		return -ENOMEM;
2666 	}
2667 
2668 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2669 			4096, PCI_DMA_BIDIRECTIONAL);
2670 	if (dma_mapping_error(dev, daddr)) {
2671 		gvt_err("fail to dmamap scratch ggtt page\n");
2672 		__free_page(virt_to_page(page));
2673 		return -ENOMEM;
2674 	}
2675 
2676 	gvt->gtt.scratch_page = virt_to_page(page);
2677 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2678 
2679 	if (enable_out_of_sync) {
2680 		ret = setup_spt_oos(gvt);
2681 		if (ret) {
2682 			gvt_err("fail to initialize SPT oos\n");
2683 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2684 			__free_page(gvt->gtt.scratch_page);
2685 			return ret;
2686 		}
2687 	}
2688 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2689 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2690 	return 0;
2691 }
2692 
2693 /**
2694  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2695  * @gvt: GVT device
2696  *
2697  * This function is called at the driver unloading stage, to clean up the
2698  * the mm components of a GVT device.
2699  *
2700  */
2701 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2702 {
2703 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2704 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2705 					I915_GTT_PAGE_SHIFT);
2706 
2707 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2708 
2709 	__free_page(gvt->gtt.scratch_page);
2710 
2711 	if (enable_out_of_sync)
2712 		clean_spt_oos(gvt);
2713 }
2714 
2715 /**
2716  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2717  * @vgpu: a vGPU
2718  *
2719  * This function is called when invalidate all PPGTT instances of a vGPU.
2720  *
2721  */
2722 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2723 {
2724 	struct list_head *pos, *n;
2725 	struct intel_vgpu_mm *mm;
2726 
2727 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2728 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2729 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2730 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2731 			list_del_init(&mm->ppgtt_mm.lru_list);
2732 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2733 			if (mm->ppgtt_mm.shadowed)
2734 				invalidate_ppgtt_mm(mm);
2735 		}
2736 	}
2737 }
2738 
2739 /**
2740  * intel_vgpu_reset_ggtt - reset the GGTT entry
2741  * @vgpu: a vGPU
2742  * @invalidate_old: invalidate old entries
2743  *
2744  * This function is called at the vGPU create stage
2745  * to reset all the GGTT entries.
2746  *
2747  */
2748 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2749 {
2750 	struct intel_gvt *gvt = vgpu->gvt;
2751 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2752 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2753 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2754 	struct intel_gvt_gtt_entry old_entry;
2755 	u32 index;
2756 	u32 num_entries;
2757 
2758 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2759 	pte_ops->set_present(&entry);
2760 
2761 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2762 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2763 	while (num_entries--) {
2764 		if (invalidate_old) {
2765 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2766 			ggtt_invalidate_pte(vgpu, &old_entry);
2767 		}
2768 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2769 	}
2770 
2771 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2772 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2773 	while (num_entries--) {
2774 		if (invalidate_old) {
2775 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2776 			ggtt_invalidate_pte(vgpu, &old_entry);
2777 		}
2778 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2779 	}
2780 
2781 	ggtt_invalidate(dev_priv);
2782 }
2783 
2784 /**
2785  * intel_vgpu_reset_gtt - reset the all GTT related status
2786  * @vgpu: a vGPU
2787  *
2788  * This function is called from vfio core to reset reset all
2789  * GTT related status, including GGTT, PPGTT, scratch page.
2790  *
2791  */
2792 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2793 {
2794 	/* Shadow pages are only created when there is no page
2795 	 * table tracking data, so remove page tracking data after
2796 	 * removing the shadow pages.
2797 	 */
2798 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2799 	intel_vgpu_reset_ggtt(vgpu, true);
2800 }
2801