xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
75 		 "invalid guest gmadr %llx\n", g_addr))
76 		return -EACCES;
77 
78 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
79 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
80 			  + (g_addr - vgpu_aperture_offset(vgpu));
81 	else
82 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
83 			  + (g_addr - vgpu_hidden_offset(vgpu));
84 	return 0;
85 }
86 
87 /* translate a host gmadr to guest gmadr */
88 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
89 {
90 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
91 		 "invalid host gmadr %llx\n", h_addr))
92 		return -EACCES;
93 
94 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
95 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
96 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
97 	else
98 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
99 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
100 	return 0;
101 }
102 
103 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
104 			     unsigned long *h_index)
105 {
106 	u64 h_addr;
107 	int ret;
108 
109 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
110 				       &h_addr);
111 	if (ret)
112 		return ret;
113 
114 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
115 	return 0;
116 }
117 
118 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
119 			     unsigned long *g_index)
120 {
121 	u64 g_addr;
122 	int ret;
123 
124 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
125 				       &g_addr);
126 	if (ret)
127 		return ret;
128 
129 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
130 	return 0;
131 }
132 
133 #define gtt_type_is_entry(type) \
134 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
135 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
136 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
137 
138 #define gtt_type_is_pt(type) \
139 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
140 
141 #define gtt_type_is_pte_pt(type) \
142 	(type == GTT_TYPE_PPGTT_PTE_PT)
143 
144 #define gtt_type_is_root_pointer(type) \
145 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
146 
147 #define gtt_init_entry(e, t, p, v) do { \
148 	(e)->type = t; \
149 	(e)->pdev = p; \
150 	memcpy(&(e)->val64, &v, sizeof(v)); \
151 } while (0)
152 
153 /*
154  * Mappings between GTT_TYPE* enumerations.
155  * Following information can be found according to the given type:
156  * - type of next level page table
157  * - type of entry inside this level page table
158  * - type of entry with PSE set
159  *
160  * If the given type doesn't have such a kind of information,
161  * e.g. give a l4 root entry type, then request to get its PSE type,
162  * give a PTE page table type, then request to get its next level page
163  * table type, as we know l4 root entry doesn't have a PSE bit,
164  * and a PTE page table doesn't have a next level page table type,
165  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
166  * page table.
167  */
168 
169 struct gtt_type_table_entry {
170 	int entry_type;
171 	int pt_type;
172 	int next_pt_type;
173 	int pse_entry_type;
174 };
175 
176 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
177 	[type] = { \
178 		.entry_type = e_type, \
179 		.pt_type = cpt_type, \
180 		.next_pt_type = npt_type, \
181 		.pse_entry_type = pse_type, \
182 	}
183 
184 static struct gtt_type_table_entry gtt_type_table[] = {
185 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
186 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
187 			GTT_TYPE_INVALID,
188 			GTT_TYPE_PPGTT_PML4_PT,
189 			GTT_TYPE_INVALID),
190 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
191 			GTT_TYPE_PPGTT_PML4_ENTRY,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_PPGTT_PDP_PT,
194 			GTT_TYPE_INVALID),
195 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_ENTRY,
197 			GTT_TYPE_PPGTT_PML4_PT,
198 			GTT_TYPE_PPGTT_PDP_PT,
199 			GTT_TYPE_INVALID),
200 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
201 			GTT_TYPE_PPGTT_PDP_ENTRY,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_PPGTT_PDE_PT,
204 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
205 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
206 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
207 			GTT_TYPE_INVALID,
208 			GTT_TYPE_PPGTT_PDE_PT,
209 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
210 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
211 			GTT_TYPE_PPGTT_PDP_ENTRY,
212 			GTT_TYPE_PPGTT_PDP_PT,
213 			GTT_TYPE_PPGTT_PDE_PT,
214 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
215 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
216 			GTT_TYPE_PPGTT_PDE_ENTRY,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_PT,
219 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_ENTRY,
222 			GTT_TYPE_PPGTT_PDE_PT,
223 			GTT_TYPE_PPGTT_PTE_PT,
224 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
225 	/* We take IPS bit as 'PSE' for PTE level. */
226 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
227 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
228 			GTT_TYPE_PPGTT_PTE_PT,
229 			GTT_TYPE_INVALID,
230 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
231 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
233 			GTT_TYPE_PPGTT_PTE_PT,
234 			GTT_TYPE_INVALID,
235 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
236 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 			GTT_TYPE_PPGTT_PTE_PT,
239 			GTT_TYPE_INVALID,
240 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
241 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
242 			GTT_TYPE_PPGTT_PDE_ENTRY,
243 			GTT_TYPE_PPGTT_PDE_PT,
244 			GTT_TYPE_INVALID,
245 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
246 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
247 			GTT_TYPE_PPGTT_PDP_ENTRY,
248 			GTT_TYPE_PPGTT_PDP_PT,
249 			GTT_TYPE_INVALID,
250 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
251 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
252 			GTT_TYPE_GGTT_PTE,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_INVALID,
255 			GTT_TYPE_INVALID),
256 };
257 
258 static inline int get_next_pt_type(int type)
259 {
260 	return gtt_type_table[type].next_pt_type;
261 }
262 
263 static inline int get_pt_type(int type)
264 {
265 	return gtt_type_table[type].pt_type;
266 }
267 
268 static inline int get_entry_type(int type)
269 {
270 	return gtt_type_table[type].entry_type;
271 }
272 
273 static inline int get_pse_type(int type)
274 {
275 	return gtt_type_table[type].pse_entry_type;
276 }
277 
278 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
279 {
280 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
281 
282 	return readq(addr);
283 }
284 
285 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
286 {
287 	mmio_hw_access_pre(dev_priv);
288 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
289 	mmio_hw_access_post(dev_priv);
290 }
291 
292 static void write_pte64(struct drm_i915_private *dev_priv,
293 		unsigned long index, u64 pte)
294 {
295 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
296 
297 	writeq(pte, addr);
298 }
299 
300 static inline int gtt_get_entry64(void *pt,
301 		struct intel_gvt_gtt_entry *e,
302 		unsigned long index, bool hypervisor_access, unsigned long gpa,
303 		struct intel_vgpu *vgpu)
304 {
305 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
306 	int ret;
307 
308 	if (WARN_ON(info->gtt_entry_size != 8))
309 		return -EINVAL;
310 
311 	if (hypervisor_access) {
312 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
313 				(index << info->gtt_entry_size_shift),
314 				&e->val64, 8);
315 		if (WARN_ON(ret))
316 			return ret;
317 	} else if (!pt) {
318 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
319 	} else {
320 		e->val64 = *((u64 *)pt + index);
321 	}
322 	return 0;
323 }
324 
325 static inline int gtt_set_entry64(void *pt,
326 		struct intel_gvt_gtt_entry *e,
327 		unsigned long index, bool hypervisor_access, unsigned long gpa,
328 		struct intel_vgpu *vgpu)
329 {
330 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
331 	int ret;
332 
333 	if (WARN_ON(info->gtt_entry_size != 8))
334 		return -EINVAL;
335 
336 	if (hypervisor_access) {
337 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
338 				(index << info->gtt_entry_size_shift),
339 				&e->val64, 8);
340 		if (WARN_ON(ret))
341 			return ret;
342 	} else if (!pt) {
343 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
344 	} else {
345 		*((u64 *)pt + index) = e->val64;
346 	}
347 	return 0;
348 }
349 
350 #define GTT_HAW 46
351 
352 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
353 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
354 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
355 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
356 
357 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
358 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
359 
360 #define GTT_64K_PTE_STRIDE 16
361 
362 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
363 {
364 	unsigned long pfn;
365 
366 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
367 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
368 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
369 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
370 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
371 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
372 	else
373 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
374 	return pfn;
375 }
376 
377 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
378 {
379 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
380 		e->val64 &= ~ADDR_1G_MASK;
381 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
382 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
383 		e->val64 &= ~ADDR_2M_MASK;
384 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
386 		e->val64 &= ~ADDR_64K_MASK;
387 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
388 	} else {
389 		e->val64 &= ~ADDR_4K_MASK;
390 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
391 	}
392 
393 	e->val64 |= (pfn << PAGE_SHIFT);
394 }
395 
396 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
397 {
398 	return !!(e->val64 & _PAGE_PSE);
399 }
400 
401 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
402 {
403 	if (gen8_gtt_test_pse(e)) {
404 		switch (e->type) {
405 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
406 			e->val64 &= ~_PAGE_PSE;
407 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
408 			break;
409 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
410 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
411 			e->val64 &= ~_PAGE_PSE;
412 			break;
413 		default:
414 			WARN_ON(1);
415 		}
416 	}
417 }
418 
419 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
420 {
421 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
422 		return false;
423 
424 	return !!(e->val64 & GEN8_PDE_IPS_64K);
425 }
426 
427 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
428 {
429 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
430 		return;
431 
432 	e->val64 &= ~GEN8_PDE_IPS_64K;
433 }
434 
435 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
436 {
437 	/*
438 	 * i915 writes PDP root pointer registers without present bit,
439 	 * it also works, so we need to treat root pointer entry
440 	 * specifically.
441 	 */
442 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
443 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
444 		return (e->val64 != 0);
445 	else
446 		return (e->val64 & _PAGE_PRESENT);
447 }
448 
449 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
450 {
451 	e->val64 &= ~_PAGE_PRESENT;
452 }
453 
454 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
455 {
456 	e->val64 |= _PAGE_PRESENT;
457 }
458 
459 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
460 {
461 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
462 }
463 
464 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
465 {
466 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
467 }
468 
469 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
470 {
471 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
472 }
473 
474 /*
475  * Per-platform GMA routines.
476  */
477 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
478 {
479 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
480 
481 	trace_gma_index(__func__, gma, x);
482 	return x;
483 }
484 
485 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
486 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
487 { \
488 	unsigned long x = (exp); \
489 	trace_gma_index(__func__, gma, x); \
490 	return x; \
491 }
492 
493 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
494 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
495 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
498 
499 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
500 	.get_entry = gtt_get_entry64,
501 	.set_entry = gtt_set_entry64,
502 	.clear_present = gtt_entry_clear_present,
503 	.set_present = gtt_entry_set_present,
504 	.test_present = gen8_gtt_test_present,
505 	.test_pse = gen8_gtt_test_pse,
506 	.clear_pse = gen8_gtt_clear_pse,
507 	.clear_ips = gen8_gtt_clear_ips,
508 	.test_ips = gen8_gtt_test_ips,
509 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
510 	.set_64k_splited = gen8_gtt_set_64k_splited,
511 	.test_64k_splited = gen8_gtt_test_64k_splited,
512 	.get_pfn = gen8_gtt_get_pfn,
513 	.set_pfn = gen8_gtt_set_pfn,
514 };
515 
516 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
517 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
518 	.gma_to_pte_index = gen8_gma_to_pte_index,
519 	.gma_to_pde_index = gen8_gma_to_pde_index,
520 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
521 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
522 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
523 };
524 
525 /* Update entry type per pse and ips bit. */
526 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
527 	struct intel_gvt_gtt_entry *entry, bool ips)
528 {
529 	switch (entry->type) {
530 	case GTT_TYPE_PPGTT_PDE_ENTRY:
531 	case GTT_TYPE_PPGTT_PDP_ENTRY:
532 		if (pte_ops->test_pse(entry))
533 			entry->type = get_pse_type(entry->type);
534 		break;
535 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
536 		if (ips)
537 			entry->type = get_pse_type(entry->type);
538 		break;
539 	default:
540 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
541 	}
542 
543 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
544 }
545 
546 /*
547  * MM helpers.
548  */
549 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
550 		struct intel_gvt_gtt_entry *entry, unsigned long index,
551 		bool guest)
552 {
553 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
554 
555 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
556 
557 	entry->type = mm->ppgtt_mm.root_entry_type;
558 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
559 			   mm->ppgtt_mm.shadow_pdps,
560 			   entry, index, false, 0, mm->vgpu);
561 	update_entry_type_for_real(pte_ops, entry, false);
562 }
563 
564 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, true);
568 }
569 
570 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index)
572 {
573 	_ppgtt_get_root_entry(mm, entry, index, false);
574 }
575 
576 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
577 		struct intel_gvt_gtt_entry *entry, unsigned long index,
578 		bool guest)
579 {
580 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
581 
582 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
583 			   mm->ppgtt_mm.shadow_pdps,
584 			   entry, index, false, 0, mm->vgpu);
585 }
586 
587 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, true);
591 }
592 
593 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	_ppgtt_set_root_entry(mm, entry, index, false);
597 }
598 
599 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
600 		struct intel_gvt_gtt_entry *entry, unsigned long index)
601 {
602 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
603 
604 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
605 
606 	entry->type = GTT_TYPE_GGTT_PTE;
607 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
608 			   false, 0, mm->vgpu);
609 }
610 
611 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
612 		struct intel_gvt_gtt_entry *entry, unsigned long index)
613 {
614 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
615 
616 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
617 
618 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
619 			   false, 0, mm->vgpu);
620 }
621 
622 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
623 		struct intel_gvt_gtt_entry *entry, unsigned long index)
624 {
625 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
626 
627 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
628 
629 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
630 }
631 
632 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
633 		struct intel_gvt_gtt_entry *entry, unsigned long index)
634 {
635 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
636 
637 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
638 
639 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
640 }
641 
642 /*
643  * PPGTT shadow page table helpers.
644  */
645 static inline int ppgtt_spt_get_entry(
646 		struct intel_vgpu_ppgtt_spt *spt,
647 		void *page_table, int type,
648 		struct intel_gvt_gtt_entry *e, unsigned long index,
649 		bool guest)
650 {
651 	struct intel_gvt *gvt = spt->vgpu->gvt;
652 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
653 	int ret;
654 
655 	e->type = get_entry_type(type);
656 
657 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
658 		return -EINVAL;
659 
660 	ret = ops->get_entry(page_table, e, index, guest,
661 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
662 			spt->vgpu);
663 	if (ret)
664 		return ret;
665 
666 	update_entry_type_for_real(ops, e, guest ?
667 				   spt->guest_page.pde_ips : false);
668 
669 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
670 		    type, e->type, index, e->val64);
671 	return 0;
672 }
673 
674 static inline int ppgtt_spt_set_entry(
675 		struct intel_vgpu_ppgtt_spt *spt,
676 		void *page_table, int type,
677 		struct intel_gvt_gtt_entry *e, unsigned long index,
678 		bool guest)
679 {
680 	struct intel_gvt *gvt = spt->vgpu->gvt;
681 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
682 
683 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
684 		return -EINVAL;
685 
686 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
687 		    type, e->type, index, e->val64);
688 
689 	return ops->set_entry(page_table, e, index, guest,
690 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
691 			spt->vgpu);
692 }
693 
694 #define ppgtt_get_guest_entry(spt, e, index) \
695 	ppgtt_spt_get_entry(spt, NULL, \
696 		spt->guest_page.type, e, index, true)
697 
698 #define ppgtt_set_guest_entry(spt, e, index) \
699 	ppgtt_spt_set_entry(spt, NULL, \
700 		spt->guest_page.type, e, index, true)
701 
702 #define ppgtt_get_shadow_entry(spt, e, index) \
703 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
704 		spt->shadow_page.type, e, index, false)
705 
706 #define ppgtt_set_shadow_entry(spt, e, index) \
707 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
708 		spt->shadow_page.type, e, index, false)
709 
710 static void *alloc_spt(gfp_t gfp_mask)
711 {
712 	struct intel_vgpu_ppgtt_spt *spt;
713 
714 	spt = kzalloc(sizeof(*spt), gfp_mask);
715 	if (!spt)
716 		return NULL;
717 
718 	spt->shadow_page.page = alloc_page(gfp_mask);
719 	if (!spt->shadow_page.page) {
720 		kfree(spt);
721 		return NULL;
722 	}
723 	return spt;
724 }
725 
726 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
727 {
728 	__free_page(spt->shadow_page.page);
729 	kfree(spt);
730 }
731 
732 static int detach_oos_page(struct intel_vgpu *vgpu,
733 		struct intel_vgpu_oos_page *oos_page);
734 
735 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
736 {
737 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
738 
739 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
740 
741 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
742 		       PCI_DMA_BIDIRECTIONAL);
743 
744 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
745 
746 	if (spt->guest_page.gfn) {
747 		if (spt->guest_page.oos_page)
748 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
749 
750 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
751 	}
752 
753 	list_del_init(&spt->post_shadow_list);
754 	free_spt(spt);
755 }
756 
757 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
758 {
759 	struct intel_vgpu_ppgtt_spt *spt, *spn;
760 	struct radix_tree_iter iter;
761 	LIST_HEAD(all_spt);
762 	void __rcu **slot;
763 
764 	rcu_read_lock();
765 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
766 		spt = radix_tree_deref_slot(slot);
767 		list_move(&spt->post_shadow_list, &all_spt);
768 	}
769 	rcu_read_unlock();
770 
771 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
772 		ppgtt_free_spt(spt);
773 }
774 
775 static int ppgtt_handle_guest_write_page_table_bytes(
776 		struct intel_vgpu_ppgtt_spt *spt,
777 		u64 pa, void *p_data, int bytes);
778 
779 static int ppgtt_write_protection_handler(
780 		struct intel_vgpu_page_track *page_track,
781 		u64 gpa, void *data, int bytes)
782 {
783 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
784 
785 	int ret;
786 
787 	if (bytes != 4 && bytes != 8)
788 		return -EINVAL;
789 
790 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
791 	if (ret)
792 		return ret;
793 	return ret;
794 }
795 
796 /* Find a spt by guest gfn. */
797 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
798 		struct intel_vgpu *vgpu, unsigned long gfn)
799 {
800 	struct intel_vgpu_page_track *track;
801 
802 	track = intel_vgpu_find_page_track(vgpu, gfn);
803 	if (track && track->handler == ppgtt_write_protection_handler)
804 		return track->priv_data;
805 
806 	return NULL;
807 }
808 
809 /* Find the spt by shadow page mfn. */
810 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
811 		struct intel_vgpu *vgpu, unsigned long mfn)
812 {
813 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
814 }
815 
816 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
817 
818 /* Allocate shadow page table without guest page. */
819 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
820 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
821 {
822 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
823 	struct intel_vgpu_ppgtt_spt *spt = NULL;
824 	dma_addr_t daddr;
825 	int ret;
826 
827 retry:
828 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
829 	if (!spt) {
830 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
831 			goto retry;
832 
833 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
834 		return ERR_PTR(-ENOMEM);
835 	}
836 
837 	spt->vgpu = vgpu;
838 	atomic_set(&spt->refcount, 1);
839 	INIT_LIST_HEAD(&spt->post_shadow_list);
840 
841 	/*
842 	 * Init shadow_page.
843 	 */
844 	spt->shadow_page.type = type;
845 	daddr = dma_map_page(kdev, spt->shadow_page.page,
846 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
847 	if (dma_mapping_error(kdev, daddr)) {
848 		gvt_vgpu_err("fail to map dma addr\n");
849 		ret = -EINVAL;
850 		goto err_free_spt;
851 	}
852 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
853 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
854 
855 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
856 	if (ret)
857 		goto err_unmap_dma;
858 
859 	return spt;
860 
861 err_unmap_dma:
862 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
863 err_free_spt:
864 	free_spt(spt);
865 	return ERR_PTR(ret);
866 }
867 
868 /* Allocate shadow page table associated with specific gfn. */
869 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
870 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
871 		unsigned long gfn, bool guest_pde_ips)
872 {
873 	struct intel_vgpu_ppgtt_spt *spt;
874 	int ret;
875 
876 	spt = ppgtt_alloc_spt(vgpu, type);
877 	if (IS_ERR(spt))
878 		return spt;
879 
880 	/*
881 	 * Init guest_page.
882 	 */
883 	ret = intel_vgpu_register_page_track(vgpu, gfn,
884 			ppgtt_write_protection_handler, spt);
885 	if (ret) {
886 		ppgtt_free_spt(spt);
887 		return ERR_PTR(ret);
888 	}
889 
890 	spt->guest_page.type = type;
891 	spt->guest_page.gfn = gfn;
892 	spt->guest_page.pde_ips = guest_pde_ips;
893 
894 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
895 
896 	return spt;
897 }
898 
899 #define pt_entry_size_shift(spt) \
900 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
901 
902 #define pt_entries(spt) \
903 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
904 
905 #define for_each_present_guest_entry(spt, e, i) \
906 	for (i = 0; i < pt_entries(spt); \
907 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908 		if (!ppgtt_get_guest_entry(spt, e, i) && \
909 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910 
911 #define for_each_present_shadow_entry(spt, e, i) \
912 	for (i = 0; i < pt_entries(spt); \
913 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
915 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916 
917 #define for_each_shadow_entry(spt, e, i) \
918 	for (i = 0; i < pt_entries(spt); \
919 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
920 		if (!ppgtt_get_shadow_entry(spt, e, i))
921 
922 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
923 {
924 	int v = atomic_read(&spt->refcount);
925 
926 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
927 	atomic_inc(&spt->refcount);
928 }
929 
930 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
931 {
932 	int v = atomic_read(&spt->refcount);
933 
934 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
935 	return atomic_dec_return(&spt->refcount);
936 }
937 
938 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
939 
940 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
941 		struct intel_gvt_gtt_entry *e)
942 {
943 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
944 	struct intel_vgpu_ppgtt_spt *s;
945 	enum intel_gvt_gtt_type cur_pt_type;
946 
947 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
948 
949 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
950 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
951 		cur_pt_type = get_next_pt_type(e->type);
952 
953 		if (!gtt_type_is_pt(cur_pt_type) ||
954 				!gtt_type_is_pt(cur_pt_type + 1)) {
955 			WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type);
956 			return -EINVAL;
957 		}
958 
959 		cur_pt_type += 1;
960 
961 		if (ops->get_pfn(e) ==
962 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
963 			return 0;
964 	}
965 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
966 	if (!s) {
967 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
968 				ops->get_pfn(e));
969 		return -ENXIO;
970 	}
971 	return ppgtt_invalidate_spt(s);
972 }
973 
974 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
975 		struct intel_gvt_gtt_entry *entry)
976 {
977 	struct intel_vgpu *vgpu = spt->vgpu;
978 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
979 	unsigned long pfn;
980 	int type;
981 
982 	pfn = ops->get_pfn(entry);
983 	type = spt->shadow_page.type;
984 
985 	/* Uninitialized spte or unshadowed spte. */
986 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
987 		return;
988 
989 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
990 }
991 
992 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
993 {
994 	struct intel_vgpu *vgpu = spt->vgpu;
995 	struct intel_gvt_gtt_entry e;
996 	unsigned long index;
997 	int ret;
998 
999 	trace_spt_change(spt->vgpu->id, "die", spt,
1000 			spt->guest_page.gfn, spt->shadow_page.type);
1001 
1002 	if (ppgtt_put_spt(spt) > 0)
1003 		return 0;
1004 
1005 	for_each_present_shadow_entry(spt, &e, index) {
1006 		switch (e.type) {
1007 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1008 			gvt_vdbg_mm("invalidate 4K entry\n");
1009 			ppgtt_invalidate_pte(spt, &e);
1010 			break;
1011 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1012 			/* We don't setup 64K shadow entry so far. */
1013 			WARN(1, "suspicious 64K gtt entry\n");
1014 			continue;
1015 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1016 			gvt_vdbg_mm("invalidate 2M entry\n");
1017 			continue;
1018 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1019 			WARN(1, "GVT doesn't support 1GB page\n");
1020 			continue;
1021 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1022 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1023 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1024 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1025 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1026 					spt->vgpu, &e);
1027 			if (ret)
1028 				goto fail;
1029 			break;
1030 		default:
1031 			GEM_BUG_ON(1);
1032 		}
1033 	}
1034 
1035 	trace_spt_change(spt->vgpu->id, "release", spt,
1036 			 spt->guest_page.gfn, spt->shadow_page.type);
1037 	ppgtt_free_spt(spt);
1038 	return 0;
1039 fail:
1040 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1041 			spt, e.val64, e.type);
1042 	return ret;
1043 }
1044 
1045 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1046 {
1047 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1048 
1049 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1050 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1051 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1052 
1053 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1054 	} else if (INTEL_GEN(dev_priv) >= 11) {
1055 		/* 64K paging only controlled by IPS bit in PTE now. */
1056 		return true;
1057 	} else
1058 		return false;
1059 }
1060 
1061 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1062 
1063 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1064 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1065 {
1066 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1067 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1068 	bool ips = false;
1069 	int ret;
1070 
1071 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1072 
1073 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1074 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1075 
1076 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1077 	if (spt) {
1078 		ppgtt_get_spt(spt);
1079 
1080 		if (ips != spt->guest_page.pde_ips) {
1081 			spt->guest_page.pde_ips = ips;
1082 
1083 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1084 			clear_page(spt->shadow_page.vaddr);
1085 			ret = ppgtt_populate_spt(spt);
1086 			if (ret) {
1087 				ppgtt_put_spt(spt);
1088 				goto err;
1089 			}
1090 		}
1091 	} else {
1092 		int type = get_next_pt_type(we->type);
1093 
1094 		if (!gtt_type_is_pt(type)) {
1095 			ret = -EINVAL;
1096 			goto err;
1097 		}
1098 
1099 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1100 		if (IS_ERR(spt)) {
1101 			ret = PTR_ERR(spt);
1102 			goto err;
1103 		}
1104 
1105 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1106 		if (ret)
1107 			goto err_free_spt;
1108 
1109 		ret = ppgtt_populate_spt(spt);
1110 		if (ret)
1111 			goto err_free_spt;
1112 
1113 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1114 				 spt->shadow_page.type);
1115 	}
1116 	return spt;
1117 
1118 err_free_spt:
1119 	ppgtt_free_spt(spt);
1120 	spt = NULL;
1121 err:
1122 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1123 		     spt, we->val64, we->type);
1124 	return ERR_PTR(ret);
1125 }
1126 
1127 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1128 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1129 {
1130 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1131 
1132 	se->type = ge->type;
1133 	se->val64 = ge->val64;
1134 
1135 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1136 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1137 		ops->clear_ips(se);
1138 
1139 	ops->set_pfn(se, s->shadow_page.mfn);
1140 }
1141 
1142 /**
1143  * Check if can do 2M page
1144  * @vgpu: target vgpu
1145  * @entry: target pfn's gtt entry
1146  *
1147  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1148  * negtive if found err.
1149  */
1150 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1151 	struct intel_gvt_gtt_entry *entry)
1152 {
1153 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1154 	unsigned long pfn;
1155 
1156 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1157 		return 0;
1158 
1159 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1160 	if (pfn == INTEL_GVT_INVALID_ADDR)
1161 		return -EINVAL;
1162 
1163 	return PageTransHuge(pfn_to_page(pfn));
1164 }
1165 
1166 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1167 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1168 	struct intel_gvt_gtt_entry *se)
1169 {
1170 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1171 	struct intel_vgpu_ppgtt_spt *sub_spt;
1172 	struct intel_gvt_gtt_entry sub_se;
1173 	unsigned long start_gfn;
1174 	dma_addr_t dma_addr;
1175 	unsigned long sub_index;
1176 	int ret;
1177 
1178 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1179 
1180 	start_gfn = ops->get_pfn(se);
1181 
1182 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1183 	if (IS_ERR(sub_spt))
1184 		return PTR_ERR(sub_spt);
1185 
1186 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1187 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1188 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1189 		if (ret) {
1190 			ppgtt_invalidate_spt(spt);
1191 			return ret;
1192 		}
1193 		sub_se.val64 = se->val64;
1194 
1195 		/* Copy the PAT field from PDE. */
1196 		sub_se.val64 &= ~_PAGE_PAT;
1197 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1198 
1199 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1200 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1201 	}
1202 
1203 	/* Clear dirty field. */
1204 	se->val64 &= ~_PAGE_DIRTY;
1205 
1206 	ops->clear_pse(se);
1207 	ops->clear_ips(se);
1208 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1209 	ppgtt_set_shadow_entry(spt, se, index);
1210 	return 0;
1211 }
1212 
1213 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1214 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1215 	struct intel_gvt_gtt_entry *se)
1216 {
1217 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1218 	struct intel_gvt_gtt_entry entry = *se;
1219 	unsigned long start_gfn;
1220 	dma_addr_t dma_addr;
1221 	int i, ret;
1222 
1223 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1224 
1225 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1226 
1227 	start_gfn = ops->get_pfn(se);
1228 
1229 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1230 	ops->set_64k_splited(&entry);
1231 
1232 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1233 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1234 					start_gfn + i, PAGE_SIZE, &dma_addr);
1235 		if (ret)
1236 			return ret;
1237 
1238 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1239 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1245 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1246 	struct intel_gvt_gtt_entry *ge)
1247 {
1248 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1249 	struct intel_gvt_gtt_entry se = *ge;
1250 	unsigned long gfn, page_size = PAGE_SIZE;
1251 	dma_addr_t dma_addr;
1252 	int ret;
1253 
1254 	if (!pte_ops->test_present(ge))
1255 		return 0;
1256 
1257 	gfn = pte_ops->get_pfn(ge);
1258 
1259 	switch (ge->type) {
1260 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1261 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1262 		break;
1263 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1264 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1265 		/*
1266 		 * The layout of 64K page is special, the page size is
1267 		 * controlled by uper PDE. To be simple, we always split
1268 		 * 64K page to smaller 4K pages in shadow PT.
1269 		 */
1270 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1271 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1272 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1273 		ret = is_2MB_gtt_possible(vgpu, ge);
1274 		if (ret == 0)
1275 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1276 		else if (ret < 0)
1277 			return ret;
1278 		page_size = I915_GTT_PAGE_SIZE_2M;
1279 		break;
1280 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1281 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1282 		return -EINVAL;
1283 	default:
1284 		GEM_BUG_ON(1);
1285 	};
1286 
1287 	/* direct shadow */
1288 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1289 						      &dma_addr);
1290 	if (ret)
1291 		return -ENXIO;
1292 
1293 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1294 	ppgtt_set_shadow_entry(spt, &se, index);
1295 	return 0;
1296 }
1297 
1298 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1299 {
1300 	struct intel_vgpu *vgpu = spt->vgpu;
1301 	struct intel_gvt *gvt = vgpu->gvt;
1302 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1303 	struct intel_vgpu_ppgtt_spt *s;
1304 	struct intel_gvt_gtt_entry se, ge;
1305 	unsigned long gfn, i;
1306 	int ret;
1307 
1308 	trace_spt_change(spt->vgpu->id, "born", spt,
1309 			 spt->guest_page.gfn, spt->shadow_page.type);
1310 
1311 	for_each_present_guest_entry(spt, &ge, i) {
1312 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1313 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1314 			if (IS_ERR(s)) {
1315 				ret = PTR_ERR(s);
1316 				goto fail;
1317 			}
1318 			ppgtt_get_shadow_entry(spt, &se, i);
1319 			ppgtt_generate_shadow_entry(&se, s, &ge);
1320 			ppgtt_set_shadow_entry(spt, &se, i);
1321 		} else {
1322 			gfn = ops->get_pfn(&ge);
1323 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1324 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1325 				ppgtt_set_shadow_entry(spt, &se, i);
1326 				continue;
1327 			}
1328 
1329 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1330 			if (ret)
1331 				goto fail;
1332 		}
1333 	}
1334 	return 0;
1335 fail:
1336 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1337 			spt, ge.val64, ge.type);
1338 	return ret;
1339 }
1340 
1341 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1342 		struct intel_gvt_gtt_entry *se, unsigned long index)
1343 {
1344 	struct intel_vgpu *vgpu = spt->vgpu;
1345 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1346 	int ret;
1347 
1348 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1349 			       spt->shadow_page.type, se->val64, index);
1350 
1351 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1352 		    se->type, index, se->val64);
1353 
1354 	if (!ops->test_present(se))
1355 		return 0;
1356 
1357 	if (ops->get_pfn(se) ==
1358 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1359 		return 0;
1360 
1361 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1362 		struct intel_vgpu_ppgtt_spt *s =
1363 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1364 		if (!s) {
1365 			gvt_vgpu_err("fail to find guest page\n");
1366 			ret = -ENXIO;
1367 			goto fail;
1368 		}
1369 		ret = ppgtt_invalidate_spt(s);
1370 		if (ret)
1371 			goto fail;
1372 	} else {
1373 		/* We don't setup 64K shadow entry so far. */
1374 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1375 		     "suspicious 64K entry\n");
1376 		ppgtt_invalidate_pte(spt, se);
1377 	}
1378 
1379 	return 0;
1380 fail:
1381 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1382 			spt, se->val64, se->type);
1383 	return ret;
1384 }
1385 
1386 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1387 		struct intel_gvt_gtt_entry *we, unsigned long index)
1388 {
1389 	struct intel_vgpu *vgpu = spt->vgpu;
1390 	struct intel_gvt_gtt_entry m;
1391 	struct intel_vgpu_ppgtt_spt *s;
1392 	int ret;
1393 
1394 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1395 			       we->val64, index);
1396 
1397 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1398 		    we->type, index, we->val64);
1399 
1400 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1401 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1402 		if (IS_ERR(s)) {
1403 			ret = PTR_ERR(s);
1404 			goto fail;
1405 		}
1406 		ppgtt_get_shadow_entry(spt, &m, index);
1407 		ppgtt_generate_shadow_entry(&m, s, we);
1408 		ppgtt_set_shadow_entry(spt, &m, index);
1409 	} else {
1410 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1411 		if (ret)
1412 			goto fail;
1413 	}
1414 	return 0;
1415 fail:
1416 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1417 		spt, we->val64, we->type);
1418 	return ret;
1419 }
1420 
1421 static int sync_oos_page(struct intel_vgpu *vgpu,
1422 		struct intel_vgpu_oos_page *oos_page)
1423 {
1424 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1425 	struct intel_gvt *gvt = vgpu->gvt;
1426 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1427 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1428 	struct intel_gvt_gtt_entry old, new;
1429 	int index;
1430 	int ret;
1431 
1432 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1433 			 spt, spt->guest_page.type);
1434 
1435 	old.type = new.type = get_entry_type(spt->guest_page.type);
1436 	old.val64 = new.val64 = 0;
1437 
1438 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1439 				info->gtt_entry_size_shift); index++) {
1440 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1441 		ops->get_entry(NULL, &new, index, true,
1442 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1443 
1444 		if (old.val64 == new.val64
1445 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1446 			continue;
1447 
1448 		trace_oos_sync(vgpu->id, oos_page->id,
1449 				spt, spt->guest_page.type,
1450 				new.val64, index);
1451 
1452 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1453 		if (ret)
1454 			return ret;
1455 
1456 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1457 	}
1458 
1459 	spt->guest_page.write_cnt = 0;
1460 	list_del_init(&spt->post_shadow_list);
1461 	return 0;
1462 }
1463 
1464 static int detach_oos_page(struct intel_vgpu *vgpu,
1465 		struct intel_vgpu_oos_page *oos_page)
1466 {
1467 	struct intel_gvt *gvt = vgpu->gvt;
1468 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1469 
1470 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1471 			 spt, spt->guest_page.type);
1472 
1473 	spt->guest_page.write_cnt = 0;
1474 	spt->guest_page.oos_page = NULL;
1475 	oos_page->spt = NULL;
1476 
1477 	list_del_init(&oos_page->vm_list);
1478 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1479 
1480 	return 0;
1481 }
1482 
1483 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1484 		struct intel_vgpu_ppgtt_spt *spt)
1485 {
1486 	struct intel_gvt *gvt = spt->vgpu->gvt;
1487 	int ret;
1488 
1489 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1490 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1491 			oos_page->mem, I915_GTT_PAGE_SIZE);
1492 	if (ret)
1493 		return ret;
1494 
1495 	oos_page->spt = spt;
1496 	spt->guest_page.oos_page = oos_page;
1497 
1498 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1499 
1500 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1501 			 spt, spt->guest_page.type);
1502 	return 0;
1503 }
1504 
1505 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1506 {
1507 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1508 	int ret;
1509 
1510 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1511 	if (ret)
1512 		return ret;
1513 
1514 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1515 			 spt, spt->guest_page.type);
1516 
1517 	list_del_init(&oos_page->vm_list);
1518 	return sync_oos_page(spt->vgpu, oos_page);
1519 }
1520 
1521 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1522 {
1523 	struct intel_gvt *gvt = spt->vgpu->gvt;
1524 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1525 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1526 	int ret;
1527 
1528 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1529 
1530 	if (list_empty(&gtt->oos_page_free_list_head)) {
1531 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1532 			struct intel_vgpu_oos_page, list);
1533 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1534 		if (ret)
1535 			return ret;
1536 		ret = detach_oos_page(spt->vgpu, oos_page);
1537 		if (ret)
1538 			return ret;
1539 	} else
1540 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1541 			struct intel_vgpu_oos_page, list);
1542 	return attach_oos_page(oos_page, spt);
1543 }
1544 
1545 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1546 {
1547 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1548 
1549 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1550 		return -EINVAL;
1551 
1552 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1553 			 spt, spt->guest_page.type);
1554 
1555 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1556 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1557 }
1558 
1559 /**
1560  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1561  * @vgpu: a vGPU
1562  *
1563  * This function is called before submitting a guest workload to host,
1564  * to sync all the out-of-synced shadow for vGPU
1565  *
1566  * Returns:
1567  * Zero on success, negative error code if failed.
1568  */
1569 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1570 {
1571 	struct list_head *pos, *n;
1572 	struct intel_vgpu_oos_page *oos_page;
1573 	int ret;
1574 
1575 	if (!enable_out_of_sync)
1576 		return 0;
1577 
1578 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1579 		oos_page = container_of(pos,
1580 				struct intel_vgpu_oos_page, vm_list);
1581 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1582 		if (ret)
1583 			return ret;
1584 	}
1585 	return 0;
1586 }
1587 
1588 /*
1589  * The heart of PPGTT shadow page table.
1590  */
1591 static int ppgtt_handle_guest_write_page_table(
1592 		struct intel_vgpu_ppgtt_spt *spt,
1593 		struct intel_gvt_gtt_entry *we, unsigned long index)
1594 {
1595 	struct intel_vgpu *vgpu = spt->vgpu;
1596 	int type = spt->shadow_page.type;
1597 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1598 	struct intel_gvt_gtt_entry old_se;
1599 	int new_present;
1600 	int i, ret;
1601 
1602 	new_present = ops->test_present(we);
1603 
1604 	/*
1605 	 * Adding the new entry first and then removing the old one, that can
1606 	 * guarantee the ppgtt table is validated during the window between
1607 	 * adding and removal.
1608 	 */
1609 	ppgtt_get_shadow_entry(spt, &old_se, index);
1610 
1611 	if (new_present) {
1612 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1613 		if (ret)
1614 			goto fail;
1615 	}
1616 
1617 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1618 	if (ret)
1619 		goto fail;
1620 
1621 	if (!new_present) {
1622 		/* For 64KB splited entries, we need clear them all. */
1623 		if (ops->test_64k_splited(&old_se) &&
1624 		    !(index % GTT_64K_PTE_STRIDE)) {
1625 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1626 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1627 				ops->clear_64k_splited(&old_se);
1628 				ops->set_pfn(&old_se,
1629 					vgpu->gtt.scratch_pt[type].page_mfn);
1630 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1631 			}
1632 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1633 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1634 			ops->clear_pse(&old_se);
1635 			ops->set_pfn(&old_se,
1636 				     vgpu->gtt.scratch_pt[type].page_mfn);
1637 			ppgtt_set_shadow_entry(spt, &old_se, index);
1638 		} else {
1639 			ops->set_pfn(&old_se,
1640 				     vgpu->gtt.scratch_pt[type].page_mfn);
1641 			ppgtt_set_shadow_entry(spt, &old_se, index);
1642 		}
1643 	}
1644 
1645 	return 0;
1646 fail:
1647 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1648 			spt, we->val64, we->type);
1649 	return ret;
1650 }
1651 
1652 
1653 
1654 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1655 {
1656 	return enable_out_of_sync
1657 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1658 		&& spt->guest_page.write_cnt >= 2;
1659 }
1660 
1661 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1662 		unsigned long index)
1663 {
1664 	set_bit(index, spt->post_shadow_bitmap);
1665 	if (!list_empty(&spt->post_shadow_list))
1666 		return;
1667 
1668 	list_add_tail(&spt->post_shadow_list,
1669 			&spt->vgpu->gtt.post_shadow_list_head);
1670 }
1671 
1672 /**
1673  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1674  * @vgpu: a vGPU
1675  *
1676  * This function is called before submitting a guest workload to host,
1677  * to flush all the post shadows for a vGPU.
1678  *
1679  * Returns:
1680  * Zero on success, negative error code if failed.
1681  */
1682 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1683 {
1684 	struct list_head *pos, *n;
1685 	struct intel_vgpu_ppgtt_spt *spt;
1686 	struct intel_gvt_gtt_entry ge;
1687 	unsigned long index;
1688 	int ret;
1689 
1690 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1691 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1692 				post_shadow_list);
1693 
1694 		for_each_set_bit(index, spt->post_shadow_bitmap,
1695 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1696 			ppgtt_get_guest_entry(spt, &ge, index);
1697 
1698 			ret = ppgtt_handle_guest_write_page_table(spt,
1699 							&ge, index);
1700 			if (ret)
1701 				return ret;
1702 			clear_bit(index, spt->post_shadow_bitmap);
1703 		}
1704 		list_del_init(&spt->post_shadow_list);
1705 	}
1706 	return 0;
1707 }
1708 
1709 static int ppgtt_handle_guest_write_page_table_bytes(
1710 		struct intel_vgpu_ppgtt_spt *spt,
1711 		u64 pa, void *p_data, int bytes)
1712 {
1713 	struct intel_vgpu *vgpu = spt->vgpu;
1714 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1715 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1716 	struct intel_gvt_gtt_entry we, se;
1717 	unsigned long index;
1718 	int ret;
1719 
1720 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1721 
1722 	ppgtt_get_guest_entry(spt, &we, index);
1723 
1724 	/*
1725 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1726 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1727 	 * ignored.
1728 	 */
1729 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1730 	    (index % GTT_64K_PTE_STRIDE)) {
1731 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1732 			    index);
1733 		return 0;
1734 	}
1735 
1736 	if (bytes == info->gtt_entry_size) {
1737 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1738 		if (ret)
1739 			return ret;
1740 	} else {
1741 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1742 			int type = spt->shadow_page.type;
1743 
1744 			ppgtt_get_shadow_entry(spt, &se, index);
1745 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1746 			if (ret)
1747 				return ret;
1748 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1749 			ppgtt_set_shadow_entry(spt, &se, index);
1750 		}
1751 		ppgtt_set_post_shadow(spt, index);
1752 	}
1753 
1754 	if (!enable_out_of_sync)
1755 		return 0;
1756 
1757 	spt->guest_page.write_cnt++;
1758 
1759 	if (spt->guest_page.oos_page)
1760 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1761 				false, 0, vgpu);
1762 
1763 	if (can_do_out_of_sync(spt)) {
1764 		if (!spt->guest_page.oos_page)
1765 			ppgtt_allocate_oos_page(spt);
1766 
1767 		ret = ppgtt_set_guest_page_oos(spt);
1768 		if (ret < 0)
1769 			return ret;
1770 	}
1771 	return 0;
1772 }
1773 
1774 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1775 {
1776 	struct intel_vgpu *vgpu = mm->vgpu;
1777 	struct intel_gvt *gvt = vgpu->gvt;
1778 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1779 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1780 	struct intel_gvt_gtt_entry se;
1781 	int index;
1782 
1783 	if (!mm->ppgtt_mm.shadowed)
1784 		return;
1785 
1786 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1787 		ppgtt_get_shadow_root_entry(mm, &se, index);
1788 
1789 		if (!ops->test_present(&se))
1790 			continue;
1791 
1792 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1793 		se.val64 = 0;
1794 		ppgtt_set_shadow_root_entry(mm, &se, index);
1795 
1796 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1797 				       NULL, se.type, se.val64, index);
1798 	}
1799 
1800 	mm->ppgtt_mm.shadowed = false;
1801 }
1802 
1803 
1804 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1805 {
1806 	struct intel_vgpu *vgpu = mm->vgpu;
1807 	struct intel_gvt *gvt = vgpu->gvt;
1808 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1809 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1810 	struct intel_vgpu_ppgtt_spt *spt;
1811 	struct intel_gvt_gtt_entry ge, se;
1812 	int index, ret;
1813 
1814 	if (mm->ppgtt_mm.shadowed)
1815 		return 0;
1816 
1817 	mm->ppgtt_mm.shadowed = true;
1818 
1819 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1820 		ppgtt_get_guest_root_entry(mm, &ge, index);
1821 
1822 		if (!ops->test_present(&ge))
1823 			continue;
1824 
1825 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1826 				       ge.type, ge.val64, index);
1827 
1828 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1829 		if (IS_ERR(spt)) {
1830 			gvt_vgpu_err("fail to populate guest root pointer\n");
1831 			ret = PTR_ERR(spt);
1832 			goto fail;
1833 		}
1834 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1835 		ppgtt_set_shadow_root_entry(mm, &se, index);
1836 
1837 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1838 				       NULL, se.type, se.val64, index);
1839 	}
1840 
1841 	return 0;
1842 fail:
1843 	invalidate_ppgtt_mm(mm);
1844 	return ret;
1845 }
1846 
1847 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1848 {
1849 	struct intel_vgpu_mm *mm;
1850 
1851 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1852 	if (!mm)
1853 		return NULL;
1854 
1855 	mm->vgpu = vgpu;
1856 	kref_init(&mm->ref);
1857 	atomic_set(&mm->pincount, 0);
1858 
1859 	return mm;
1860 }
1861 
1862 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1863 {
1864 	kfree(mm);
1865 }
1866 
1867 /**
1868  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1869  * @vgpu: a vGPU
1870  * @root_entry_type: ppgtt root entry type
1871  * @pdps: guest pdps.
1872  *
1873  * This function is used to create a ppgtt mm object for a vGPU.
1874  *
1875  * Returns:
1876  * Zero on success, negative error code in pointer if failed.
1877  */
1878 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1879 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1880 {
1881 	struct intel_gvt *gvt = vgpu->gvt;
1882 	struct intel_vgpu_mm *mm;
1883 	int ret;
1884 
1885 	mm = vgpu_alloc_mm(vgpu);
1886 	if (!mm)
1887 		return ERR_PTR(-ENOMEM);
1888 
1889 	mm->type = INTEL_GVT_MM_PPGTT;
1890 
1891 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1892 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1893 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1894 
1895 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1896 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1897 
1898 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1899 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1900 	else
1901 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1902 		       sizeof(mm->ppgtt_mm.guest_pdps));
1903 
1904 	ret = shadow_ppgtt_mm(mm);
1905 	if (ret) {
1906 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1907 		vgpu_free_mm(mm);
1908 		return ERR_PTR(ret);
1909 	}
1910 
1911 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1912 
1913 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1914 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1915 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1916 
1917 	return mm;
1918 }
1919 
1920 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1921 {
1922 	struct intel_vgpu_mm *mm;
1923 	unsigned long nr_entries;
1924 
1925 	mm = vgpu_alloc_mm(vgpu);
1926 	if (!mm)
1927 		return ERR_PTR(-ENOMEM);
1928 
1929 	mm->type = INTEL_GVT_MM_GGTT;
1930 
1931 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1932 	mm->ggtt_mm.virtual_ggtt =
1933 		vzalloc(array_size(nr_entries,
1934 				   vgpu->gvt->device_info.gtt_entry_size));
1935 	if (!mm->ggtt_mm.virtual_ggtt) {
1936 		vgpu_free_mm(mm);
1937 		return ERR_PTR(-ENOMEM);
1938 	}
1939 
1940 	return mm;
1941 }
1942 
1943 /**
1944  * _intel_vgpu_mm_release - destroy a mm object
1945  * @mm_ref: a kref object
1946  *
1947  * This function is used to destroy a mm object for vGPU
1948  *
1949  */
1950 void _intel_vgpu_mm_release(struct kref *mm_ref)
1951 {
1952 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1953 
1954 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1955 		gvt_err("vgpu mm pin count bug detected\n");
1956 
1957 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1958 		list_del(&mm->ppgtt_mm.list);
1959 		list_del(&mm->ppgtt_mm.lru_list);
1960 		invalidate_ppgtt_mm(mm);
1961 	} else {
1962 		vfree(mm->ggtt_mm.virtual_ggtt);
1963 	}
1964 
1965 	vgpu_free_mm(mm);
1966 }
1967 
1968 /**
1969  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1970  * @mm: a vGPU mm object
1971  *
1972  * This function is called when user doesn't want to use a vGPU mm object
1973  */
1974 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1975 {
1976 	atomic_dec_if_positive(&mm->pincount);
1977 }
1978 
1979 /**
1980  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1981  * @mm: target vgpu mm
1982  *
1983  * This function is called when user wants to use a vGPU mm object. If this
1984  * mm object hasn't been shadowed yet, the shadow will be populated at this
1985  * time.
1986  *
1987  * Returns:
1988  * Zero on success, negative error code if failed.
1989  */
1990 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1991 {
1992 	int ret;
1993 
1994 	atomic_inc(&mm->pincount);
1995 
1996 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1997 		ret = shadow_ppgtt_mm(mm);
1998 		if (ret)
1999 			return ret;
2000 
2001 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2002 		list_move_tail(&mm->ppgtt_mm.lru_list,
2003 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2004 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2011 {
2012 	struct intel_vgpu_mm *mm;
2013 	struct list_head *pos, *n;
2014 
2015 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2016 
2017 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2018 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2019 
2020 		if (atomic_read(&mm->pincount))
2021 			continue;
2022 
2023 		list_del_init(&mm->ppgtt_mm.lru_list);
2024 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2025 		invalidate_ppgtt_mm(mm);
2026 		return 1;
2027 	}
2028 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2029 	return 0;
2030 }
2031 
2032 /*
2033  * GMA translation APIs.
2034  */
2035 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2036 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2037 {
2038 	struct intel_vgpu *vgpu = mm->vgpu;
2039 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2040 	struct intel_vgpu_ppgtt_spt *s;
2041 
2042 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2043 	if (!s)
2044 		return -ENXIO;
2045 
2046 	if (!guest)
2047 		ppgtt_get_shadow_entry(s, e, index);
2048 	else
2049 		ppgtt_get_guest_entry(s, e, index);
2050 	return 0;
2051 }
2052 
2053 /**
2054  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2055  * @mm: mm object. could be a PPGTT or GGTT mm object
2056  * @gma: graphics memory address in this mm object
2057  *
2058  * This function is used to translate a graphics memory address in specific
2059  * graphics memory space to guest physical address.
2060  *
2061  * Returns:
2062  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2063  */
2064 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2065 {
2066 	struct intel_vgpu *vgpu = mm->vgpu;
2067 	struct intel_gvt *gvt = vgpu->gvt;
2068 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2069 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2070 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2071 	unsigned long gma_index[4];
2072 	struct intel_gvt_gtt_entry e;
2073 	int i, levels = 0;
2074 	int ret;
2075 
2076 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2077 		   mm->type != INTEL_GVT_MM_PPGTT);
2078 
2079 	if (mm->type == INTEL_GVT_MM_GGTT) {
2080 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2081 			goto err;
2082 
2083 		ggtt_get_guest_entry(mm, &e,
2084 			gma_ops->gma_to_ggtt_pte_index(gma));
2085 
2086 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2087 			+ (gma & ~I915_GTT_PAGE_MASK);
2088 
2089 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2090 	} else {
2091 		switch (mm->ppgtt_mm.root_entry_type) {
2092 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2093 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2094 
2095 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2096 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2097 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2098 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2099 			levels = 4;
2100 			break;
2101 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2102 			ppgtt_get_shadow_root_entry(mm, &e,
2103 					gma_ops->gma_to_l3_pdp_index(gma));
2104 
2105 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2106 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2107 			levels = 2;
2108 			break;
2109 		default:
2110 			GEM_BUG_ON(1);
2111 		}
2112 
2113 		/* walk the shadow page table and get gpa from guest entry */
2114 		for (i = 0; i < levels; i++) {
2115 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2116 				(i == levels - 1));
2117 			if (ret)
2118 				goto err;
2119 
2120 			if (!pte_ops->test_present(&e)) {
2121 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2122 				goto err;
2123 			}
2124 		}
2125 
2126 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2127 					(gma & ~I915_GTT_PAGE_MASK);
2128 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2129 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2130 	}
2131 
2132 	return gpa;
2133 err:
2134 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2135 	return INTEL_GVT_INVALID_ADDR;
2136 }
2137 
2138 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2139 	unsigned int off, void *p_data, unsigned int bytes)
2140 {
2141 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2142 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2143 	unsigned long index = off >> info->gtt_entry_size_shift;
2144 	unsigned long gma;
2145 	struct intel_gvt_gtt_entry e;
2146 
2147 	if (bytes != 4 && bytes != 8)
2148 		return -EINVAL;
2149 
2150 	gma = index << I915_GTT_PAGE_SHIFT;
2151 	if (!intel_gvt_ggtt_validate_range(vgpu,
2152 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2153 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2154 		memset(p_data, 0, bytes);
2155 		return 0;
2156 	}
2157 
2158 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2159 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2160 			bytes);
2161 	return 0;
2162 }
2163 
2164 /**
2165  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2166  * @vgpu: a vGPU
2167  * @off: register offset
2168  * @p_data: data will be returned to guest
2169  * @bytes: data length
2170  *
2171  * This function is used to emulate the GTT MMIO register read
2172  *
2173  * Returns:
2174  * Zero on success, error code if failed.
2175  */
2176 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2177 	void *p_data, unsigned int bytes)
2178 {
2179 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2180 	int ret;
2181 
2182 	if (bytes != 4 && bytes != 8)
2183 		return -EINVAL;
2184 
2185 	off -= info->gtt_start_offset;
2186 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2187 	return ret;
2188 }
2189 
2190 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2191 		struct intel_gvt_gtt_entry *entry)
2192 {
2193 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2194 	unsigned long pfn;
2195 
2196 	pfn = pte_ops->get_pfn(entry);
2197 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2198 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2199 						pfn << PAGE_SHIFT);
2200 }
2201 
2202 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2203 	void *p_data, unsigned int bytes)
2204 {
2205 	struct intel_gvt *gvt = vgpu->gvt;
2206 	const struct intel_gvt_device_info *info = &gvt->device_info;
2207 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2208 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2209 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2210 	unsigned long gma, gfn;
2211 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2212 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2213 	dma_addr_t dma_addr;
2214 	int ret;
2215 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2216 	bool partial_update = false;
2217 
2218 	if (bytes != 4 && bytes != 8)
2219 		return -EINVAL;
2220 
2221 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2222 
2223 	/* the VM may configure the whole GM space when ballooning is used */
2224 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2225 		return 0;
2226 
2227 	e.type = GTT_TYPE_GGTT_PTE;
2228 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2229 			bytes);
2230 
2231 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2232 	 * write, save the first 4 bytes in a list and update virtual
2233 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2234 	 */
2235 	if (bytes < info->gtt_entry_size) {
2236 		bool found = false;
2237 
2238 		list_for_each_entry_safe(pos, n,
2239 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2240 			if (g_gtt_index == pos->offset >>
2241 					info->gtt_entry_size_shift) {
2242 				if (off != pos->offset) {
2243 					/* the second partial part*/
2244 					int last_off = pos->offset &
2245 						(info->gtt_entry_size - 1);
2246 
2247 					memcpy((void *)&e.val64 + last_off,
2248 						(void *)&pos->data + last_off,
2249 						bytes);
2250 
2251 					list_del(&pos->list);
2252 					kfree(pos);
2253 					found = true;
2254 					break;
2255 				}
2256 
2257 				/* update of the first partial part */
2258 				pos->data = e.val64;
2259 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2260 				return 0;
2261 			}
2262 		}
2263 
2264 		if (!found) {
2265 			/* the first partial part */
2266 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2267 			if (!partial_pte)
2268 				return -ENOMEM;
2269 			partial_pte->offset = off;
2270 			partial_pte->data = e.val64;
2271 			list_add_tail(&partial_pte->list,
2272 				&ggtt_mm->ggtt_mm.partial_pte_list);
2273 			partial_update = true;
2274 		}
2275 	}
2276 
2277 	if (!partial_update && (ops->test_present(&e))) {
2278 		gfn = ops->get_pfn(&e);
2279 		m.val64 = e.val64;
2280 		m.type = e.type;
2281 
2282 		/* one PTE update may be issued in multiple writes and the
2283 		 * first write may not construct a valid gfn
2284 		 */
2285 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2286 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2287 			goto out;
2288 		}
2289 
2290 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2291 							PAGE_SIZE, &dma_addr);
2292 		if (ret) {
2293 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2294 			/* guest driver may read/write the entry when partial
2295 			 * update the entry in this situation p2m will fail
2296 			 * settting the shadow entry to point to a scratch page
2297 			 */
2298 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2299 		} else
2300 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2301 	} else {
2302 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2303 		ops->clear_present(&m);
2304 	}
2305 
2306 out:
2307 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2308 
2309 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2310 	ggtt_invalidate_pte(vgpu, &e);
2311 
2312 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2313 	ggtt_invalidate(gvt->dev_priv);
2314 	return 0;
2315 }
2316 
2317 /*
2318  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2319  * @vgpu: a vGPU
2320  * @off: register offset
2321  * @p_data: data from guest write
2322  * @bytes: data length
2323  *
2324  * This function is used to emulate the GTT MMIO register write
2325  *
2326  * Returns:
2327  * Zero on success, error code if failed.
2328  */
2329 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2330 		unsigned int off, void *p_data, unsigned int bytes)
2331 {
2332 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2333 	int ret;
2334 
2335 	if (bytes != 4 && bytes != 8)
2336 		return -EINVAL;
2337 
2338 	off -= info->gtt_start_offset;
2339 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2340 	return ret;
2341 }
2342 
2343 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2344 		enum intel_gvt_gtt_type type)
2345 {
2346 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2347 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2348 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2349 				vgpu->gvt->device_info.gtt_entry_size_shift;
2350 	void *scratch_pt;
2351 	int i;
2352 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2353 	dma_addr_t daddr;
2354 
2355 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2356 		return -EINVAL;
2357 
2358 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2359 	if (!scratch_pt) {
2360 		gvt_vgpu_err("fail to allocate scratch page\n");
2361 		return -ENOMEM;
2362 	}
2363 
2364 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2365 			4096, PCI_DMA_BIDIRECTIONAL);
2366 	if (dma_mapping_error(dev, daddr)) {
2367 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2368 		__free_page(virt_to_page(scratch_pt));
2369 		return -ENOMEM;
2370 	}
2371 	gtt->scratch_pt[type].page_mfn =
2372 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2373 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2374 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2375 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2376 
2377 	/* Build the tree by full filled the scratch pt with the entries which
2378 	 * point to the next level scratch pt or scratch page. The
2379 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2380 	 * 'type' pt.
2381 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2382 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2383 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2384 	 */
2385 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2386 		struct intel_gvt_gtt_entry se;
2387 
2388 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2389 		se.type = get_entry_type(type - 1);
2390 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2391 
2392 		/* The entry parameters like present/writeable/cache type
2393 		 * set to the same as i915's scratch page tree.
2394 		 */
2395 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2396 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2397 			se.val64 |= PPAT_CACHED;
2398 
2399 		for (i = 0; i < page_entry_num; i++)
2400 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2407 {
2408 	int i;
2409 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2410 	dma_addr_t daddr;
2411 
2412 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2413 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2414 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2415 					I915_GTT_PAGE_SHIFT);
2416 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2417 			__free_page(vgpu->gtt.scratch_pt[i].page);
2418 			vgpu->gtt.scratch_pt[i].page = NULL;
2419 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2420 		}
2421 	}
2422 
2423 	return 0;
2424 }
2425 
2426 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2427 {
2428 	int i, ret;
2429 
2430 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2431 		ret = alloc_scratch_pages(vgpu, i);
2432 		if (ret)
2433 			goto err;
2434 	}
2435 
2436 	return 0;
2437 
2438 err:
2439 	release_scratch_page_tree(vgpu);
2440 	return ret;
2441 }
2442 
2443 /**
2444  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2445  * @vgpu: a vGPU
2446  *
2447  * This function is used to initialize per-vGPU graphics memory virtualization
2448  * components.
2449  *
2450  * Returns:
2451  * Zero on success, error code if failed.
2452  */
2453 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2454 {
2455 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2456 
2457 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2458 
2459 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2460 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2461 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2462 
2463 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2464 	if (IS_ERR(gtt->ggtt_mm)) {
2465 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2466 		return PTR_ERR(gtt->ggtt_mm);
2467 	}
2468 
2469 	intel_vgpu_reset_ggtt(vgpu, false);
2470 
2471 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2472 
2473 	return create_scratch_page_tree(vgpu);
2474 }
2475 
2476 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2477 {
2478 	struct list_head *pos, *n;
2479 	struct intel_vgpu_mm *mm;
2480 
2481 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2482 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2483 		intel_vgpu_destroy_mm(mm);
2484 	}
2485 
2486 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2487 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2488 
2489 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2490 		gvt_err("Why we still has spt not freed?\n");
2491 		ppgtt_free_all_spt(vgpu);
2492 	}
2493 }
2494 
2495 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2496 {
2497 	struct intel_gvt_partial_pte *pos, *next;
2498 
2499 	list_for_each_entry_safe(pos, next,
2500 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2501 				 list) {
2502 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2503 			pos->offset, pos->data);
2504 		kfree(pos);
2505 	}
2506 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2507 	vgpu->gtt.ggtt_mm = NULL;
2508 }
2509 
2510 /**
2511  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2512  * @vgpu: a vGPU
2513  *
2514  * This function is used to clean up per-vGPU graphics memory virtualization
2515  * components.
2516  *
2517  * Returns:
2518  * Zero on success, error code if failed.
2519  */
2520 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2521 {
2522 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2523 	intel_vgpu_destroy_ggtt_mm(vgpu);
2524 	release_scratch_page_tree(vgpu);
2525 }
2526 
2527 static void clean_spt_oos(struct intel_gvt *gvt)
2528 {
2529 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2530 	struct list_head *pos, *n;
2531 	struct intel_vgpu_oos_page *oos_page;
2532 
2533 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2534 		"someone is still using oos page\n");
2535 
2536 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2537 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2538 		list_del(&oos_page->list);
2539 		free_page((unsigned long)oos_page->mem);
2540 		kfree(oos_page);
2541 	}
2542 }
2543 
2544 static int setup_spt_oos(struct intel_gvt *gvt)
2545 {
2546 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2547 	struct intel_vgpu_oos_page *oos_page;
2548 	int i;
2549 	int ret;
2550 
2551 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2552 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2553 
2554 	for (i = 0; i < preallocated_oos_pages; i++) {
2555 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2556 		if (!oos_page) {
2557 			ret = -ENOMEM;
2558 			goto fail;
2559 		}
2560 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2561 		if (!oos_page->mem) {
2562 			ret = -ENOMEM;
2563 			kfree(oos_page);
2564 			goto fail;
2565 		}
2566 
2567 		INIT_LIST_HEAD(&oos_page->list);
2568 		INIT_LIST_HEAD(&oos_page->vm_list);
2569 		oos_page->id = i;
2570 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2571 	}
2572 
2573 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2574 
2575 	return 0;
2576 fail:
2577 	clean_spt_oos(gvt);
2578 	return ret;
2579 }
2580 
2581 /**
2582  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2583  * @vgpu: a vGPU
2584  * @pdps: pdp root array
2585  *
2586  * This function is used to find a PPGTT mm object from mm object pool
2587  *
2588  * Returns:
2589  * pointer to mm object on success, NULL if failed.
2590  */
2591 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2592 		u64 pdps[])
2593 {
2594 	struct intel_vgpu_mm *mm;
2595 	struct list_head *pos;
2596 
2597 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2598 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2599 
2600 		switch (mm->ppgtt_mm.root_entry_type) {
2601 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2602 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2603 				return mm;
2604 			break;
2605 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2606 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2607 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2608 				return mm;
2609 			break;
2610 		default:
2611 			GEM_BUG_ON(1);
2612 		}
2613 	}
2614 	return NULL;
2615 }
2616 
2617 /**
2618  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2619  * @vgpu: a vGPU
2620  * @root_entry_type: ppgtt root entry type
2621  * @pdps: guest pdps
2622  *
2623  * This function is used to find or create a PPGTT mm object from a guest.
2624  *
2625  * Returns:
2626  * Zero on success, negative error code if failed.
2627  */
2628 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2629 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2630 {
2631 	struct intel_vgpu_mm *mm;
2632 
2633 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2634 	if (mm) {
2635 		intel_vgpu_mm_get(mm);
2636 	} else {
2637 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2638 		if (IS_ERR(mm))
2639 			gvt_vgpu_err("fail to create mm\n");
2640 	}
2641 	return mm;
2642 }
2643 
2644 /**
2645  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2646  * @vgpu: a vGPU
2647  * @pdps: guest pdps
2648  *
2649  * This function is used to find a PPGTT mm object from a guest and destroy it.
2650  *
2651  * Returns:
2652  * Zero on success, negative error code if failed.
2653  */
2654 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2655 {
2656 	struct intel_vgpu_mm *mm;
2657 
2658 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2659 	if (!mm) {
2660 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2661 		return -EINVAL;
2662 	}
2663 	intel_vgpu_mm_put(mm);
2664 	return 0;
2665 }
2666 
2667 /**
2668  * intel_gvt_init_gtt - initialize mm components of a GVT device
2669  * @gvt: GVT device
2670  *
2671  * This function is called at the initialization stage, to initialize
2672  * the mm components of a GVT device.
2673  *
2674  * Returns:
2675  * zero on success, negative error code if failed.
2676  */
2677 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2678 {
2679 	int ret;
2680 	void *page;
2681 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2682 	dma_addr_t daddr;
2683 
2684 	gvt_dbg_core("init gtt\n");
2685 
2686 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2687 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2688 
2689 	page = (void *)get_zeroed_page(GFP_KERNEL);
2690 	if (!page) {
2691 		gvt_err("fail to allocate scratch ggtt page\n");
2692 		return -ENOMEM;
2693 	}
2694 
2695 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2696 			4096, PCI_DMA_BIDIRECTIONAL);
2697 	if (dma_mapping_error(dev, daddr)) {
2698 		gvt_err("fail to dmamap scratch ggtt page\n");
2699 		__free_page(virt_to_page(page));
2700 		return -ENOMEM;
2701 	}
2702 
2703 	gvt->gtt.scratch_page = virt_to_page(page);
2704 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2705 
2706 	if (enable_out_of_sync) {
2707 		ret = setup_spt_oos(gvt);
2708 		if (ret) {
2709 			gvt_err("fail to initialize SPT oos\n");
2710 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2711 			__free_page(gvt->gtt.scratch_page);
2712 			return ret;
2713 		}
2714 	}
2715 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2716 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2717 	return 0;
2718 }
2719 
2720 /**
2721  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2722  * @gvt: GVT device
2723  *
2724  * This function is called at the driver unloading stage, to clean up the
2725  * the mm components of a GVT device.
2726  *
2727  */
2728 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2729 {
2730 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2731 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2732 					I915_GTT_PAGE_SHIFT);
2733 
2734 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2735 
2736 	__free_page(gvt->gtt.scratch_page);
2737 
2738 	if (enable_out_of_sync)
2739 		clean_spt_oos(gvt);
2740 }
2741 
2742 /**
2743  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2744  * @vgpu: a vGPU
2745  *
2746  * This function is called when invalidate all PPGTT instances of a vGPU.
2747  *
2748  */
2749 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2750 {
2751 	struct list_head *pos, *n;
2752 	struct intel_vgpu_mm *mm;
2753 
2754 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2755 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2756 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2757 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2758 			list_del_init(&mm->ppgtt_mm.lru_list);
2759 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2760 			if (mm->ppgtt_mm.shadowed)
2761 				invalidate_ppgtt_mm(mm);
2762 		}
2763 	}
2764 }
2765 
2766 /**
2767  * intel_vgpu_reset_ggtt - reset the GGTT entry
2768  * @vgpu: a vGPU
2769  * @invalidate_old: invalidate old entries
2770  *
2771  * This function is called at the vGPU create stage
2772  * to reset all the GGTT entries.
2773  *
2774  */
2775 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2776 {
2777 	struct intel_gvt *gvt = vgpu->gvt;
2778 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2779 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2780 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2781 	struct intel_gvt_gtt_entry old_entry;
2782 	u32 index;
2783 	u32 num_entries;
2784 
2785 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2786 	pte_ops->set_present(&entry);
2787 
2788 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2789 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2790 	while (num_entries--) {
2791 		if (invalidate_old) {
2792 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2793 			ggtt_invalidate_pte(vgpu, &old_entry);
2794 		}
2795 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2796 	}
2797 
2798 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2799 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2800 	while (num_entries--) {
2801 		if (invalidate_old) {
2802 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2803 			ggtt_invalidate_pte(vgpu, &old_entry);
2804 		}
2805 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2806 	}
2807 
2808 	ggtt_invalidate(dev_priv);
2809 }
2810 
2811 /**
2812  * intel_vgpu_reset_gtt - reset the all GTT related status
2813  * @vgpu: a vGPU
2814  *
2815  * This function is called from vfio core to reset reset all
2816  * GTT related status, including GGTT, PPGTT, scratch page.
2817  *
2818  */
2819 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2820 {
2821 	/* Shadow pages are only created when there is no page
2822 	 * table tracking data, so remove page tracking data after
2823 	 * removing the shadow pages.
2824 	 */
2825 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2826 	intel_vgpu_reset_ggtt(vgpu, true);
2827 }
2828