1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if (size == 0) 57 return vgpu_gmadr_is_valid(vgpu, addr); 58 59 if (vgpu_gmadr_is_aperture(vgpu, addr) && 60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 61 return true; 62 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 64 return true; 65 66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 67 addr, size); 68 return false; 69 } 70 71 /* translate a guest gmadr to host gmadr */ 72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 73 { 74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 75 76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 77 "invalid guest gmadr %llx\n", g_addr)) 78 return -EACCES; 79 80 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 81 *h_addr = vgpu_aperture_gmadr_base(vgpu) 82 + (g_addr - vgpu_aperture_offset(vgpu)); 83 else 84 *h_addr = vgpu_hidden_gmadr_base(vgpu) 85 + (g_addr - vgpu_hidden_offset(vgpu)); 86 return 0; 87 } 88 89 /* translate a host gmadr to guest gmadr */ 90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 95 "invalid host gmadr %llx\n", h_addr)) 96 return -EACCES; 97 98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 99 *g_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 101 else 102 *g_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 104 return 0; 105 } 106 107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 108 unsigned long *h_index) 109 { 110 u64 h_addr; 111 int ret; 112 113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 114 &h_addr); 115 if (ret) 116 return ret; 117 118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 119 return 0; 120 } 121 122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 123 unsigned long *g_index) 124 { 125 u64 g_addr; 126 int ret; 127 128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 129 &g_addr); 130 if (ret) 131 return ret; 132 133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 134 return 0; 135 } 136 137 #define gtt_type_is_entry(type) \ 138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 141 142 #define gtt_type_is_pt(type) \ 143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 144 145 #define gtt_type_is_pte_pt(type) \ 146 (type == GTT_TYPE_PPGTT_PTE_PT) 147 148 #define gtt_type_is_root_pointer(type) \ 149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 150 151 #define gtt_init_entry(e, t, p, v) do { \ 152 (e)->type = t; \ 153 (e)->pdev = p; \ 154 memcpy(&(e)->val64, &v, sizeof(v)); \ 155 } while (0) 156 157 /* 158 * Mappings between GTT_TYPE* enumerations. 159 * Following information can be found according to the given type: 160 * - type of next level page table 161 * - type of entry inside this level page table 162 * - type of entry with PSE set 163 * 164 * If the given type doesn't have such a kind of information, 165 * e.g. give a l4 root entry type, then request to get its PSE type, 166 * give a PTE page table type, then request to get its next level page 167 * table type, as we know l4 root entry doesn't have a PSE bit, 168 * and a PTE page table doesn't have a next level page table type, 169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 170 * page table. 171 */ 172 173 struct gtt_type_table_entry { 174 int entry_type; 175 int pt_type; 176 int next_pt_type; 177 int pse_entry_type; 178 }; 179 180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 181 [type] = { \ 182 .entry_type = e_type, \ 183 .pt_type = cpt_type, \ 184 .next_pt_type = npt_type, \ 185 .pse_entry_type = pse_type, \ 186 } 187 188 static struct gtt_type_table_entry gtt_type_table[] = { 189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 191 GTT_TYPE_INVALID, 192 GTT_TYPE_PPGTT_PML4_PT, 193 GTT_TYPE_INVALID), 194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 195 GTT_TYPE_PPGTT_PML4_ENTRY, 196 GTT_TYPE_PPGTT_PML4_PT, 197 GTT_TYPE_PPGTT_PDP_PT, 198 GTT_TYPE_INVALID), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 200 GTT_TYPE_PPGTT_PML4_ENTRY, 201 GTT_TYPE_PPGTT_PML4_PT, 202 GTT_TYPE_PPGTT_PDP_PT, 203 GTT_TYPE_INVALID), 204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 205 GTT_TYPE_PPGTT_PDP_ENTRY, 206 GTT_TYPE_PPGTT_PDP_PT, 207 GTT_TYPE_PPGTT_PDE_PT, 208 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 211 GTT_TYPE_INVALID, 212 GTT_TYPE_PPGTT_PDE_PT, 213 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 215 GTT_TYPE_PPGTT_PDP_ENTRY, 216 GTT_TYPE_PPGTT_PDP_PT, 217 GTT_TYPE_PPGTT_PDE_PT, 218 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 220 GTT_TYPE_PPGTT_PDE_ENTRY, 221 GTT_TYPE_PPGTT_PDE_PT, 222 GTT_TYPE_PPGTT_PTE_PT, 223 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 225 GTT_TYPE_PPGTT_PDE_ENTRY, 226 GTT_TYPE_PPGTT_PDE_PT, 227 GTT_TYPE_PPGTT_PTE_PT, 228 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 229 /* We take IPS bit as 'PSE' for PTE level. */ 230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 231 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_PT, 233 GTT_TYPE_INVALID, 234 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 236 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 237 GTT_TYPE_PPGTT_PTE_PT, 238 GTT_TYPE_INVALID, 239 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 241 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 242 GTT_TYPE_PPGTT_PTE_PT, 243 GTT_TYPE_INVALID, 244 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 246 GTT_TYPE_PPGTT_PDE_ENTRY, 247 GTT_TYPE_PPGTT_PDE_PT, 248 GTT_TYPE_INVALID, 249 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 251 GTT_TYPE_PPGTT_PDP_ENTRY, 252 GTT_TYPE_PPGTT_PDP_PT, 253 GTT_TYPE_INVALID, 254 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 256 GTT_TYPE_GGTT_PTE, 257 GTT_TYPE_INVALID, 258 GTT_TYPE_INVALID, 259 GTT_TYPE_INVALID), 260 }; 261 262 static inline int get_next_pt_type(int type) 263 { 264 return gtt_type_table[type].next_pt_type; 265 } 266 267 static inline int get_pt_type(int type) 268 { 269 return gtt_type_table[type].pt_type; 270 } 271 272 static inline int get_entry_type(int type) 273 { 274 return gtt_type_table[type].entry_type; 275 } 276 277 static inline int get_pse_type(int type) 278 { 279 return gtt_type_table[type].pse_entry_type; 280 } 281 282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 283 { 284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 285 286 return readq(addr); 287 } 288 289 static void ggtt_invalidate(struct intel_gt *gt) 290 { 291 mmio_hw_access_pre(gt); 292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 293 mmio_hw_access_post(gt); 294 } 295 296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 297 { 298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 299 300 writeq(pte, addr); 301 } 302 303 static inline int gtt_get_entry64(void *pt, 304 struct intel_gvt_gtt_entry *e, 305 unsigned long index, bool hypervisor_access, unsigned long gpa, 306 struct intel_vgpu *vgpu) 307 { 308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 309 int ret; 310 311 if (WARN_ON(info->gtt_entry_size != 8)) 312 return -EINVAL; 313 314 if (hypervisor_access) { 315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 316 (index << info->gtt_entry_size_shift), 317 &e->val64, 8); 318 if (WARN_ON(ret)) 319 return ret; 320 } else if (!pt) { 321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 322 } else { 323 e->val64 = *((u64 *)pt + index); 324 } 325 return 0; 326 } 327 328 static inline int gtt_set_entry64(void *pt, 329 struct intel_gvt_gtt_entry *e, 330 unsigned long index, bool hypervisor_access, unsigned long gpa, 331 struct intel_vgpu *vgpu) 332 { 333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 334 int ret; 335 336 if (WARN_ON(info->gtt_entry_size != 8)) 337 return -EINVAL; 338 339 if (hypervisor_access) { 340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 341 (index << info->gtt_entry_size_shift), 342 &e->val64, 8); 343 if (WARN_ON(ret)) 344 return ret; 345 } else if (!pt) { 346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 347 } else { 348 *((u64 *)pt + index) = e->val64; 349 } 350 return 0; 351 } 352 353 #define GTT_HAW 46 354 355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 359 360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 362 363 #define GTT_64K_PTE_STRIDE 16 364 365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 366 { 367 unsigned long pfn; 368 369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 375 else 376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 377 return pfn; 378 } 379 380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 381 { 382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 383 e->val64 &= ~ADDR_1G_MASK; 384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 386 e->val64 &= ~ADDR_2M_MASK; 387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 389 e->val64 &= ~ADDR_64K_MASK; 390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 391 } else { 392 e->val64 &= ~ADDR_4K_MASK; 393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 394 } 395 396 e->val64 |= (pfn << PAGE_SHIFT); 397 } 398 399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 400 { 401 return !!(e->val64 & _PAGE_PSE); 402 } 403 404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 405 { 406 if (gen8_gtt_test_pse(e)) { 407 switch (e->type) { 408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 409 e->val64 &= ~_PAGE_PSE; 410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 411 break; 412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 414 e->val64 &= ~_PAGE_PSE; 415 break; 416 default: 417 WARN_ON(1); 418 } 419 } 420 } 421 422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 423 { 424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 425 return false; 426 427 return !!(e->val64 & GEN8_PDE_IPS_64K); 428 } 429 430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 431 { 432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 433 return; 434 435 e->val64 &= ~GEN8_PDE_IPS_64K; 436 } 437 438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 439 { 440 /* 441 * i915 writes PDP root pointer registers without present bit, 442 * it also works, so we need to treat root pointer entry 443 * specifically. 444 */ 445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 447 return (e->val64 != 0); 448 else 449 return (e->val64 & _PAGE_PRESENT); 450 } 451 452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 453 { 454 e->val64 &= ~_PAGE_PRESENT; 455 } 456 457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 458 { 459 e->val64 |= _PAGE_PRESENT; 460 } 461 462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 463 { 464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 465 } 466 467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 468 { 469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 470 } 471 472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 473 { 474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 475 } 476 477 /* 478 * Per-platform GMA routines. 479 */ 480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 481 { 482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 483 484 trace_gma_index(__func__, gma, x); 485 return x; 486 } 487 488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 490 { \ 491 unsigned long x = (exp); \ 492 trace_gma_index(__func__, gma, x); \ 493 return x; \ 494 } 495 496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 501 502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 503 .get_entry = gtt_get_entry64, 504 .set_entry = gtt_set_entry64, 505 .clear_present = gtt_entry_clear_present, 506 .set_present = gtt_entry_set_present, 507 .test_present = gen8_gtt_test_present, 508 .test_pse = gen8_gtt_test_pse, 509 .clear_pse = gen8_gtt_clear_pse, 510 .clear_ips = gen8_gtt_clear_ips, 511 .test_ips = gen8_gtt_test_ips, 512 .clear_64k_splited = gen8_gtt_clear_64k_splited, 513 .set_64k_splited = gen8_gtt_set_64k_splited, 514 .test_64k_splited = gen8_gtt_test_64k_splited, 515 .get_pfn = gen8_gtt_get_pfn, 516 .set_pfn = gen8_gtt_set_pfn, 517 }; 518 519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 521 .gma_to_pte_index = gen8_gma_to_pte_index, 522 .gma_to_pde_index = gen8_gma_to_pde_index, 523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 525 .gma_to_pml4_index = gen8_gma_to_pml4_index, 526 }; 527 528 /* Update entry type per pse and ips bit. */ 529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 530 struct intel_gvt_gtt_entry *entry, bool ips) 531 { 532 switch (entry->type) { 533 case GTT_TYPE_PPGTT_PDE_ENTRY: 534 case GTT_TYPE_PPGTT_PDP_ENTRY: 535 if (pte_ops->test_pse(entry)) 536 entry->type = get_pse_type(entry->type); 537 break; 538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 539 if (ips) 540 entry->type = get_pse_type(entry->type); 541 break; 542 default: 543 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 544 } 545 546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 547 } 548 549 /* 550 * MM helpers. 551 */ 552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 553 struct intel_gvt_gtt_entry *entry, unsigned long index, 554 bool guest) 555 { 556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 557 558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 559 560 entry->type = mm->ppgtt_mm.root_entry_type; 561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 562 mm->ppgtt_mm.shadow_pdps, 563 entry, index, false, 0, mm->vgpu); 564 update_entry_type_for_real(pte_ops, entry, false); 565 } 566 567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 568 struct intel_gvt_gtt_entry *entry, unsigned long index) 569 { 570 _ppgtt_get_root_entry(mm, entry, index, true); 571 } 572 573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 574 struct intel_gvt_gtt_entry *entry, unsigned long index) 575 { 576 _ppgtt_get_root_entry(mm, entry, index, false); 577 } 578 579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 580 struct intel_gvt_gtt_entry *entry, unsigned long index, 581 bool guest) 582 { 583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 584 585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 586 mm->ppgtt_mm.shadow_pdps, 587 entry, index, false, 0, mm->vgpu); 588 } 589 590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 591 struct intel_gvt_gtt_entry *entry, unsigned long index) 592 { 593 _ppgtt_set_root_entry(mm, entry, index, true); 594 } 595 596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 597 struct intel_gvt_gtt_entry *entry, unsigned long index) 598 { 599 _ppgtt_set_root_entry(mm, entry, index, false); 600 } 601 602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 603 struct intel_gvt_gtt_entry *entry, unsigned long index) 604 { 605 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 606 607 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 608 609 entry->type = GTT_TYPE_GGTT_PTE; 610 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 611 false, 0, mm->vgpu); 612 } 613 614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 615 struct intel_gvt_gtt_entry *entry, unsigned long index) 616 { 617 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 618 619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 620 621 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 622 false, 0, mm->vgpu); 623 } 624 625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 626 struct intel_gvt_gtt_entry *entry, unsigned long index) 627 { 628 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 629 630 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 631 632 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 633 } 634 635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 636 struct intel_gvt_gtt_entry *entry, unsigned long index) 637 { 638 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 639 unsigned long offset = index; 640 641 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 642 643 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 644 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 645 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 646 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 647 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 648 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 649 } 650 651 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 652 } 653 654 /* 655 * PPGTT shadow page table helpers. 656 */ 657 static inline int ppgtt_spt_get_entry( 658 struct intel_vgpu_ppgtt_spt *spt, 659 void *page_table, int type, 660 struct intel_gvt_gtt_entry *e, unsigned long index, 661 bool guest) 662 { 663 struct intel_gvt *gvt = spt->vgpu->gvt; 664 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 665 int ret; 666 667 e->type = get_entry_type(type); 668 669 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 670 return -EINVAL; 671 672 ret = ops->get_entry(page_table, e, index, guest, 673 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 674 spt->vgpu); 675 if (ret) 676 return ret; 677 678 update_entry_type_for_real(ops, e, guest ? 679 spt->guest_page.pde_ips : false); 680 681 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 682 type, e->type, index, e->val64); 683 return 0; 684 } 685 686 static inline int ppgtt_spt_set_entry( 687 struct intel_vgpu_ppgtt_spt *spt, 688 void *page_table, int type, 689 struct intel_gvt_gtt_entry *e, unsigned long index, 690 bool guest) 691 { 692 struct intel_gvt *gvt = spt->vgpu->gvt; 693 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 694 695 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 696 return -EINVAL; 697 698 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 699 type, e->type, index, e->val64); 700 701 return ops->set_entry(page_table, e, index, guest, 702 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 703 spt->vgpu); 704 } 705 706 #define ppgtt_get_guest_entry(spt, e, index) \ 707 ppgtt_spt_get_entry(spt, NULL, \ 708 spt->guest_page.type, e, index, true) 709 710 #define ppgtt_set_guest_entry(spt, e, index) \ 711 ppgtt_spt_set_entry(spt, NULL, \ 712 spt->guest_page.type, e, index, true) 713 714 #define ppgtt_get_shadow_entry(spt, e, index) \ 715 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 716 spt->shadow_page.type, e, index, false) 717 718 #define ppgtt_set_shadow_entry(spt, e, index) \ 719 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 720 spt->shadow_page.type, e, index, false) 721 722 static void *alloc_spt(gfp_t gfp_mask) 723 { 724 struct intel_vgpu_ppgtt_spt *spt; 725 726 spt = kzalloc(sizeof(*spt), gfp_mask); 727 if (!spt) 728 return NULL; 729 730 spt->shadow_page.page = alloc_page(gfp_mask); 731 if (!spt->shadow_page.page) { 732 kfree(spt); 733 return NULL; 734 } 735 return spt; 736 } 737 738 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 739 { 740 __free_page(spt->shadow_page.page); 741 kfree(spt); 742 } 743 744 static int detach_oos_page(struct intel_vgpu *vgpu, 745 struct intel_vgpu_oos_page *oos_page); 746 747 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 748 { 749 struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev; 750 751 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 752 753 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 754 PCI_DMA_BIDIRECTIONAL); 755 756 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 757 758 if (spt->guest_page.gfn) { 759 if (spt->guest_page.oos_page) 760 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 761 762 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 763 } 764 765 list_del_init(&spt->post_shadow_list); 766 free_spt(spt); 767 } 768 769 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 770 { 771 struct intel_vgpu_ppgtt_spt *spt, *spn; 772 struct radix_tree_iter iter; 773 LIST_HEAD(all_spt); 774 void __rcu **slot; 775 776 rcu_read_lock(); 777 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 778 spt = radix_tree_deref_slot(slot); 779 list_move(&spt->post_shadow_list, &all_spt); 780 } 781 rcu_read_unlock(); 782 783 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 784 ppgtt_free_spt(spt); 785 } 786 787 static int ppgtt_handle_guest_write_page_table_bytes( 788 struct intel_vgpu_ppgtt_spt *spt, 789 u64 pa, void *p_data, int bytes); 790 791 static int ppgtt_write_protection_handler( 792 struct intel_vgpu_page_track *page_track, 793 u64 gpa, void *data, int bytes) 794 { 795 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 796 797 int ret; 798 799 if (bytes != 4 && bytes != 8) 800 return -EINVAL; 801 802 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 803 if (ret) 804 return ret; 805 return ret; 806 } 807 808 /* Find a spt by guest gfn. */ 809 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 810 struct intel_vgpu *vgpu, unsigned long gfn) 811 { 812 struct intel_vgpu_page_track *track; 813 814 track = intel_vgpu_find_page_track(vgpu, gfn); 815 if (track && track->handler == ppgtt_write_protection_handler) 816 return track->priv_data; 817 818 return NULL; 819 } 820 821 /* Find the spt by shadow page mfn. */ 822 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 823 struct intel_vgpu *vgpu, unsigned long mfn) 824 { 825 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 826 } 827 828 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 829 830 /* Allocate shadow page table without guest page. */ 831 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 832 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 833 { 834 struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev; 835 struct intel_vgpu_ppgtt_spt *spt = NULL; 836 dma_addr_t daddr; 837 int ret; 838 839 retry: 840 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 841 if (!spt) { 842 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 843 goto retry; 844 845 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 846 return ERR_PTR(-ENOMEM); 847 } 848 849 spt->vgpu = vgpu; 850 atomic_set(&spt->refcount, 1); 851 INIT_LIST_HEAD(&spt->post_shadow_list); 852 853 /* 854 * Init shadow_page. 855 */ 856 spt->shadow_page.type = type; 857 daddr = dma_map_page(kdev, spt->shadow_page.page, 858 0, 4096, PCI_DMA_BIDIRECTIONAL); 859 if (dma_mapping_error(kdev, daddr)) { 860 gvt_vgpu_err("fail to map dma addr\n"); 861 ret = -EINVAL; 862 goto err_free_spt; 863 } 864 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 865 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 866 867 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 868 if (ret) 869 goto err_unmap_dma; 870 871 return spt; 872 873 err_unmap_dma: 874 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 875 err_free_spt: 876 free_spt(spt); 877 return ERR_PTR(ret); 878 } 879 880 /* Allocate shadow page table associated with specific gfn. */ 881 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 882 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 883 unsigned long gfn, bool guest_pde_ips) 884 { 885 struct intel_vgpu_ppgtt_spt *spt; 886 int ret; 887 888 spt = ppgtt_alloc_spt(vgpu, type); 889 if (IS_ERR(spt)) 890 return spt; 891 892 /* 893 * Init guest_page. 894 */ 895 ret = intel_vgpu_register_page_track(vgpu, gfn, 896 ppgtt_write_protection_handler, spt); 897 if (ret) { 898 ppgtt_free_spt(spt); 899 return ERR_PTR(ret); 900 } 901 902 spt->guest_page.type = type; 903 spt->guest_page.gfn = gfn; 904 spt->guest_page.pde_ips = guest_pde_ips; 905 906 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 907 908 return spt; 909 } 910 911 #define pt_entry_size_shift(spt) \ 912 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 913 914 #define pt_entries(spt) \ 915 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 916 917 #define for_each_present_guest_entry(spt, e, i) \ 918 for (i = 0; i < pt_entries(spt); \ 919 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 920 if (!ppgtt_get_guest_entry(spt, e, i) && \ 921 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 922 923 #define for_each_present_shadow_entry(spt, e, i) \ 924 for (i = 0; i < pt_entries(spt); \ 925 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 926 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 927 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 928 929 #define for_each_shadow_entry(spt, e, i) \ 930 for (i = 0; i < pt_entries(spt); \ 931 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 932 if (!ppgtt_get_shadow_entry(spt, e, i)) 933 934 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 935 { 936 int v = atomic_read(&spt->refcount); 937 938 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 939 atomic_inc(&spt->refcount); 940 } 941 942 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 943 { 944 int v = atomic_read(&spt->refcount); 945 946 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 947 return atomic_dec_return(&spt->refcount); 948 } 949 950 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 951 952 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 953 struct intel_gvt_gtt_entry *e) 954 { 955 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 956 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 957 struct intel_vgpu_ppgtt_spt *s; 958 enum intel_gvt_gtt_type cur_pt_type; 959 960 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 961 962 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 963 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 964 cur_pt_type = get_next_pt_type(e->type); 965 966 if (!gtt_type_is_pt(cur_pt_type) || 967 !gtt_type_is_pt(cur_pt_type + 1)) { 968 drm_WARN(&i915->drm, 1, 969 "Invalid page table type, cur_pt_type is: %d\n", 970 cur_pt_type); 971 return -EINVAL; 972 } 973 974 cur_pt_type += 1; 975 976 if (ops->get_pfn(e) == 977 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 978 return 0; 979 } 980 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 981 if (!s) { 982 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 983 ops->get_pfn(e)); 984 return -ENXIO; 985 } 986 return ppgtt_invalidate_spt(s); 987 } 988 989 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 990 struct intel_gvt_gtt_entry *entry) 991 { 992 struct intel_vgpu *vgpu = spt->vgpu; 993 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 994 unsigned long pfn; 995 int type; 996 997 pfn = ops->get_pfn(entry); 998 type = spt->shadow_page.type; 999 1000 /* Uninitialized spte or unshadowed spte. */ 1001 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 1002 return; 1003 1004 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 1005 } 1006 1007 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1008 { 1009 struct intel_vgpu *vgpu = spt->vgpu; 1010 struct intel_gvt_gtt_entry e; 1011 unsigned long index; 1012 int ret; 1013 1014 trace_spt_change(spt->vgpu->id, "die", spt, 1015 spt->guest_page.gfn, spt->shadow_page.type); 1016 1017 if (ppgtt_put_spt(spt) > 0) 1018 return 0; 1019 1020 for_each_present_shadow_entry(spt, &e, index) { 1021 switch (e.type) { 1022 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1023 gvt_vdbg_mm("invalidate 4K entry\n"); 1024 ppgtt_invalidate_pte(spt, &e); 1025 break; 1026 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1027 /* We don't setup 64K shadow entry so far. */ 1028 WARN(1, "suspicious 64K gtt entry\n"); 1029 continue; 1030 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1031 gvt_vdbg_mm("invalidate 2M entry\n"); 1032 continue; 1033 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1034 WARN(1, "GVT doesn't support 1GB page\n"); 1035 continue; 1036 case GTT_TYPE_PPGTT_PML4_ENTRY: 1037 case GTT_TYPE_PPGTT_PDP_ENTRY: 1038 case GTT_TYPE_PPGTT_PDE_ENTRY: 1039 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1040 ret = ppgtt_invalidate_spt_by_shadow_entry( 1041 spt->vgpu, &e); 1042 if (ret) 1043 goto fail; 1044 break; 1045 default: 1046 GEM_BUG_ON(1); 1047 } 1048 } 1049 1050 trace_spt_change(spt->vgpu->id, "release", spt, 1051 spt->guest_page.gfn, spt->shadow_page.type); 1052 ppgtt_free_spt(spt); 1053 return 0; 1054 fail: 1055 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1056 spt, e.val64, e.type); 1057 return ret; 1058 } 1059 1060 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1061 { 1062 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1063 1064 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1065 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1066 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1067 1068 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1069 } else if (INTEL_GEN(dev_priv) >= 11) { 1070 /* 64K paging only controlled by IPS bit in PTE now. */ 1071 return true; 1072 } else 1073 return false; 1074 } 1075 1076 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1077 1078 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1079 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1080 { 1081 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1082 struct intel_vgpu_ppgtt_spt *spt = NULL; 1083 bool ips = false; 1084 int ret; 1085 1086 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1087 1088 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1089 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1090 1091 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1092 if (spt) { 1093 ppgtt_get_spt(spt); 1094 1095 if (ips != spt->guest_page.pde_ips) { 1096 spt->guest_page.pde_ips = ips; 1097 1098 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1099 clear_page(spt->shadow_page.vaddr); 1100 ret = ppgtt_populate_spt(spt); 1101 if (ret) { 1102 ppgtt_put_spt(spt); 1103 goto err; 1104 } 1105 } 1106 } else { 1107 int type = get_next_pt_type(we->type); 1108 1109 if (!gtt_type_is_pt(type)) { 1110 ret = -EINVAL; 1111 goto err; 1112 } 1113 1114 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1115 if (IS_ERR(spt)) { 1116 ret = PTR_ERR(spt); 1117 goto err; 1118 } 1119 1120 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1121 if (ret) 1122 goto err_free_spt; 1123 1124 ret = ppgtt_populate_spt(spt); 1125 if (ret) 1126 goto err_free_spt; 1127 1128 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1129 spt->shadow_page.type); 1130 } 1131 return spt; 1132 1133 err_free_spt: 1134 ppgtt_free_spt(spt); 1135 spt = NULL; 1136 err: 1137 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1138 spt, we->val64, we->type); 1139 return ERR_PTR(ret); 1140 } 1141 1142 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1143 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1144 { 1145 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1146 1147 se->type = ge->type; 1148 se->val64 = ge->val64; 1149 1150 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1151 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1152 ops->clear_ips(se); 1153 1154 ops->set_pfn(se, s->shadow_page.mfn); 1155 } 1156 1157 /** 1158 * Check if can do 2M page 1159 * @vgpu: target vgpu 1160 * @entry: target pfn's gtt entry 1161 * 1162 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1163 * negtive if found err. 1164 */ 1165 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1166 struct intel_gvt_gtt_entry *entry) 1167 { 1168 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1169 unsigned long pfn; 1170 1171 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1172 return 0; 1173 1174 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1175 if (pfn == INTEL_GVT_INVALID_ADDR) 1176 return -EINVAL; 1177 1178 return PageTransHuge(pfn_to_page(pfn)); 1179 } 1180 1181 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1182 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1183 struct intel_gvt_gtt_entry *se) 1184 { 1185 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1186 struct intel_vgpu_ppgtt_spt *sub_spt; 1187 struct intel_gvt_gtt_entry sub_se; 1188 unsigned long start_gfn; 1189 dma_addr_t dma_addr; 1190 unsigned long sub_index; 1191 int ret; 1192 1193 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1194 1195 start_gfn = ops->get_pfn(se); 1196 1197 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1198 if (IS_ERR(sub_spt)) 1199 return PTR_ERR(sub_spt); 1200 1201 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1202 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1203 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1204 if (ret) { 1205 ppgtt_invalidate_spt(spt); 1206 return ret; 1207 } 1208 sub_se.val64 = se->val64; 1209 1210 /* Copy the PAT field from PDE. */ 1211 sub_se.val64 &= ~_PAGE_PAT; 1212 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1213 1214 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1215 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1216 } 1217 1218 /* Clear dirty field. */ 1219 se->val64 &= ~_PAGE_DIRTY; 1220 1221 ops->clear_pse(se); 1222 ops->clear_ips(se); 1223 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1224 ppgtt_set_shadow_entry(spt, se, index); 1225 return 0; 1226 } 1227 1228 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1229 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1230 struct intel_gvt_gtt_entry *se) 1231 { 1232 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1233 struct intel_gvt_gtt_entry entry = *se; 1234 unsigned long start_gfn; 1235 dma_addr_t dma_addr; 1236 int i, ret; 1237 1238 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1239 1240 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1241 1242 start_gfn = ops->get_pfn(se); 1243 1244 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1245 ops->set_64k_splited(&entry); 1246 1247 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1248 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1249 start_gfn + i, PAGE_SIZE, &dma_addr); 1250 if (ret) 1251 return ret; 1252 1253 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1254 ppgtt_set_shadow_entry(spt, &entry, index + i); 1255 } 1256 return 0; 1257 } 1258 1259 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1260 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1261 struct intel_gvt_gtt_entry *ge) 1262 { 1263 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1264 struct intel_gvt_gtt_entry se = *ge; 1265 unsigned long gfn, page_size = PAGE_SIZE; 1266 dma_addr_t dma_addr; 1267 int ret; 1268 1269 if (!pte_ops->test_present(ge)) 1270 return 0; 1271 1272 gfn = pte_ops->get_pfn(ge); 1273 1274 switch (ge->type) { 1275 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1276 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1277 break; 1278 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1279 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1280 /* 1281 * The layout of 64K page is special, the page size is 1282 * controlled by uper PDE. To be simple, we always split 1283 * 64K page to smaller 4K pages in shadow PT. 1284 */ 1285 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1286 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1287 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1288 ret = is_2MB_gtt_possible(vgpu, ge); 1289 if (ret == 0) 1290 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1291 else if (ret < 0) 1292 return ret; 1293 page_size = I915_GTT_PAGE_SIZE_2M; 1294 break; 1295 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1296 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1297 return -EINVAL; 1298 default: 1299 GEM_BUG_ON(1); 1300 } 1301 1302 /* direct shadow */ 1303 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1304 &dma_addr); 1305 if (ret) 1306 return -ENXIO; 1307 1308 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1309 ppgtt_set_shadow_entry(spt, &se, index); 1310 return 0; 1311 } 1312 1313 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1314 { 1315 struct intel_vgpu *vgpu = spt->vgpu; 1316 struct intel_gvt *gvt = vgpu->gvt; 1317 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1318 struct intel_vgpu_ppgtt_spt *s; 1319 struct intel_gvt_gtt_entry se, ge; 1320 unsigned long gfn, i; 1321 int ret; 1322 1323 trace_spt_change(spt->vgpu->id, "born", spt, 1324 spt->guest_page.gfn, spt->shadow_page.type); 1325 1326 for_each_present_guest_entry(spt, &ge, i) { 1327 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1328 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1329 if (IS_ERR(s)) { 1330 ret = PTR_ERR(s); 1331 goto fail; 1332 } 1333 ppgtt_get_shadow_entry(spt, &se, i); 1334 ppgtt_generate_shadow_entry(&se, s, &ge); 1335 ppgtt_set_shadow_entry(spt, &se, i); 1336 } else { 1337 gfn = ops->get_pfn(&ge); 1338 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1339 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1340 ppgtt_set_shadow_entry(spt, &se, i); 1341 continue; 1342 } 1343 1344 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1345 if (ret) 1346 goto fail; 1347 } 1348 } 1349 return 0; 1350 fail: 1351 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1352 spt, ge.val64, ge.type); 1353 return ret; 1354 } 1355 1356 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1357 struct intel_gvt_gtt_entry *se, unsigned long index) 1358 { 1359 struct intel_vgpu *vgpu = spt->vgpu; 1360 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1361 int ret; 1362 1363 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1364 spt->shadow_page.type, se->val64, index); 1365 1366 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1367 se->type, index, se->val64); 1368 1369 if (!ops->test_present(se)) 1370 return 0; 1371 1372 if (ops->get_pfn(se) == 1373 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1374 return 0; 1375 1376 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1377 struct intel_vgpu_ppgtt_spt *s = 1378 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1379 if (!s) { 1380 gvt_vgpu_err("fail to find guest page\n"); 1381 ret = -ENXIO; 1382 goto fail; 1383 } 1384 ret = ppgtt_invalidate_spt(s); 1385 if (ret) 1386 goto fail; 1387 } else { 1388 /* We don't setup 64K shadow entry so far. */ 1389 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1390 "suspicious 64K entry\n"); 1391 ppgtt_invalidate_pte(spt, se); 1392 } 1393 1394 return 0; 1395 fail: 1396 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1397 spt, se->val64, se->type); 1398 return ret; 1399 } 1400 1401 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1402 struct intel_gvt_gtt_entry *we, unsigned long index) 1403 { 1404 struct intel_vgpu *vgpu = spt->vgpu; 1405 struct intel_gvt_gtt_entry m; 1406 struct intel_vgpu_ppgtt_spt *s; 1407 int ret; 1408 1409 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1410 we->val64, index); 1411 1412 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1413 we->type, index, we->val64); 1414 1415 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1416 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1417 if (IS_ERR(s)) { 1418 ret = PTR_ERR(s); 1419 goto fail; 1420 } 1421 ppgtt_get_shadow_entry(spt, &m, index); 1422 ppgtt_generate_shadow_entry(&m, s, we); 1423 ppgtt_set_shadow_entry(spt, &m, index); 1424 } else { 1425 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1426 if (ret) 1427 goto fail; 1428 } 1429 return 0; 1430 fail: 1431 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1432 spt, we->val64, we->type); 1433 return ret; 1434 } 1435 1436 static int sync_oos_page(struct intel_vgpu *vgpu, 1437 struct intel_vgpu_oos_page *oos_page) 1438 { 1439 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1440 struct intel_gvt *gvt = vgpu->gvt; 1441 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1442 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1443 struct intel_gvt_gtt_entry old, new; 1444 int index; 1445 int ret; 1446 1447 trace_oos_change(vgpu->id, "sync", oos_page->id, 1448 spt, spt->guest_page.type); 1449 1450 old.type = new.type = get_entry_type(spt->guest_page.type); 1451 old.val64 = new.val64 = 0; 1452 1453 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1454 info->gtt_entry_size_shift); index++) { 1455 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1456 ops->get_entry(NULL, &new, index, true, 1457 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1458 1459 if (old.val64 == new.val64 1460 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1461 continue; 1462 1463 trace_oos_sync(vgpu->id, oos_page->id, 1464 spt, spt->guest_page.type, 1465 new.val64, index); 1466 1467 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1468 if (ret) 1469 return ret; 1470 1471 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1472 } 1473 1474 spt->guest_page.write_cnt = 0; 1475 list_del_init(&spt->post_shadow_list); 1476 return 0; 1477 } 1478 1479 static int detach_oos_page(struct intel_vgpu *vgpu, 1480 struct intel_vgpu_oos_page *oos_page) 1481 { 1482 struct intel_gvt *gvt = vgpu->gvt; 1483 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1484 1485 trace_oos_change(vgpu->id, "detach", oos_page->id, 1486 spt, spt->guest_page.type); 1487 1488 spt->guest_page.write_cnt = 0; 1489 spt->guest_page.oos_page = NULL; 1490 oos_page->spt = NULL; 1491 1492 list_del_init(&oos_page->vm_list); 1493 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1494 1495 return 0; 1496 } 1497 1498 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1499 struct intel_vgpu_ppgtt_spt *spt) 1500 { 1501 struct intel_gvt *gvt = spt->vgpu->gvt; 1502 int ret; 1503 1504 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1505 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1506 oos_page->mem, I915_GTT_PAGE_SIZE); 1507 if (ret) 1508 return ret; 1509 1510 oos_page->spt = spt; 1511 spt->guest_page.oos_page = oos_page; 1512 1513 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1514 1515 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1516 spt, spt->guest_page.type); 1517 return 0; 1518 } 1519 1520 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1521 { 1522 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1523 int ret; 1524 1525 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1526 if (ret) 1527 return ret; 1528 1529 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1530 spt, spt->guest_page.type); 1531 1532 list_del_init(&oos_page->vm_list); 1533 return sync_oos_page(spt->vgpu, oos_page); 1534 } 1535 1536 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1537 { 1538 struct intel_gvt *gvt = spt->vgpu->gvt; 1539 struct intel_gvt_gtt *gtt = &gvt->gtt; 1540 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1541 int ret; 1542 1543 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1544 1545 if (list_empty(>t->oos_page_free_list_head)) { 1546 oos_page = container_of(gtt->oos_page_use_list_head.next, 1547 struct intel_vgpu_oos_page, list); 1548 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1549 if (ret) 1550 return ret; 1551 ret = detach_oos_page(spt->vgpu, oos_page); 1552 if (ret) 1553 return ret; 1554 } else 1555 oos_page = container_of(gtt->oos_page_free_list_head.next, 1556 struct intel_vgpu_oos_page, list); 1557 return attach_oos_page(oos_page, spt); 1558 } 1559 1560 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1561 { 1562 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1563 1564 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1565 return -EINVAL; 1566 1567 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1568 spt, spt->guest_page.type); 1569 1570 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1571 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1572 } 1573 1574 /** 1575 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1576 * @vgpu: a vGPU 1577 * 1578 * This function is called before submitting a guest workload to host, 1579 * to sync all the out-of-synced shadow for vGPU 1580 * 1581 * Returns: 1582 * Zero on success, negative error code if failed. 1583 */ 1584 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1585 { 1586 struct list_head *pos, *n; 1587 struct intel_vgpu_oos_page *oos_page; 1588 int ret; 1589 1590 if (!enable_out_of_sync) 1591 return 0; 1592 1593 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1594 oos_page = container_of(pos, 1595 struct intel_vgpu_oos_page, vm_list); 1596 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1597 if (ret) 1598 return ret; 1599 } 1600 return 0; 1601 } 1602 1603 /* 1604 * The heart of PPGTT shadow page table. 1605 */ 1606 static int ppgtt_handle_guest_write_page_table( 1607 struct intel_vgpu_ppgtt_spt *spt, 1608 struct intel_gvt_gtt_entry *we, unsigned long index) 1609 { 1610 struct intel_vgpu *vgpu = spt->vgpu; 1611 int type = spt->shadow_page.type; 1612 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1613 struct intel_gvt_gtt_entry old_se; 1614 int new_present; 1615 int i, ret; 1616 1617 new_present = ops->test_present(we); 1618 1619 /* 1620 * Adding the new entry first and then removing the old one, that can 1621 * guarantee the ppgtt table is validated during the window between 1622 * adding and removal. 1623 */ 1624 ppgtt_get_shadow_entry(spt, &old_se, index); 1625 1626 if (new_present) { 1627 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1628 if (ret) 1629 goto fail; 1630 } 1631 1632 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1633 if (ret) 1634 goto fail; 1635 1636 if (!new_present) { 1637 /* For 64KB splited entries, we need clear them all. */ 1638 if (ops->test_64k_splited(&old_se) && 1639 !(index % GTT_64K_PTE_STRIDE)) { 1640 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1641 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1642 ops->clear_64k_splited(&old_se); 1643 ops->set_pfn(&old_se, 1644 vgpu->gtt.scratch_pt[type].page_mfn); 1645 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1646 } 1647 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1648 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1649 ops->clear_pse(&old_se); 1650 ops->set_pfn(&old_se, 1651 vgpu->gtt.scratch_pt[type].page_mfn); 1652 ppgtt_set_shadow_entry(spt, &old_se, index); 1653 } else { 1654 ops->set_pfn(&old_se, 1655 vgpu->gtt.scratch_pt[type].page_mfn); 1656 ppgtt_set_shadow_entry(spt, &old_se, index); 1657 } 1658 } 1659 1660 return 0; 1661 fail: 1662 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1663 spt, we->val64, we->type); 1664 return ret; 1665 } 1666 1667 1668 1669 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1670 { 1671 return enable_out_of_sync 1672 && gtt_type_is_pte_pt(spt->guest_page.type) 1673 && spt->guest_page.write_cnt >= 2; 1674 } 1675 1676 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1677 unsigned long index) 1678 { 1679 set_bit(index, spt->post_shadow_bitmap); 1680 if (!list_empty(&spt->post_shadow_list)) 1681 return; 1682 1683 list_add_tail(&spt->post_shadow_list, 1684 &spt->vgpu->gtt.post_shadow_list_head); 1685 } 1686 1687 /** 1688 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1689 * @vgpu: a vGPU 1690 * 1691 * This function is called before submitting a guest workload to host, 1692 * to flush all the post shadows for a vGPU. 1693 * 1694 * Returns: 1695 * Zero on success, negative error code if failed. 1696 */ 1697 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1698 { 1699 struct list_head *pos, *n; 1700 struct intel_vgpu_ppgtt_spt *spt; 1701 struct intel_gvt_gtt_entry ge; 1702 unsigned long index; 1703 int ret; 1704 1705 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1706 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1707 post_shadow_list); 1708 1709 for_each_set_bit(index, spt->post_shadow_bitmap, 1710 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1711 ppgtt_get_guest_entry(spt, &ge, index); 1712 1713 ret = ppgtt_handle_guest_write_page_table(spt, 1714 &ge, index); 1715 if (ret) 1716 return ret; 1717 clear_bit(index, spt->post_shadow_bitmap); 1718 } 1719 list_del_init(&spt->post_shadow_list); 1720 } 1721 return 0; 1722 } 1723 1724 static int ppgtt_handle_guest_write_page_table_bytes( 1725 struct intel_vgpu_ppgtt_spt *spt, 1726 u64 pa, void *p_data, int bytes) 1727 { 1728 struct intel_vgpu *vgpu = spt->vgpu; 1729 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1730 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1731 struct intel_gvt_gtt_entry we, se; 1732 unsigned long index; 1733 int ret; 1734 1735 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1736 1737 ppgtt_get_guest_entry(spt, &we, index); 1738 1739 /* 1740 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1741 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1742 * ignored. 1743 */ 1744 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1745 (index % GTT_64K_PTE_STRIDE)) { 1746 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1747 index); 1748 return 0; 1749 } 1750 1751 if (bytes == info->gtt_entry_size) { 1752 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1753 if (ret) 1754 return ret; 1755 } else { 1756 if (!test_bit(index, spt->post_shadow_bitmap)) { 1757 int type = spt->shadow_page.type; 1758 1759 ppgtt_get_shadow_entry(spt, &se, index); 1760 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1761 if (ret) 1762 return ret; 1763 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1764 ppgtt_set_shadow_entry(spt, &se, index); 1765 } 1766 ppgtt_set_post_shadow(spt, index); 1767 } 1768 1769 if (!enable_out_of_sync) 1770 return 0; 1771 1772 spt->guest_page.write_cnt++; 1773 1774 if (spt->guest_page.oos_page) 1775 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1776 false, 0, vgpu); 1777 1778 if (can_do_out_of_sync(spt)) { 1779 if (!spt->guest_page.oos_page) 1780 ppgtt_allocate_oos_page(spt); 1781 1782 ret = ppgtt_set_guest_page_oos(spt); 1783 if (ret < 0) 1784 return ret; 1785 } 1786 return 0; 1787 } 1788 1789 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1790 { 1791 struct intel_vgpu *vgpu = mm->vgpu; 1792 struct intel_gvt *gvt = vgpu->gvt; 1793 struct intel_gvt_gtt *gtt = &gvt->gtt; 1794 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1795 struct intel_gvt_gtt_entry se; 1796 int index; 1797 1798 if (!mm->ppgtt_mm.shadowed) 1799 return; 1800 1801 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1802 ppgtt_get_shadow_root_entry(mm, &se, index); 1803 1804 if (!ops->test_present(&se)) 1805 continue; 1806 1807 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1808 se.val64 = 0; 1809 ppgtt_set_shadow_root_entry(mm, &se, index); 1810 1811 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1812 NULL, se.type, se.val64, index); 1813 } 1814 1815 mm->ppgtt_mm.shadowed = false; 1816 } 1817 1818 1819 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1820 { 1821 struct intel_vgpu *vgpu = mm->vgpu; 1822 struct intel_gvt *gvt = vgpu->gvt; 1823 struct intel_gvt_gtt *gtt = &gvt->gtt; 1824 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1825 struct intel_vgpu_ppgtt_spt *spt; 1826 struct intel_gvt_gtt_entry ge, se; 1827 int index, ret; 1828 1829 if (mm->ppgtt_mm.shadowed) 1830 return 0; 1831 1832 mm->ppgtt_mm.shadowed = true; 1833 1834 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1835 ppgtt_get_guest_root_entry(mm, &ge, index); 1836 1837 if (!ops->test_present(&ge)) 1838 continue; 1839 1840 trace_spt_guest_change(vgpu->id, __func__, NULL, 1841 ge.type, ge.val64, index); 1842 1843 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1844 if (IS_ERR(spt)) { 1845 gvt_vgpu_err("fail to populate guest root pointer\n"); 1846 ret = PTR_ERR(spt); 1847 goto fail; 1848 } 1849 ppgtt_generate_shadow_entry(&se, spt, &ge); 1850 ppgtt_set_shadow_root_entry(mm, &se, index); 1851 1852 trace_spt_guest_change(vgpu->id, "populate root pointer", 1853 NULL, se.type, se.val64, index); 1854 } 1855 1856 return 0; 1857 fail: 1858 invalidate_ppgtt_mm(mm); 1859 return ret; 1860 } 1861 1862 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1863 { 1864 struct intel_vgpu_mm *mm; 1865 1866 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1867 if (!mm) 1868 return NULL; 1869 1870 mm->vgpu = vgpu; 1871 kref_init(&mm->ref); 1872 atomic_set(&mm->pincount, 0); 1873 1874 return mm; 1875 } 1876 1877 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1878 { 1879 kfree(mm); 1880 } 1881 1882 /** 1883 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1884 * @vgpu: a vGPU 1885 * @root_entry_type: ppgtt root entry type 1886 * @pdps: guest pdps. 1887 * 1888 * This function is used to create a ppgtt mm object for a vGPU. 1889 * 1890 * Returns: 1891 * Zero on success, negative error code in pointer if failed. 1892 */ 1893 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1894 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1895 { 1896 struct intel_gvt *gvt = vgpu->gvt; 1897 struct intel_vgpu_mm *mm; 1898 int ret; 1899 1900 mm = vgpu_alloc_mm(vgpu); 1901 if (!mm) 1902 return ERR_PTR(-ENOMEM); 1903 1904 mm->type = INTEL_GVT_MM_PPGTT; 1905 1906 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1907 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1908 mm->ppgtt_mm.root_entry_type = root_entry_type; 1909 1910 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1911 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1912 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1913 1914 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1915 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1916 else 1917 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1918 sizeof(mm->ppgtt_mm.guest_pdps)); 1919 1920 ret = shadow_ppgtt_mm(mm); 1921 if (ret) { 1922 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1923 vgpu_free_mm(mm); 1924 return ERR_PTR(ret); 1925 } 1926 1927 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1928 1929 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1930 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1931 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1932 1933 return mm; 1934 } 1935 1936 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1937 { 1938 struct intel_vgpu_mm *mm; 1939 unsigned long nr_entries; 1940 1941 mm = vgpu_alloc_mm(vgpu); 1942 if (!mm) 1943 return ERR_PTR(-ENOMEM); 1944 1945 mm->type = INTEL_GVT_MM_GGTT; 1946 1947 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1948 mm->ggtt_mm.virtual_ggtt = 1949 vzalloc(array_size(nr_entries, 1950 vgpu->gvt->device_info.gtt_entry_size)); 1951 if (!mm->ggtt_mm.virtual_ggtt) { 1952 vgpu_free_mm(mm); 1953 return ERR_PTR(-ENOMEM); 1954 } 1955 1956 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1957 if (!mm->ggtt_mm.host_ggtt_aperture) { 1958 vfree(mm->ggtt_mm.virtual_ggtt); 1959 vgpu_free_mm(mm); 1960 return ERR_PTR(-ENOMEM); 1961 } 1962 1963 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1964 if (!mm->ggtt_mm.host_ggtt_hidden) { 1965 vfree(mm->ggtt_mm.host_ggtt_aperture); 1966 vfree(mm->ggtt_mm.virtual_ggtt); 1967 vgpu_free_mm(mm); 1968 return ERR_PTR(-ENOMEM); 1969 } 1970 1971 return mm; 1972 } 1973 1974 /** 1975 * _intel_vgpu_mm_release - destroy a mm object 1976 * @mm_ref: a kref object 1977 * 1978 * This function is used to destroy a mm object for vGPU 1979 * 1980 */ 1981 void _intel_vgpu_mm_release(struct kref *mm_ref) 1982 { 1983 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1984 1985 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1986 gvt_err("vgpu mm pin count bug detected\n"); 1987 1988 if (mm->type == INTEL_GVT_MM_PPGTT) { 1989 list_del(&mm->ppgtt_mm.list); 1990 1991 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1992 list_del(&mm->ppgtt_mm.lru_list); 1993 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1994 1995 invalidate_ppgtt_mm(mm); 1996 } else { 1997 vfree(mm->ggtt_mm.virtual_ggtt); 1998 vfree(mm->ggtt_mm.host_ggtt_aperture); 1999 vfree(mm->ggtt_mm.host_ggtt_hidden); 2000 } 2001 2002 vgpu_free_mm(mm); 2003 } 2004 2005 /** 2006 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2007 * @mm: a vGPU mm object 2008 * 2009 * This function is called when user doesn't want to use a vGPU mm object 2010 */ 2011 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2012 { 2013 atomic_dec_if_positive(&mm->pincount); 2014 } 2015 2016 /** 2017 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2018 * @mm: target vgpu mm 2019 * 2020 * This function is called when user wants to use a vGPU mm object. If this 2021 * mm object hasn't been shadowed yet, the shadow will be populated at this 2022 * time. 2023 * 2024 * Returns: 2025 * Zero on success, negative error code if failed. 2026 */ 2027 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2028 { 2029 int ret; 2030 2031 atomic_inc(&mm->pincount); 2032 2033 if (mm->type == INTEL_GVT_MM_PPGTT) { 2034 ret = shadow_ppgtt_mm(mm); 2035 if (ret) 2036 return ret; 2037 2038 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2039 list_move_tail(&mm->ppgtt_mm.lru_list, 2040 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2041 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2042 } 2043 2044 return 0; 2045 } 2046 2047 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2048 { 2049 struct intel_vgpu_mm *mm; 2050 struct list_head *pos, *n; 2051 2052 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2053 2054 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2055 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2056 2057 if (atomic_read(&mm->pincount)) 2058 continue; 2059 2060 list_del_init(&mm->ppgtt_mm.lru_list); 2061 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2062 invalidate_ppgtt_mm(mm); 2063 return 1; 2064 } 2065 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2066 return 0; 2067 } 2068 2069 /* 2070 * GMA translation APIs. 2071 */ 2072 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2073 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2074 { 2075 struct intel_vgpu *vgpu = mm->vgpu; 2076 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2077 struct intel_vgpu_ppgtt_spt *s; 2078 2079 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2080 if (!s) 2081 return -ENXIO; 2082 2083 if (!guest) 2084 ppgtt_get_shadow_entry(s, e, index); 2085 else 2086 ppgtt_get_guest_entry(s, e, index); 2087 return 0; 2088 } 2089 2090 /** 2091 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2092 * @mm: mm object. could be a PPGTT or GGTT mm object 2093 * @gma: graphics memory address in this mm object 2094 * 2095 * This function is used to translate a graphics memory address in specific 2096 * graphics memory space to guest physical address. 2097 * 2098 * Returns: 2099 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2100 */ 2101 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2102 { 2103 struct intel_vgpu *vgpu = mm->vgpu; 2104 struct intel_gvt *gvt = vgpu->gvt; 2105 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2106 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2107 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2108 unsigned long gma_index[4]; 2109 struct intel_gvt_gtt_entry e; 2110 int i, levels = 0; 2111 int ret; 2112 2113 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2114 mm->type != INTEL_GVT_MM_PPGTT); 2115 2116 if (mm->type == INTEL_GVT_MM_GGTT) { 2117 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2118 goto err; 2119 2120 ggtt_get_guest_entry(mm, &e, 2121 gma_ops->gma_to_ggtt_pte_index(gma)); 2122 2123 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2124 + (gma & ~I915_GTT_PAGE_MASK); 2125 2126 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2127 } else { 2128 switch (mm->ppgtt_mm.root_entry_type) { 2129 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2130 ppgtt_get_shadow_root_entry(mm, &e, 0); 2131 2132 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2133 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2134 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2135 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2136 levels = 4; 2137 break; 2138 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2139 ppgtt_get_shadow_root_entry(mm, &e, 2140 gma_ops->gma_to_l3_pdp_index(gma)); 2141 2142 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2143 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2144 levels = 2; 2145 break; 2146 default: 2147 GEM_BUG_ON(1); 2148 } 2149 2150 /* walk the shadow page table and get gpa from guest entry */ 2151 for (i = 0; i < levels; i++) { 2152 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2153 (i == levels - 1)); 2154 if (ret) 2155 goto err; 2156 2157 if (!pte_ops->test_present(&e)) { 2158 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2159 goto err; 2160 } 2161 } 2162 2163 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2164 (gma & ~I915_GTT_PAGE_MASK); 2165 trace_gma_translate(vgpu->id, "ppgtt", 0, 2166 mm->ppgtt_mm.root_entry_type, gma, gpa); 2167 } 2168 2169 return gpa; 2170 err: 2171 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2172 return INTEL_GVT_INVALID_ADDR; 2173 } 2174 2175 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2176 unsigned int off, void *p_data, unsigned int bytes) 2177 { 2178 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2179 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2180 unsigned long index = off >> info->gtt_entry_size_shift; 2181 unsigned long gma; 2182 struct intel_gvt_gtt_entry e; 2183 2184 if (bytes != 4 && bytes != 8) 2185 return -EINVAL; 2186 2187 gma = index << I915_GTT_PAGE_SHIFT; 2188 if (!intel_gvt_ggtt_validate_range(vgpu, 2189 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2190 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2191 memset(p_data, 0, bytes); 2192 return 0; 2193 } 2194 2195 ggtt_get_guest_entry(ggtt_mm, &e, index); 2196 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2197 bytes); 2198 return 0; 2199 } 2200 2201 /** 2202 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2203 * @vgpu: a vGPU 2204 * @off: register offset 2205 * @p_data: data will be returned to guest 2206 * @bytes: data length 2207 * 2208 * This function is used to emulate the GTT MMIO register read 2209 * 2210 * Returns: 2211 * Zero on success, error code if failed. 2212 */ 2213 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2214 void *p_data, unsigned int bytes) 2215 { 2216 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2217 int ret; 2218 2219 if (bytes != 4 && bytes != 8) 2220 return -EINVAL; 2221 2222 off -= info->gtt_start_offset; 2223 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2224 return ret; 2225 } 2226 2227 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2228 struct intel_gvt_gtt_entry *entry) 2229 { 2230 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2231 unsigned long pfn; 2232 2233 pfn = pte_ops->get_pfn(entry); 2234 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2235 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2236 pfn << PAGE_SHIFT); 2237 } 2238 2239 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2240 void *p_data, unsigned int bytes) 2241 { 2242 struct intel_gvt *gvt = vgpu->gvt; 2243 const struct intel_gvt_device_info *info = &gvt->device_info; 2244 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2245 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2246 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2247 unsigned long gma, gfn; 2248 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2249 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2250 dma_addr_t dma_addr; 2251 int ret; 2252 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2253 bool partial_update = false; 2254 2255 if (bytes != 4 && bytes != 8) 2256 return -EINVAL; 2257 2258 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2259 2260 /* the VM may configure the whole GM space when ballooning is used */ 2261 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2262 return 0; 2263 2264 e.type = GTT_TYPE_GGTT_PTE; 2265 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2266 bytes); 2267 2268 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2269 * write, save the first 4 bytes in a list and update virtual 2270 * PTE. Only update shadow PTE when the second 4 bytes comes. 2271 */ 2272 if (bytes < info->gtt_entry_size) { 2273 bool found = false; 2274 2275 list_for_each_entry_safe(pos, n, 2276 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2277 if (g_gtt_index == pos->offset >> 2278 info->gtt_entry_size_shift) { 2279 if (off != pos->offset) { 2280 /* the second partial part*/ 2281 int last_off = pos->offset & 2282 (info->gtt_entry_size - 1); 2283 2284 memcpy((void *)&e.val64 + last_off, 2285 (void *)&pos->data + last_off, 2286 bytes); 2287 2288 list_del(&pos->list); 2289 kfree(pos); 2290 found = true; 2291 break; 2292 } 2293 2294 /* update of the first partial part */ 2295 pos->data = e.val64; 2296 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2297 return 0; 2298 } 2299 } 2300 2301 if (!found) { 2302 /* the first partial part */ 2303 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2304 if (!partial_pte) 2305 return -ENOMEM; 2306 partial_pte->offset = off; 2307 partial_pte->data = e.val64; 2308 list_add_tail(&partial_pte->list, 2309 &ggtt_mm->ggtt_mm.partial_pte_list); 2310 partial_update = true; 2311 } 2312 } 2313 2314 if (!partial_update && (ops->test_present(&e))) { 2315 gfn = ops->get_pfn(&e); 2316 m.val64 = e.val64; 2317 m.type = e.type; 2318 2319 /* one PTE update may be issued in multiple writes and the 2320 * first write may not construct a valid gfn 2321 */ 2322 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2323 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2324 goto out; 2325 } 2326 2327 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2328 PAGE_SIZE, &dma_addr); 2329 if (ret) { 2330 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2331 /* guest driver may read/write the entry when partial 2332 * update the entry in this situation p2m will fail 2333 * settting the shadow entry to point to a scratch page 2334 */ 2335 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2336 } else 2337 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2338 } else { 2339 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2340 ops->clear_present(&m); 2341 } 2342 2343 out: 2344 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2345 2346 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2347 ggtt_invalidate_pte(vgpu, &e); 2348 2349 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2350 ggtt_invalidate(gvt->gt); 2351 return 0; 2352 } 2353 2354 /* 2355 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2356 * @vgpu: a vGPU 2357 * @off: register offset 2358 * @p_data: data from guest write 2359 * @bytes: data length 2360 * 2361 * This function is used to emulate the GTT MMIO register write 2362 * 2363 * Returns: 2364 * Zero on success, error code if failed. 2365 */ 2366 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2367 unsigned int off, void *p_data, unsigned int bytes) 2368 { 2369 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2370 int ret; 2371 struct intel_vgpu_submission *s = &vgpu->submission; 2372 struct intel_engine_cs *engine; 2373 int i; 2374 2375 if (bytes != 4 && bytes != 8) 2376 return -EINVAL; 2377 2378 off -= info->gtt_start_offset; 2379 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2380 2381 /* if ggtt of last submitted context is written, 2382 * that context is probably got unpinned. 2383 * Set last shadowed ctx to invalid. 2384 */ 2385 for_each_engine(engine, vgpu->gvt->gt, i) { 2386 if (!s->last_ctx[i].valid) 2387 continue; 2388 2389 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2390 s->last_ctx[i].valid = false; 2391 } 2392 return ret; 2393 } 2394 2395 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2396 enum intel_gvt_gtt_type type) 2397 { 2398 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2399 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2400 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2401 int page_entry_num = I915_GTT_PAGE_SIZE >> 2402 vgpu->gvt->device_info.gtt_entry_size_shift; 2403 void *scratch_pt; 2404 int i; 2405 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev; 2406 dma_addr_t daddr; 2407 2408 if (drm_WARN_ON(&i915->drm, 2409 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2410 return -EINVAL; 2411 2412 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2413 if (!scratch_pt) { 2414 gvt_vgpu_err("fail to allocate scratch page\n"); 2415 return -ENOMEM; 2416 } 2417 2418 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2419 4096, PCI_DMA_BIDIRECTIONAL); 2420 if (dma_mapping_error(dev, daddr)) { 2421 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2422 __free_page(virt_to_page(scratch_pt)); 2423 return -ENOMEM; 2424 } 2425 gtt->scratch_pt[type].page_mfn = 2426 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2427 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2428 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2429 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2430 2431 /* Build the tree by full filled the scratch pt with the entries which 2432 * point to the next level scratch pt or scratch page. The 2433 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2434 * 'type' pt. 2435 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2436 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2437 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2438 */ 2439 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2440 struct intel_gvt_gtt_entry se; 2441 2442 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2443 se.type = get_entry_type(type - 1); 2444 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2445 2446 /* The entry parameters like present/writeable/cache type 2447 * set to the same as i915's scratch page tree. 2448 */ 2449 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2450 if (type == GTT_TYPE_PPGTT_PDE_PT) 2451 se.val64 |= PPAT_CACHED; 2452 2453 for (i = 0; i < page_entry_num; i++) 2454 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2455 } 2456 2457 return 0; 2458 } 2459 2460 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2461 { 2462 int i; 2463 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev; 2464 dma_addr_t daddr; 2465 2466 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2467 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2468 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2469 I915_GTT_PAGE_SHIFT); 2470 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2471 __free_page(vgpu->gtt.scratch_pt[i].page); 2472 vgpu->gtt.scratch_pt[i].page = NULL; 2473 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2474 } 2475 } 2476 2477 return 0; 2478 } 2479 2480 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2481 { 2482 int i, ret; 2483 2484 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2485 ret = alloc_scratch_pages(vgpu, i); 2486 if (ret) 2487 goto err; 2488 } 2489 2490 return 0; 2491 2492 err: 2493 release_scratch_page_tree(vgpu); 2494 return ret; 2495 } 2496 2497 /** 2498 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2499 * @vgpu: a vGPU 2500 * 2501 * This function is used to initialize per-vGPU graphics memory virtualization 2502 * components. 2503 * 2504 * Returns: 2505 * Zero on success, error code if failed. 2506 */ 2507 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2508 { 2509 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2510 2511 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2512 2513 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2514 INIT_LIST_HEAD(>t->oos_page_list_head); 2515 INIT_LIST_HEAD(>t->post_shadow_list_head); 2516 2517 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2518 if (IS_ERR(gtt->ggtt_mm)) { 2519 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2520 return PTR_ERR(gtt->ggtt_mm); 2521 } 2522 2523 intel_vgpu_reset_ggtt(vgpu, false); 2524 2525 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2526 2527 return create_scratch_page_tree(vgpu); 2528 } 2529 2530 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2531 { 2532 struct list_head *pos, *n; 2533 struct intel_vgpu_mm *mm; 2534 2535 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2536 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2537 intel_vgpu_destroy_mm(mm); 2538 } 2539 2540 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2541 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2542 2543 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2544 gvt_err("Why we still has spt not freed?\n"); 2545 ppgtt_free_all_spt(vgpu); 2546 } 2547 } 2548 2549 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2550 { 2551 struct intel_gvt_partial_pte *pos, *next; 2552 2553 list_for_each_entry_safe(pos, next, 2554 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2555 list) { 2556 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2557 pos->offset, pos->data); 2558 kfree(pos); 2559 } 2560 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2561 vgpu->gtt.ggtt_mm = NULL; 2562 } 2563 2564 /** 2565 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2566 * @vgpu: a vGPU 2567 * 2568 * This function is used to clean up per-vGPU graphics memory virtualization 2569 * components. 2570 * 2571 * Returns: 2572 * Zero on success, error code if failed. 2573 */ 2574 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2575 { 2576 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2577 intel_vgpu_destroy_ggtt_mm(vgpu); 2578 release_scratch_page_tree(vgpu); 2579 } 2580 2581 static void clean_spt_oos(struct intel_gvt *gvt) 2582 { 2583 struct intel_gvt_gtt *gtt = &gvt->gtt; 2584 struct list_head *pos, *n; 2585 struct intel_vgpu_oos_page *oos_page; 2586 2587 WARN(!list_empty(>t->oos_page_use_list_head), 2588 "someone is still using oos page\n"); 2589 2590 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2591 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2592 list_del(&oos_page->list); 2593 free_page((unsigned long)oos_page->mem); 2594 kfree(oos_page); 2595 } 2596 } 2597 2598 static int setup_spt_oos(struct intel_gvt *gvt) 2599 { 2600 struct intel_gvt_gtt *gtt = &gvt->gtt; 2601 struct intel_vgpu_oos_page *oos_page; 2602 int i; 2603 int ret; 2604 2605 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2606 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2607 2608 for (i = 0; i < preallocated_oos_pages; i++) { 2609 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2610 if (!oos_page) { 2611 ret = -ENOMEM; 2612 goto fail; 2613 } 2614 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2615 if (!oos_page->mem) { 2616 ret = -ENOMEM; 2617 kfree(oos_page); 2618 goto fail; 2619 } 2620 2621 INIT_LIST_HEAD(&oos_page->list); 2622 INIT_LIST_HEAD(&oos_page->vm_list); 2623 oos_page->id = i; 2624 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2625 } 2626 2627 gvt_dbg_mm("%d oos pages preallocated\n", i); 2628 2629 return 0; 2630 fail: 2631 clean_spt_oos(gvt); 2632 return ret; 2633 } 2634 2635 /** 2636 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2637 * @vgpu: a vGPU 2638 * @pdps: pdp root array 2639 * 2640 * This function is used to find a PPGTT mm object from mm object pool 2641 * 2642 * Returns: 2643 * pointer to mm object on success, NULL if failed. 2644 */ 2645 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2646 u64 pdps[]) 2647 { 2648 struct intel_vgpu_mm *mm; 2649 struct list_head *pos; 2650 2651 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2652 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2653 2654 switch (mm->ppgtt_mm.root_entry_type) { 2655 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2656 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2657 return mm; 2658 break; 2659 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2660 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2661 sizeof(mm->ppgtt_mm.guest_pdps))) 2662 return mm; 2663 break; 2664 default: 2665 GEM_BUG_ON(1); 2666 } 2667 } 2668 return NULL; 2669 } 2670 2671 /** 2672 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2673 * @vgpu: a vGPU 2674 * @root_entry_type: ppgtt root entry type 2675 * @pdps: guest pdps 2676 * 2677 * This function is used to find or create a PPGTT mm object from a guest. 2678 * 2679 * Returns: 2680 * Zero on success, negative error code if failed. 2681 */ 2682 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2683 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2684 { 2685 struct intel_vgpu_mm *mm; 2686 2687 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2688 if (mm) { 2689 intel_vgpu_mm_get(mm); 2690 } else { 2691 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2692 if (IS_ERR(mm)) 2693 gvt_vgpu_err("fail to create mm\n"); 2694 } 2695 return mm; 2696 } 2697 2698 /** 2699 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2700 * @vgpu: a vGPU 2701 * @pdps: guest pdps 2702 * 2703 * This function is used to find a PPGTT mm object from a guest and destroy it. 2704 * 2705 * Returns: 2706 * Zero on success, negative error code if failed. 2707 */ 2708 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2709 { 2710 struct intel_vgpu_mm *mm; 2711 2712 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2713 if (!mm) { 2714 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2715 return -EINVAL; 2716 } 2717 intel_vgpu_mm_put(mm); 2718 return 0; 2719 } 2720 2721 /** 2722 * intel_gvt_init_gtt - initialize mm components of a GVT device 2723 * @gvt: GVT device 2724 * 2725 * This function is called at the initialization stage, to initialize 2726 * the mm components of a GVT device. 2727 * 2728 * Returns: 2729 * zero on success, negative error code if failed. 2730 */ 2731 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2732 { 2733 int ret; 2734 void *page; 2735 struct device *dev = &gvt->gt->i915->drm.pdev->dev; 2736 dma_addr_t daddr; 2737 2738 gvt_dbg_core("init gtt\n"); 2739 2740 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2741 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2742 2743 page = (void *)get_zeroed_page(GFP_KERNEL); 2744 if (!page) { 2745 gvt_err("fail to allocate scratch ggtt page\n"); 2746 return -ENOMEM; 2747 } 2748 2749 daddr = dma_map_page(dev, virt_to_page(page), 0, 2750 4096, PCI_DMA_BIDIRECTIONAL); 2751 if (dma_mapping_error(dev, daddr)) { 2752 gvt_err("fail to dmamap scratch ggtt page\n"); 2753 __free_page(virt_to_page(page)); 2754 return -ENOMEM; 2755 } 2756 2757 gvt->gtt.scratch_page = virt_to_page(page); 2758 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2759 2760 if (enable_out_of_sync) { 2761 ret = setup_spt_oos(gvt); 2762 if (ret) { 2763 gvt_err("fail to initialize SPT oos\n"); 2764 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2765 __free_page(gvt->gtt.scratch_page); 2766 return ret; 2767 } 2768 } 2769 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2770 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2771 return 0; 2772 } 2773 2774 /** 2775 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2776 * @gvt: GVT device 2777 * 2778 * This function is called at the driver unloading stage, to clean up the 2779 * the mm components of a GVT device. 2780 * 2781 */ 2782 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2783 { 2784 struct device *dev = &gvt->gt->i915->drm.pdev->dev; 2785 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2786 I915_GTT_PAGE_SHIFT); 2787 2788 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2789 2790 __free_page(gvt->gtt.scratch_page); 2791 2792 if (enable_out_of_sync) 2793 clean_spt_oos(gvt); 2794 } 2795 2796 /** 2797 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2798 * @vgpu: a vGPU 2799 * 2800 * This function is called when invalidate all PPGTT instances of a vGPU. 2801 * 2802 */ 2803 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2804 { 2805 struct list_head *pos, *n; 2806 struct intel_vgpu_mm *mm; 2807 2808 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2809 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2810 if (mm->type == INTEL_GVT_MM_PPGTT) { 2811 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2812 list_del_init(&mm->ppgtt_mm.lru_list); 2813 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2814 if (mm->ppgtt_mm.shadowed) 2815 invalidate_ppgtt_mm(mm); 2816 } 2817 } 2818 } 2819 2820 /** 2821 * intel_vgpu_reset_ggtt - reset the GGTT entry 2822 * @vgpu: a vGPU 2823 * @invalidate_old: invalidate old entries 2824 * 2825 * This function is called at the vGPU create stage 2826 * to reset all the GGTT entries. 2827 * 2828 */ 2829 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2830 { 2831 struct intel_gvt *gvt = vgpu->gvt; 2832 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2833 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2834 struct intel_gvt_gtt_entry old_entry; 2835 u32 index; 2836 u32 num_entries; 2837 2838 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2839 pte_ops->set_present(&entry); 2840 2841 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2842 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2843 while (num_entries--) { 2844 if (invalidate_old) { 2845 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2846 ggtt_invalidate_pte(vgpu, &old_entry); 2847 } 2848 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2849 } 2850 2851 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2852 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2853 while (num_entries--) { 2854 if (invalidate_old) { 2855 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2856 ggtt_invalidate_pte(vgpu, &old_entry); 2857 } 2858 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2859 } 2860 2861 ggtt_invalidate(gvt->gt); 2862 } 2863 2864 /** 2865 * intel_vgpu_reset_gtt - reset the all GTT related status 2866 * @vgpu: a vGPU 2867 * 2868 * This function is called from vfio core to reset reset all 2869 * GTT related status, including GGTT, PPGTT, scratch page. 2870 * 2871 */ 2872 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2873 { 2874 /* Shadow pages are only created when there is no page 2875 * table tracking data, so remove page tracking data after 2876 * removing the shadow pages. 2877 */ 2878 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2879 intel_vgpu_reset_ggtt(vgpu, true); 2880 } 2881 2882 /** 2883 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2884 * @gvt: intel gvt device 2885 * 2886 * This function is called at driver resume stage to restore 2887 * GGTT entries of every vGPU. 2888 * 2889 */ 2890 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2891 { 2892 struct intel_vgpu *vgpu; 2893 struct intel_vgpu_mm *mm; 2894 int id; 2895 gen8_pte_t pte; 2896 u32 idx, num_low, num_hi, offset; 2897 2898 /* Restore dirty host ggtt for all vGPUs */ 2899 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2900 mm = vgpu->gtt.ggtt_mm; 2901 2902 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2903 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2904 for (idx = 0; idx < num_low; idx++) { 2905 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2906 if (pte & _PAGE_PRESENT) 2907 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2908 } 2909 2910 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2911 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2912 for (idx = 0; idx < num_hi; idx++) { 2913 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2914 if (pte & _PAGE_PRESENT) 2915 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2916 } 2917 } 2918 } 2919