1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size 57 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) { 58 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n", 59 addr, size); 60 return false; 61 } 62 return true; 63 } 64 65 /* translate a guest gmadr to host gmadr */ 66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 67 { 68 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 69 "invalid guest gmadr %llx\n", g_addr)) 70 return -EACCES; 71 72 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 73 *h_addr = vgpu_aperture_gmadr_base(vgpu) 74 + (g_addr - vgpu_aperture_offset(vgpu)); 75 else 76 *h_addr = vgpu_hidden_gmadr_base(vgpu) 77 + (g_addr - vgpu_hidden_offset(vgpu)); 78 return 0; 79 } 80 81 /* translate a host gmadr to guest gmadr */ 82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 83 { 84 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 85 "invalid host gmadr %llx\n", h_addr)) 86 return -EACCES; 87 88 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 89 *g_addr = vgpu_aperture_gmadr_base(vgpu) 90 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 91 else 92 *g_addr = vgpu_hidden_gmadr_base(vgpu) 93 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 94 return 0; 95 } 96 97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 98 unsigned long *h_index) 99 { 100 u64 h_addr; 101 int ret; 102 103 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 104 &h_addr); 105 if (ret) 106 return ret; 107 108 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 109 return 0; 110 } 111 112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 113 unsigned long *g_index) 114 { 115 u64 g_addr; 116 int ret; 117 118 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 119 &g_addr); 120 if (ret) 121 return ret; 122 123 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 124 return 0; 125 } 126 127 #define gtt_type_is_entry(type) \ 128 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 129 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 130 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 131 132 #define gtt_type_is_pt(type) \ 133 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 134 135 #define gtt_type_is_pte_pt(type) \ 136 (type == GTT_TYPE_PPGTT_PTE_PT) 137 138 #define gtt_type_is_root_pointer(type) \ 139 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 140 141 #define gtt_init_entry(e, t, p, v) do { \ 142 (e)->type = t; \ 143 (e)->pdev = p; \ 144 memcpy(&(e)->val64, &v, sizeof(v)); \ 145 } while (0) 146 147 /* 148 * Mappings between GTT_TYPE* enumerations. 149 * Following information can be found according to the given type: 150 * - type of next level page table 151 * - type of entry inside this level page table 152 * - type of entry with PSE set 153 * 154 * If the given type doesn't have such a kind of information, 155 * e.g. give a l4 root entry type, then request to get its PSE type, 156 * give a PTE page table type, then request to get its next level page 157 * table type, as we know l4 root entry doesn't have a PSE bit, 158 * and a PTE page table doesn't have a next level page table type, 159 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 160 * page table. 161 */ 162 163 struct gtt_type_table_entry { 164 int entry_type; 165 int pt_type; 166 int next_pt_type; 167 int pse_entry_type; 168 }; 169 170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 171 [type] = { \ 172 .entry_type = e_type, \ 173 .pt_type = cpt_type, \ 174 .next_pt_type = npt_type, \ 175 .pse_entry_type = pse_type, \ 176 } 177 178 static struct gtt_type_table_entry gtt_type_table[] = { 179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 180 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 181 GTT_TYPE_INVALID, 182 GTT_TYPE_PPGTT_PML4_PT, 183 GTT_TYPE_INVALID), 184 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 185 GTT_TYPE_PPGTT_PML4_ENTRY, 186 GTT_TYPE_PPGTT_PML4_PT, 187 GTT_TYPE_PPGTT_PDP_PT, 188 GTT_TYPE_INVALID), 189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 190 GTT_TYPE_PPGTT_PML4_ENTRY, 191 GTT_TYPE_PPGTT_PML4_PT, 192 GTT_TYPE_PPGTT_PDP_PT, 193 GTT_TYPE_INVALID), 194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 195 GTT_TYPE_PPGTT_PDP_ENTRY, 196 GTT_TYPE_PPGTT_PDP_PT, 197 GTT_TYPE_PPGTT_PDE_PT, 198 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 200 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 201 GTT_TYPE_INVALID, 202 GTT_TYPE_PPGTT_PDE_PT, 203 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 205 GTT_TYPE_PPGTT_PDP_ENTRY, 206 GTT_TYPE_PPGTT_PDP_PT, 207 GTT_TYPE_PPGTT_PDE_PT, 208 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 210 GTT_TYPE_PPGTT_PDE_ENTRY, 211 GTT_TYPE_PPGTT_PDE_PT, 212 GTT_TYPE_PPGTT_PTE_PT, 213 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 215 GTT_TYPE_PPGTT_PDE_ENTRY, 216 GTT_TYPE_PPGTT_PDE_PT, 217 GTT_TYPE_PPGTT_PTE_PT, 218 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 219 /* We take IPS bit as 'PSE' for PTE level. */ 220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 221 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 222 GTT_TYPE_PPGTT_PTE_PT, 223 GTT_TYPE_INVALID, 224 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 226 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 227 GTT_TYPE_PPGTT_PTE_PT, 228 GTT_TYPE_INVALID, 229 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 231 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_PT, 233 GTT_TYPE_INVALID, 234 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 236 GTT_TYPE_PPGTT_PDE_ENTRY, 237 GTT_TYPE_PPGTT_PDE_PT, 238 GTT_TYPE_INVALID, 239 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 241 GTT_TYPE_PPGTT_PDP_ENTRY, 242 GTT_TYPE_PPGTT_PDP_PT, 243 GTT_TYPE_INVALID, 244 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 246 GTT_TYPE_GGTT_PTE, 247 GTT_TYPE_INVALID, 248 GTT_TYPE_INVALID, 249 GTT_TYPE_INVALID), 250 }; 251 252 static inline int get_next_pt_type(int type) 253 { 254 return gtt_type_table[type].next_pt_type; 255 } 256 257 static inline int get_pt_type(int type) 258 { 259 return gtt_type_table[type].pt_type; 260 } 261 262 static inline int get_entry_type(int type) 263 { 264 return gtt_type_table[type].entry_type; 265 } 266 267 static inline int get_pse_type(int type) 268 { 269 return gtt_type_table[type].pse_entry_type; 270 } 271 272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 273 { 274 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 275 276 return readq(addr); 277 } 278 279 static void ggtt_invalidate(struct drm_i915_private *dev_priv) 280 { 281 mmio_hw_access_pre(dev_priv); 282 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 283 mmio_hw_access_post(dev_priv); 284 } 285 286 static void write_pte64(struct drm_i915_private *dev_priv, 287 unsigned long index, u64 pte) 288 { 289 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 290 291 writeq(pte, addr); 292 } 293 294 static inline int gtt_get_entry64(void *pt, 295 struct intel_gvt_gtt_entry *e, 296 unsigned long index, bool hypervisor_access, unsigned long gpa, 297 struct intel_vgpu *vgpu) 298 { 299 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 300 int ret; 301 302 if (WARN_ON(info->gtt_entry_size != 8)) 303 return -EINVAL; 304 305 if (hypervisor_access) { 306 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 307 (index << info->gtt_entry_size_shift), 308 &e->val64, 8); 309 if (WARN_ON(ret)) 310 return ret; 311 } else if (!pt) { 312 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 313 } else { 314 e->val64 = *((u64 *)pt + index); 315 } 316 return 0; 317 } 318 319 static inline int gtt_set_entry64(void *pt, 320 struct intel_gvt_gtt_entry *e, 321 unsigned long index, bool hypervisor_access, unsigned long gpa, 322 struct intel_vgpu *vgpu) 323 { 324 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 325 int ret; 326 327 if (WARN_ON(info->gtt_entry_size != 8)) 328 return -EINVAL; 329 330 if (hypervisor_access) { 331 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 332 (index << info->gtt_entry_size_shift), 333 &e->val64, 8); 334 if (WARN_ON(ret)) 335 return ret; 336 } else if (!pt) { 337 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 338 } else { 339 *((u64 *)pt + index) = e->val64; 340 } 341 return 0; 342 } 343 344 #define GTT_HAW 46 345 346 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 347 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 348 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 349 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 350 351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 353 354 #define GTT_64K_PTE_STRIDE 16 355 356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 357 { 358 unsigned long pfn; 359 360 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 361 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 362 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 363 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 364 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 365 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 366 else 367 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 368 return pfn; 369 } 370 371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 372 { 373 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 374 e->val64 &= ~ADDR_1G_MASK; 375 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 376 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 377 e->val64 &= ~ADDR_2M_MASK; 378 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 379 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 380 e->val64 &= ~ADDR_64K_MASK; 381 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 382 } else { 383 e->val64 &= ~ADDR_4K_MASK; 384 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 385 } 386 387 e->val64 |= (pfn << PAGE_SHIFT); 388 } 389 390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 391 { 392 return !!(e->val64 & _PAGE_PSE); 393 } 394 395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 396 { 397 if (gen8_gtt_test_pse(e)) { 398 switch (e->type) { 399 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 400 e->val64 &= ~_PAGE_PSE; 401 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 402 break; 403 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 404 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 405 e->val64 &= ~_PAGE_PSE; 406 break; 407 default: 408 WARN_ON(1); 409 } 410 } 411 } 412 413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 414 { 415 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 416 return false; 417 418 return !!(e->val64 & GEN8_PDE_IPS_64K); 419 } 420 421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 422 { 423 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 424 return; 425 426 e->val64 &= ~GEN8_PDE_IPS_64K; 427 } 428 429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 430 { 431 /* 432 * i915 writes PDP root pointer registers without present bit, 433 * it also works, so we need to treat root pointer entry 434 * specifically. 435 */ 436 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 437 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 438 return (e->val64 != 0); 439 else 440 return (e->val64 & _PAGE_PRESENT); 441 } 442 443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 444 { 445 e->val64 &= ~_PAGE_PRESENT; 446 } 447 448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 449 { 450 e->val64 |= _PAGE_PRESENT; 451 } 452 453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 454 { 455 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 456 } 457 458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 459 { 460 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 461 } 462 463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 464 { 465 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 466 } 467 468 /* 469 * Per-platform GMA routines. 470 */ 471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 472 { 473 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 474 475 trace_gma_index(__func__, gma, x); 476 return x; 477 } 478 479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 481 { \ 482 unsigned long x = (exp); \ 483 trace_gma_index(__func__, gma, x); \ 484 return x; \ 485 } 486 487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 492 493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 494 .get_entry = gtt_get_entry64, 495 .set_entry = gtt_set_entry64, 496 .clear_present = gtt_entry_clear_present, 497 .set_present = gtt_entry_set_present, 498 .test_present = gen8_gtt_test_present, 499 .test_pse = gen8_gtt_test_pse, 500 .clear_pse = gen8_gtt_clear_pse, 501 .clear_ips = gen8_gtt_clear_ips, 502 .test_ips = gen8_gtt_test_ips, 503 .clear_64k_splited = gen8_gtt_clear_64k_splited, 504 .set_64k_splited = gen8_gtt_set_64k_splited, 505 .test_64k_splited = gen8_gtt_test_64k_splited, 506 .get_pfn = gen8_gtt_get_pfn, 507 .set_pfn = gen8_gtt_set_pfn, 508 }; 509 510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 511 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 512 .gma_to_pte_index = gen8_gma_to_pte_index, 513 .gma_to_pde_index = gen8_gma_to_pde_index, 514 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 515 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 516 .gma_to_pml4_index = gen8_gma_to_pml4_index, 517 }; 518 519 /* Update entry type per pse and ips bit. */ 520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 521 struct intel_gvt_gtt_entry *entry, bool ips) 522 { 523 switch (entry->type) { 524 case GTT_TYPE_PPGTT_PDE_ENTRY: 525 case GTT_TYPE_PPGTT_PDP_ENTRY: 526 if (pte_ops->test_pse(entry)) 527 entry->type = get_pse_type(entry->type); 528 break; 529 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 530 if (ips) 531 entry->type = get_pse_type(entry->type); 532 break; 533 default: 534 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 535 } 536 537 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 538 } 539 540 /* 541 * MM helpers. 542 */ 543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 544 struct intel_gvt_gtt_entry *entry, unsigned long index, 545 bool guest) 546 { 547 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 548 549 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 550 551 entry->type = mm->ppgtt_mm.root_entry_type; 552 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 553 mm->ppgtt_mm.shadow_pdps, 554 entry, index, false, 0, mm->vgpu); 555 update_entry_type_for_real(pte_ops, entry, false); 556 } 557 558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 559 struct intel_gvt_gtt_entry *entry, unsigned long index) 560 { 561 _ppgtt_get_root_entry(mm, entry, index, true); 562 } 563 564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 565 struct intel_gvt_gtt_entry *entry, unsigned long index) 566 { 567 _ppgtt_get_root_entry(mm, entry, index, false); 568 } 569 570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 571 struct intel_gvt_gtt_entry *entry, unsigned long index, 572 bool guest) 573 { 574 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 575 576 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 577 mm->ppgtt_mm.shadow_pdps, 578 entry, index, false, 0, mm->vgpu); 579 } 580 581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 582 struct intel_gvt_gtt_entry *entry, unsigned long index) 583 { 584 _ppgtt_set_root_entry(mm, entry, index, true); 585 } 586 587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 588 struct intel_gvt_gtt_entry *entry, unsigned long index) 589 { 590 _ppgtt_set_root_entry(mm, entry, index, false); 591 } 592 593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 594 struct intel_gvt_gtt_entry *entry, unsigned long index) 595 { 596 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 597 598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 599 600 entry->type = GTT_TYPE_GGTT_PTE; 601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 602 false, 0, mm->vgpu); 603 } 604 605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 606 struct intel_gvt_gtt_entry *entry, unsigned long index) 607 { 608 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 609 610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 611 612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 613 false, 0, mm->vgpu); 614 } 615 616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 617 struct intel_gvt_gtt_entry *entry, unsigned long index) 618 { 619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 620 621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 622 623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 624 } 625 626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 627 struct intel_gvt_gtt_entry *entry, unsigned long index) 628 { 629 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 630 631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 632 633 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 634 } 635 636 /* 637 * PPGTT shadow page table helpers. 638 */ 639 static inline int ppgtt_spt_get_entry( 640 struct intel_vgpu_ppgtt_spt *spt, 641 void *page_table, int type, 642 struct intel_gvt_gtt_entry *e, unsigned long index, 643 bool guest) 644 { 645 struct intel_gvt *gvt = spt->vgpu->gvt; 646 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 647 int ret; 648 649 e->type = get_entry_type(type); 650 651 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 652 return -EINVAL; 653 654 ret = ops->get_entry(page_table, e, index, guest, 655 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 656 spt->vgpu); 657 if (ret) 658 return ret; 659 660 update_entry_type_for_real(ops, e, guest ? 661 spt->guest_page.pde_ips : false); 662 663 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 664 type, e->type, index, e->val64); 665 return 0; 666 } 667 668 static inline int ppgtt_spt_set_entry( 669 struct intel_vgpu_ppgtt_spt *spt, 670 void *page_table, int type, 671 struct intel_gvt_gtt_entry *e, unsigned long index, 672 bool guest) 673 { 674 struct intel_gvt *gvt = spt->vgpu->gvt; 675 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 676 677 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 678 return -EINVAL; 679 680 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 681 type, e->type, index, e->val64); 682 683 return ops->set_entry(page_table, e, index, guest, 684 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 685 spt->vgpu); 686 } 687 688 #define ppgtt_get_guest_entry(spt, e, index) \ 689 ppgtt_spt_get_entry(spt, NULL, \ 690 spt->guest_page.type, e, index, true) 691 692 #define ppgtt_set_guest_entry(spt, e, index) \ 693 ppgtt_spt_set_entry(spt, NULL, \ 694 spt->guest_page.type, e, index, true) 695 696 #define ppgtt_get_shadow_entry(spt, e, index) \ 697 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 698 spt->shadow_page.type, e, index, false) 699 700 #define ppgtt_set_shadow_entry(spt, e, index) \ 701 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 702 spt->shadow_page.type, e, index, false) 703 704 static void *alloc_spt(gfp_t gfp_mask) 705 { 706 struct intel_vgpu_ppgtt_spt *spt; 707 708 spt = kzalloc(sizeof(*spt), gfp_mask); 709 if (!spt) 710 return NULL; 711 712 spt->shadow_page.page = alloc_page(gfp_mask); 713 if (!spt->shadow_page.page) { 714 kfree(spt); 715 return NULL; 716 } 717 return spt; 718 } 719 720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 721 { 722 __free_page(spt->shadow_page.page); 723 kfree(spt); 724 } 725 726 static int detach_oos_page(struct intel_vgpu *vgpu, 727 struct intel_vgpu_oos_page *oos_page); 728 729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 730 { 731 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev; 732 733 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 734 735 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 736 PCI_DMA_BIDIRECTIONAL); 737 738 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 739 740 if (spt->guest_page.gfn) { 741 if (spt->guest_page.oos_page) 742 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 743 744 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 745 } 746 747 list_del_init(&spt->post_shadow_list); 748 free_spt(spt); 749 } 750 751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 752 { 753 struct intel_vgpu_ppgtt_spt *spt, *spn; 754 struct radix_tree_iter iter; 755 LIST_HEAD(all_spt); 756 void __rcu **slot; 757 758 rcu_read_lock(); 759 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 760 spt = radix_tree_deref_slot(slot); 761 list_move(&spt->post_shadow_list, &all_spt); 762 } 763 rcu_read_unlock(); 764 765 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 766 ppgtt_free_spt(spt); 767 } 768 769 static int ppgtt_handle_guest_write_page_table_bytes( 770 struct intel_vgpu_ppgtt_spt *spt, 771 u64 pa, void *p_data, int bytes); 772 773 static int ppgtt_write_protection_handler( 774 struct intel_vgpu_page_track *page_track, 775 u64 gpa, void *data, int bytes) 776 { 777 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 778 779 int ret; 780 781 if (bytes != 4 && bytes != 8) 782 return -EINVAL; 783 784 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 785 if (ret) 786 return ret; 787 return ret; 788 } 789 790 /* Find a spt by guest gfn. */ 791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 792 struct intel_vgpu *vgpu, unsigned long gfn) 793 { 794 struct intel_vgpu_page_track *track; 795 796 track = intel_vgpu_find_page_track(vgpu, gfn); 797 if (track && track->handler == ppgtt_write_protection_handler) 798 return track->priv_data; 799 800 return NULL; 801 } 802 803 /* Find the spt by shadow page mfn. */ 804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 805 struct intel_vgpu *vgpu, unsigned long mfn) 806 { 807 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 808 } 809 810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 811 812 /* Allocate shadow page table without guest page. */ 813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 814 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 815 { 816 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 817 struct intel_vgpu_ppgtt_spt *spt = NULL; 818 dma_addr_t daddr; 819 int ret; 820 821 retry: 822 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 823 if (!spt) { 824 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 825 goto retry; 826 827 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 828 return ERR_PTR(-ENOMEM); 829 } 830 831 spt->vgpu = vgpu; 832 atomic_set(&spt->refcount, 1); 833 INIT_LIST_HEAD(&spt->post_shadow_list); 834 835 /* 836 * Init shadow_page. 837 */ 838 spt->shadow_page.type = type; 839 daddr = dma_map_page(kdev, spt->shadow_page.page, 840 0, 4096, PCI_DMA_BIDIRECTIONAL); 841 if (dma_mapping_error(kdev, daddr)) { 842 gvt_vgpu_err("fail to map dma addr\n"); 843 ret = -EINVAL; 844 goto err_free_spt; 845 } 846 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 847 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 848 849 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 850 if (ret) 851 goto err_unmap_dma; 852 853 return spt; 854 855 err_unmap_dma: 856 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 857 err_free_spt: 858 free_spt(spt); 859 return ERR_PTR(ret); 860 } 861 862 /* Allocate shadow page table associated with specific gfn. */ 863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 864 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 865 unsigned long gfn, bool guest_pde_ips) 866 { 867 struct intel_vgpu_ppgtt_spt *spt; 868 int ret; 869 870 spt = ppgtt_alloc_spt(vgpu, type); 871 if (IS_ERR(spt)) 872 return spt; 873 874 /* 875 * Init guest_page. 876 */ 877 ret = intel_vgpu_register_page_track(vgpu, gfn, 878 ppgtt_write_protection_handler, spt); 879 if (ret) { 880 ppgtt_free_spt(spt); 881 return ERR_PTR(ret); 882 } 883 884 spt->guest_page.type = type; 885 spt->guest_page.gfn = gfn; 886 spt->guest_page.pde_ips = guest_pde_ips; 887 888 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 889 890 return spt; 891 } 892 893 #define pt_entry_size_shift(spt) \ 894 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 895 896 #define pt_entries(spt) \ 897 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 898 899 #define for_each_present_guest_entry(spt, e, i) \ 900 for (i = 0; i < pt_entries(spt); \ 901 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 902 if (!ppgtt_get_guest_entry(spt, e, i) && \ 903 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 904 905 #define for_each_present_shadow_entry(spt, e, i) \ 906 for (i = 0; i < pt_entries(spt); \ 907 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 908 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 909 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 910 911 #define for_each_shadow_entry(spt, e, i) \ 912 for (i = 0; i < pt_entries(spt); \ 913 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 914 if (!ppgtt_get_shadow_entry(spt, e, i)) 915 916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 917 { 918 int v = atomic_read(&spt->refcount); 919 920 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 921 atomic_inc(&spt->refcount); 922 } 923 924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 925 { 926 int v = atomic_read(&spt->refcount); 927 928 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 929 return atomic_dec_return(&spt->refcount); 930 } 931 932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 933 934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 935 struct intel_gvt_gtt_entry *e) 936 { 937 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 938 struct intel_vgpu_ppgtt_spt *s; 939 enum intel_gvt_gtt_type cur_pt_type; 940 941 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 942 943 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 944 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 945 cur_pt_type = get_next_pt_type(e->type) + 1; 946 if (ops->get_pfn(e) == 947 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 948 return 0; 949 } 950 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 951 if (!s) { 952 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 953 ops->get_pfn(e)); 954 return -ENXIO; 955 } 956 return ppgtt_invalidate_spt(s); 957 } 958 959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 960 struct intel_gvt_gtt_entry *entry) 961 { 962 struct intel_vgpu *vgpu = spt->vgpu; 963 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 964 unsigned long pfn; 965 int type; 966 967 pfn = ops->get_pfn(entry); 968 type = spt->shadow_page.type; 969 970 /* Uninitialized spte or unshadowed spte. */ 971 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 972 return; 973 974 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 975 } 976 977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 978 { 979 struct intel_vgpu *vgpu = spt->vgpu; 980 struct intel_gvt_gtt_entry e; 981 unsigned long index; 982 int ret; 983 984 trace_spt_change(spt->vgpu->id, "die", spt, 985 spt->guest_page.gfn, spt->shadow_page.type); 986 987 if (ppgtt_put_spt(spt) > 0) 988 return 0; 989 990 for_each_present_shadow_entry(spt, &e, index) { 991 switch (e.type) { 992 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 993 gvt_vdbg_mm("invalidate 4K entry\n"); 994 ppgtt_invalidate_pte(spt, &e); 995 break; 996 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 997 /* We don't setup 64K shadow entry so far. */ 998 WARN(1, "suspicious 64K gtt entry\n"); 999 continue; 1000 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1001 gvt_vdbg_mm("invalidate 2M entry\n"); 1002 continue; 1003 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1004 WARN(1, "GVT doesn't support 1GB page\n"); 1005 continue; 1006 case GTT_TYPE_PPGTT_PML4_ENTRY: 1007 case GTT_TYPE_PPGTT_PDP_ENTRY: 1008 case GTT_TYPE_PPGTT_PDE_ENTRY: 1009 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1010 ret = ppgtt_invalidate_spt_by_shadow_entry( 1011 spt->vgpu, &e); 1012 if (ret) 1013 goto fail; 1014 break; 1015 default: 1016 GEM_BUG_ON(1); 1017 } 1018 } 1019 1020 trace_spt_change(spt->vgpu->id, "release", spt, 1021 spt->guest_page.gfn, spt->shadow_page.type); 1022 ppgtt_free_spt(spt); 1023 return 0; 1024 fail: 1025 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1026 spt, e.val64, e.type); 1027 return ret; 1028 } 1029 1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1031 { 1032 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1033 1034 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1035 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1036 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1037 1038 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1039 } else if (INTEL_GEN(dev_priv) >= 11) { 1040 /* 64K paging only controlled by IPS bit in PTE now. */ 1041 return true; 1042 } else 1043 return false; 1044 } 1045 1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1047 1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1049 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1050 { 1051 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1052 struct intel_vgpu_ppgtt_spt *spt = NULL; 1053 bool ips = false; 1054 int ret; 1055 1056 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1057 1058 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1059 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1060 1061 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1062 if (spt) { 1063 ppgtt_get_spt(spt); 1064 1065 if (ips != spt->guest_page.pde_ips) { 1066 spt->guest_page.pde_ips = ips; 1067 1068 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1069 clear_page(spt->shadow_page.vaddr); 1070 ret = ppgtt_populate_spt(spt); 1071 if (ret) { 1072 ppgtt_put_spt(spt); 1073 goto err; 1074 } 1075 } 1076 } else { 1077 int type = get_next_pt_type(we->type); 1078 1079 if (!gtt_type_is_pt(type)) { 1080 ret = -EINVAL; 1081 goto err; 1082 } 1083 1084 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1085 if (IS_ERR(spt)) { 1086 ret = PTR_ERR(spt); 1087 goto err; 1088 } 1089 1090 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1091 if (ret) 1092 goto err_free_spt; 1093 1094 ret = ppgtt_populate_spt(spt); 1095 if (ret) 1096 goto err_free_spt; 1097 1098 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1099 spt->shadow_page.type); 1100 } 1101 return spt; 1102 1103 err_free_spt: 1104 ppgtt_free_spt(spt); 1105 err: 1106 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1107 spt, we->val64, we->type); 1108 return ERR_PTR(ret); 1109 } 1110 1111 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1112 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1113 { 1114 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1115 1116 se->type = ge->type; 1117 se->val64 = ge->val64; 1118 1119 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1120 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1121 ops->clear_ips(se); 1122 1123 ops->set_pfn(se, s->shadow_page.mfn); 1124 } 1125 1126 /** 1127 * Check if can do 2M page 1128 * @vgpu: target vgpu 1129 * @entry: target pfn's gtt entry 1130 * 1131 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1132 * negtive if found err. 1133 */ 1134 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1135 struct intel_gvt_gtt_entry *entry) 1136 { 1137 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1138 unsigned long pfn; 1139 1140 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M)) 1141 return 0; 1142 1143 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1144 if (pfn == INTEL_GVT_INVALID_ADDR) 1145 return -EINVAL; 1146 1147 return PageTransHuge(pfn_to_page(pfn)); 1148 } 1149 1150 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1151 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1152 struct intel_gvt_gtt_entry *se) 1153 { 1154 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1155 struct intel_vgpu_ppgtt_spt *sub_spt; 1156 struct intel_gvt_gtt_entry sub_se; 1157 unsigned long start_gfn; 1158 dma_addr_t dma_addr; 1159 unsigned long sub_index; 1160 int ret; 1161 1162 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1163 1164 start_gfn = ops->get_pfn(se); 1165 1166 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1167 if (IS_ERR(sub_spt)) 1168 return PTR_ERR(sub_spt); 1169 1170 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1171 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1172 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1173 if (ret) { 1174 ppgtt_invalidate_spt(spt); 1175 return ret; 1176 } 1177 sub_se.val64 = se->val64; 1178 1179 /* Copy the PAT field from PDE. */ 1180 sub_se.val64 &= ~_PAGE_PAT; 1181 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1182 1183 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1184 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1185 } 1186 1187 /* Clear dirty field. */ 1188 se->val64 &= ~_PAGE_DIRTY; 1189 1190 ops->clear_pse(se); 1191 ops->clear_ips(se); 1192 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1193 ppgtt_set_shadow_entry(spt, se, index); 1194 return 0; 1195 } 1196 1197 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1198 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1199 struct intel_gvt_gtt_entry *se) 1200 { 1201 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1202 struct intel_gvt_gtt_entry entry = *se; 1203 unsigned long start_gfn; 1204 dma_addr_t dma_addr; 1205 int i, ret; 1206 1207 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1208 1209 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1210 1211 start_gfn = ops->get_pfn(se); 1212 1213 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1214 ops->set_64k_splited(&entry); 1215 1216 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1217 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1218 start_gfn + i, PAGE_SIZE, &dma_addr); 1219 if (ret) 1220 return ret; 1221 1222 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1223 ppgtt_set_shadow_entry(spt, &entry, index + i); 1224 } 1225 return 0; 1226 } 1227 1228 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1229 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1230 struct intel_gvt_gtt_entry *ge) 1231 { 1232 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1233 struct intel_gvt_gtt_entry se = *ge; 1234 unsigned long gfn, page_size = PAGE_SIZE; 1235 dma_addr_t dma_addr; 1236 int ret; 1237 1238 if (!pte_ops->test_present(ge)) 1239 return 0; 1240 1241 gfn = pte_ops->get_pfn(ge); 1242 1243 switch (ge->type) { 1244 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1245 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1246 break; 1247 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1248 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1249 /* 1250 * The layout of 64K page is special, the page size is 1251 * controlled by uper PDE. To be simple, we always split 1252 * 64K page to smaller 4K pages in shadow PT. 1253 */ 1254 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1255 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1256 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1257 ret = is_2MB_gtt_possible(vgpu, ge); 1258 if (ret == 0) 1259 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1260 else if (ret < 0) 1261 return ret; 1262 page_size = I915_GTT_PAGE_SIZE_2M; 1263 break; 1264 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1265 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1266 return -EINVAL; 1267 default: 1268 GEM_BUG_ON(1); 1269 }; 1270 1271 /* direct shadow */ 1272 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1273 &dma_addr); 1274 if (ret) 1275 return -ENXIO; 1276 1277 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1278 ppgtt_set_shadow_entry(spt, &se, index); 1279 return 0; 1280 } 1281 1282 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1283 { 1284 struct intel_vgpu *vgpu = spt->vgpu; 1285 struct intel_gvt *gvt = vgpu->gvt; 1286 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1287 struct intel_vgpu_ppgtt_spt *s; 1288 struct intel_gvt_gtt_entry se, ge; 1289 unsigned long gfn, i; 1290 int ret; 1291 1292 trace_spt_change(spt->vgpu->id, "born", spt, 1293 spt->guest_page.gfn, spt->shadow_page.type); 1294 1295 for_each_present_guest_entry(spt, &ge, i) { 1296 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1297 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1298 if (IS_ERR(s)) { 1299 ret = PTR_ERR(s); 1300 goto fail; 1301 } 1302 ppgtt_get_shadow_entry(spt, &se, i); 1303 ppgtt_generate_shadow_entry(&se, s, &ge); 1304 ppgtt_set_shadow_entry(spt, &se, i); 1305 } else { 1306 gfn = ops->get_pfn(&ge); 1307 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1308 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1309 ppgtt_set_shadow_entry(spt, &se, i); 1310 continue; 1311 } 1312 1313 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1314 if (ret) 1315 goto fail; 1316 } 1317 } 1318 return 0; 1319 fail: 1320 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1321 spt, ge.val64, ge.type); 1322 return ret; 1323 } 1324 1325 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1326 struct intel_gvt_gtt_entry *se, unsigned long index) 1327 { 1328 struct intel_vgpu *vgpu = spt->vgpu; 1329 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1330 int ret; 1331 1332 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1333 spt->shadow_page.type, se->val64, index); 1334 1335 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1336 se->type, index, se->val64); 1337 1338 if (!ops->test_present(se)) 1339 return 0; 1340 1341 if (ops->get_pfn(se) == 1342 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1343 return 0; 1344 1345 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1346 struct intel_vgpu_ppgtt_spt *s = 1347 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1348 if (!s) { 1349 gvt_vgpu_err("fail to find guest page\n"); 1350 ret = -ENXIO; 1351 goto fail; 1352 } 1353 ret = ppgtt_invalidate_spt(s); 1354 if (ret) 1355 goto fail; 1356 } else { 1357 /* We don't setup 64K shadow entry so far. */ 1358 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1359 "suspicious 64K entry\n"); 1360 ppgtt_invalidate_pte(spt, se); 1361 } 1362 1363 return 0; 1364 fail: 1365 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1366 spt, se->val64, se->type); 1367 return ret; 1368 } 1369 1370 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1371 struct intel_gvt_gtt_entry *we, unsigned long index) 1372 { 1373 struct intel_vgpu *vgpu = spt->vgpu; 1374 struct intel_gvt_gtt_entry m; 1375 struct intel_vgpu_ppgtt_spt *s; 1376 int ret; 1377 1378 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1379 we->val64, index); 1380 1381 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1382 we->type, index, we->val64); 1383 1384 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1385 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1386 if (IS_ERR(s)) { 1387 ret = PTR_ERR(s); 1388 goto fail; 1389 } 1390 ppgtt_get_shadow_entry(spt, &m, index); 1391 ppgtt_generate_shadow_entry(&m, s, we); 1392 ppgtt_set_shadow_entry(spt, &m, index); 1393 } else { 1394 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1395 if (ret) 1396 goto fail; 1397 } 1398 return 0; 1399 fail: 1400 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1401 spt, we->val64, we->type); 1402 return ret; 1403 } 1404 1405 static int sync_oos_page(struct intel_vgpu *vgpu, 1406 struct intel_vgpu_oos_page *oos_page) 1407 { 1408 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1409 struct intel_gvt *gvt = vgpu->gvt; 1410 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1411 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1412 struct intel_gvt_gtt_entry old, new; 1413 int index; 1414 int ret; 1415 1416 trace_oos_change(vgpu->id, "sync", oos_page->id, 1417 spt, spt->guest_page.type); 1418 1419 old.type = new.type = get_entry_type(spt->guest_page.type); 1420 old.val64 = new.val64 = 0; 1421 1422 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1423 info->gtt_entry_size_shift); index++) { 1424 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1425 ops->get_entry(NULL, &new, index, true, 1426 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1427 1428 if (old.val64 == new.val64 1429 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1430 continue; 1431 1432 trace_oos_sync(vgpu->id, oos_page->id, 1433 spt, spt->guest_page.type, 1434 new.val64, index); 1435 1436 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1437 if (ret) 1438 return ret; 1439 1440 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1441 } 1442 1443 spt->guest_page.write_cnt = 0; 1444 list_del_init(&spt->post_shadow_list); 1445 return 0; 1446 } 1447 1448 static int detach_oos_page(struct intel_vgpu *vgpu, 1449 struct intel_vgpu_oos_page *oos_page) 1450 { 1451 struct intel_gvt *gvt = vgpu->gvt; 1452 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1453 1454 trace_oos_change(vgpu->id, "detach", oos_page->id, 1455 spt, spt->guest_page.type); 1456 1457 spt->guest_page.write_cnt = 0; 1458 spt->guest_page.oos_page = NULL; 1459 oos_page->spt = NULL; 1460 1461 list_del_init(&oos_page->vm_list); 1462 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1463 1464 return 0; 1465 } 1466 1467 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1468 struct intel_vgpu_ppgtt_spt *spt) 1469 { 1470 struct intel_gvt *gvt = spt->vgpu->gvt; 1471 int ret; 1472 1473 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1474 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1475 oos_page->mem, I915_GTT_PAGE_SIZE); 1476 if (ret) 1477 return ret; 1478 1479 oos_page->spt = spt; 1480 spt->guest_page.oos_page = oos_page; 1481 1482 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1483 1484 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1485 spt, spt->guest_page.type); 1486 return 0; 1487 } 1488 1489 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1490 { 1491 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1492 int ret; 1493 1494 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1495 if (ret) 1496 return ret; 1497 1498 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1499 spt, spt->guest_page.type); 1500 1501 list_del_init(&oos_page->vm_list); 1502 return sync_oos_page(spt->vgpu, oos_page); 1503 } 1504 1505 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1506 { 1507 struct intel_gvt *gvt = spt->vgpu->gvt; 1508 struct intel_gvt_gtt *gtt = &gvt->gtt; 1509 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1510 int ret; 1511 1512 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1513 1514 if (list_empty(>t->oos_page_free_list_head)) { 1515 oos_page = container_of(gtt->oos_page_use_list_head.next, 1516 struct intel_vgpu_oos_page, list); 1517 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1518 if (ret) 1519 return ret; 1520 ret = detach_oos_page(spt->vgpu, oos_page); 1521 if (ret) 1522 return ret; 1523 } else 1524 oos_page = container_of(gtt->oos_page_free_list_head.next, 1525 struct intel_vgpu_oos_page, list); 1526 return attach_oos_page(oos_page, spt); 1527 } 1528 1529 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1530 { 1531 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1532 1533 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1534 return -EINVAL; 1535 1536 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1537 spt, spt->guest_page.type); 1538 1539 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1540 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1541 } 1542 1543 /** 1544 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1545 * @vgpu: a vGPU 1546 * 1547 * This function is called before submitting a guest workload to host, 1548 * to sync all the out-of-synced shadow for vGPU 1549 * 1550 * Returns: 1551 * Zero on success, negative error code if failed. 1552 */ 1553 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1554 { 1555 struct list_head *pos, *n; 1556 struct intel_vgpu_oos_page *oos_page; 1557 int ret; 1558 1559 if (!enable_out_of_sync) 1560 return 0; 1561 1562 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1563 oos_page = container_of(pos, 1564 struct intel_vgpu_oos_page, vm_list); 1565 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1566 if (ret) 1567 return ret; 1568 } 1569 return 0; 1570 } 1571 1572 /* 1573 * The heart of PPGTT shadow page table. 1574 */ 1575 static int ppgtt_handle_guest_write_page_table( 1576 struct intel_vgpu_ppgtt_spt *spt, 1577 struct intel_gvt_gtt_entry *we, unsigned long index) 1578 { 1579 struct intel_vgpu *vgpu = spt->vgpu; 1580 int type = spt->shadow_page.type; 1581 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1582 struct intel_gvt_gtt_entry old_se; 1583 int new_present; 1584 int i, ret; 1585 1586 new_present = ops->test_present(we); 1587 1588 /* 1589 * Adding the new entry first and then removing the old one, that can 1590 * guarantee the ppgtt table is validated during the window between 1591 * adding and removal. 1592 */ 1593 ppgtt_get_shadow_entry(spt, &old_se, index); 1594 1595 if (new_present) { 1596 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1597 if (ret) 1598 goto fail; 1599 } 1600 1601 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1602 if (ret) 1603 goto fail; 1604 1605 if (!new_present) { 1606 /* For 64KB splited entries, we need clear them all. */ 1607 if (ops->test_64k_splited(&old_se) && 1608 !(index % GTT_64K_PTE_STRIDE)) { 1609 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1610 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1611 ops->clear_64k_splited(&old_se); 1612 ops->set_pfn(&old_se, 1613 vgpu->gtt.scratch_pt[type].page_mfn); 1614 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1615 } 1616 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1617 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1618 ops->clear_pse(&old_se); 1619 ops->set_pfn(&old_se, 1620 vgpu->gtt.scratch_pt[type].page_mfn); 1621 ppgtt_set_shadow_entry(spt, &old_se, index); 1622 } else { 1623 ops->set_pfn(&old_se, 1624 vgpu->gtt.scratch_pt[type].page_mfn); 1625 ppgtt_set_shadow_entry(spt, &old_se, index); 1626 } 1627 } 1628 1629 return 0; 1630 fail: 1631 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1632 spt, we->val64, we->type); 1633 return ret; 1634 } 1635 1636 1637 1638 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1639 { 1640 return enable_out_of_sync 1641 && gtt_type_is_pte_pt(spt->guest_page.type) 1642 && spt->guest_page.write_cnt >= 2; 1643 } 1644 1645 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1646 unsigned long index) 1647 { 1648 set_bit(index, spt->post_shadow_bitmap); 1649 if (!list_empty(&spt->post_shadow_list)) 1650 return; 1651 1652 list_add_tail(&spt->post_shadow_list, 1653 &spt->vgpu->gtt.post_shadow_list_head); 1654 } 1655 1656 /** 1657 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1658 * @vgpu: a vGPU 1659 * 1660 * This function is called before submitting a guest workload to host, 1661 * to flush all the post shadows for a vGPU. 1662 * 1663 * Returns: 1664 * Zero on success, negative error code if failed. 1665 */ 1666 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1667 { 1668 struct list_head *pos, *n; 1669 struct intel_vgpu_ppgtt_spt *spt; 1670 struct intel_gvt_gtt_entry ge; 1671 unsigned long index; 1672 int ret; 1673 1674 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1675 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1676 post_shadow_list); 1677 1678 for_each_set_bit(index, spt->post_shadow_bitmap, 1679 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1680 ppgtt_get_guest_entry(spt, &ge, index); 1681 1682 ret = ppgtt_handle_guest_write_page_table(spt, 1683 &ge, index); 1684 if (ret) 1685 return ret; 1686 clear_bit(index, spt->post_shadow_bitmap); 1687 } 1688 list_del_init(&spt->post_shadow_list); 1689 } 1690 return 0; 1691 } 1692 1693 static int ppgtt_handle_guest_write_page_table_bytes( 1694 struct intel_vgpu_ppgtt_spt *spt, 1695 u64 pa, void *p_data, int bytes) 1696 { 1697 struct intel_vgpu *vgpu = spt->vgpu; 1698 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1699 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1700 struct intel_gvt_gtt_entry we, se; 1701 unsigned long index; 1702 int ret; 1703 1704 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1705 1706 ppgtt_get_guest_entry(spt, &we, index); 1707 1708 /* 1709 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1710 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1711 * ignored. 1712 */ 1713 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1714 (index % GTT_64K_PTE_STRIDE)) { 1715 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1716 index); 1717 return 0; 1718 } 1719 1720 if (bytes == info->gtt_entry_size) { 1721 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1722 if (ret) 1723 return ret; 1724 } else { 1725 if (!test_bit(index, spt->post_shadow_bitmap)) { 1726 int type = spt->shadow_page.type; 1727 1728 ppgtt_get_shadow_entry(spt, &se, index); 1729 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1730 if (ret) 1731 return ret; 1732 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1733 ppgtt_set_shadow_entry(spt, &se, index); 1734 } 1735 ppgtt_set_post_shadow(spt, index); 1736 } 1737 1738 if (!enable_out_of_sync) 1739 return 0; 1740 1741 spt->guest_page.write_cnt++; 1742 1743 if (spt->guest_page.oos_page) 1744 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1745 false, 0, vgpu); 1746 1747 if (can_do_out_of_sync(spt)) { 1748 if (!spt->guest_page.oos_page) 1749 ppgtt_allocate_oos_page(spt); 1750 1751 ret = ppgtt_set_guest_page_oos(spt); 1752 if (ret < 0) 1753 return ret; 1754 } 1755 return 0; 1756 } 1757 1758 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1759 { 1760 struct intel_vgpu *vgpu = mm->vgpu; 1761 struct intel_gvt *gvt = vgpu->gvt; 1762 struct intel_gvt_gtt *gtt = &gvt->gtt; 1763 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1764 struct intel_gvt_gtt_entry se; 1765 int index; 1766 1767 if (!mm->ppgtt_mm.shadowed) 1768 return; 1769 1770 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1771 ppgtt_get_shadow_root_entry(mm, &se, index); 1772 1773 if (!ops->test_present(&se)) 1774 continue; 1775 1776 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1777 se.val64 = 0; 1778 ppgtt_set_shadow_root_entry(mm, &se, index); 1779 1780 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1781 NULL, se.type, se.val64, index); 1782 } 1783 1784 mm->ppgtt_mm.shadowed = false; 1785 } 1786 1787 1788 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1789 { 1790 struct intel_vgpu *vgpu = mm->vgpu; 1791 struct intel_gvt *gvt = vgpu->gvt; 1792 struct intel_gvt_gtt *gtt = &gvt->gtt; 1793 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1794 struct intel_vgpu_ppgtt_spt *spt; 1795 struct intel_gvt_gtt_entry ge, se; 1796 int index, ret; 1797 1798 if (mm->ppgtt_mm.shadowed) 1799 return 0; 1800 1801 mm->ppgtt_mm.shadowed = true; 1802 1803 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1804 ppgtt_get_guest_root_entry(mm, &ge, index); 1805 1806 if (!ops->test_present(&ge)) 1807 continue; 1808 1809 trace_spt_guest_change(vgpu->id, __func__, NULL, 1810 ge.type, ge.val64, index); 1811 1812 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1813 if (IS_ERR(spt)) { 1814 gvt_vgpu_err("fail to populate guest root pointer\n"); 1815 ret = PTR_ERR(spt); 1816 goto fail; 1817 } 1818 ppgtt_generate_shadow_entry(&se, spt, &ge); 1819 ppgtt_set_shadow_root_entry(mm, &se, index); 1820 1821 trace_spt_guest_change(vgpu->id, "populate root pointer", 1822 NULL, se.type, se.val64, index); 1823 } 1824 1825 return 0; 1826 fail: 1827 invalidate_ppgtt_mm(mm); 1828 return ret; 1829 } 1830 1831 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1832 { 1833 struct intel_vgpu_mm *mm; 1834 1835 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1836 if (!mm) 1837 return NULL; 1838 1839 mm->vgpu = vgpu; 1840 kref_init(&mm->ref); 1841 atomic_set(&mm->pincount, 0); 1842 1843 return mm; 1844 } 1845 1846 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1847 { 1848 kfree(mm); 1849 } 1850 1851 /** 1852 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1853 * @vgpu: a vGPU 1854 * @root_entry_type: ppgtt root entry type 1855 * @pdps: guest pdps. 1856 * 1857 * This function is used to create a ppgtt mm object for a vGPU. 1858 * 1859 * Returns: 1860 * Zero on success, negative error code in pointer if failed. 1861 */ 1862 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1863 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1864 { 1865 struct intel_gvt *gvt = vgpu->gvt; 1866 struct intel_vgpu_mm *mm; 1867 int ret; 1868 1869 mm = vgpu_alloc_mm(vgpu); 1870 if (!mm) 1871 return ERR_PTR(-ENOMEM); 1872 1873 mm->type = INTEL_GVT_MM_PPGTT; 1874 1875 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1876 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1877 mm->ppgtt_mm.root_entry_type = root_entry_type; 1878 1879 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1880 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1881 1882 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1883 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1884 else 1885 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1886 sizeof(mm->ppgtt_mm.guest_pdps)); 1887 1888 ret = shadow_ppgtt_mm(mm); 1889 if (ret) { 1890 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1891 vgpu_free_mm(mm); 1892 return ERR_PTR(ret); 1893 } 1894 1895 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1896 1897 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1898 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1899 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1900 1901 return mm; 1902 } 1903 1904 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1905 { 1906 struct intel_vgpu_mm *mm; 1907 unsigned long nr_entries; 1908 1909 mm = vgpu_alloc_mm(vgpu); 1910 if (!mm) 1911 return ERR_PTR(-ENOMEM); 1912 1913 mm->type = INTEL_GVT_MM_GGTT; 1914 1915 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1916 mm->ggtt_mm.virtual_ggtt = 1917 vzalloc(array_size(nr_entries, 1918 vgpu->gvt->device_info.gtt_entry_size)); 1919 if (!mm->ggtt_mm.virtual_ggtt) { 1920 vgpu_free_mm(mm); 1921 return ERR_PTR(-ENOMEM); 1922 } 1923 1924 return mm; 1925 } 1926 1927 /** 1928 * _intel_vgpu_mm_release - destroy a mm object 1929 * @mm_ref: a kref object 1930 * 1931 * This function is used to destroy a mm object for vGPU 1932 * 1933 */ 1934 void _intel_vgpu_mm_release(struct kref *mm_ref) 1935 { 1936 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1937 1938 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1939 gvt_err("vgpu mm pin count bug detected\n"); 1940 1941 if (mm->type == INTEL_GVT_MM_PPGTT) { 1942 list_del(&mm->ppgtt_mm.list); 1943 list_del(&mm->ppgtt_mm.lru_list); 1944 invalidate_ppgtt_mm(mm); 1945 } else { 1946 vfree(mm->ggtt_mm.virtual_ggtt); 1947 } 1948 1949 vgpu_free_mm(mm); 1950 } 1951 1952 /** 1953 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1954 * @mm: a vGPU mm object 1955 * 1956 * This function is called when user doesn't want to use a vGPU mm object 1957 */ 1958 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1959 { 1960 atomic_dec_if_positive(&mm->pincount); 1961 } 1962 1963 /** 1964 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1965 * @mm: target vgpu mm 1966 * 1967 * This function is called when user wants to use a vGPU mm object. If this 1968 * mm object hasn't been shadowed yet, the shadow will be populated at this 1969 * time. 1970 * 1971 * Returns: 1972 * Zero on success, negative error code if failed. 1973 */ 1974 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 1975 { 1976 int ret; 1977 1978 atomic_inc(&mm->pincount); 1979 1980 if (mm->type == INTEL_GVT_MM_PPGTT) { 1981 ret = shadow_ppgtt_mm(mm); 1982 if (ret) 1983 return ret; 1984 1985 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1986 list_move_tail(&mm->ppgtt_mm.lru_list, 1987 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 1988 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1989 } 1990 1991 return 0; 1992 } 1993 1994 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 1995 { 1996 struct intel_vgpu_mm *mm; 1997 struct list_head *pos, *n; 1998 1999 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2000 2001 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2002 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2003 2004 if (atomic_read(&mm->pincount)) 2005 continue; 2006 2007 list_del_init(&mm->ppgtt_mm.lru_list); 2008 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2009 invalidate_ppgtt_mm(mm); 2010 return 1; 2011 } 2012 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2013 return 0; 2014 } 2015 2016 /* 2017 * GMA translation APIs. 2018 */ 2019 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2020 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2021 { 2022 struct intel_vgpu *vgpu = mm->vgpu; 2023 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2024 struct intel_vgpu_ppgtt_spt *s; 2025 2026 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2027 if (!s) 2028 return -ENXIO; 2029 2030 if (!guest) 2031 ppgtt_get_shadow_entry(s, e, index); 2032 else 2033 ppgtt_get_guest_entry(s, e, index); 2034 return 0; 2035 } 2036 2037 /** 2038 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2039 * @mm: mm object. could be a PPGTT or GGTT mm object 2040 * @gma: graphics memory address in this mm object 2041 * 2042 * This function is used to translate a graphics memory address in specific 2043 * graphics memory space to guest physical address. 2044 * 2045 * Returns: 2046 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2047 */ 2048 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2049 { 2050 struct intel_vgpu *vgpu = mm->vgpu; 2051 struct intel_gvt *gvt = vgpu->gvt; 2052 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2053 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2054 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2055 unsigned long gma_index[4]; 2056 struct intel_gvt_gtt_entry e; 2057 int i, levels = 0; 2058 int ret; 2059 2060 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2061 mm->type != INTEL_GVT_MM_PPGTT); 2062 2063 if (mm->type == INTEL_GVT_MM_GGTT) { 2064 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2065 goto err; 2066 2067 ggtt_get_guest_entry(mm, &e, 2068 gma_ops->gma_to_ggtt_pte_index(gma)); 2069 2070 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2071 + (gma & ~I915_GTT_PAGE_MASK); 2072 2073 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2074 } else { 2075 switch (mm->ppgtt_mm.root_entry_type) { 2076 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2077 ppgtt_get_shadow_root_entry(mm, &e, 0); 2078 2079 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2080 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2081 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2082 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2083 levels = 4; 2084 break; 2085 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2086 ppgtt_get_shadow_root_entry(mm, &e, 2087 gma_ops->gma_to_l3_pdp_index(gma)); 2088 2089 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2090 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2091 levels = 2; 2092 break; 2093 default: 2094 GEM_BUG_ON(1); 2095 } 2096 2097 /* walk the shadow page table and get gpa from guest entry */ 2098 for (i = 0; i < levels; i++) { 2099 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2100 (i == levels - 1)); 2101 if (ret) 2102 goto err; 2103 2104 if (!pte_ops->test_present(&e)) { 2105 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2106 goto err; 2107 } 2108 } 2109 2110 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2111 (gma & ~I915_GTT_PAGE_MASK); 2112 trace_gma_translate(vgpu->id, "ppgtt", 0, 2113 mm->ppgtt_mm.root_entry_type, gma, gpa); 2114 } 2115 2116 return gpa; 2117 err: 2118 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2119 return INTEL_GVT_INVALID_ADDR; 2120 } 2121 2122 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2123 unsigned int off, void *p_data, unsigned int bytes) 2124 { 2125 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2126 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2127 unsigned long index = off >> info->gtt_entry_size_shift; 2128 struct intel_gvt_gtt_entry e; 2129 2130 if (bytes != 4 && bytes != 8) 2131 return -EINVAL; 2132 2133 ggtt_get_guest_entry(ggtt_mm, &e, index); 2134 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2135 bytes); 2136 return 0; 2137 } 2138 2139 /** 2140 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2141 * @vgpu: a vGPU 2142 * @off: register offset 2143 * @p_data: data will be returned to guest 2144 * @bytes: data length 2145 * 2146 * This function is used to emulate the GTT MMIO register read 2147 * 2148 * Returns: 2149 * Zero on success, error code if failed. 2150 */ 2151 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2152 void *p_data, unsigned int bytes) 2153 { 2154 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2155 int ret; 2156 2157 if (bytes != 4 && bytes != 8) 2158 return -EINVAL; 2159 2160 off -= info->gtt_start_offset; 2161 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2162 return ret; 2163 } 2164 2165 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2166 struct intel_gvt_gtt_entry *entry) 2167 { 2168 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2169 unsigned long pfn; 2170 2171 pfn = pte_ops->get_pfn(entry); 2172 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2173 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2174 pfn << PAGE_SHIFT); 2175 } 2176 2177 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2178 void *p_data, unsigned int bytes) 2179 { 2180 struct intel_gvt *gvt = vgpu->gvt; 2181 const struct intel_gvt_device_info *info = &gvt->device_info; 2182 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2183 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2184 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2185 unsigned long gma, gfn; 2186 struct intel_gvt_gtt_entry e, m; 2187 dma_addr_t dma_addr; 2188 int ret; 2189 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2190 bool partial_update = false; 2191 2192 if (bytes != 4 && bytes != 8) 2193 return -EINVAL; 2194 2195 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2196 2197 /* the VM may configure the whole GM space when ballooning is used */ 2198 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2199 return 0; 2200 2201 e.type = GTT_TYPE_GGTT_PTE; 2202 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2203 bytes); 2204 2205 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2206 * write, save the first 4 bytes in a list and update virtual 2207 * PTE. Only update shadow PTE when the second 4 bytes comes. 2208 */ 2209 if (bytes < info->gtt_entry_size) { 2210 bool found = false; 2211 2212 list_for_each_entry_safe(pos, n, 2213 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2214 if (g_gtt_index == pos->offset >> 2215 info->gtt_entry_size_shift) { 2216 if (off != pos->offset) { 2217 /* the second partial part*/ 2218 int last_off = pos->offset & 2219 (info->gtt_entry_size - 1); 2220 2221 memcpy((void *)&e.val64 + last_off, 2222 (void *)&pos->data + last_off, 2223 bytes); 2224 2225 list_del(&pos->list); 2226 kfree(pos); 2227 found = true; 2228 break; 2229 } 2230 2231 /* update of the first partial part */ 2232 pos->data = e.val64; 2233 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2234 return 0; 2235 } 2236 } 2237 2238 if (!found) { 2239 /* the first partial part */ 2240 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2241 if (!partial_pte) 2242 return -ENOMEM; 2243 partial_pte->offset = off; 2244 partial_pte->data = e.val64; 2245 list_add_tail(&partial_pte->list, 2246 &ggtt_mm->ggtt_mm.partial_pte_list); 2247 partial_update = true; 2248 } 2249 } 2250 2251 if (!partial_update && (ops->test_present(&e))) { 2252 gfn = ops->get_pfn(&e); 2253 m = e; 2254 2255 /* one PTE update may be issued in multiple writes and the 2256 * first write may not construct a valid gfn 2257 */ 2258 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2259 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2260 goto out; 2261 } 2262 2263 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2264 PAGE_SIZE, &dma_addr); 2265 if (ret) { 2266 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2267 /* guest driver may read/write the entry when partial 2268 * update the entry in this situation p2m will fail 2269 * settting the shadow entry to point to a scratch page 2270 */ 2271 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2272 } else 2273 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2274 } else { 2275 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2276 ops->clear_present(&m); 2277 } 2278 2279 out: 2280 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2281 2282 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2283 ggtt_invalidate_pte(vgpu, &e); 2284 2285 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2286 ggtt_invalidate(gvt->dev_priv); 2287 return 0; 2288 } 2289 2290 /* 2291 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2292 * @vgpu: a vGPU 2293 * @off: register offset 2294 * @p_data: data from guest write 2295 * @bytes: data length 2296 * 2297 * This function is used to emulate the GTT MMIO register write 2298 * 2299 * Returns: 2300 * Zero on success, error code if failed. 2301 */ 2302 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2303 unsigned int off, void *p_data, unsigned int bytes) 2304 { 2305 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2306 int ret; 2307 2308 if (bytes != 4 && bytes != 8) 2309 return -EINVAL; 2310 2311 off -= info->gtt_start_offset; 2312 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2313 return ret; 2314 } 2315 2316 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2317 enum intel_gvt_gtt_type type) 2318 { 2319 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2320 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2321 int page_entry_num = I915_GTT_PAGE_SIZE >> 2322 vgpu->gvt->device_info.gtt_entry_size_shift; 2323 void *scratch_pt; 2324 int i; 2325 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2326 dma_addr_t daddr; 2327 2328 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2329 return -EINVAL; 2330 2331 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2332 if (!scratch_pt) { 2333 gvt_vgpu_err("fail to allocate scratch page\n"); 2334 return -ENOMEM; 2335 } 2336 2337 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2338 4096, PCI_DMA_BIDIRECTIONAL); 2339 if (dma_mapping_error(dev, daddr)) { 2340 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2341 __free_page(virt_to_page(scratch_pt)); 2342 return -ENOMEM; 2343 } 2344 gtt->scratch_pt[type].page_mfn = 2345 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2346 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2347 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2348 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2349 2350 /* Build the tree by full filled the scratch pt with the entries which 2351 * point to the next level scratch pt or scratch page. The 2352 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2353 * 'type' pt. 2354 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2355 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2356 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2357 */ 2358 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2359 struct intel_gvt_gtt_entry se; 2360 2361 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2362 se.type = get_entry_type(type - 1); 2363 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2364 2365 /* The entry parameters like present/writeable/cache type 2366 * set to the same as i915's scratch page tree. 2367 */ 2368 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2369 if (type == GTT_TYPE_PPGTT_PDE_PT) 2370 se.val64 |= PPAT_CACHED; 2371 2372 for (i = 0; i < page_entry_num; i++) 2373 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2374 } 2375 2376 return 0; 2377 } 2378 2379 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2380 { 2381 int i; 2382 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2383 dma_addr_t daddr; 2384 2385 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2386 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2387 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2388 I915_GTT_PAGE_SHIFT); 2389 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2390 __free_page(vgpu->gtt.scratch_pt[i].page); 2391 vgpu->gtt.scratch_pt[i].page = NULL; 2392 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2393 } 2394 } 2395 2396 return 0; 2397 } 2398 2399 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2400 { 2401 int i, ret; 2402 2403 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2404 ret = alloc_scratch_pages(vgpu, i); 2405 if (ret) 2406 goto err; 2407 } 2408 2409 return 0; 2410 2411 err: 2412 release_scratch_page_tree(vgpu); 2413 return ret; 2414 } 2415 2416 /** 2417 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2418 * @vgpu: a vGPU 2419 * 2420 * This function is used to initialize per-vGPU graphics memory virtualization 2421 * components. 2422 * 2423 * Returns: 2424 * Zero on success, error code if failed. 2425 */ 2426 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2427 { 2428 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2429 2430 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2431 2432 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2433 INIT_LIST_HEAD(>t->oos_page_list_head); 2434 INIT_LIST_HEAD(>t->post_shadow_list_head); 2435 2436 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2437 if (IS_ERR(gtt->ggtt_mm)) { 2438 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2439 return PTR_ERR(gtt->ggtt_mm); 2440 } 2441 2442 intel_vgpu_reset_ggtt(vgpu, false); 2443 2444 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2445 2446 return create_scratch_page_tree(vgpu); 2447 } 2448 2449 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2450 { 2451 struct list_head *pos, *n; 2452 struct intel_vgpu_mm *mm; 2453 2454 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2455 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2456 intel_vgpu_destroy_mm(mm); 2457 } 2458 2459 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2460 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2461 2462 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2463 gvt_err("Why we still has spt not freed?\n"); 2464 ppgtt_free_all_spt(vgpu); 2465 } 2466 } 2467 2468 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2469 { 2470 struct intel_gvt_partial_pte *pos, *next; 2471 2472 list_for_each_entry_safe(pos, next, 2473 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2474 list) { 2475 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2476 pos->offset, pos->data); 2477 kfree(pos); 2478 } 2479 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2480 vgpu->gtt.ggtt_mm = NULL; 2481 } 2482 2483 /** 2484 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2485 * @vgpu: a vGPU 2486 * 2487 * This function is used to clean up per-vGPU graphics memory virtualization 2488 * components. 2489 * 2490 * Returns: 2491 * Zero on success, error code if failed. 2492 */ 2493 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2494 { 2495 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2496 intel_vgpu_destroy_ggtt_mm(vgpu); 2497 release_scratch_page_tree(vgpu); 2498 } 2499 2500 static void clean_spt_oos(struct intel_gvt *gvt) 2501 { 2502 struct intel_gvt_gtt *gtt = &gvt->gtt; 2503 struct list_head *pos, *n; 2504 struct intel_vgpu_oos_page *oos_page; 2505 2506 WARN(!list_empty(>t->oos_page_use_list_head), 2507 "someone is still using oos page\n"); 2508 2509 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2510 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2511 list_del(&oos_page->list); 2512 free_page((unsigned long)oos_page->mem); 2513 kfree(oos_page); 2514 } 2515 } 2516 2517 static int setup_spt_oos(struct intel_gvt *gvt) 2518 { 2519 struct intel_gvt_gtt *gtt = &gvt->gtt; 2520 struct intel_vgpu_oos_page *oos_page; 2521 int i; 2522 int ret; 2523 2524 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2525 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2526 2527 for (i = 0; i < preallocated_oos_pages; i++) { 2528 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2529 if (!oos_page) { 2530 ret = -ENOMEM; 2531 goto fail; 2532 } 2533 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2534 if (!oos_page->mem) { 2535 ret = -ENOMEM; 2536 kfree(oos_page); 2537 goto fail; 2538 } 2539 2540 INIT_LIST_HEAD(&oos_page->list); 2541 INIT_LIST_HEAD(&oos_page->vm_list); 2542 oos_page->id = i; 2543 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2544 } 2545 2546 gvt_dbg_mm("%d oos pages preallocated\n", i); 2547 2548 return 0; 2549 fail: 2550 clean_spt_oos(gvt); 2551 return ret; 2552 } 2553 2554 /** 2555 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2556 * @vgpu: a vGPU 2557 * @pdps: pdp root array 2558 * 2559 * This function is used to find a PPGTT mm object from mm object pool 2560 * 2561 * Returns: 2562 * pointer to mm object on success, NULL if failed. 2563 */ 2564 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2565 u64 pdps[]) 2566 { 2567 struct intel_vgpu_mm *mm; 2568 struct list_head *pos; 2569 2570 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2571 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2572 2573 switch (mm->ppgtt_mm.root_entry_type) { 2574 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2575 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2576 return mm; 2577 break; 2578 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2579 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2580 sizeof(mm->ppgtt_mm.guest_pdps))) 2581 return mm; 2582 break; 2583 default: 2584 GEM_BUG_ON(1); 2585 } 2586 } 2587 return NULL; 2588 } 2589 2590 /** 2591 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2592 * @vgpu: a vGPU 2593 * @root_entry_type: ppgtt root entry type 2594 * @pdps: guest pdps 2595 * 2596 * This function is used to find or create a PPGTT mm object from a guest. 2597 * 2598 * Returns: 2599 * Zero on success, negative error code if failed. 2600 */ 2601 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2602 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2603 { 2604 struct intel_vgpu_mm *mm; 2605 2606 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2607 if (mm) { 2608 intel_vgpu_mm_get(mm); 2609 } else { 2610 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2611 if (IS_ERR(mm)) 2612 gvt_vgpu_err("fail to create mm\n"); 2613 } 2614 return mm; 2615 } 2616 2617 /** 2618 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2619 * @vgpu: a vGPU 2620 * @pdps: guest pdps 2621 * 2622 * This function is used to find a PPGTT mm object from a guest and destroy it. 2623 * 2624 * Returns: 2625 * Zero on success, negative error code if failed. 2626 */ 2627 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2628 { 2629 struct intel_vgpu_mm *mm; 2630 2631 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2632 if (!mm) { 2633 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2634 return -EINVAL; 2635 } 2636 intel_vgpu_mm_put(mm); 2637 return 0; 2638 } 2639 2640 /** 2641 * intel_gvt_init_gtt - initialize mm components of a GVT device 2642 * @gvt: GVT device 2643 * 2644 * This function is called at the initialization stage, to initialize 2645 * the mm components of a GVT device. 2646 * 2647 * Returns: 2648 * zero on success, negative error code if failed. 2649 */ 2650 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2651 { 2652 int ret; 2653 void *page; 2654 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2655 dma_addr_t daddr; 2656 2657 gvt_dbg_core("init gtt\n"); 2658 2659 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2660 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2661 2662 page = (void *)get_zeroed_page(GFP_KERNEL); 2663 if (!page) { 2664 gvt_err("fail to allocate scratch ggtt page\n"); 2665 return -ENOMEM; 2666 } 2667 2668 daddr = dma_map_page(dev, virt_to_page(page), 0, 2669 4096, PCI_DMA_BIDIRECTIONAL); 2670 if (dma_mapping_error(dev, daddr)) { 2671 gvt_err("fail to dmamap scratch ggtt page\n"); 2672 __free_page(virt_to_page(page)); 2673 return -ENOMEM; 2674 } 2675 2676 gvt->gtt.scratch_page = virt_to_page(page); 2677 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2678 2679 if (enable_out_of_sync) { 2680 ret = setup_spt_oos(gvt); 2681 if (ret) { 2682 gvt_err("fail to initialize SPT oos\n"); 2683 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2684 __free_page(gvt->gtt.scratch_page); 2685 return ret; 2686 } 2687 } 2688 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2689 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2690 return 0; 2691 } 2692 2693 /** 2694 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2695 * @gvt: GVT device 2696 * 2697 * This function is called at the driver unloading stage, to clean up the 2698 * the mm components of a GVT device. 2699 * 2700 */ 2701 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2702 { 2703 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2704 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2705 I915_GTT_PAGE_SHIFT); 2706 2707 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2708 2709 __free_page(gvt->gtt.scratch_page); 2710 2711 if (enable_out_of_sync) 2712 clean_spt_oos(gvt); 2713 } 2714 2715 /** 2716 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2717 * @vgpu: a vGPU 2718 * 2719 * This function is called when invalidate all PPGTT instances of a vGPU. 2720 * 2721 */ 2722 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2723 { 2724 struct list_head *pos, *n; 2725 struct intel_vgpu_mm *mm; 2726 2727 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2728 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2729 if (mm->type == INTEL_GVT_MM_PPGTT) { 2730 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2731 list_del_init(&mm->ppgtt_mm.lru_list); 2732 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2733 if (mm->ppgtt_mm.shadowed) 2734 invalidate_ppgtt_mm(mm); 2735 } 2736 } 2737 } 2738 2739 /** 2740 * intel_vgpu_reset_ggtt - reset the GGTT entry 2741 * @vgpu: a vGPU 2742 * @invalidate_old: invalidate old entries 2743 * 2744 * This function is called at the vGPU create stage 2745 * to reset all the GGTT entries. 2746 * 2747 */ 2748 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2749 { 2750 struct intel_gvt *gvt = vgpu->gvt; 2751 struct drm_i915_private *dev_priv = gvt->dev_priv; 2752 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2753 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2754 struct intel_gvt_gtt_entry old_entry; 2755 u32 index; 2756 u32 num_entries; 2757 2758 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2759 pte_ops->set_present(&entry); 2760 2761 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2762 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2763 while (num_entries--) { 2764 if (invalidate_old) { 2765 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2766 ggtt_invalidate_pte(vgpu, &old_entry); 2767 } 2768 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2769 } 2770 2771 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2772 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2773 while (num_entries--) { 2774 if (invalidate_old) { 2775 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2776 ggtt_invalidate_pte(vgpu, &old_entry); 2777 } 2778 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2779 } 2780 2781 ggtt_invalidate(dev_priv); 2782 } 2783 2784 /** 2785 * intel_vgpu_reset_gtt - reset the all GTT related status 2786 * @vgpu: a vGPU 2787 * 2788 * This function is called from vfio core to reset reset all 2789 * GTT related status, including GGTT, PPGTT, scratch page. 2790 * 2791 */ 2792 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2793 { 2794 /* Shadow pages are only created when there is no page 2795 * table tracking data, so remove page tracking data after 2796 * removing the shadow pages. 2797 */ 2798 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2799 intel_vgpu_reset_ggtt(vgpu, true); 2800 } 2801