1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if (size == 0) 57 return vgpu_gmadr_is_valid(vgpu, addr); 58 59 if (vgpu_gmadr_is_aperture(vgpu, addr) && 60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 61 return true; 62 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 64 return true; 65 66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 67 addr, size); 68 return false; 69 } 70 71 /* translate a guest gmadr to host gmadr */ 72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 73 { 74 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 75 "invalid guest gmadr %llx\n", g_addr)) 76 return -EACCES; 77 78 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 79 *h_addr = vgpu_aperture_gmadr_base(vgpu) 80 + (g_addr - vgpu_aperture_offset(vgpu)); 81 else 82 *h_addr = vgpu_hidden_gmadr_base(vgpu) 83 + (g_addr - vgpu_hidden_offset(vgpu)); 84 return 0; 85 } 86 87 /* translate a host gmadr to guest gmadr */ 88 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 89 { 90 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 91 "invalid host gmadr %llx\n", h_addr)) 92 return -EACCES; 93 94 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 95 *g_addr = vgpu_aperture_gmadr_base(vgpu) 96 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 97 else 98 *g_addr = vgpu_hidden_gmadr_base(vgpu) 99 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 100 return 0; 101 } 102 103 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 104 unsigned long *h_index) 105 { 106 u64 h_addr; 107 int ret; 108 109 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 110 &h_addr); 111 if (ret) 112 return ret; 113 114 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 115 return 0; 116 } 117 118 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 119 unsigned long *g_index) 120 { 121 u64 g_addr; 122 int ret; 123 124 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 125 &g_addr); 126 if (ret) 127 return ret; 128 129 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 130 return 0; 131 } 132 133 #define gtt_type_is_entry(type) \ 134 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 135 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 136 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 137 138 #define gtt_type_is_pt(type) \ 139 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 140 141 #define gtt_type_is_pte_pt(type) \ 142 (type == GTT_TYPE_PPGTT_PTE_PT) 143 144 #define gtt_type_is_root_pointer(type) \ 145 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 146 147 #define gtt_init_entry(e, t, p, v) do { \ 148 (e)->type = t; \ 149 (e)->pdev = p; \ 150 memcpy(&(e)->val64, &v, sizeof(v)); \ 151 } while (0) 152 153 /* 154 * Mappings between GTT_TYPE* enumerations. 155 * Following information can be found according to the given type: 156 * - type of next level page table 157 * - type of entry inside this level page table 158 * - type of entry with PSE set 159 * 160 * If the given type doesn't have such a kind of information, 161 * e.g. give a l4 root entry type, then request to get its PSE type, 162 * give a PTE page table type, then request to get its next level page 163 * table type, as we know l4 root entry doesn't have a PSE bit, 164 * and a PTE page table doesn't have a next level page table type, 165 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 166 * page table. 167 */ 168 169 struct gtt_type_table_entry { 170 int entry_type; 171 int pt_type; 172 int next_pt_type; 173 int pse_entry_type; 174 }; 175 176 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 177 [type] = { \ 178 .entry_type = e_type, \ 179 .pt_type = cpt_type, \ 180 .next_pt_type = npt_type, \ 181 .pse_entry_type = pse_type, \ 182 } 183 184 static struct gtt_type_table_entry gtt_type_table[] = { 185 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 186 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 187 GTT_TYPE_INVALID, 188 GTT_TYPE_PPGTT_PML4_PT, 189 GTT_TYPE_INVALID), 190 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 191 GTT_TYPE_PPGTT_PML4_ENTRY, 192 GTT_TYPE_PPGTT_PML4_PT, 193 GTT_TYPE_PPGTT_PDP_PT, 194 GTT_TYPE_INVALID), 195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 196 GTT_TYPE_PPGTT_PML4_ENTRY, 197 GTT_TYPE_PPGTT_PML4_PT, 198 GTT_TYPE_PPGTT_PDP_PT, 199 GTT_TYPE_INVALID), 200 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 201 GTT_TYPE_PPGTT_PDP_ENTRY, 202 GTT_TYPE_PPGTT_PDP_PT, 203 GTT_TYPE_PPGTT_PDE_PT, 204 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 205 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 206 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 207 GTT_TYPE_INVALID, 208 GTT_TYPE_PPGTT_PDE_PT, 209 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 210 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 211 GTT_TYPE_PPGTT_PDP_ENTRY, 212 GTT_TYPE_PPGTT_PDP_PT, 213 GTT_TYPE_PPGTT_PDE_PT, 214 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 216 GTT_TYPE_PPGTT_PDE_ENTRY, 217 GTT_TYPE_PPGTT_PDE_PT, 218 GTT_TYPE_PPGTT_PTE_PT, 219 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 221 GTT_TYPE_PPGTT_PDE_ENTRY, 222 GTT_TYPE_PPGTT_PDE_PT, 223 GTT_TYPE_PPGTT_PTE_PT, 224 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 225 /* We take IPS bit as 'PSE' for PTE level. */ 226 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 227 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 228 GTT_TYPE_PPGTT_PTE_PT, 229 GTT_TYPE_INVALID, 230 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 231 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 233 GTT_TYPE_PPGTT_PTE_PT, 234 GTT_TYPE_INVALID, 235 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 236 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 237 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 238 GTT_TYPE_PPGTT_PTE_PT, 239 GTT_TYPE_INVALID, 240 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 241 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 242 GTT_TYPE_PPGTT_PDE_ENTRY, 243 GTT_TYPE_PPGTT_PDE_PT, 244 GTT_TYPE_INVALID, 245 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 246 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 247 GTT_TYPE_PPGTT_PDP_ENTRY, 248 GTT_TYPE_PPGTT_PDP_PT, 249 GTT_TYPE_INVALID, 250 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 251 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 252 GTT_TYPE_GGTT_PTE, 253 GTT_TYPE_INVALID, 254 GTT_TYPE_INVALID, 255 GTT_TYPE_INVALID), 256 }; 257 258 static inline int get_next_pt_type(int type) 259 { 260 return gtt_type_table[type].next_pt_type; 261 } 262 263 static inline int get_pt_type(int type) 264 { 265 return gtt_type_table[type].pt_type; 266 } 267 268 static inline int get_entry_type(int type) 269 { 270 return gtt_type_table[type].entry_type; 271 } 272 273 static inline int get_pse_type(int type) 274 { 275 return gtt_type_table[type].pse_entry_type; 276 } 277 278 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 279 { 280 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 281 282 return readq(addr); 283 } 284 285 static void ggtt_invalidate(struct drm_i915_private *dev_priv) 286 { 287 mmio_hw_access_pre(dev_priv); 288 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 289 mmio_hw_access_post(dev_priv); 290 } 291 292 static void write_pte64(struct drm_i915_private *dev_priv, 293 unsigned long index, u64 pte) 294 { 295 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 296 297 writeq(pte, addr); 298 } 299 300 static inline int gtt_get_entry64(void *pt, 301 struct intel_gvt_gtt_entry *e, 302 unsigned long index, bool hypervisor_access, unsigned long gpa, 303 struct intel_vgpu *vgpu) 304 { 305 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 306 int ret; 307 308 if (WARN_ON(info->gtt_entry_size != 8)) 309 return -EINVAL; 310 311 if (hypervisor_access) { 312 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 313 (index << info->gtt_entry_size_shift), 314 &e->val64, 8); 315 if (WARN_ON(ret)) 316 return ret; 317 } else if (!pt) { 318 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 319 } else { 320 e->val64 = *((u64 *)pt + index); 321 } 322 return 0; 323 } 324 325 static inline int gtt_set_entry64(void *pt, 326 struct intel_gvt_gtt_entry *e, 327 unsigned long index, bool hypervisor_access, unsigned long gpa, 328 struct intel_vgpu *vgpu) 329 { 330 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 331 int ret; 332 333 if (WARN_ON(info->gtt_entry_size != 8)) 334 return -EINVAL; 335 336 if (hypervisor_access) { 337 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 338 (index << info->gtt_entry_size_shift), 339 &e->val64, 8); 340 if (WARN_ON(ret)) 341 return ret; 342 } else if (!pt) { 343 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 344 } else { 345 *((u64 *)pt + index) = e->val64; 346 } 347 return 0; 348 } 349 350 #define GTT_HAW 46 351 352 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 353 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 354 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 355 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 356 357 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 358 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 359 360 #define GTT_64K_PTE_STRIDE 16 361 362 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 363 { 364 unsigned long pfn; 365 366 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 367 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 368 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 369 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 370 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 371 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 372 else 373 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 374 return pfn; 375 } 376 377 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 378 { 379 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 380 e->val64 &= ~ADDR_1G_MASK; 381 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 382 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 383 e->val64 &= ~ADDR_2M_MASK; 384 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 385 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 386 e->val64 &= ~ADDR_64K_MASK; 387 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 388 } else { 389 e->val64 &= ~ADDR_4K_MASK; 390 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 391 } 392 393 e->val64 |= (pfn << PAGE_SHIFT); 394 } 395 396 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 397 { 398 return !!(e->val64 & _PAGE_PSE); 399 } 400 401 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 402 { 403 if (gen8_gtt_test_pse(e)) { 404 switch (e->type) { 405 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 406 e->val64 &= ~_PAGE_PSE; 407 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 408 break; 409 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 410 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 411 e->val64 &= ~_PAGE_PSE; 412 break; 413 default: 414 WARN_ON(1); 415 } 416 } 417 } 418 419 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 420 { 421 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 422 return false; 423 424 return !!(e->val64 & GEN8_PDE_IPS_64K); 425 } 426 427 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 428 { 429 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 430 return; 431 432 e->val64 &= ~GEN8_PDE_IPS_64K; 433 } 434 435 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 436 { 437 /* 438 * i915 writes PDP root pointer registers without present bit, 439 * it also works, so we need to treat root pointer entry 440 * specifically. 441 */ 442 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 443 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 444 return (e->val64 != 0); 445 else 446 return (e->val64 & _PAGE_PRESENT); 447 } 448 449 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 450 { 451 e->val64 &= ~_PAGE_PRESENT; 452 } 453 454 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 455 { 456 e->val64 |= _PAGE_PRESENT; 457 } 458 459 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 460 { 461 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 462 } 463 464 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 465 { 466 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 467 } 468 469 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 470 { 471 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 472 } 473 474 /* 475 * Per-platform GMA routines. 476 */ 477 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 478 { 479 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 480 481 trace_gma_index(__func__, gma, x); 482 return x; 483 } 484 485 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 486 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 487 { \ 488 unsigned long x = (exp); \ 489 trace_gma_index(__func__, gma, x); \ 490 return x; \ 491 } 492 493 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 494 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 495 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 498 499 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 500 .get_entry = gtt_get_entry64, 501 .set_entry = gtt_set_entry64, 502 .clear_present = gtt_entry_clear_present, 503 .set_present = gtt_entry_set_present, 504 .test_present = gen8_gtt_test_present, 505 .test_pse = gen8_gtt_test_pse, 506 .clear_pse = gen8_gtt_clear_pse, 507 .clear_ips = gen8_gtt_clear_ips, 508 .test_ips = gen8_gtt_test_ips, 509 .clear_64k_splited = gen8_gtt_clear_64k_splited, 510 .set_64k_splited = gen8_gtt_set_64k_splited, 511 .test_64k_splited = gen8_gtt_test_64k_splited, 512 .get_pfn = gen8_gtt_get_pfn, 513 .set_pfn = gen8_gtt_set_pfn, 514 }; 515 516 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 517 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 518 .gma_to_pte_index = gen8_gma_to_pte_index, 519 .gma_to_pde_index = gen8_gma_to_pde_index, 520 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 521 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 522 .gma_to_pml4_index = gen8_gma_to_pml4_index, 523 }; 524 525 /* Update entry type per pse and ips bit. */ 526 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 527 struct intel_gvt_gtt_entry *entry, bool ips) 528 { 529 switch (entry->type) { 530 case GTT_TYPE_PPGTT_PDE_ENTRY: 531 case GTT_TYPE_PPGTT_PDP_ENTRY: 532 if (pte_ops->test_pse(entry)) 533 entry->type = get_pse_type(entry->type); 534 break; 535 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 536 if (ips) 537 entry->type = get_pse_type(entry->type); 538 break; 539 default: 540 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 541 } 542 543 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 544 } 545 546 /* 547 * MM helpers. 548 */ 549 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 550 struct intel_gvt_gtt_entry *entry, unsigned long index, 551 bool guest) 552 { 553 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 554 555 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 556 557 entry->type = mm->ppgtt_mm.root_entry_type; 558 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 559 mm->ppgtt_mm.shadow_pdps, 560 entry, index, false, 0, mm->vgpu); 561 update_entry_type_for_real(pte_ops, entry, false); 562 } 563 564 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 565 struct intel_gvt_gtt_entry *entry, unsigned long index) 566 { 567 _ppgtt_get_root_entry(mm, entry, index, true); 568 } 569 570 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 571 struct intel_gvt_gtt_entry *entry, unsigned long index) 572 { 573 _ppgtt_get_root_entry(mm, entry, index, false); 574 } 575 576 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 577 struct intel_gvt_gtt_entry *entry, unsigned long index, 578 bool guest) 579 { 580 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 581 582 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 583 mm->ppgtt_mm.shadow_pdps, 584 entry, index, false, 0, mm->vgpu); 585 } 586 587 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 588 struct intel_gvt_gtt_entry *entry, unsigned long index) 589 { 590 _ppgtt_set_root_entry(mm, entry, index, true); 591 } 592 593 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 594 struct intel_gvt_gtt_entry *entry, unsigned long index) 595 { 596 _ppgtt_set_root_entry(mm, entry, index, false); 597 } 598 599 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 600 struct intel_gvt_gtt_entry *entry, unsigned long index) 601 { 602 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 603 604 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 605 606 entry->type = GTT_TYPE_GGTT_PTE; 607 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 608 false, 0, mm->vgpu); 609 } 610 611 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 612 struct intel_gvt_gtt_entry *entry, unsigned long index) 613 { 614 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 615 616 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 617 618 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 619 false, 0, mm->vgpu); 620 } 621 622 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 623 struct intel_gvt_gtt_entry *entry, unsigned long index) 624 { 625 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 626 627 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 628 629 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 630 } 631 632 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 633 struct intel_gvt_gtt_entry *entry, unsigned long index) 634 { 635 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 636 637 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 638 639 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 640 } 641 642 /* 643 * PPGTT shadow page table helpers. 644 */ 645 static inline int ppgtt_spt_get_entry( 646 struct intel_vgpu_ppgtt_spt *spt, 647 void *page_table, int type, 648 struct intel_gvt_gtt_entry *e, unsigned long index, 649 bool guest) 650 { 651 struct intel_gvt *gvt = spt->vgpu->gvt; 652 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 653 int ret; 654 655 e->type = get_entry_type(type); 656 657 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 658 return -EINVAL; 659 660 ret = ops->get_entry(page_table, e, index, guest, 661 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 662 spt->vgpu); 663 if (ret) 664 return ret; 665 666 update_entry_type_for_real(ops, e, guest ? 667 spt->guest_page.pde_ips : false); 668 669 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 670 type, e->type, index, e->val64); 671 return 0; 672 } 673 674 static inline int ppgtt_spt_set_entry( 675 struct intel_vgpu_ppgtt_spt *spt, 676 void *page_table, int type, 677 struct intel_gvt_gtt_entry *e, unsigned long index, 678 bool guest) 679 { 680 struct intel_gvt *gvt = spt->vgpu->gvt; 681 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 682 683 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 684 return -EINVAL; 685 686 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 687 type, e->type, index, e->val64); 688 689 return ops->set_entry(page_table, e, index, guest, 690 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 691 spt->vgpu); 692 } 693 694 #define ppgtt_get_guest_entry(spt, e, index) \ 695 ppgtt_spt_get_entry(spt, NULL, \ 696 spt->guest_page.type, e, index, true) 697 698 #define ppgtt_set_guest_entry(spt, e, index) \ 699 ppgtt_spt_set_entry(spt, NULL, \ 700 spt->guest_page.type, e, index, true) 701 702 #define ppgtt_get_shadow_entry(spt, e, index) \ 703 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 704 spt->shadow_page.type, e, index, false) 705 706 #define ppgtt_set_shadow_entry(spt, e, index) \ 707 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 708 spt->shadow_page.type, e, index, false) 709 710 static void *alloc_spt(gfp_t gfp_mask) 711 { 712 struct intel_vgpu_ppgtt_spt *spt; 713 714 spt = kzalloc(sizeof(*spt), gfp_mask); 715 if (!spt) 716 return NULL; 717 718 spt->shadow_page.page = alloc_page(gfp_mask); 719 if (!spt->shadow_page.page) { 720 kfree(spt); 721 return NULL; 722 } 723 return spt; 724 } 725 726 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 727 { 728 __free_page(spt->shadow_page.page); 729 kfree(spt); 730 } 731 732 static int detach_oos_page(struct intel_vgpu *vgpu, 733 struct intel_vgpu_oos_page *oos_page); 734 735 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 736 { 737 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev; 738 739 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 740 741 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 742 PCI_DMA_BIDIRECTIONAL); 743 744 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 745 746 if (spt->guest_page.gfn) { 747 if (spt->guest_page.oos_page) 748 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 749 750 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 751 } 752 753 list_del_init(&spt->post_shadow_list); 754 free_spt(spt); 755 } 756 757 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 758 { 759 struct intel_vgpu_ppgtt_spt *spt, *spn; 760 struct radix_tree_iter iter; 761 LIST_HEAD(all_spt); 762 void __rcu **slot; 763 764 rcu_read_lock(); 765 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 766 spt = radix_tree_deref_slot(slot); 767 list_move(&spt->post_shadow_list, &all_spt); 768 } 769 rcu_read_unlock(); 770 771 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 772 ppgtt_free_spt(spt); 773 } 774 775 static int ppgtt_handle_guest_write_page_table_bytes( 776 struct intel_vgpu_ppgtt_spt *spt, 777 u64 pa, void *p_data, int bytes); 778 779 static int ppgtt_write_protection_handler( 780 struct intel_vgpu_page_track *page_track, 781 u64 gpa, void *data, int bytes) 782 { 783 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 784 785 int ret; 786 787 if (bytes != 4 && bytes != 8) 788 return -EINVAL; 789 790 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 791 if (ret) 792 return ret; 793 return ret; 794 } 795 796 /* Find a spt by guest gfn. */ 797 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 798 struct intel_vgpu *vgpu, unsigned long gfn) 799 { 800 struct intel_vgpu_page_track *track; 801 802 track = intel_vgpu_find_page_track(vgpu, gfn); 803 if (track && track->handler == ppgtt_write_protection_handler) 804 return track->priv_data; 805 806 return NULL; 807 } 808 809 /* Find the spt by shadow page mfn. */ 810 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 811 struct intel_vgpu *vgpu, unsigned long mfn) 812 { 813 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 814 } 815 816 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 817 818 /* Allocate shadow page table without guest page. */ 819 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 820 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 821 { 822 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 823 struct intel_vgpu_ppgtt_spt *spt = NULL; 824 dma_addr_t daddr; 825 int ret; 826 827 retry: 828 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 829 if (!spt) { 830 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 831 goto retry; 832 833 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 834 return ERR_PTR(-ENOMEM); 835 } 836 837 spt->vgpu = vgpu; 838 atomic_set(&spt->refcount, 1); 839 INIT_LIST_HEAD(&spt->post_shadow_list); 840 841 /* 842 * Init shadow_page. 843 */ 844 spt->shadow_page.type = type; 845 daddr = dma_map_page(kdev, spt->shadow_page.page, 846 0, 4096, PCI_DMA_BIDIRECTIONAL); 847 if (dma_mapping_error(kdev, daddr)) { 848 gvt_vgpu_err("fail to map dma addr\n"); 849 ret = -EINVAL; 850 goto err_free_spt; 851 } 852 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 853 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 854 855 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 856 if (ret) 857 goto err_unmap_dma; 858 859 return spt; 860 861 err_unmap_dma: 862 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 863 err_free_spt: 864 free_spt(spt); 865 return ERR_PTR(ret); 866 } 867 868 /* Allocate shadow page table associated with specific gfn. */ 869 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 870 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 871 unsigned long gfn, bool guest_pde_ips) 872 { 873 struct intel_vgpu_ppgtt_spt *spt; 874 int ret; 875 876 spt = ppgtt_alloc_spt(vgpu, type); 877 if (IS_ERR(spt)) 878 return spt; 879 880 /* 881 * Init guest_page. 882 */ 883 ret = intel_vgpu_register_page_track(vgpu, gfn, 884 ppgtt_write_protection_handler, spt); 885 if (ret) { 886 ppgtt_free_spt(spt); 887 return ERR_PTR(ret); 888 } 889 890 spt->guest_page.type = type; 891 spt->guest_page.gfn = gfn; 892 spt->guest_page.pde_ips = guest_pde_ips; 893 894 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 895 896 return spt; 897 } 898 899 #define pt_entry_size_shift(spt) \ 900 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 901 902 #define pt_entries(spt) \ 903 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 904 905 #define for_each_present_guest_entry(spt, e, i) \ 906 for (i = 0; i < pt_entries(spt); \ 907 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 908 if (!ppgtt_get_guest_entry(spt, e, i) && \ 909 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 910 911 #define for_each_present_shadow_entry(spt, e, i) \ 912 for (i = 0; i < pt_entries(spt); \ 913 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 914 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 915 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 916 917 #define for_each_shadow_entry(spt, e, i) \ 918 for (i = 0; i < pt_entries(spt); \ 919 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 920 if (!ppgtt_get_shadow_entry(spt, e, i)) 921 922 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 923 { 924 int v = atomic_read(&spt->refcount); 925 926 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 927 atomic_inc(&spt->refcount); 928 } 929 930 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 931 { 932 int v = atomic_read(&spt->refcount); 933 934 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 935 return atomic_dec_return(&spt->refcount); 936 } 937 938 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 939 940 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 941 struct intel_gvt_gtt_entry *e) 942 { 943 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 944 struct intel_vgpu_ppgtt_spt *s; 945 enum intel_gvt_gtt_type cur_pt_type; 946 947 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 948 949 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 950 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 951 cur_pt_type = get_next_pt_type(e->type); 952 953 if (!gtt_type_is_pt(cur_pt_type) || 954 !gtt_type_is_pt(cur_pt_type + 1)) { 955 WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type); 956 return -EINVAL; 957 } 958 959 cur_pt_type += 1; 960 961 if (ops->get_pfn(e) == 962 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 963 return 0; 964 } 965 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 966 if (!s) { 967 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 968 ops->get_pfn(e)); 969 return -ENXIO; 970 } 971 return ppgtt_invalidate_spt(s); 972 } 973 974 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 975 struct intel_gvt_gtt_entry *entry) 976 { 977 struct intel_vgpu *vgpu = spt->vgpu; 978 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 979 unsigned long pfn; 980 int type; 981 982 pfn = ops->get_pfn(entry); 983 type = spt->shadow_page.type; 984 985 /* Uninitialized spte or unshadowed spte. */ 986 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 987 return; 988 989 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 990 } 991 992 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 993 { 994 struct intel_vgpu *vgpu = spt->vgpu; 995 struct intel_gvt_gtt_entry e; 996 unsigned long index; 997 int ret; 998 999 trace_spt_change(spt->vgpu->id, "die", spt, 1000 spt->guest_page.gfn, spt->shadow_page.type); 1001 1002 if (ppgtt_put_spt(spt) > 0) 1003 return 0; 1004 1005 for_each_present_shadow_entry(spt, &e, index) { 1006 switch (e.type) { 1007 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1008 gvt_vdbg_mm("invalidate 4K entry\n"); 1009 ppgtt_invalidate_pte(spt, &e); 1010 break; 1011 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1012 /* We don't setup 64K shadow entry so far. */ 1013 WARN(1, "suspicious 64K gtt entry\n"); 1014 continue; 1015 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1016 gvt_vdbg_mm("invalidate 2M entry\n"); 1017 continue; 1018 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1019 WARN(1, "GVT doesn't support 1GB page\n"); 1020 continue; 1021 case GTT_TYPE_PPGTT_PML4_ENTRY: 1022 case GTT_TYPE_PPGTT_PDP_ENTRY: 1023 case GTT_TYPE_PPGTT_PDE_ENTRY: 1024 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1025 ret = ppgtt_invalidate_spt_by_shadow_entry( 1026 spt->vgpu, &e); 1027 if (ret) 1028 goto fail; 1029 break; 1030 default: 1031 GEM_BUG_ON(1); 1032 } 1033 } 1034 1035 trace_spt_change(spt->vgpu->id, "release", spt, 1036 spt->guest_page.gfn, spt->shadow_page.type); 1037 ppgtt_free_spt(spt); 1038 return 0; 1039 fail: 1040 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1041 spt, e.val64, e.type); 1042 return ret; 1043 } 1044 1045 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1046 { 1047 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1048 1049 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1050 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1051 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1052 1053 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1054 } else if (INTEL_GEN(dev_priv) >= 11) { 1055 /* 64K paging only controlled by IPS bit in PTE now. */ 1056 return true; 1057 } else 1058 return false; 1059 } 1060 1061 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1062 1063 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1064 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1065 { 1066 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1067 struct intel_vgpu_ppgtt_spt *spt = NULL; 1068 bool ips = false; 1069 int ret; 1070 1071 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1072 1073 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1074 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1075 1076 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1077 if (spt) { 1078 ppgtt_get_spt(spt); 1079 1080 if (ips != spt->guest_page.pde_ips) { 1081 spt->guest_page.pde_ips = ips; 1082 1083 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1084 clear_page(spt->shadow_page.vaddr); 1085 ret = ppgtt_populate_spt(spt); 1086 if (ret) { 1087 ppgtt_put_spt(spt); 1088 goto err; 1089 } 1090 } 1091 } else { 1092 int type = get_next_pt_type(we->type); 1093 1094 if (!gtt_type_is_pt(type)) { 1095 ret = -EINVAL; 1096 goto err; 1097 } 1098 1099 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1100 if (IS_ERR(spt)) { 1101 ret = PTR_ERR(spt); 1102 goto err; 1103 } 1104 1105 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1106 if (ret) 1107 goto err_free_spt; 1108 1109 ret = ppgtt_populate_spt(spt); 1110 if (ret) 1111 goto err_free_spt; 1112 1113 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1114 spt->shadow_page.type); 1115 } 1116 return spt; 1117 1118 err_free_spt: 1119 ppgtt_free_spt(spt); 1120 spt = NULL; 1121 err: 1122 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1123 spt, we->val64, we->type); 1124 return ERR_PTR(ret); 1125 } 1126 1127 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1128 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1129 { 1130 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1131 1132 se->type = ge->type; 1133 se->val64 = ge->val64; 1134 1135 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1136 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1137 ops->clear_ips(se); 1138 1139 ops->set_pfn(se, s->shadow_page.mfn); 1140 } 1141 1142 /** 1143 * Check if can do 2M page 1144 * @vgpu: target vgpu 1145 * @entry: target pfn's gtt entry 1146 * 1147 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1148 * negtive if found err. 1149 */ 1150 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1151 struct intel_gvt_gtt_entry *entry) 1152 { 1153 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1154 unsigned long pfn; 1155 1156 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M)) 1157 return 0; 1158 1159 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1160 if (pfn == INTEL_GVT_INVALID_ADDR) 1161 return -EINVAL; 1162 1163 return PageTransHuge(pfn_to_page(pfn)); 1164 } 1165 1166 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1167 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1168 struct intel_gvt_gtt_entry *se) 1169 { 1170 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1171 struct intel_vgpu_ppgtt_spt *sub_spt; 1172 struct intel_gvt_gtt_entry sub_se; 1173 unsigned long start_gfn; 1174 dma_addr_t dma_addr; 1175 unsigned long sub_index; 1176 int ret; 1177 1178 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1179 1180 start_gfn = ops->get_pfn(se); 1181 1182 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1183 if (IS_ERR(sub_spt)) 1184 return PTR_ERR(sub_spt); 1185 1186 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1187 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1188 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1189 if (ret) { 1190 ppgtt_invalidate_spt(spt); 1191 return ret; 1192 } 1193 sub_se.val64 = se->val64; 1194 1195 /* Copy the PAT field from PDE. */ 1196 sub_se.val64 &= ~_PAGE_PAT; 1197 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1198 1199 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1200 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1201 } 1202 1203 /* Clear dirty field. */ 1204 se->val64 &= ~_PAGE_DIRTY; 1205 1206 ops->clear_pse(se); 1207 ops->clear_ips(se); 1208 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1209 ppgtt_set_shadow_entry(spt, se, index); 1210 return 0; 1211 } 1212 1213 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1214 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1215 struct intel_gvt_gtt_entry *se) 1216 { 1217 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1218 struct intel_gvt_gtt_entry entry = *se; 1219 unsigned long start_gfn; 1220 dma_addr_t dma_addr; 1221 int i, ret; 1222 1223 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1224 1225 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1226 1227 start_gfn = ops->get_pfn(se); 1228 1229 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1230 ops->set_64k_splited(&entry); 1231 1232 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1233 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1234 start_gfn + i, PAGE_SIZE, &dma_addr); 1235 if (ret) 1236 return ret; 1237 1238 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1239 ppgtt_set_shadow_entry(spt, &entry, index + i); 1240 } 1241 return 0; 1242 } 1243 1244 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1245 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1246 struct intel_gvt_gtt_entry *ge) 1247 { 1248 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1249 struct intel_gvt_gtt_entry se = *ge; 1250 unsigned long gfn, page_size = PAGE_SIZE; 1251 dma_addr_t dma_addr; 1252 int ret; 1253 1254 if (!pte_ops->test_present(ge)) 1255 return 0; 1256 1257 gfn = pte_ops->get_pfn(ge); 1258 1259 switch (ge->type) { 1260 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1261 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1262 break; 1263 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1264 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1265 /* 1266 * The layout of 64K page is special, the page size is 1267 * controlled by uper PDE. To be simple, we always split 1268 * 64K page to smaller 4K pages in shadow PT. 1269 */ 1270 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1271 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1272 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1273 ret = is_2MB_gtt_possible(vgpu, ge); 1274 if (ret == 0) 1275 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1276 else if (ret < 0) 1277 return ret; 1278 page_size = I915_GTT_PAGE_SIZE_2M; 1279 break; 1280 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1281 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1282 return -EINVAL; 1283 default: 1284 GEM_BUG_ON(1); 1285 } 1286 1287 /* direct shadow */ 1288 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1289 &dma_addr); 1290 if (ret) 1291 return -ENXIO; 1292 1293 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1294 ppgtt_set_shadow_entry(spt, &se, index); 1295 return 0; 1296 } 1297 1298 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1299 { 1300 struct intel_vgpu *vgpu = spt->vgpu; 1301 struct intel_gvt *gvt = vgpu->gvt; 1302 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1303 struct intel_vgpu_ppgtt_spt *s; 1304 struct intel_gvt_gtt_entry se, ge; 1305 unsigned long gfn, i; 1306 int ret; 1307 1308 trace_spt_change(spt->vgpu->id, "born", spt, 1309 spt->guest_page.gfn, spt->shadow_page.type); 1310 1311 for_each_present_guest_entry(spt, &ge, i) { 1312 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1313 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1314 if (IS_ERR(s)) { 1315 ret = PTR_ERR(s); 1316 goto fail; 1317 } 1318 ppgtt_get_shadow_entry(spt, &se, i); 1319 ppgtt_generate_shadow_entry(&se, s, &ge); 1320 ppgtt_set_shadow_entry(spt, &se, i); 1321 } else { 1322 gfn = ops->get_pfn(&ge); 1323 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1324 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1325 ppgtt_set_shadow_entry(spt, &se, i); 1326 continue; 1327 } 1328 1329 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1330 if (ret) 1331 goto fail; 1332 } 1333 } 1334 return 0; 1335 fail: 1336 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1337 spt, ge.val64, ge.type); 1338 return ret; 1339 } 1340 1341 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1342 struct intel_gvt_gtt_entry *se, unsigned long index) 1343 { 1344 struct intel_vgpu *vgpu = spt->vgpu; 1345 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1346 int ret; 1347 1348 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1349 spt->shadow_page.type, se->val64, index); 1350 1351 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1352 se->type, index, se->val64); 1353 1354 if (!ops->test_present(se)) 1355 return 0; 1356 1357 if (ops->get_pfn(se) == 1358 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1359 return 0; 1360 1361 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1362 struct intel_vgpu_ppgtt_spt *s = 1363 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1364 if (!s) { 1365 gvt_vgpu_err("fail to find guest page\n"); 1366 ret = -ENXIO; 1367 goto fail; 1368 } 1369 ret = ppgtt_invalidate_spt(s); 1370 if (ret) 1371 goto fail; 1372 } else { 1373 /* We don't setup 64K shadow entry so far. */ 1374 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1375 "suspicious 64K entry\n"); 1376 ppgtt_invalidate_pte(spt, se); 1377 } 1378 1379 return 0; 1380 fail: 1381 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1382 spt, se->val64, se->type); 1383 return ret; 1384 } 1385 1386 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1387 struct intel_gvt_gtt_entry *we, unsigned long index) 1388 { 1389 struct intel_vgpu *vgpu = spt->vgpu; 1390 struct intel_gvt_gtt_entry m; 1391 struct intel_vgpu_ppgtt_spt *s; 1392 int ret; 1393 1394 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1395 we->val64, index); 1396 1397 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1398 we->type, index, we->val64); 1399 1400 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1401 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1402 if (IS_ERR(s)) { 1403 ret = PTR_ERR(s); 1404 goto fail; 1405 } 1406 ppgtt_get_shadow_entry(spt, &m, index); 1407 ppgtt_generate_shadow_entry(&m, s, we); 1408 ppgtt_set_shadow_entry(spt, &m, index); 1409 } else { 1410 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1411 if (ret) 1412 goto fail; 1413 } 1414 return 0; 1415 fail: 1416 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1417 spt, we->val64, we->type); 1418 return ret; 1419 } 1420 1421 static int sync_oos_page(struct intel_vgpu *vgpu, 1422 struct intel_vgpu_oos_page *oos_page) 1423 { 1424 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1425 struct intel_gvt *gvt = vgpu->gvt; 1426 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1427 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1428 struct intel_gvt_gtt_entry old, new; 1429 int index; 1430 int ret; 1431 1432 trace_oos_change(vgpu->id, "sync", oos_page->id, 1433 spt, spt->guest_page.type); 1434 1435 old.type = new.type = get_entry_type(spt->guest_page.type); 1436 old.val64 = new.val64 = 0; 1437 1438 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1439 info->gtt_entry_size_shift); index++) { 1440 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1441 ops->get_entry(NULL, &new, index, true, 1442 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1443 1444 if (old.val64 == new.val64 1445 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1446 continue; 1447 1448 trace_oos_sync(vgpu->id, oos_page->id, 1449 spt, spt->guest_page.type, 1450 new.val64, index); 1451 1452 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1453 if (ret) 1454 return ret; 1455 1456 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1457 } 1458 1459 spt->guest_page.write_cnt = 0; 1460 list_del_init(&spt->post_shadow_list); 1461 return 0; 1462 } 1463 1464 static int detach_oos_page(struct intel_vgpu *vgpu, 1465 struct intel_vgpu_oos_page *oos_page) 1466 { 1467 struct intel_gvt *gvt = vgpu->gvt; 1468 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1469 1470 trace_oos_change(vgpu->id, "detach", oos_page->id, 1471 spt, spt->guest_page.type); 1472 1473 spt->guest_page.write_cnt = 0; 1474 spt->guest_page.oos_page = NULL; 1475 oos_page->spt = NULL; 1476 1477 list_del_init(&oos_page->vm_list); 1478 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1479 1480 return 0; 1481 } 1482 1483 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1484 struct intel_vgpu_ppgtt_spt *spt) 1485 { 1486 struct intel_gvt *gvt = spt->vgpu->gvt; 1487 int ret; 1488 1489 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1490 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1491 oos_page->mem, I915_GTT_PAGE_SIZE); 1492 if (ret) 1493 return ret; 1494 1495 oos_page->spt = spt; 1496 spt->guest_page.oos_page = oos_page; 1497 1498 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1499 1500 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1501 spt, spt->guest_page.type); 1502 return 0; 1503 } 1504 1505 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1506 { 1507 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1508 int ret; 1509 1510 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1511 if (ret) 1512 return ret; 1513 1514 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1515 spt, spt->guest_page.type); 1516 1517 list_del_init(&oos_page->vm_list); 1518 return sync_oos_page(spt->vgpu, oos_page); 1519 } 1520 1521 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1522 { 1523 struct intel_gvt *gvt = spt->vgpu->gvt; 1524 struct intel_gvt_gtt *gtt = &gvt->gtt; 1525 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1526 int ret; 1527 1528 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1529 1530 if (list_empty(>t->oos_page_free_list_head)) { 1531 oos_page = container_of(gtt->oos_page_use_list_head.next, 1532 struct intel_vgpu_oos_page, list); 1533 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1534 if (ret) 1535 return ret; 1536 ret = detach_oos_page(spt->vgpu, oos_page); 1537 if (ret) 1538 return ret; 1539 } else 1540 oos_page = container_of(gtt->oos_page_free_list_head.next, 1541 struct intel_vgpu_oos_page, list); 1542 return attach_oos_page(oos_page, spt); 1543 } 1544 1545 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1546 { 1547 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1548 1549 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1550 return -EINVAL; 1551 1552 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1553 spt, spt->guest_page.type); 1554 1555 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1556 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1557 } 1558 1559 /** 1560 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1561 * @vgpu: a vGPU 1562 * 1563 * This function is called before submitting a guest workload to host, 1564 * to sync all the out-of-synced shadow for vGPU 1565 * 1566 * Returns: 1567 * Zero on success, negative error code if failed. 1568 */ 1569 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1570 { 1571 struct list_head *pos, *n; 1572 struct intel_vgpu_oos_page *oos_page; 1573 int ret; 1574 1575 if (!enable_out_of_sync) 1576 return 0; 1577 1578 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1579 oos_page = container_of(pos, 1580 struct intel_vgpu_oos_page, vm_list); 1581 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1582 if (ret) 1583 return ret; 1584 } 1585 return 0; 1586 } 1587 1588 /* 1589 * The heart of PPGTT shadow page table. 1590 */ 1591 static int ppgtt_handle_guest_write_page_table( 1592 struct intel_vgpu_ppgtt_spt *spt, 1593 struct intel_gvt_gtt_entry *we, unsigned long index) 1594 { 1595 struct intel_vgpu *vgpu = spt->vgpu; 1596 int type = spt->shadow_page.type; 1597 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1598 struct intel_gvt_gtt_entry old_se; 1599 int new_present; 1600 int i, ret; 1601 1602 new_present = ops->test_present(we); 1603 1604 /* 1605 * Adding the new entry first and then removing the old one, that can 1606 * guarantee the ppgtt table is validated during the window between 1607 * adding and removal. 1608 */ 1609 ppgtt_get_shadow_entry(spt, &old_se, index); 1610 1611 if (new_present) { 1612 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1613 if (ret) 1614 goto fail; 1615 } 1616 1617 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1618 if (ret) 1619 goto fail; 1620 1621 if (!new_present) { 1622 /* For 64KB splited entries, we need clear them all. */ 1623 if (ops->test_64k_splited(&old_se) && 1624 !(index % GTT_64K_PTE_STRIDE)) { 1625 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1626 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1627 ops->clear_64k_splited(&old_se); 1628 ops->set_pfn(&old_se, 1629 vgpu->gtt.scratch_pt[type].page_mfn); 1630 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1631 } 1632 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1633 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1634 ops->clear_pse(&old_se); 1635 ops->set_pfn(&old_se, 1636 vgpu->gtt.scratch_pt[type].page_mfn); 1637 ppgtt_set_shadow_entry(spt, &old_se, index); 1638 } else { 1639 ops->set_pfn(&old_se, 1640 vgpu->gtt.scratch_pt[type].page_mfn); 1641 ppgtt_set_shadow_entry(spt, &old_se, index); 1642 } 1643 } 1644 1645 return 0; 1646 fail: 1647 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1648 spt, we->val64, we->type); 1649 return ret; 1650 } 1651 1652 1653 1654 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1655 { 1656 return enable_out_of_sync 1657 && gtt_type_is_pte_pt(spt->guest_page.type) 1658 && spt->guest_page.write_cnt >= 2; 1659 } 1660 1661 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1662 unsigned long index) 1663 { 1664 set_bit(index, spt->post_shadow_bitmap); 1665 if (!list_empty(&spt->post_shadow_list)) 1666 return; 1667 1668 list_add_tail(&spt->post_shadow_list, 1669 &spt->vgpu->gtt.post_shadow_list_head); 1670 } 1671 1672 /** 1673 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1674 * @vgpu: a vGPU 1675 * 1676 * This function is called before submitting a guest workload to host, 1677 * to flush all the post shadows for a vGPU. 1678 * 1679 * Returns: 1680 * Zero on success, negative error code if failed. 1681 */ 1682 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1683 { 1684 struct list_head *pos, *n; 1685 struct intel_vgpu_ppgtt_spt *spt; 1686 struct intel_gvt_gtt_entry ge; 1687 unsigned long index; 1688 int ret; 1689 1690 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1691 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1692 post_shadow_list); 1693 1694 for_each_set_bit(index, spt->post_shadow_bitmap, 1695 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1696 ppgtt_get_guest_entry(spt, &ge, index); 1697 1698 ret = ppgtt_handle_guest_write_page_table(spt, 1699 &ge, index); 1700 if (ret) 1701 return ret; 1702 clear_bit(index, spt->post_shadow_bitmap); 1703 } 1704 list_del_init(&spt->post_shadow_list); 1705 } 1706 return 0; 1707 } 1708 1709 static int ppgtt_handle_guest_write_page_table_bytes( 1710 struct intel_vgpu_ppgtt_spt *spt, 1711 u64 pa, void *p_data, int bytes) 1712 { 1713 struct intel_vgpu *vgpu = spt->vgpu; 1714 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1715 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1716 struct intel_gvt_gtt_entry we, se; 1717 unsigned long index; 1718 int ret; 1719 1720 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1721 1722 ppgtt_get_guest_entry(spt, &we, index); 1723 1724 /* 1725 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1726 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1727 * ignored. 1728 */ 1729 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1730 (index % GTT_64K_PTE_STRIDE)) { 1731 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1732 index); 1733 return 0; 1734 } 1735 1736 if (bytes == info->gtt_entry_size) { 1737 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1738 if (ret) 1739 return ret; 1740 } else { 1741 if (!test_bit(index, spt->post_shadow_bitmap)) { 1742 int type = spt->shadow_page.type; 1743 1744 ppgtt_get_shadow_entry(spt, &se, index); 1745 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1746 if (ret) 1747 return ret; 1748 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1749 ppgtt_set_shadow_entry(spt, &se, index); 1750 } 1751 ppgtt_set_post_shadow(spt, index); 1752 } 1753 1754 if (!enable_out_of_sync) 1755 return 0; 1756 1757 spt->guest_page.write_cnt++; 1758 1759 if (spt->guest_page.oos_page) 1760 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1761 false, 0, vgpu); 1762 1763 if (can_do_out_of_sync(spt)) { 1764 if (!spt->guest_page.oos_page) 1765 ppgtt_allocate_oos_page(spt); 1766 1767 ret = ppgtt_set_guest_page_oos(spt); 1768 if (ret < 0) 1769 return ret; 1770 } 1771 return 0; 1772 } 1773 1774 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1775 { 1776 struct intel_vgpu *vgpu = mm->vgpu; 1777 struct intel_gvt *gvt = vgpu->gvt; 1778 struct intel_gvt_gtt *gtt = &gvt->gtt; 1779 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1780 struct intel_gvt_gtt_entry se; 1781 int index; 1782 1783 if (!mm->ppgtt_mm.shadowed) 1784 return; 1785 1786 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1787 ppgtt_get_shadow_root_entry(mm, &se, index); 1788 1789 if (!ops->test_present(&se)) 1790 continue; 1791 1792 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1793 se.val64 = 0; 1794 ppgtt_set_shadow_root_entry(mm, &se, index); 1795 1796 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1797 NULL, se.type, se.val64, index); 1798 } 1799 1800 mm->ppgtt_mm.shadowed = false; 1801 } 1802 1803 1804 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1805 { 1806 struct intel_vgpu *vgpu = mm->vgpu; 1807 struct intel_gvt *gvt = vgpu->gvt; 1808 struct intel_gvt_gtt *gtt = &gvt->gtt; 1809 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1810 struct intel_vgpu_ppgtt_spt *spt; 1811 struct intel_gvt_gtt_entry ge, se; 1812 int index, ret; 1813 1814 if (mm->ppgtt_mm.shadowed) 1815 return 0; 1816 1817 mm->ppgtt_mm.shadowed = true; 1818 1819 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1820 ppgtt_get_guest_root_entry(mm, &ge, index); 1821 1822 if (!ops->test_present(&ge)) 1823 continue; 1824 1825 trace_spt_guest_change(vgpu->id, __func__, NULL, 1826 ge.type, ge.val64, index); 1827 1828 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1829 if (IS_ERR(spt)) { 1830 gvt_vgpu_err("fail to populate guest root pointer\n"); 1831 ret = PTR_ERR(spt); 1832 goto fail; 1833 } 1834 ppgtt_generate_shadow_entry(&se, spt, &ge); 1835 ppgtt_set_shadow_root_entry(mm, &se, index); 1836 1837 trace_spt_guest_change(vgpu->id, "populate root pointer", 1838 NULL, se.type, se.val64, index); 1839 } 1840 1841 return 0; 1842 fail: 1843 invalidate_ppgtt_mm(mm); 1844 return ret; 1845 } 1846 1847 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1848 { 1849 struct intel_vgpu_mm *mm; 1850 1851 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1852 if (!mm) 1853 return NULL; 1854 1855 mm->vgpu = vgpu; 1856 kref_init(&mm->ref); 1857 atomic_set(&mm->pincount, 0); 1858 1859 return mm; 1860 } 1861 1862 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1863 { 1864 kfree(mm); 1865 } 1866 1867 /** 1868 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1869 * @vgpu: a vGPU 1870 * @root_entry_type: ppgtt root entry type 1871 * @pdps: guest pdps. 1872 * 1873 * This function is used to create a ppgtt mm object for a vGPU. 1874 * 1875 * Returns: 1876 * Zero on success, negative error code in pointer if failed. 1877 */ 1878 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1879 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1880 { 1881 struct intel_gvt *gvt = vgpu->gvt; 1882 struct intel_vgpu_mm *mm; 1883 int ret; 1884 1885 mm = vgpu_alloc_mm(vgpu); 1886 if (!mm) 1887 return ERR_PTR(-ENOMEM); 1888 1889 mm->type = INTEL_GVT_MM_PPGTT; 1890 1891 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1892 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1893 mm->ppgtt_mm.root_entry_type = root_entry_type; 1894 1895 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1896 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1897 1898 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1899 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1900 else 1901 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1902 sizeof(mm->ppgtt_mm.guest_pdps)); 1903 1904 ret = shadow_ppgtt_mm(mm); 1905 if (ret) { 1906 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1907 vgpu_free_mm(mm); 1908 return ERR_PTR(ret); 1909 } 1910 1911 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1912 1913 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1914 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1915 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1916 1917 return mm; 1918 } 1919 1920 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1921 { 1922 struct intel_vgpu_mm *mm; 1923 unsigned long nr_entries; 1924 1925 mm = vgpu_alloc_mm(vgpu); 1926 if (!mm) 1927 return ERR_PTR(-ENOMEM); 1928 1929 mm->type = INTEL_GVT_MM_GGTT; 1930 1931 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1932 mm->ggtt_mm.virtual_ggtt = 1933 vzalloc(array_size(nr_entries, 1934 vgpu->gvt->device_info.gtt_entry_size)); 1935 if (!mm->ggtt_mm.virtual_ggtt) { 1936 vgpu_free_mm(mm); 1937 return ERR_PTR(-ENOMEM); 1938 } 1939 1940 return mm; 1941 } 1942 1943 /** 1944 * _intel_vgpu_mm_release - destroy a mm object 1945 * @mm_ref: a kref object 1946 * 1947 * This function is used to destroy a mm object for vGPU 1948 * 1949 */ 1950 void _intel_vgpu_mm_release(struct kref *mm_ref) 1951 { 1952 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1953 1954 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1955 gvt_err("vgpu mm pin count bug detected\n"); 1956 1957 if (mm->type == INTEL_GVT_MM_PPGTT) { 1958 list_del(&mm->ppgtt_mm.list); 1959 list_del(&mm->ppgtt_mm.lru_list); 1960 invalidate_ppgtt_mm(mm); 1961 } else { 1962 vfree(mm->ggtt_mm.virtual_ggtt); 1963 } 1964 1965 vgpu_free_mm(mm); 1966 } 1967 1968 /** 1969 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1970 * @mm: a vGPU mm object 1971 * 1972 * This function is called when user doesn't want to use a vGPU mm object 1973 */ 1974 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1975 { 1976 atomic_dec_if_positive(&mm->pincount); 1977 } 1978 1979 /** 1980 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1981 * @mm: target vgpu mm 1982 * 1983 * This function is called when user wants to use a vGPU mm object. If this 1984 * mm object hasn't been shadowed yet, the shadow will be populated at this 1985 * time. 1986 * 1987 * Returns: 1988 * Zero on success, negative error code if failed. 1989 */ 1990 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 1991 { 1992 int ret; 1993 1994 atomic_inc(&mm->pincount); 1995 1996 if (mm->type == INTEL_GVT_MM_PPGTT) { 1997 ret = shadow_ppgtt_mm(mm); 1998 if (ret) 1999 return ret; 2000 2001 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2002 list_move_tail(&mm->ppgtt_mm.lru_list, 2003 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2004 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2005 } 2006 2007 return 0; 2008 } 2009 2010 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2011 { 2012 struct intel_vgpu_mm *mm; 2013 struct list_head *pos, *n; 2014 2015 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2016 2017 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2018 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2019 2020 if (atomic_read(&mm->pincount)) 2021 continue; 2022 2023 list_del_init(&mm->ppgtt_mm.lru_list); 2024 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2025 invalidate_ppgtt_mm(mm); 2026 return 1; 2027 } 2028 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2029 return 0; 2030 } 2031 2032 /* 2033 * GMA translation APIs. 2034 */ 2035 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2036 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2037 { 2038 struct intel_vgpu *vgpu = mm->vgpu; 2039 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2040 struct intel_vgpu_ppgtt_spt *s; 2041 2042 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2043 if (!s) 2044 return -ENXIO; 2045 2046 if (!guest) 2047 ppgtt_get_shadow_entry(s, e, index); 2048 else 2049 ppgtt_get_guest_entry(s, e, index); 2050 return 0; 2051 } 2052 2053 /** 2054 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2055 * @mm: mm object. could be a PPGTT or GGTT mm object 2056 * @gma: graphics memory address in this mm object 2057 * 2058 * This function is used to translate a graphics memory address in specific 2059 * graphics memory space to guest physical address. 2060 * 2061 * Returns: 2062 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2063 */ 2064 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2065 { 2066 struct intel_vgpu *vgpu = mm->vgpu; 2067 struct intel_gvt *gvt = vgpu->gvt; 2068 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2069 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2070 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2071 unsigned long gma_index[4]; 2072 struct intel_gvt_gtt_entry e; 2073 int i, levels = 0; 2074 int ret; 2075 2076 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2077 mm->type != INTEL_GVT_MM_PPGTT); 2078 2079 if (mm->type == INTEL_GVT_MM_GGTT) { 2080 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2081 goto err; 2082 2083 ggtt_get_guest_entry(mm, &e, 2084 gma_ops->gma_to_ggtt_pte_index(gma)); 2085 2086 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2087 + (gma & ~I915_GTT_PAGE_MASK); 2088 2089 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2090 } else { 2091 switch (mm->ppgtt_mm.root_entry_type) { 2092 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2093 ppgtt_get_shadow_root_entry(mm, &e, 0); 2094 2095 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2096 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2097 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2098 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2099 levels = 4; 2100 break; 2101 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2102 ppgtt_get_shadow_root_entry(mm, &e, 2103 gma_ops->gma_to_l3_pdp_index(gma)); 2104 2105 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2106 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2107 levels = 2; 2108 break; 2109 default: 2110 GEM_BUG_ON(1); 2111 } 2112 2113 /* walk the shadow page table and get gpa from guest entry */ 2114 for (i = 0; i < levels; i++) { 2115 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2116 (i == levels - 1)); 2117 if (ret) 2118 goto err; 2119 2120 if (!pte_ops->test_present(&e)) { 2121 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2122 goto err; 2123 } 2124 } 2125 2126 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2127 (gma & ~I915_GTT_PAGE_MASK); 2128 trace_gma_translate(vgpu->id, "ppgtt", 0, 2129 mm->ppgtt_mm.root_entry_type, gma, gpa); 2130 } 2131 2132 return gpa; 2133 err: 2134 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2135 return INTEL_GVT_INVALID_ADDR; 2136 } 2137 2138 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2139 unsigned int off, void *p_data, unsigned int bytes) 2140 { 2141 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2142 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2143 unsigned long index = off >> info->gtt_entry_size_shift; 2144 unsigned long gma; 2145 struct intel_gvt_gtt_entry e; 2146 2147 if (bytes != 4 && bytes != 8) 2148 return -EINVAL; 2149 2150 gma = index << I915_GTT_PAGE_SHIFT; 2151 if (!intel_gvt_ggtt_validate_range(vgpu, 2152 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2153 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2154 memset(p_data, 0, bytes); 2155 return 0; 2156 } 2157 2158 ggtt_get_guest_entry(ggtt_mm, &e, index); 2159 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2160 bytes); 2161 return 0; 2162 } 2163 2164 /** 2165 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2166 * @vgpu: a vGPU 2167 * @off: register offset 2168 * @p_data: data will be returned to guest 2169 * @bytes: data length 2170 * 2171 * This function is used to emulate the GTT MMIO register read 2172 * 2173 * Returns: 2174 * Zero on success, error code if failed. 2175 */ 2176 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2177 void *p_data, unsigned int bytes) 2178 { 2179 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2180 int ret; 2181 2182 if (bytes != 4 && bytes != 8) 2183 return -EINVAL; 2184 2185 off -= info->gtt_start_offset; 2186 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2187 return ret; 2188 } 2189 2190 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2191 struct intel_gvt_gtt_entry *entry) 2192 { 2193 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2194 unsigned long pfn; 2195 2196 pfn = pte_ops->get_pfn(entry); 2197 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2198 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2199 pfn << PAGE_SHIFT); 2200 } 2201 2202 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2203 void *p_data, unsigned int bytes) 2204 { 2205 struct intel_gvt *gvt = vgpu->gvt; 2206 const struct intel_gvt_device_info *info = &gvt->device_info; 2207 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2208 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2209 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2210 unsigned long gma, gfn; 2211 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2212 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2213 dma_addr_t dma_addr; 2214 int ret; 2215 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2216 bool partial_update = false; 2217 2218 if (bytes != 4 && bytes != 8) 2219 return -EINVAL; 2220 2221 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2222 2223 /* the VM may configure the whole GM space when ballooning is used */ 2224 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2225 return 0; 2226 2227 e.type = GTT_TYPE_GGTT_PTE; 2228 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2229 bytes); 2230 2231 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2232 * write, save the first 4 bytes in a list and update virtual 2233 * PTE. Only update shadow PTE when the second 4 bytes comes. 2234 */ 2235 if (bytes < info->gtt_entry_size) { 2236 bool found = false; 2237 2238 list_for_each_entry_safe(pos, n, 2239 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2240 if (g_gtt_index == pos->offset >> 2241 info->gtt_entry_size_shift) { 2242 if (off != pos->offset) { 2243 /* the second partial part*/ 2244 int last_off = pos->offset & 2245 (info->gtt_entry_size - 1); 2246 2247 memcpy((void *)&e.val64 + last_off, 2248 (void *)&pos->data + last_off, 2249 bytes); 2250 2251 list_del(&pos->list); 2252 kfree(pos); 2253 found = true; 2254 break; 2255 } 2256 2257 /* update of the first partial part */ 2258 pos->data = e.val64; 2259 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2260 return 0; 2261 } 2262 } 2263 2264 if (!found) { 2265 /* the first partial part */ 2266 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2267 if (!partial_pte) 2268 return -ENOMEM; 2269 partial_pte->offset = off; 2270 partial_pte->data = e.val64; 2271 list_add_tail(&partial_pte->list, 2272 &ggtt_mm->ggtt_mm.partial_pte_list); 2273 partial_update = true; 2274 } 2275 } 2276 2277 if (!partial_update && (ops->test_present(&e))) { 2278 gfn = ops->get_pfn(&e); 2279 m.val64 = e.val64; 2280 m.type = e.type; 2281 2282 /* one PTE update may be issued in multiple writes and the 2283 * first write may not construct a valid gfn 2284 */ 2285 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2286 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2287 goto out; 2288 } 2289 2290 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2291 PAGE_SIZE, &dma_addr); 2292 if (ret) { 2293 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2294 /* guest driver may read/write the entry when partial 2295 * update the entry in this situation p2m will fail 2296 * settting the shadow entry to point to a scratch page 2297 */ 2298 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2299 } else 2300 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2301 } else { 2302 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2303 ops->clear_present(&m); 2304 } 2305 2306 out: 2307 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2308 2309 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2310 ggtt_invalidate_pte(vgpu, &e); 2311 2312 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2313 ggtt_invalidate(gvt->dev_priv); 2314 return 0; 2315 } 2316 2317 /* 2318 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2319 * @vgpu: a vGPU 2320 * @off: register offset 2321 * @p_data: data from guest write 2322 * @bytes: data length 2323 * 2324 * This function is used to emulate the GTT MMIO register write 2325 * 2326 * Returns: 2327 * Zero on success, error code if failed. 2328 */ 2329 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2330 unsigned int off, void *p_data, unsigned int bytes) 2331 { 2332 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2333 int ret; 2334 2335 if (bytes != 4 && bytes != 8) 2336 return -EINVAL; 2337 2338 off -= info->gtt_start_offset; 2339 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2340 return ret; 2341 } 2342 2343 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2344 enum intel_gvt_gtt_type type) 2345 { 2346 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2347 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2348 int page_entry_num = I915_GTT_PAGE_SIZE >> 2349 vgpu->gvt->device_info.gtt_entry_size_shift; 2350 void *scratch_pt; 2351 int i; 2352 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2353 dma_addr_t daddr; 2354 2355 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2356 return -EINVAL; 2357 2358 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2359 if (!scratch_pt) { 2360 gvt_vgpu_err("fail to allocate scratch page\n"); 2361 return -ENOMEM; 2362 } 2363 2364 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2365 4096, PCI_DMA_BIDIRECTIONAL); 2366 if (dma_mapping_error(dev, daddr)) { 2367 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2368 __free_page(virt_to_page(scratch_pt)); 2369 return -ENOMEM; 2370 } 2371 gtt->scratch_pt[type].page_mfn = 2372 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2373 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2374 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2375 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2376 2377 /* Build the tree by full filled the scratch pt with the entries which 2378 * point to the next level scratch pt or scratch page. The 2379 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2380 * 'type' pt. 2381 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2382 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2383 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2384 */ 2385 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2386 struct intel_gvt_gtt_entry se; 2387 2388 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2389 se.type = get_entry_type(type - 1); 2390 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2391 2392 /* The entry parameters like present/writeable/cache type 2393 * set to the same as i915's scratch page tree. 2394 */ 2395 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2396 if (type == GTT_TYPE_PPGTT_PDE_PT) 2397 se.val64 |= PPAT_CACHED; 2398 2399 for (i = 0; i < page_entry_num; i++) 2400 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2401 } 2402 2403 return 0; 2404 } 2405 2406 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2407 { 2408 int i; 2409 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2410 dma_addr_t daddr; 2411 2412 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2413 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2414 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2415 I915_GTT_PAGE_SHIFT); 2416 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2417 __free_page(vgpu->gtt.scratch_pt[i].page); 2418 vgpu->gtt.scratch_pt[i].page = NULL; 2419 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2420 } 2421 } 2422 2423 return 0; 2424 } 2425 2426 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2427 { 2428 int i, ret; 2429 2430 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2431 ret = alloc_scratch_pages(vgpu, i); 2432 if (ret) 2433 goto err; 2434 } 2435 2436 return 0; 2437 2438 err: 2439 release_scratch_page_tree(vgpu); 2440 return ret; 2441 } 2442 2443 /** 2444 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2445 * @vgpu: a vGPU 2446 * 2447 * This function is used to initialize per-vGPU graphics memory virtualization 2448 * components. 2449 * 2450 * Returns: 2451 * Zero on success, error code if failed. 2452 */ 2453 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2454 { 2455 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2456 2457 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2458 2459 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2460 INIT_LIST_HEAD(>t->oos_page_list_head); 2461 INIT_LIST_HEAD(>t->post_shadow_list_head); 2462 2463 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2464 if (IS_ERR(gtt->ggtt_mm)) { 2465 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2466 return PTR_ERR(gtt->ggtt_mm); 2467 } 2468 2469 intel_vgpu_reset_ggtt(vgpu, false); 2470 2471 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2472 2473 return create_scratch_page_tree(vgpu); 2474 } 2475 2476 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2477 { 2478 struct list_head *pos, *n; 2479 struct intel_vgpu_mm *mm; 2480 2481 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2482 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2483 intel_vgpu_destroy_mm(mm); 2484 } 2485 2486 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2487 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2488 2489 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2490 gvt_err("Why we still has spt not freed?\n"); 2491 ppgtt_free_all_spt(vgpu); 2492 } 2493 } 2494 2495 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2496 { 2497 struct intel_gvt_partial_pte *pos, *next; 2498 2499 list_for_each_entry_safe(pos, next, 2500 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2501 list) { 2502 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2503 pos->offset, pos->data); 2504 kfree(pos); 2505 } 2506 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2507 vgpu->gtt.ggtt_mm = NULL; 2508 } 2509 2510 /** 2511 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2512 * @vgpu: a vGPU 2513 * 2514 * This function is used to clean up per-vGPU graphics memory virtualization 2515 * components. 2516 * 2517 * Returns: 2518 * Zero on success, error code if failed. 2519 */ 2520 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2521 { 2522 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2523 intel_vgpu_destroy_ggtt_mm(vgpu); 2524 release_scratch_page_tree(vgpu); 2525 } 2526 2527 static void clean_spt_oos(struct intel_gvt *gvt) 2528 { 2529 struct intel_gvt_gtt *gtt = &gvt->gtt; 2530 struct list_head *pos, *n; 2531 struct intel_vgpu_oos_page *oos_page; 2532 2533 WARN(!list_empty(>t->oos_page_use_list_head), 2534 "someone is still using oos page\n"); 2535 2536 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2537 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2538 list_del(&oos_page->list); 2539 free_page((unsigned long)oos_page->mem); 2540 kfree(oos_page); 2541 } 2542 } 2543 2544 static int setup_spt_oos(struct intel_gvt *gvt) 2545 { 2546 struct intel_gvt_gtt *gtt = &gvt->gtt; 2547 struct intel_vgpu_oos_page *oos_page; 2548 int i; 2549 int ret; 2550 2551 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2552 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2553 2554 for (i = 0; i < preallocated_oos_pages; i++) { 2555 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2556 if (!oos_page) { 2557 ret = -ENOMEM; 2558 goto fail; 2559 } 2560 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2561 if (!oos_page->mem) { 2562 ret = -ENOMEM; 2563 kfree(oos_page); 2564 goto fail; 2565 } 2566 2567 INIT_LIST_HEAD(&oos_page->list); 2568 INIT_LIST_HEAD(&oos_page->vm_list); 2569 oos_page->id = i; 2570 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2571 } 2572 2573 gvt_dbg_mm("%d oos pages preallocated\n", i); 2574 2575 return 0; 2576 fail: 2577 clean_spt_oos(gvt); 2578 return ret; 2579 } 2580 2581 /** 2582 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2583 * @vgpu: a vGPU 2584 * @pdps: pdp root array 2585 * 2586 * This function is used to find a PPGTT mm object from mm object pool 2587 * 2588 * Returns: 2589 * pointer to mm object on success, NULL if failed. 2590 */ 2591 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2592 u64 pdps[]) 2593 { 2594 struct intel_vgpu_mm *mm; 2595 struct list_head *pos; 2596 2597 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2598 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2599 2600 switch (mm->ppgtt_mm.root_entry_type) { 2601 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2602 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2603 return mm; 2604 break; 2605 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2606 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2607 sizeof(mm->ppgtt_mm.guest_pdps))) 2608 return mm; 2609 break; 2610 default: 2611 GEM_BUG_ON(1); 2612 } 2613 } 2614 return NULL; 2615 } 2616 2617 /** 2618 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2619 * @vgpu: a vGPU 2620 * @root_entry_type: ppgtt root entry type 2621 * @pdps: guest pdps 2622 * 2623 * This function is used to find or create a PPGTT mm object from a guest. 2624 * 2625 * Returns: 2626 * Zero on success, negative error code if failed. 2627 */ 2628 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2629 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2630 { 2631 struct intel_vgpu_mm *mm; 2632 2633 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2634 if (mm) { 2635 intel_vgpu_mm_get(mm); 2636 } else { 2637 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2638 if (IS_ERR(mm)) 2639 gvt_vgpu_err("fail to create mm\n"); 2640 } 2641 return mm; 2642 } 2643 2644 /** 2645 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2646 * @vgpu: a vGPU 2647 * @pdps: guest pdps 2648 * 2649 * This function is used to find a PPGTT mm object from a guest and destroy it. 2650 * 2651 * Returns: 2652 * Zero on success, negative error code if failed. 2653 */ 2654 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2655 { 2656 struct intel_vgpu_mm *mm; 2657 2658 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2659 if (!mm) { 2660 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2661 return -EINVAL; 2662 } 2663 intel_vgpu_mm_put(mm); 2664 return 0; 2665 } 2666 2667 /** 2668 * intel_gvt_init_gtt - initialize mm components of a GVT device 2669 * @gvt: GVT device 2670 * 2671 * This function is called at the initialization stage, to initialize 2672 * the mm components of a GVT device. 2673 * 2674 * Returns: 2675 * zero on success, negative error code if failed. 2676 */ 2677 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2678 { 2679 int ret; 2680 void *page; 2681 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2682 dma_addr_t daddr; 2683 2684 gvt_dbg_core("init gtt\n"); 2685 2686 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2687 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2688 2689 page = (void *)get_zeroed_page(GFP_KERNEL); 2690 if (!page) { 2691 gvt_err("fail to allocate scratch ggtt page\n"); 2692 return -ENOMEM; 2693 } 2694 2695 daddr = dma_map_page(dev, virt_to_page(page), 0, 2696 4096, PCI_DMA_BIDIRECTIONAL); 2697 if (dma_mapping_error(dev, daddr)) { 2698 gvt_err("fail to dmamap scratch ggtt page\n"); 2699 __free_page(virt_to_page(page)); 2700 return -ENOMEM; 2701 } 2702 2703 gvt->gtt.scratch_page = virt_to_page(page); 2704 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2705 2706 if (enable_out_of_sync) { 2707 ret = setup_spt_oos(gvt); 2708 if (ret) { 2709 gvt_err("fail to initialize SPT oos\n"); 2710 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2711 __free_page(gvt->gtt.scratch_page); 2712 return ret; 2713 } 2714 } 2715 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2716 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2717 return 0; 2718 } 2719 2720 /** 2721 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2722 * @gvt: GVT device 2723 * 2724 * This function is called at the driver unloading stage, to clean up the 2725 * the mm components of a GVT device. 2726 * 2727 */ 2728 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2729 { 2730 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2731 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2732 I915_GTT_PAGE_SHIFT); 2733 2734 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2735 2736 __free_page(gvt->gtt.scratch_page); 2737 2738 if (enable_out_of_sync) 2739 clean_spt_oos(gvt); 2740 } 2741 2742 /** 2743 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2744 * @vgpu: a vGPU 2745 * 2746 * This function is called when invalidate all PPGTT instances of a vGPU. 2747 * 2748 */ 2749 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2750 { 2751 struct list_head *pos, *n; 2752 struct intel_vgpu_mm *mm; 2753 2754 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2755 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2756 if (mm->type == INTEL_GVT_MM_PPGTT) { 2757 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2758 list_del_init(&mm->ppgtt_mm.lru_list); 2759 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2760 if (mm->ppgtt_mm.shadowed) 2761 invalidate_ppgtt_mm(mm); 2762 } 2763 } 2764 } 2765 2766 /** 2767 * intel_vgpu_reset_ggtt - reset the GGTT entry 2768 * @vgpu: a vGPU 2769 * @invalidate_old: invalidate old entries 2770 * 2771 * This function is called at the vGPU create stage 2772 * to reset all the GGTT entries. 2773 * 2774 */ 2775 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2776 { 2777 struct intel_gvt *gvt = vgpu->gvt; 2778 struct drm_i915_private *dev_priv = gvt->dev_priv; 2779 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2780 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2781 struct intel_gvt_gtt_entry old_entry; 2782 u32 index; 2783 u32 num_entries; 2784 2785 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2786 pte_ops->set_present(&entry); 2787 2788 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2789 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2790 while (num_entries--) { 2791 if (invalidate_old) { 2792 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2793 ggtt_invalidate_pte(vgpu, &old_entry); 2794 } 2795 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2796 } 2797 2798 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2799 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2800 while (num_entries--) { 2801 if (invalidate_old) { 2802 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2803 ggtt_invalidate_pte(vgpu, &old_entry); 2804 } 2805 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2806 } 2807 2808 ggtt_invalidate(dev_priv); 2809 } 2810 2811 /** 2812 * intel_vgpu_reset_gtt - reset the all GTT related status 2813 * @vgpu: a vGPU 2814 * 2815 * This function is called from vfio core to reset reset all 2816 * GTT related status, including GGTT, PPGTT, scratch page. 2817 * 2818 */ 2819 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2820 { 2821 /* Shadow pages are only created when there is no page 2822 * table tracking data, so remove page tracking data after 2823 * removing the shadow pages. 2824 */ 2825 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2826 intel_vgpu_reset_ggtt(vgpu, true); 2827 } 2828