xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 62a9bbf2)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #include "gt/intel_gt_regs.h"
42 
43 #if defined(VERBOSE_DEBUG)
44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45 #else
46 #define gvt_vdbg_mm(fmt, args...)
47 #endif
48 
49 static bool enable_out_of_sync = false;
50 static int preallocated_oos_pages = 8192;
51 
52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn)
53 {
54 	struct kvm *kvm = vgpu->vfio_device.kvm;
55 	int idx;
56 	bool ret;
57 
58 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
59 		return false;
60 
61 	idx = srcu_read_lock(&kvm->srcu);
62 	ret = kvm_is_visible_gfn(kvm, gfn);
63 	srcu_read_unlock(&kvm->srcu, idx);
64 
65 	return ret;
66 }
67 
68 /*
69  * validate a gm address and related range size,
70  * translate it to host gm address
71  */
72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
73 {
74 	if (size == 0)
75 		return vgpu_gmadr_is_valid(vgpu, addr);
76 
77 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
78 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
79 		return true;
80 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
81 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
82 		return true;
83 
84 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
85 		     addr, size);
86 	return false;
87 }
88 
89 /* translate a guest gmadr to host gmadr */
90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
95 		     "invalid guest gmadr %llx\n", g_addr))
96 		return -EACCES;
97 
98 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
99 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
100 			  + (g_addr - vgpu_aperture_offset(vgpu));
101 	else
102 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
103 			  + (g_addr - vgpu_hidden_offset(vgpu));
104 	return 0;
105 }
106 
107 /* translate a host gmadr to guest gmadr */
108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
109 {
110 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
111 
112 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
113 		     "invalid host gmadr %llx\n", h_addr))
114 		return -EACCES;
115 
116 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
117 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
118 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
119 	else
120 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
121 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
122 	return 0;
123 }
124 
125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
126 			     unsigned long *h_index)
127 {
128 	u64 h_addr;
129 	int ret;
130 
131 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
132 				       &h_addr);
133 	if (ret)
134 		return ret;
135 
136 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
137 	return 0;
138 }
139 
140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
141 			     unsigned long *g_index)
142 {
143 	u64 g_addr;
144 	int ret;
145 
146 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
147 				       &g_addr);
148 	if (ret)
149 		return ret;
150 
151 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
152 	return 0;
153 }
154 
155 #define gtt_type_is_entry(type) \
156 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
157 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
158 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
159 
160 #define gtt_type_is_pt(type) \
161 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
162 
163 #define gtt_type_is_pte_pt(type) \
164 	(type == GTT_TYPE_PPGTT_PTE_PT)
165 
166 #define gtt_type_is_root_pointer(type) \
167 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
168 
169 #define gtt_init_entry(e, t, p, v) do { \
170 	(e)->type = t; \
171 	(e)->pdev = p; \
172 	memcpy(&(e)->val64, &v, sizeof(v)); \
173 } while (0)
174 
175 /*
176  * Mappings between GTT_TYPE* enumerations.
177  * Following information can be found according to the given type:
178  * - type of next level page table
179  * - type of entry inside this level page table
180  * - type of entry with PSE set
181  *
182  * If the given type doesn't have such a kind of information,
183  * e.g. give a l4 root entry type, then request to get its PSE type,
184  * give a PTE page table type, then request to get its next level page
185  * table type, as we know l4 root entry doesn't have a PSE bit,
186  * and a PTE page table doesn't have a next level page table type,
187  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
188  * page table.
189  */
190 
191 struct gtt_type_table_entry {
192 	int entry_type;
193 	int pt_type;
194 	int next_pt_type;
195 	int pse_entry_type;
196 };
197 
198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
199 	[type] = { \
200 		.entry_type = e_type, \
201 		.pt_type = cpt_type, \
202 		.next_pt_type = npt_type, \
203 		.pse_entry_type = pse_type, \
204 	}
205 
206 static const struct gtt_type_table_entry gtt_type_table[] = {
207 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
208 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
209 			GTT_TYPE_INVALID,
210 			GTT_TYPE_PPGTT_PML4_PT,
211 			GTT_TYPE_INVALID),
212 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
213 			GTT_TYPE_PPGTT_PML4_ENTRY,
214 			GTT_TYPE_PPGTT_PML4_PT,
215 			GTT_TYPE_PPGTT_PDP_PT,
216 			GTT_TYPE_INVALID),
217 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
218 			GTT_TYPE_PPGTT_PML4_ENTRY,
219 			GTT_TYPE_PPGTT_PML4_PT,
220 			GTT_TYPE_PPGTT_PDP_PT,
221 			GTT_TYPE_INVALID),
222 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
223 			GTT_TYPE_PPGTT_PDP_ENTRY,
224 			GTT_TYPE_PPGTT_PDP_PT,
225 			GTT_TYPE_PPGTT_PDE_PT,
226 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
227 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
228 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
229 			GTT_TYPE_INVALID,
230 			GTT_TYPE_PPGTT_PDE_PT,
231 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
232 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
233 			GTT_TYPE_PPGTT_PDP_ENTRY,
234 			GTT_TYPE_PPGTT_PDP_PT,
235 			GTT_TYPE_PPGTT_PDE_PT,
236 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
237 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_PPGTT_PDE_ENTRY,
239 			GTT_TYPE_PPGTT_PDE_PT,
240 			GTT_TYPE_PPGTT_PTE_PT,
241 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
242 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
243 			GTT_TYPE_PPGTT_PDE_ENTRY,
244 			GTT_TYPE_PPGTT_PDE_PT,
245 			GTT_TYPE_PPGTT_PTE_PT,
246 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
247 	/* We take IPS bit as 'PSE' for PTE level. */
248 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
249 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
250 			GTT_TYPE_PPGTT_PTE_PT,
251 			GTT_TYPE_INVALID,
252 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
253 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
254 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
255 			GTT_TYPE_PPGTT_PTE_PT,
256 			GTT_TYPE_INVALID,
257 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
258 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
259 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
260 			GTT_TYPE_PPGTT_PTE_PT,
261 			GTT_TYPE_INVALID,
262 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
263 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
264 			GTT_TYPE_PPGTT_PDE_ENTRY,
265 			GTT_TYPE_PPGTT_PDE_PT,
266 			GTT_TYPE_INVALID,
267 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
268 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
269 			GTT_TYPE_PPGTT_PDP_ENTRY,
270 			GTT_TYPE_PPGTT_PDP_PT,
271 			GTT_TYPE_INVALID,
272 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
273 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
274 			GTT_TYPE_GGTT_PTE,
275 			GTT_TYPE_INVALID,
276 			GTT_TYPE_INVALID,
277 			GTT_TYPE_INVALID),
278 };
279 
280 static inline int get_next_pt_type(int type)
281 {
282 	return gtt_type_table[type].next_pt_type;
283 }
284 
285 static inline int get_entry_type(int type)
286 {
287 	return gtt_type_table[type].entry_type;
288 }
289 
290 static inline int get_pse_type(int type)
291 {
292 	return gtt_type_table[type].pse_entry_type;
293 }
294 
295 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
296 {
297 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
298 
299 	return readq(addr);
300 }
301 
302 static void ggtt_invalidate(struct intel_gt *gt)
303 {
304 	mmio_hw_access_pre(gt);
305 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
306 	mmio_hw_access_post(gt);
307 }
308 
309 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
310 {
311 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
312 
313 	writeq(pte, addr);
314 }
315 
316 static inline int gtt_get_entry64(void *pt,
317 		struct intel_gvt_gtt_entry *e,
318 		unsigned long index, bool hypervisor_access, unsigned long gpa,
319 		struct intel_vgpu *vgpu)
320 {
321 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
322 	int ret;
323 
324 	if (WARN_ON(info->gtt_entry_size != 8))
325 		return -EINVAL;
326 
327 	if (hypervisor_access) {
328 		ret = intel_gvt_read_gpa(vgpu, gpa +
329 				(index << info->gtt_entry_size_shift),
330 				&e->val64, 8);
331 		if (WARN_ON(ret))
332 			return ret;
333 	} else if (!pt) {
334 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
335 	} else {
336 		e->val64 = *((u64 *)pt + index);
337 	}
338 	return 0;
339 }
340 
341 static inline int gtt_set_entry64(void *pt,
342 		struct intel_gvt_gtt_entry *e,
343 		unsigned long index, bool hypervisor_access, unsigned long gpa,
344 		struct intel_vgpu *vgpu)
345 {
346 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
347 	int ret;
348 
349 	if (WARN_ON(info->gtt_entry_size != 8))
350 		return -EINVAL;
351 
352 	if (hypervisor_access) {
353 		ret = intel_gvt_write_gpa(vgpu, gpa +
354 				(index << info->gtt_entry_size_shift),
355 				&e->val64, 8);
356 		if (WARN_ON(ret))
357 			return ret;
358 	} else if (!pt) {
359 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
360 	} else {
361 		*((u64 *)pt + index) = e->val64;
362 	}
363 	return 0;
364 }
365 
366 #define GTT_HAW 46
367 
368 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
369 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
370 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
371 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
372 
373 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
374 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
375 
376 #define GTT_64K_PTE_STRIDE 16
377 
378 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
379 {
380 	unsigned long pfn;
381 
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
383 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
384 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
385 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
386 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
387 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
388 	else
389 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
390 	return pfn;
391 }
392 
393 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
394 {
395 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
396 		e->val64 &= ~ADDR_1G_MASK;
397 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
398 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
399 		e->val64 &= ~ADDR_2M_MASK;
400 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
401 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
402 		e->val64 &= ~ADDR_64K_MASK;
403 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
404 	} else {
405 		e->val64 &= ~ADDR_4K_MASK;
406 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
407 	}
408 
409 	e->val64 |= (pfn << PAGE_SHIFT);
410 }
411 
412 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
413 {
414 	return !!(e->val64 & _PAGE_PSE);
415 }
416 
417 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
418 {
419 	if (gen8_gtt_test_pse(e)) {
420 		switch (e->type) {
421 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
422 			e->val64 &= ~_PAGE_PSE;
423 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
424 			break;
425 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
426 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
427 			e->val64 &= ~_PAGE_PSE;
428 			break;
429 		default:
430 			WARN_ON(1);
431 		}
432 	}
433 }
434 
435 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
436 {
437 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
438 		return false;
439 
440 	return !!(e->val64 & GEN8_PDE_IPS_64K);
441 }
442 
443 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
444 {
445 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
446 		return;
447 
448 	e->val64 &= ~GEN8_PDE_IPS_64K;
449 }
450 
451 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
452 {
453 	/*
454 	 * i915 writes PDP root pointer registers without present bit,
455 	 * it also works, so we need to treat root pointer entry
456 	 * specifically.
457 	 */
458 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
459 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
460 		return (e->val64 != 0);
461 	else
462 		return (e->val64 & GEN8_PAGE_PRESENT);
463 }
464 
465 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
466 {
467 	e->val64 &= ~GEN8_PAGE_PRESENT;
468 }
469 
470 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
471 {
472 	e->val64 |= GEN8_PAGE_PRESENT;
473 }
474 
475 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
476 {
477 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
478 }
479 
480 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
481 {
482 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
483 }
484 
485 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
486 {
487 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
488 }
489 
490 /*
491  * Per-platform GMA routines.
492  */
493 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
494 {
495 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
496 
497 	trace_gma_index(__func__, gma, x);
498 	return x;
499 }
500 
501 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
502 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
503 { \
504 	unsigned long x = (exp); \
505 	trace_gma_index(__func__, gma, x); \
506 	return x; \
507 }
508 
509 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
510 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
511 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
512 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
513 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
514 
515 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
516 	.get_entry = gtt_get_entry64,
517 	.set_entry = gtt_set_entry64,
518 	.clear_present = gtt_entry_clear_present,
519 	.set_present = gtt_entry_set_present,
520 	.test_present = gen8_gtt_test_present,
521 	.test_pse = gen8_gtt_test_pse,
522 	.clear_pse = gen8_gtt_clear_pse,
523 	.clear_ips = gen8_gtt_clear_ips,
524 	.test_ips = gen8_gtt_test_ips,
525 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
526 	.set_64k_splited = gen8_gtt_set_64k_splited,
527 	.test_64k_splited = gen8_gtt_test_64k_splited,
528 	.get_pfn = gen8_gtt_get_pfn,
529 	.set_pfn = gen8_gtt_set_pfn,
530 };
531 
532 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
533 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
534 	.gma_to_pte_index = gen8_gma_to_pte_index,
535 	.gma_to_pde_index = gen8_gma_to_pde_index,
536 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
537 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
538 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
539 };
540 
541 /* Update entry type per pse and ips bit. */
542 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
543 	struct intel_gvt_gtt_entry *entry, bool ips)
544 {
545 	switch (entry->type) {
546 	case GTT_TYPE_PPGTT_PDE_ENTRY:
547 	case GTT_TYPE_PPGTT_PDP_ENTRY:
548 		if (pte_ops->test_pse(entry))
549 			entry->type = get_pse_type(entry->type);
550 		break;
551 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
552 		if (ips)
553 			entry->type = get_pse_type(entry->type);
554 		break;
555 	default:
556 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
557 	}
558 
559 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
560 }
561 
562 /*
563  * MM helpers.
564  */
565 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
566 		struct intel_gvt_gtt_entry *entry, unsigned long index,
567 		bool guest)
568 {
569 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
570 
571 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
572 
573 	entry->type = mm->ppgtt_mm.root_entry_type;
574 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
575 			   mm->ppgtt_mm.shadow_pdps,
576 			   entry, index, false, 0, mm->vgpu);
577 	update_entry_type_for_real(pte_ops, entry, false);
578 }
579 
580 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
581 		struct intel_gvt_gtt_entry *entry, unsigned long index)
582 {
583 	_ppgtt_get_root_entry(mm, entry, index, true);
584 }
585 
586 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
587 		struct intel_gvt_gtt_entry *entry, unsigned long index)
588 {
589 	_ppgtt_get_root_entry(mm, entry, index, false);
590 }
591 
592 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
593 		struct intel_gvt_gtt_entry *entry, unsigned long index,
594 		bool guest)
595 {
596 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
599 			   mm->ppgtt_mm.shadow_pdps,
600 			   entry, index, false, 0, mm->vgpu);
601 }
602 
603 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
604 		struct intel_gvt_gtt_entry *entry, unsigned long index)
605 {
606 	_ppgtt_set_root_entry(mm, entry, index, false);
607 }
608 
609 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
610 		struct intel_gvt_gtt_entry *entry, unsigned long index)
611 {
612 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
613 
614 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
615 
616 	entry->type = GTT_TYPE_GGTT_PTE;
617 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
618 			   false, 0, mm->vgpu);
619 }
620 
621 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
622 		struct intel_gvt_gtt_entry *entry, unsigned long index)
623 {
624 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
625 
626 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
627 
628 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
629 			   false, 0, mm->vgpu);
630 }
631 
632 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
633 		struct intel_gvt_gtt_entry *entry, unsigned long index)
634 {
635 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
636 
637 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
638 
639 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
640 }
641 
642 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
643 		struct intel_gvt_gtt_entry *entry, unsigned long index)
644 {
645 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
646 	unsigned long offset = index;
647 
648 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
649 
650 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
651 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
652 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
653 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
654 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
655 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
656 	}
657 
658 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
659 }
660 
661 /*
662  * PPGTT shadow page table helpers.
663  */
664 static inline int ppgtt_spt_get_entry(
665 		struct intel_vgpu_ppgtt_spt *spt,
666 		void *page_table, int type,
667 		struct intel_gvt_gtt_entry *e, unsigned long index,
668 		bool guest)
669 {
670 	struct intel_gvt *gvt = spt->vgpu->gvt;
671 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
672 	int ret;
673 
674 	e->type = get_entry_type(type);
675 
676 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
677 		return -EINVAL;
678 
679 	ret = ops->get_entry(page_table, e, index, guest,
680 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
681 			spt->vgpu);
682 	if (ret)
683 		return ret;
684 
685 	update_entry_type_for_real(ops, e, guest ?
686 				   spt->guest_page.pde_ips : false);
687 
688 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
689 		    type, e->type, index, e->val64);
690 	return 0;
691 }
692 
693 static inline int ppgtt_spt_set_entry(
694 		struct intel_vgpu_ppgtt_spt *spt,
695 		void *page_table, int type,
696 		struct intel_gvt_gtt_entry *e, unsigned long index,
697 		bool guest)
698 {
699 	struct intel_gvt *gvt = spt->vgpu->gvt;
700 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
701 
702 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
703 		return -EINVAL;
704 
705 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
706 		    type, e->type, index, e->val64);
707 
708 	return ops->set_entry(page_table, e, index, guest,
709 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
710 			spt->vgpu);
711 }
712 
713 #define ppgtt_get_guest_entry(spt, e, index) \
714 	ppgtt_spt_get_entry(spt, NULL, \
715 		spt->guest_page.type, e, index, true)
716 
717 #define ppgtt_set_guest_entry(spt, e, index) \
718 	ppgtt_spt_set_entry(spt, NULL, \
719 		spt->guest_page.type, e, index, true)
720 
721 #define ppgtt_get_shadow_entry(spt, e, index) \
722 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
723 		spt->shadow_page.type, e, index, false)
724 
725 #define ppgtt_set_shadow_entry(spt, e, index) \
726 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
727 		spt->shadow_page.type, e, index, false)
728 
729 static void *alloc_spt(gfp_t gfp_mask)
730 {
731 	struct intel_vgpu_ppgtt_spt *spt;
732 
733 	spt = kzalloc(sizeof(*spt), gfp_mask);
734 	if (!spt)
735 		return NULL;
736 
737 	spt->shadow_page.page = alloc_page(gfp_mask);
738 	if (!spt->shadow_page.page) {
739 		kfree(spt);
740 		return NULL;
741 	}
742 	return spt;
743 }
744 
745 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
746 {
747 	__free_page(spt->shadow_page.page);
748 	kfree(spt);
749 }
750 
751 static int detach_oos_page(struct intel_vgpu *vgpu,
752 		struct intel_vgpu_oos_page *oos_page);
753 
754 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
755 {
756 	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
757 
758 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
759 
760 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
761 		       DMA_BIDIRECTIONAL);
762 
763 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
764 
765 	if (spt->guest_page.gfn) {
766 		if (spt->guest_page.oos_page)
767 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
768 
769 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
770 	}
771 
772 	list_del_init(&spt->post_shadow_list);
773 	free_spt(spt);
774 }
775 
776 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
777 {
778 	struct intel_vgpu_ppgtt_spt *spt, *spn;
779 	struct radix_tree_iter iter;
780 	LIST_HEAD(all_spt);
781 	void __rcu **slot;
782 
783 	rcu_read_lock();
784 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
785 		spt = radix_tree_deref_slot(slot);
786 		list_move(&spt->post_shadow_list, &all_spt);
787 	}
788 	rcu_read_unlock();
789 
790 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
791 		ppgtt_free_spt(spt);
792 }
793 
794 static int ppgtt_handle_guest_write_page_table_bytes(
795 		struct intel_vgpu_ppgtt_spt *spt,
796 		u64 pa, void *p_data, int bytes);
797 
798 static int ppgtt_write_protection_handler(
799 		struct intel_vgpu_page_track *page_track,
800 		u64 gpa, void *data, int bytes)
801 {
802 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
803 
804 	int ret;
805 
806 	if (bytes != 4 && bytes != 8)
807 		return -EINVAL;
808 
809 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
810 	if (ret)
811 		return ret;
812 	return ret;
813 }
814 
815 /* Find a spt by guest gfn. */
816 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
817 		struct intel_vgpu *vgpu, unsigned long gfn)
818 {
819 	struct intel_vgpu_page_track *track;
820 
821 	track = intel_vgpu_find_page_track(vgpu, gfn);
822 	if (track && track->handler == ppgtt_write_protection_handler)
823 		return track->priv_data;
824 
825 	return NULL;
826 }
827 
828 /* Find the spt by shadow page mfn. */
829 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
830 		struct intel_vgpu *vgpu, unsigned long mfn)
831 {
832 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
833 }
834 
835 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
836 
837 /* Allocate shadow page table without guest page. */
838 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
839 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
840 {
841 	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
842 	struct intel_vgpu_ppgtt_spt *spt = NULL;
843 	dma_addr_t daddr;
844 	int ret;
845 
846 retry:
847 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
848 	if (!spt) {
849 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
850 			goto retry;
851 
852 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
853 		return ERR_PTR(-ENOMEM);
854 	}
855 
856 	spt->vgpu = vgpu;
857 	atomic_set(&spt->refcount, 1);
858 	INIT_LIST_HEAD(&spt->post_shadow_list);
859 
860 	/*
861 	 * Init shadow_page.
862 	 */
863 	spt->shadow_page.type = type;
864 	daddr = dma_map_page(kdev, spt->shadow_page.page,
865 			     0, 4096, DMA_BIDIRECTIONAL);
866 	if (dma_mapping_error(kdev, daddr)) {
867 		gvt_vgpu_err("fail to map dma addr\n");
868 		ret = -EINVAL;
869 		goto err_free_spt;
870 	}
871 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
872 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
873 
874 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
875 	if (ret)
876 		goto err_unmap_dma;
877 
878 	return spt;
879 
880 err_unmap_dma:
881 	dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
882 err_free_spt:
883 	free_spt(spt);
884 	return ERR_PTR(ret);
885 }
886 
887 /* Allocate shadow page table associated with specific gfn. */
888 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
889 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
890 		unsigned long gfn, bool guest_pde_ips)
891 {
892 	struct intel_vgpu_ppgtt_spt *spt;
893 	int ret;
894 
895 	spt = ppgtt_alloc_spt(vgpu, type);
896 	if (IS_ERR(spt))
897 		return spt;
898 
899 	/*
900 	 * Init guest_page.
901 	 */
902 	ret = intel_vgpu_register_page_track(vgpu, gfn,
903 			ppgtt_write_protection_handler, spt);
904 	if (ret) {
905 		ppgtt_free_spt(spt);
906 		return ERR_PTR(ret);
907 	}
908 
909 	spt->guest_page.type = type;
910 	spt->guest_page.gfn = gfn;
911 	spt->guest_page.pde_ips = guest_pde_ips;
912 
913 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
914 
915 	return spt;
916 }
917 
918 #define pt_entry_size_shift(spt) \
919 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
920 
921 #define pt_entries(spt) \
922 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
923 
924 #define for_each_present_guest_entry(spt, e, i) \
925 	for (i = 0; i < pt_entries(spt); \
926 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
927 		if (!ppgtt_get_guest_entry(spt, e, i) && \
928 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
929 
930 #define for_each_present_shadow_entry(spt, e, i) \
931 	for (i = 0; i < pt_entries(spt); \
932 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
933 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
934 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
935 
936 #define for_each_shadow_entry(spt, e, i) \
937 	for (i = 0; i < pt_entries(spt); \
938 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
939 		if (!ppgtt_get_shadow_entry(spt, e, i))
940 
941 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
942 {
943 	int v = atomic_read(&spt->refcount);
944 
945 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
946 	atomic_inc(&spt->refcount);
947 }
948 
949 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
950 {
951 	int v = atomic_read(&spt->refcount);
952 
953 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
954 	return atomic_dec_return(&spt->refcount);
955 }
956 
957 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
958 
959 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
960 		struct intel_gvt_gtt_entry *e)
961 {
962 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
963 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964 	struct intel_vgpu_ppgtt_spt *s;
965 	enum intel_gvt_gtt_type cur_pt_type;
966 
967 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
968 
969 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
970 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
971 		cur_pt_type = get_next_pt_type(e->type);
972 
973 		if (!gtt_type_is_pt(cur_pt_type) ||
974 				!gtt_type_is_pt(cur_pt_type + 1)) {
975 			drm_WARN(&i915->drm, 1,
976 				 "Invalid page table type, cur_pt_type is: %d\n",
977 				 cur_pt_type);
978 			return -EINVAL;
979 		}
980 
981 		cur_pt_type += 1;
982 
983 		if (ops->get_pfn(e) ==
984 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
985 			return 0;
986 	}
987 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
988 	if (!s) {
989 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
990 				ops->get_pfn(e));
991 		return -ENXIO;
992 	}
993 	return ppgtt_invalidate_spt(s);
994 }
995 
996 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
997 		struct intel_gvt_gtt_entry *entry)
998 {
999 	struct intel_vgpu *vgpu = spt->vgpu;
1000 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1001 	unsigned long pfn;
1002 	int type;
1003 
1004 	pfn = ops->get_pfn(entry);
1005 	type = spt->shadow_page.type;
1006 
1007 	/* Uninitialized spte or unshadowed spte. */
1008 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1009 		return;
1010 
1011 	intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1012 }
1013 
1014 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1015 {
1016 	struct intel_vgpu *vgpu = spt->vgpu;
1017 	struct intel_gvt_gtt_entry e;
1018 	unsigned long index;
1019 	int ret;
1020 
1021 	trace_spt_change(spt->vgpu->id, "die", spt,
1022 			spt->guest_page.gfn, spt->shadow_page.type);
1023 
1024 	if (ppgtt_put_spt(spt) > 0)
1025 		return 0;
1026 
1027 	for_each_present_shadow_entry(spt, &e, index) {
1028 		switch (e.type) {
1029 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1030 			gvt_vdbg_mm("invalidate 4K entry\n");
1031 			ppgtt_invalidate_pte(spt, &e);
1032 			break;
1033 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1034 			/* We don't setup 64K shadow entry so far. */
1035 			WARN(1, "suspicious 64K gtt entry\n");
1036 			continue;
1037 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1038 			gvt_vdbg_mm("invalidate 2M entry\n");
1039 			continue;
1040 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1041 			WARN(1, "GVT doesn't support 1GB page\n");
1042 			continue;
1043 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1044 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1045 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1046 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1047 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1048 					spt->vgpu, &e);
1049 			if (ret)
1050 				goto fail;
1051 			break;
1052 		default:
1053 			GEM_BUG_ON(1);
1054 		}
1055 	}
1056 
1057 	trace_spt_change(spt->vgpu->id, "release", spt,
1058 			 spt->guest_page.gfn, spt->shadow_page.type);
1059 	ppgtt_free_spt(spt);
1060 	return 0;
1061 fail:
1062 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1063 			spt, e.val64, e.type);
1064 	return ret;
1065 }
1066 
1067 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1068 {
1069 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1070 
1071 	if (GRAPHICS_VER(dev_priv) == 9) {
1072 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1073 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1074 
1075 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1076 	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1077 		/* 64K paging only controlled by IPS bit in PTE now. */
1078 		return true;
1079 	} else
1080 		return false;
1081 }
1082 
1083 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1084 
1085 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1086 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1087 {
1088 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1089 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1090 	bool ips = false;
1091 	int ret;
1092 
1093 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1094 
1095 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1096 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1097 
1098 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1099 	if (spt) {
1100 		ppgtt_get_spt(spt);
1101 
1102 		if (ips != spt->guest_page.pde_ips) {
1103 			spt->guest_page.pde_ips = ips;
1104 
1105 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1106 			clear_page(spt->shadow_page.vaddr);
1107 			ret = ppgtt_populate_spt(spt);
1108 			if (ret) {
1109 				ppgtt_put_spt(spt);
1110 				goto err;
1111 			}
1112 		}
1113 	} else {
1114 		int type = get_next_pt_type(we->type);
1115 
1116 		if (!gtt_type_is_pt(type)) {
1117 			ret = -EINVAL;
1118 			goto err;
1119 		}
1120 
1121 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1122 		if (IS_ERR(spt)) {
1123 			ret = PTR_ERR(spt);
1124 			goto err;
1125 		}
1126 
1127 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1128 		if (ret)
1129 			goto err_free_spt;
1130 
1131 		ret = ppgtt_populate_spt(spt);
1132 		if (ret)
1133 			goto err_free_spt;
1134 
1135 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1136 				 spt->shadow_page.type);
1137 	}
1138 	return spt;
1139 
1140 err_free_spt:
1141 	ppgtt_free_spt(spt);
1142 	spt = NULL;
1143 err:
1144 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1145 		     spt, we->val64, we->type);
1146 	return ERR_PTR(ret);
1147 }
1148 
1149 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1150 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1151 {
1152 	const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1153 
1154 	se->type = ge->type;
1155 	se->val64 = ge->val64;
1156 
1157 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1158 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1159 		ops->clear_ips(se);
1160 
1161 	ops->set_pfn(se, s->shadow_page.mfn);
1162 }
1163 
1164 /*
1165  * Check if can do 2M page
1166  * @vgpu: target vgpu
1167  * @entry: target pfn's gtt entry
1168  *
1169  * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1170  * negative if found err.
1171  */
1172 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1173 	struct intel_gvt_gtt_entry *entry)
1174 {
1175 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1176 	kvm_pfn_t pfn;
1177 
1178 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1179 		return 0;
1180 
1181 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1182 		return -EINVAL;
1183 	pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry));
1184 	if (is_error_noslot_pfn(pfn))
1185 		return -EINVAL;
1186 	return PageTransHuge(pfn_to_page(pfn));
1187 }
1188 
1189 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1190 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1191 	struct intel_gvt_gtt_entry *se)
1192 {
1193 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1194 	struct intel_vgpu_ppgtt_spt *sub_spt;
1195 	struct intel_gvt_gtt_entry sub_se;
1196 	unsigned long start_gfn;
1197 	dma_addr_t dma_addr;
1198 	unsigned long sub_index;
1199 	int ret;
1200 
1201 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1202 
1203 	start_gfn = ops->get_pfn(se);
1204 
1205 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1206 	if (IS_ERR(sub_spt))
1207 		return PTR_ERR(sub_spt);
1208 
1209 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1210 		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1211 						   PAGE_SIZE, &dma_addr);
1212 		if (ret)
1213 			goto err;
1214 		sub_se.val64 = se->val64;
1215 
1216 		/* Copy the PAT field from PDE. */
1217 		sub_se.val64 &= ~_PAGE_PAT;
1218 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1219 
1220 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1221 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1222 	}
1223 
1224 	/* Clear dirty field. */
1225 	se->val64 &= ~_PAGE_DIRTY;
1226 
1227 	ops->clear_pse(se);
1228 	ops->clear_ips(se);
1229 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1230 	ppgtt_set_shadow_entry(spt, se, index);
1231 	return 0;
1232 err:
1233 	/* Cancel the existing addess mappings of DMA addr. */
1234 	for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1235 		gvt_vdbg_mm("invalidate 4K entry\n");
1236 		ppgtt_invalidate_pte(sub_spt, &sub_se);
1237 	}
1238 	/* Release the new allocated spt. */
1239 	trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1240 		sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1241 	ppgtt_free_spt(sub_spt);
1242 	return ret;
1243 }
1244 
1245 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1246 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1247 	struct intel_gvt_gtt_entry *se)
1248 {
1249 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1250 	struct intel_gvt_gtt_entry entry = *se;
1251 	unsigned long start_gfn;
1252 	dma_addr_t dma_addr;
1253 	int i, ret;
1254 
1255 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1256 
1257 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1258 
1259 	start_gfn = ops->get_pfn(se);
1260 
1261 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1262 	ops->set_64k_splited(&entry);
1263 
1264 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1265 		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1266 						   PAGE_SIZE, &dma_addr);
1267 		if (ret)
1268 			return ret;
1269 
1270 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1271 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1272 	}
1273 	return 0;
1274 }
1275 
1276 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1277 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1278 	struct intel_gvt_gtt_entry *ge)
1279 {
1280 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1281 	struct intel_gvt_gtt_entry se = *ge;
1282 	unsigned long gfn, page_size = PAGE_SIZE;
1283 	dma_addr_t dma_addr;
1284 	int ret;
1285 
1286 	if (!pte_ops->test_present(ge))
1287 		return 0;
1288 
1289 	gfn = pte_ops->get_pfn(ge);
1290 
1291 	switch (ge->type) {
1292 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1293 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1294 		break;
1295 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1296 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1297 		/*
1298 		 * The layout of 64K page is special, the page size is
1299 		 * controlled by uper PDE. To be simple, we always split
1300 		 * 64K page to smaller 4K pages in shadow PT.
1301 		 */
1302 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1303 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1304 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1305 		ret = is_2MB_gtt_possible(vgpu, ge);
1306 		if (ret == 0)
1307 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1308 		else if (ret < 0)
1309 			return ret;
1310 		page_size = I915_GTT_PAGE_SIZE_2M;
1311 		break;
1312 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1313 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1314 		return -EINVAL;
1315 	default:
1316 		GEM_BUG_ON(1);
1317 	}
1318 
1319 	/* direct shadow */
1320 	ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr);
1321 	if (ret)
1322 		return -ENXIO;
1323 
1324 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1325 	ppgtt_set_shadow_entry(spt, &se, index);
1326 	return 0;
1327 }
1328 
1329 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1330 {
1331 	struct intel_vgpu *vgpu = spt->vgpu;
1332 	struct intel_gvt *gvt = vgpu->gvt;
1333 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1334 	struct intel_vgpu_ppgtt_spt *s;
1335 	struct intel_gvt_gtt_entry se, ge;
1336 	unsigned long gfn, i;
1337 	int ret;
1338 
1339 	trace_spt_change(spt->vgpu->id, "born", spt,
1340 			 spt->guest_page.gfn, spt->shadow_page.type);
1341 
1342 	for_each_present_guest_entry(spt, &ge, i) {
1343 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1344 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1345 			if (IS_ERR(s)) {
1346 				ret = PTR_ERR(s);
1347 				goto fail;
1348 			}
1349 			ppgtt_get_shadow_entry(spt, &se, i);
1350 			ppgtt_generate_shadow_entry(&se, s, &ge);
1351 			ppgtt_set_shadow_entry(spt, &se, i);
1352 		} else {
1353 			gfn = ops->get_pfn(&ge);
1354 			if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
1355 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1356 				ppgtt_set_shadow_entry(spt, &se, i);
1357 				continue;
1358 			}
1359 
1360 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1361 			if (ret)
1362 				goto fail;
1363 		}
1364 	}
1365 	return 0;
1366 fail:
1367 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1368 			spt, ge.val64, ge.type);
1369 	return ret;
1370 }
1371 
1372 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1373 		struct intel_gvt_gtt_entry *se, unsigned long index)
1374 {
1375 	struct intel_vgpu *vgpu = spt->vgpu;
1376 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1377 	int ret;
1378 
1379 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1380 			       spt->shadow_page.type, se->val64, index);
1381 
1382 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1383 		    se->type, index, se->val64);
1384 
1385 	if (!ops->test_present(se))
1386 		return 0;
1387 
1388 	if (ops->get_pfn(se) ==
1389 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1390 		return 0;
1391 
1392 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1393 		struct intel_vgpu_ppgtt_spt *s =
1394 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1395 		if (!s) {
1396 			gvt_vgpu_err("fail to find guest page\n");
1397 			ret = -ENXIO;
1398 			goto fail;
1399 		}
1400 		ret = ppgtt_invalidate_spt(s);
1401 		if (ret)
1402 			goto fail;
1403 	} else {
1404 		/* We don't setup 64K shadow entry so far. */
1405 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1406 		     "suspicious 64K entry\n");
1407 		ppgtt_invalidate_pte(spt, se);
1408 	}
1409 
1410 	return 0;
1411 fail:
1412 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1413 			spt, se->val64, se->type);
1414 	return ret;
1415 }
1416 
1417 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1418 		struct intel_gvt_gtt_entry *we, unsigned long index)
1419 {
1420 	struct intel_vgpu *vgpu = spt->vgpu;
1421 	struct intel_gvt_gtt_entry m;
1422 	struct intel_vgpu_ppgtt_spt *s;
1423 	int ret;
1424 
1425 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1426 			       we->val64, index);
1427 
1428 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1429 		    we->type, index, we->val64);
1430 
1431 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1432 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1433 		if (IS_ERR(s)) {
1434 			ret = PTR_ERR(s);
1435 			goto fail;
1436 		}
1437 		ppgtt_get_shadow_entry(spt, &m, index);
1438 		ppgtt_generate_shadow_entry(&m, s, we);
1439 		ppgtt_set_shadow_entry(spt, &m, index);
1440 	} else {
1441 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1442 		if (ret)
1443 			goto fail;
1444 	}
1445 	return 0;
1446 fail:
1447 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1448 		spt, we->val64, we->type);
1449 	return ret;
1450 }
1451 
1452 static int sync_oos_page(struct intel_vgpu *vgpu,
1453 		struct intel_vgpu_oos_page *oos_page)
1454 {
1455 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1456 	struct intel_gvt *gvt = vgpu->gvt;
1457 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1458 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1459 	struct intel_gvt_gtt_entry old, new;
1460 	int index;
1461 	int ret;
1462 
1463 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1464 			 spt, spt->guest_page.type);
1465 
1466 	old.type = new.type = get_entry_type(spt->guest_page.type);
1467 	old.val64 = new.val64 = 0;
1468 
1469 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1470 				info->gtt_entry_size_shift); index++) {
1471 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1472 		ops->get_entry(NULL, &new, index, true,
1473 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1474 
1475 		if (old.val64 == new.val64
1476 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1477 			continue;
1478 
1479 		trace_oos_sync(vgpu->id, oos_page->id,
1480 				spt, spt->guest_page.type,
1481 				new.val64, index);
1482 
1483 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1484 		if (ret)
1485 			return ret;
1486 
1487 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1488 	}
1489 
1490 	spt->guest_page.write_cnt = 0;
1491 	list_del_init(&spt->post_shadow_list);
1492 	return 0;
1493 }
1494 
1495 static int detach_oos_page(struct intel_vgpu *vgpu,
1496 		struct intel_vgpu_oos_page *oos_page)
1497 {
1498 	struct intel_gvt *gvt = vgpu->gvt;
1499 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1500 
1501 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1502 			 spt, spt->guest_page.type);
1503 
1504 	spt->guest_page.write_cnt = 0;
1505 	spt->guest_page.oos_page = NULL;
1506 	oos_page->spt = NULL;
1507 
1508 	list_del_init(&oos_page->vm_list);
1509 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1510 
1511 	return 0;
1512 }
1513 
1514 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1515 		struct intel_vgpu_ppgtt_spt *spt)
1516 {
1517 	struct intel_gvt *gvt = spt->vgpu->gvt;
1518 	int ret;
1519 
1520 	ret = intel_gvt_read_gpa(spt->vgpu,
1521 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1522 			oos_page->mem, I915_GTT_PAGE_SIZE);
1523 	if (ret)
1524 		return ret;
1525 
1526 	oos_page->spt = spt;
1527 	spt->guest_page.oos_page = oos_page;
1528 
1529 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1530 
1531 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1532 			 spt, spt->guest_page.type);
1533 	return 0;
1534 }
1535 
1536 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1537 {
1538 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1539 	int ret;
1540 
1541 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1542 	if (ret)
1543 		return ret;
1544 
1545 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1546 			 spt, spt->guest_page.type);
1547 
1548 	list_del_init(&oos_page->vm_list);
1549 	return sync_oos_page(spt->vgpu, oos_page);
1550 }
1551 
1552 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1553 {
1554 	struct intel_gvt *gvt = spt->vgpu->gvt;
1555 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1556 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1557 	int ret;
1558 
1559 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1560 
1561 	if (list_empty(&gtt->oos_page_free_list_head)) {
1562 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1563 			struct intel_vgpu_oos_page, list);
1564 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1565 		if (ret)
1566 			return ret;
1567 		ret = detach_oos_page(spt->vgpu, oos_page);
1568 		if (ret)
1569 			return ret;
1570 	} else
1571 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1572 			struct intel_vgpu_oos_page, list);
1573 	return attach_oos_page(oos_page, spt);
1574 }
1575 
1576 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1577 {
1578 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1579 
1580 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1581 		return -EINVAL;
1582 
1583 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1584 			 spt, spt->guest_page.type);
1585 
1586 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1587 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1588 }
1589 
1590 /**
1591  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1592  * @vgpu: a vGPU
1593  *
1594  * This function is called before submitting a guest workload to host,
1595  * to sync all the out-of-synced shadow for vGPU
1596  *
1597  * Returns:
1598  * Zero on success, negative error code if failed.
1599  */
1600 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1601 {
1602 	struct list_head *pos, *n;
1603 	struct intel_vgpu_oos_page *oos_page;
1604 	int ret;
1605 
1606 	if (!enable_out_of_sync)
1607 		return 0;
1608 
1609 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1610 		oos_page = container_of(pos,
1611 				struct intel_vgpu_oos_page, vm_list);
1612 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1613 		if (ret)
1614 			return ret;
1615 	}
1616 	return 0;
1617 }
1618 
1619 /*
1620  * The heart of PPGTT shadow page table.
1621  */
1622 static int ppgtt_handle_guest_write_page_table(
1623 		struct intel_vgpu_ppgtt_spt *spt,
1624 		struct intel_gvt_gtt_entry *we, unsigned long index)
1625 {
1626 	struct intel_vgpu *vgpu = spt->vgpu;
1627 	int type = spt->shadow_page.type;
1628 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1629 	struct intel_gvt_gtt_entry old_se;
1630 	int new_present;
1631 	int i, ret;
1632 
1633 	new_present = ops->test_present(we);
1634 
1635 	/*
1636 	 * Adding the new entry first and then removing the old one, that can
1637 	 * guarantee the ppgtt table is validated during the window between
1638 	 * adding and removal.
1639 	 */
1640 	ppgtt_get_shadow_entry(spt, &old_se, index);
1641 
1642 	if (new_present) {
1643 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1644 		if (ret)
1645 			goto fail;
1646 	}
1647 
1648 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1649 	if (ret)
1650 		goto fail;
1651 
1652 	if (!new_present) {
1653 		/* For 64KB splited entries, we need clear them all. */
1654 		if (ops->test_64k_splited(&old_se) &&
1655 		    !(index % GTT_64K_PTE_STRIDE)) {
1656 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1657 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1658 				ops->clear_64k_splited(&old_se);
1659 				ops->set_pfn(&old_se,
1660 					vgpu->gtt.scratch_pt[type].page_mfn);
1661 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1662 			}
1663 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1664 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1665 			ops->clear_pse(&old_se);
1666 			ops->set_pfn(&old_se,
1667 				     vgpu->gtt.scratch_pt[type].page_mfn);
1668 			ppgtt_set_shadow_entry(spt, &old_se, index);
1669 		} else {
1670 			ops->set_pfn(&old_se,
1671 				     vgpu->gtt.scratch_pt[type].page_mfn);
1672 			ppgtt_set_shadow_entry(spt, &old_se, index);
1673 		}
1674 	}
1675 
1676 	return 0;
1677 fail:
1678 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1679 			spt, we->val64, we->type);
1680 	return ret;
1681 }
1682 
1683 
1684 
1685 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1686 {
1687 	return enable_out_of_sync
1688 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1689 		&& spt->guest_page.write_cnt >= 2;
1690 }
1691 
1692 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1693 		unsigned long index)
1694 {
1695 	set_bit(index, spt->post_shadow_bitmap);
1696 	if (!list_empty(&spt->post_shadow_list))
1697 		return;
1698 
1699 	list_add_tail(&spt->post_shadow_list,
1700 			&spt->vgpu->gtt.post_shadow_list_head);
1701 }
1702 
1703 /**
1704  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1705  * @vgpu: a vGPU
1706  *
1707  * This function is called before submitting a guest workload to host,
1708  * to flush all the post shadows for a vGPU.
1709  *
1710  * Returns:
1711  * Zero on success, negative error code if failed.
1712  */
1713 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1714 {
1715 	struct list_head *pos, *n;
1716 	struct intel_vgpu_ppgtt_spt *spt;
1717 	struct intel_gvt_gtt_entry ge;
1718 	unsigned long index;
1719 	int ret;
1720 
1721 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1722 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1723 				post_shadow_list);
1724 
1725 		for_each_set_bit(index, spt->post_shadow_bitmap,
1726 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1727 			ppgtt_get_guest_entry(spt, &ge, index);
1728 
1729 			ret = ppgtt_handle_guest_write_page_table(spt,
1730 							&ge, index);
1731 			if (ret)
1732 				return ret;
1733 			clear_bit(index, spt->post_shadow_bitmap);
1734 		}
1735 		list_del_init(&spt->post_shadow_list);
1736 	}
1737 	return 0;
1738 }
1739 
1740 static int ppgtt_handle_guest_write_page_table_bytes(
1741 		struct intel_vgpu_ppgtt_spt *spt,
1742 		u64 pa, void *p_data, int bytes)
1743 {
1744 	struct intel_vgpu *vgpu = spt->vgpu;
1745 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1746 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1747 	struct intel_gvt_gtt_entry we, se;
1748 	unsigned long index;
1749 	int ret;
1750 
1751 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1752 
1753 	ppgtt_get_guest_entry(spt, &we, index);
1754 
1755 	/*
1756 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1757 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1758 	 * ignored.
1759 	 */
1760 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1761 	    (index % GTT_64K_PTE_STRIDE)) {
1762 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1763 			    index);
1764 		return 0;
1765 	}
1766 
1767 	if (bytes == info->gtt_entry_size) {
1768 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1769 		if (ret)
1770 			return ret;
1771 	} else {
1772 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1773 			int type = spt->shadow_page.type;
1774 
1775 			ppgtt_get_shadow_entry(spt, &se, index);
1776 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1777 			if (ret)
1778 				return ret;
1779 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1780 			ppgtt_set_shadow_entry(spt, &se, index);
1781 		}
1782 		ppgtt_set_post_shadow(spt, index);
1783 	}
1784 
1785 	if (!enable_out_of_sync)
1786 		return 0;
1787 
1788 	spt->guest_page.write_cnt++;
1789 
1790 	if (spt->guest_page.oos_page)
1791 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1792 				false, 0, vgpu);
1793 
1794 	if (can_do_out_of_sync(spt)) {
1795 		if (!spt->guest_page.oos_page)
1796 			ppgtt_allocate_oos_page(spt);
1797 
1798 		ret = ppgtt_set_guest_page_oos(spt);
1799 		if (ret < 0)
1800 			return ret;
1801 	}
1802 	return 0;
1803 }
1804 
1805 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1806 {
1807 	struct intel_vgpu *vgpu = mm->vgpu;
1808 	struct intel_gvt *gvt = vgpu->gvt;
1809 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1810 	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1811 	struct intel_gvt_gtt_entry se;
1812 	int index;
1813 
1814 	if (!mm->ppgtt_mm.shadowed)
1815 		return;
1816 
1817 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1818 		ppgtt_get_shadow_root_entry(mm, &se, index);
1819 
1820 		if (!ops->test_present(&se))
1821 			continue;
1822 
1823 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1824 		se.val64 = 0;
1825 		ppgtt_set_shadow_root_entry(mm, &se, index);
1826 
1827 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1828 				       NULL, se.type, se.val64, index);
1829 	}
1830 
1831 	mm->ppgtt_mm.shadowed = false;
1832 }
1833 
1834 
1835 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1836 {
1837 	struct intel_vgpu *vgpu = mm->vgpu;
1838 	struct intel_gvt *gvt = vgpu->gvt;
1839 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1840 	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1841 	struct intel_vgpu_ppgtt_spt *spt;
1842 	struct intel_gvt_gtt_entry ge, se;
1843 	int index, ret;
1844 
1845 	if (mm->ppgtt_mm.shadowed)
1846 		return 0;
1847 
1848 	mm->ppgtt_mm.shadowed = true;
1849 
1850 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1851 		ppgtt_get_guest_root_entry(mm, &ge, index);
1852 
1853 		if (!ops->test_present(&ge))
1854 			continue;
1855 
1856 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1857 				       ge.type, ge.val64, index);
1858 
1859 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1860 		if (IS_ERR(spt)) {
1861 			gvt_vgpu_err("fail to populate guest root pointer\n");
1862 			ret = PTR_ERR(spt);
1863 			goto fail;
1864 		}
1865 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1866 		ppgtt_set_shadow_root_entry(mm, &se, index);
1867 
1868 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1869 				       NULL, se.type, se.val64, index);
1870 	}
1871 
1872 	return 0;
1873 fail:
1874 	invalidate_ppgtt_mm(mm);
1875 	return ret;
1876 }
1877 
1878 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1879 {
1880 	struct intel_vgpu_mm *mm;
1881 
1882 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1883 	if (!mm)
1884 		return NULL;
1885 
1886 	mm->vgpu = vgpu;
1887 	kref_init(&mm->ref);
1888 	atomic_set(&mm->pincount, 0);
1889 
1890 	return mm;
1891 }
1892 
1893 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1894 {
1895 	kfree(mm);
1896 }
1897 
1898 /**
1899  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1900  * @vgpu: a vGPU
1901  * @root_entry_type: ppgtt root entry type
1902  * @pdps: guest pdps.
1903  *
1904  * This function is used to create a ppgtt mm object for a vGPU.
1905  *
1906  * Returns:
1907  * Zero on success, negative error code in pointer if failed.
1908  */
1909 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1910 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1911 {
1912 	struct intel_gvt *gvt = vgpu->gvt;
1913 	struct intel_vgpu_mm *mm;
1914 	int ret;
1915 
1916 	mm = vgpu_alloc_mm(vgpu);
1917 	if (!mm)
1918 		return ERR_PTR(-ENOMEM);
1919 
1920 	mm->type = INTEL_GVT_MM_PPGTT;
1921 
1922 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1923 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1924 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1925 
1926 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1927 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1928 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1929 
1930 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1931 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1932 	else
1933 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1934 		       sizeof(mm->ppgtt_mm.guest_pdps));
1935 
1936 	ret = shadow_ppgtt_mm(mm);
1937 	if (ret) {
1938 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1939 		vgpu_free_mm(mm);
1940 		return ERR_PTR(ret);
1941 	}
1942 
1943 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1944 
1945 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1946 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1947 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1948 
1949 	return mm;
1950 }
1951 
1952 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1953 {
1954 	struct intel_vgpu_mm *mm;
1955 	unsigned long nr_entries;
1956 
1957 	mm = vgpu_alloc_mm(vgpu);
1958 	if (!mm)
1959 		return ERR_PTR(-ENOMEM);
1960 
1961 	mm->type = INTEL_GVT_MM_GGTT;
1962 
1963 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1964 	mm->ggtt_mm.virtual_ggtt =
1965 		vzalloc(array_size(nr_entries,
1966 				   vgpu->gvt->device_info.gtt_entry_size));
1967 	if (!mm->ggtt_mm.virtual_ggtt) {
1968 		vgpu_free_mm(mm);
1969 		return ERR_PTR(-ENOMEM);
1970 	}
1971 
1972 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1973 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1974 		vfree(mm->ggtt_mm.virtual_ggtt);
1975 		vgpu_free_mm(mm);
1976 		return ERR_PTR(-ENOMEM);
1977 	}
1978 
1979 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1980 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1981 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1982 		vfree(mm->ggtt_mm.virtual_ggtt);
1983 		vgpu_free_mm(mm);
1984 		return ERR_PTR(-ENOMEM);
1985 	}
1986 
1987 	return mm;
1988 }
1989 
1990 /**
1991  * _intel_vgpu_mm_release - destroy a mm object
1992  * @mm_ref: a kref object
1993  *
1994  * This function is used to destroy a mm object for vGPU
1995  *
1996  */
1997 void _intel_vgpu_mm_release(struct kref *mm_ref)
1998 {
1999 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
2000 
2001 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
2002 		gvt_err("vgpu mm pin count bug detected\n");
2003 
2004 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2005 		list_del(&mm->ppgtt_mm.list);
2006 
2007 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2008 		list_del(&mm->ppgtt_mm.lru_list);
2009 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2010 
2011 		invalidate_ppgtt_mm(mm);
2012 	} else {
2013 		vfree(mm->ggtt_mm.virtual_ggtt);
2014 		vfree(mm->ggtt_mm.host_ggtt_aperture);
2015 		vfree(mm->ggtt_mm.host_ggtt_hidden);
2016 	}
2017 
2018 	vgpu_free_mm(mm);
2019 }
2020 
2021 /**
2022  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2023  * @mm: a vGPU mm object
2024  *
2025  * This function is called when user doesn't want to use a vGPU mm object
2026  */
2027 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2028 {
2029 	atomic_dec_if_positive(&mm->pincount);
2030 }
2031 
2032 /**
2033  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2034  * @mm: target vgpu mm
2035  *
2036  * This function is called when user wants to use a vGPU mm object. If this
2037  * mm object hasn't been shadowed yet, the shadow will be populated at this
2038  * time.
2039  *
2040  * Returns:
2041  * Zero on success, negative error code if failed.
2042  */
2043 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2044 {
2045 	int ret;
2046 
2047 	atomic_inc(&mm->pincount);
2048 
2049 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2050 		ret = shadow_ppgtt_mm(mm);
2051 		if (ret)
2052 			return ret;
2053 
2054 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2055 		list_move_tail(&mm->ppgtt_mm.lru_list,
2056 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2057 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2064 {
2065 	struct intel_vgpu_mm *mm;
2066 	struct list_head *pos, *n;
2067 
2068 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2069 
2070 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2071 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2072 
2073 		if (atomic_read(&mm->pincount))
2074 			continue;
2075 
2076 		list_del_init(&mm->ppgtt_mm.lru_list);
2077 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2078 		invalidate_ppgtt_mm(mm);
2079 		return 1;
2080 	}
2081 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2082 	return 0;
2083 }
2084 
2085 /*
2086  * GMA translation APIs.
2087  */
2088 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2089 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2090 {
2091 	struct intel_vgpu *vgpu = mm->vgpu;
2092 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2093 	struct intel_vgpu_ppgtt_spt *s;
2094 
2095 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2096 	if (!s)
2097 		return -ENXIO;
2098 
2099 	if (!guest)
2100 		ppgtt_get_shadow_entry(s, e, index);
2101 	else
2102 		ppgtt_get_guest_entry(s, e, index);
2103 	return 0;
2104 }
2105 
2106 /**
2107  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2108  * @mm: mm object. could be a PPGTT or GGTT mm object
2109  * @gma: graphics memory address in this mm object
2110  *
2111  * This function is used to translate a graphics memory address in specific
2112  * graphics memory space to guest physical address.
2113  *
2114  * Returns:
2115  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2116  */
2117 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2118 {
2119 	struct intel_vgpu *vgpu = mm->vgpu;
2120 	struct intel_gvt *gvt = vgpu->gvt;
2121 	const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2122 	const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2123 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2124 	unsigned long gma_index[4];
2125 	struct intel_gvt_gtt_entry e;
2126 	int i, levels = 0;
2127 	int ret;
2128 
2129 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2130 		   mm->type != INTEL_GVT_MM_PPGTT);
2131 
2132 	if (mm->type == INTEL_GVT_MM_GGTT) {
2133 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2134 			goto err;
2135 
2136 		ggtt_get_guest_entry(mm, &e,
2137 			gma_ops->gma_to_ggtt_pte_index(gma));
2138 
2139 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2140 			+ (gma & ~I915_GTT_PAGE_MASK);
2141 
2142 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2143 	} else {
2144 		switch (mm->ppgtt_mm.root_entry_type) {
2145 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2146 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2147 
2148 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2149 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2150 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2151 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2152 			levels = 4;
2153 			break;
2154 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2155 			ppgtt_get_shadow_root_entry(mm, &e,
2156 					gma_ops->gma_to_l3_pdp_index(gma));
2157 
2158 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2159 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2160 			levels = 2;
2161 			break;
2162 		default:
2163 			GEM_BUG_ON(1);
2164 		}
2165 
2166 		/* walk the shadow page table and get gpa from guest entry */
2167 		for (i = 0; i < levels; i++) {
2168 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2169 				(i == levels - 1));
2170 			if (ret)
2171 				goto err;
2172 
2173 			if (!pte_ops->test_present(&e)) {
2174 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2175 				goto err;
2176 			}
2177 		}
2178 
2179 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2180 					(gma & ~I915_GTT_PAGE_MASK);
2181 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2182 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2183 	}
2184 
2185 	return gpa;
2186 err:
2187 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2188 	return INTEL_GVT_INVALID_ADDR;
2189 }
2190 
2191 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2192 	unsigned int off, void *p_data, unsigned int bytes)
2193 {
2194 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2195 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2196 	unsigned long index = off >> info->gtt_entry_size_shift;
2197 	unsigned long gma;
2198 	struct intel_gvt_gtt_entry e;
2199 
2200 	if (bytes != 4 && bytes != 8)
2201 		return -EINVAL;
2202 
2203 	gma = index << I915_GTT_PAGE_SHIFT;
2204 	if (!intel_gvt_ggtt_validate_range(vgpu,
2205 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2206 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2207 		memset(p_data, 0, bytes);
2208 		return 0;
2209 	}
2210 
2211 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2212 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2213 			bytes);
2214 	return 0;
2215 }
2216 
2217 /**
2218  * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2219  * @vgpu: a vGPU
2220  * @off: register offset
2221  * @p_data: data will be returned to guest
2222  * @bytes: data length
2223  *
2224  * This function is used to emulate the GTT MMIO register read
2225  *
2226  * Returns:
2227  * Zero on success, error code if failed.
2228  */
2229 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2230 	void *p_data, unsigned int bytes)
2231 {
2232 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2233 	int ret;
2234 
2235 	if (bytes != 4 && bytes != 8)
2236 		return -EINVAL;
2237 
2238 	off -= info->gtt_start_offset;
2239 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2240 	return ret;
2241 }
2242 
2243 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2244 		struct intel_gvt_gtt_entry *entry)
2245 {
2246 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2247 	unsigned long pfn;
2248 
2249 	pfn = pte_ops->get_pfn(entry);
2250 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2251 		intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2252 }
2253 
2254 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2255 	void *p_data, unsigned int bytes)
2256 {
2257 	struct intel_gvt *gvt = vgpu->gvt;
2258 	const struct intel_gvt_device_info *info = &gvt->device_info;
2259 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2260 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2261 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2262 	unsigned long gma, gfn;
2263 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2264 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2265 	dma_addr_t dma_addr;
2266 	int ret;
2267 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2268 	bool partial_update = false;
2269 
2270 	if (bytes != 4 && bytes != 8)
2271 		return -EINVAL;
2272 
2273 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2274 
2275 	/* the VM may configure the whole GM space when ballooning is used */
2276 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2277 		return 0;
2278 
2279 	e.type = GTT_TYPE_GGTT_PTE;
2280 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2281 			bytes);
2282 
2283 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2284 	 * write, save the first 4 bytes in a list and update virtual
2285 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2286 	 */
2287 	if (bytes < info->gtt_entry_size) {
2288 		bool found = false;
2289 
2290 		list_for_each_entry_safe(pos, n,
2291 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2292 			if (g_gtt_index == pos->offset >>
2293 					info->gtt_entry_size_shift) {
2294 				if (off != pos->offset) {
2295 					/* the second partial part*/
2296 					int last_off = pos->offset &
2297 						(info->gtt_entry_size - 1);
2298 
2299 					memcpy((void *)&e.val64 + last_off,
2300 						(void *)&pos->data + last_off,
2301 						bytes);
2302 
2303 					list_del(&pos->list);
2304 					kfree(pos);
2305 					found = true;
2306 					break;
2307 				}
2308 
2309 				/* update of the first partial part */
2310 				pos->data = e.val64;
2311 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2312 				return 0;
2313 			}
2314 		}
2315 
2316 		if (!found) {
2317 			/* the first partial part */
2318 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2319 			if (!partial_pte)
2320 				return -ENOMEM;
2321 			partial_pte->offset = off;
2322 			partial_pte->data = e.val64;
2323 			list_add_tail(&partial_pte->list,
2324 				&ggtt_mm->ggtt_mm.partial_pte_list);
2325 			partial_update = true;
2326 		}
2327 	}
2328 
2329 	if (!partial_update && (ops->test_present(&e))) {
2330 		gfn = ops->get_pfn(&e);
2331 		m.val64 = e.val64;
2332 		m.type = e.type;
2333 
2334 		/* one PTE update may be issued in multiple writes and the
2335 		 * first write may not construct a valid gfn
2336 		 */
2337 		if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
2338 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2339 			goto out;
2340 		}
2341 
2342 		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2343 						   &dma_addr);
2344 		if (ret) {
2345 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2346 			/* guest driver may read/write the entry when partial
2347 			 * update the entry in this situation p2m will fail
2348 			 * setting the shadow entry to point to a scratch page
2349 			 */
2350 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2351 		} else
2352 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2353 	} else {
2354 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2355 		ops->clear_present(&m);
2356 	}
2357 
2358 out:
2359 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2360 
2361 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2362 	ggtt_invalidate_pte(vgpu, &e);
2363 
2364 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2365 	ggtt_invalidate(gvt->gt);
2366 	return 0;
2367 }
2368 
2369 /*
2370  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2371  * @vgpu: a vGPU
2372  * @off: register offset
2373  * @p_data: data from guest write
2374  * @bytes: data length
2375  *
2376  * This function is used to emulate the GTT MMIO register write
2377  *
2378  * Returns:
2379  * Zero on success, error code if failed.
2380  */
2381 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2382 		unsigned int off, void *p_data, unsigned int bytes)
2383 {
2384 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2385 	int ret;
2386 	struct intel_vgpu_submission *s = &vgpu->submission;
2387 	struct intel_engine_cs *engine;
2388 	int i;
2389 
2390 	if (bytes != 4 && bytes != 8)
2391 		return -EINVAL;
2392 
2393 	off -= info->gtt_start_offset;
2394 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2395 
2396 	/* if ggtt of last submitted context is written,
2397 	 * that context is probably got unpinned.
2398 	 * Set last shadowed ctx to invalid.
2399 	 */
2400 	for_each_engine(engine, vgpu->gvt->gt, i) {
2401 		if (!s->last_ctx[i].valid)
2402 			continue;
2403 
2404 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2405 			s->last_ctx[i].valid = false;
2406 	}
2407 	return ret;
2408 }
2409 
2410 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2411 		enum intel_gvt_gtt_type type)
2412 {
2413 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2414 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2415 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2416 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2417 				vgpu->gvt->device_info.gtt_entry_size_shift;
2418 	void *scratch_pt;
2419 	int i;
2420 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2421 	dma_addr_t daddr;
2422 
2423 	if (drm_WARN_ON(&i915->drm,
2424 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2425 		return -EINVAL;
2426 
2427 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2428 	if (!scratch_pt) {
2429 		gvt_vgpu_err("fail to allocate scratch page\n");
2430 		return -ENOMEM;
2431 	}
2432 
2433 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2434 	if (dma_mapping_error(dev, daddr)) {
2435 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2436 		__free_page(virt_to_page(scratch_pt));
2437 		return -ENOMEM;
2438 	}
2439 	gtt->scratch_pt[type].page_mfn =
2440 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2441 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2442 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2443 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2444 
2445 	/* Build the tree by full filled the scratch pt with the entries which
2446 	 * point to the next level scratch pt or scratch page. The
2447 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2448 	 * 'type' pt.
2449 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2450 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2451 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2452 	 */
2453 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2454 		struct intel_gvt_gtt_entry se;
2455 
2456 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2457 		se.type = get_entry_type(type - 1);
2458 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2459 
2460 		/* The entry parameters like present/writeable/cache type
2461 		 * set to the same as i915's scratch page tree.
2462 		 */
2463 		se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2464 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2465 			se.val64 |= PPAT_CACHED;
2466 
2467 		for (i = 0; i < page_entry_num; i++)
2468 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2469 	}
2470 
2471 	return 0;
2472 }
2473 
2474 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2475 {
2476 	int i;
2477 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2478 	dma_addr_t daddr;
2479 
2480 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2481 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2482 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2483 					I915_GTT_PAGE_SHIFT);
2484 			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2485 			__free_page(vgpu->gtt.scratch_pt[i].page);
2486 			vgpu->gtt.scratch_pt[i].page = NULL;
2487 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2488 		}
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2495 {
2496 	int i, ret;
2497 
2498 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2499 		ret = alloc_scratch_pages(vgpu, i);
2500 		if (ret)
2501 			goto err;
2502 	}
2503 
2504 	return 0;
2505 
2506 err:
2507 	release_scratch_page_tree(vgpu);
2508 	return ret;
2509 }
2510 
2511 /**
2512  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2513  * @vgpu: a vGPU
2514  *
2515  * This function is used to initialize per-vGPU graphics memory virtualization
2516  * components.
2517  *
2518  * Returns:
2519  * Zero on success, error code if failed.
2520  */
2521 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2522 {
2523 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2524 
2525 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2526 
2527 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2528 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2529 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2530 
2531 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2532 	if (IS_ERR(gtt->ggtt_mm)) {
2533 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2534 		return PTR_ERR(gtt->ggtt_mm);
2535 	}
2536 
2537 	intel_vgpu_reset_ggtt(vgpu, false);
2538 
2539 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2540 
2541 	return create_scratch_page_tree(vgpu);
2542 }
2543 
2544 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2545 {
2546 	struct list_head *pos, *n;
2547 	struct intel_vgpu_mm *mm;
2548 
2549 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2550 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2551 		intel_vgpu_destroy_mm(mm);
2552 	}
2553 
2554 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2555 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2556 
2557 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2558 		gvt_err("Why we still has spt not freed?\n");
2559 		ppgtt_free_all_spt(vgpu);
2560 	}
2561 }
2562 
2563 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2564 {
2565 	struct intel_gvt_partial_pte *pos, *next;
2566 
2567 	list_for_each_entry_safe(pos, next,
2568 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2569 				 list) {
2570 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2571 			pos->offset, pos->data);
2572 		kfree(pos);
2573 	}
2574 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2575 	vgpu->gtt.ggtt_mm = NULL;
2576 }
2577 
2578 /**
2579  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2580  * @vgpu: a vGPU
2581  *
2582  * This function is used to clean up per-vGPU graphics memory virtualization
2583  * components.
2584  *
2585  * Returns:
2586  * Zero on success, error code if failed.
2587  */
2588 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2589 {
2590 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2591 	intel_vgpu_destroy_ggtt_mm(vgpu);
2592 	release_scratch_page_tree(vgpu);
2593 }
2594 
2595 static void clean_spt_oos(struct intel_gvt *gvt)
2596 {
2597 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2598 	struct list_head *pos, *n;
2599 	struct intel_vgpu_oos_page *oos_page;
2600 
2601 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2602 		"someone is still using oos page\n");
2603 
2604 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2605 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2606 		list_del(&oos_page->list);
2607 		free_page((unsigned long)oos_page->mem);
2608 		kfree(oos_page);
2609 	}
2610 }
2611 
2612 static int setup_spt_oos(struct intel_gvt *gvt)
2613 {
2614 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2615 	struct intel_vgpu_oos_page *oos_page;
2616 	int i;
2617 	int ret;
2618 
2619 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2620 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2621 
2622 	for (i = 0; i < preallocated_oos_pages; i++) {
2623 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2624 		if (!oos_page) {
2625 			ret = -ENOMEM;
2626 			goto fail;
2627 		}
2628 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2629 		if (!oos_page->mem) {
2630 			ret = -ENOMEM;
2631 			kfree(oos_page);
2632 			goto fail;
2633 		}
2634 
2635 		INIT_LIST_HEAD(&oos_page->list);
2636 		INIT_LIST_HEAD(&oos_page->vm_list);
2637 		oos_page->id = i;
2638 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2639 	}
2640 
2641 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2642 
2643 	return 0;
2644 fail:
2645 	clean_spt_oos(gvt);
2646 	return ret;
2647 }
2648 
2649 /**
2650  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2651  * @vgpu: a vGPU
2652  * @pdps: pdp root array
2653  *
2654  * This function is used to find a PPGTT mm object from mm object pool
2655  *
2656  * Returns:
2657  * pointer to mm object on success, NULL if failed.
2658  */
2659 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2660 		u64 pdps[])
2661 {
2662 	struct intel_vgpu_mm *mm;
2663 	struct list_head *pos;
2664 
2665 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2666 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2667 
2668 		switch (mm->ppgtt_mm.root_entry_type) {
2669 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2670 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2671 				return mm;
2672 			break;
2673 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2674 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2675 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2676 				return mm;
2677 			break;
2678 		default:
2679 			GEM_BUG_ON(1);
2680 		}
2681 	}
2682 	return NULL;
2683 }
2684 
2685 /**
2686  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2687  * @vgpu: a vGPU
2688  * @root_entry_type: ppgtt root entry type
2689  * @pdps: guest pdps
2690  *
2691  * This function is used to find or create a PPGTT mm object from a guest.
2692  *
2693  * Returns:
2694  * Zero on success, negative error code if failed.
2695  */
2696 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2697 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2698 {
2699 	struct intel_vgpu_mm *mm;
2700 
2701 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2702 	if (mm) {
2703 		intel_vgpu_mm_get(mm);
2704 	} else {
2705 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2706 		if (IS_ERR(mm))
2707 			gvt_vgpu_err("fail to create mm\n");
2708 	}
2709 	return mm;
2710 }
2711 
2712 /**
2713  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2714  * @vgpu: a vGPU
2715  * @pdps: guest pdps
2716  *
2717  * This function is used to find a PPGTT mm object from a guest and destroy it.
2718  *
2719  * Returns:
2720  * Zero on success, negative error code if failed.
2721  */
2722 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2723 {
2724 	struct intel_vgpu_mm *mm;
2725 
2726 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2727 	if (!mm) {
2728 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2729 		return -EINVAL;
2730 	}
2731 	intel_vgpu_mm_put(mm);
2732 	return 0;
2733 }
2734 
2735 /**
2736  * intel_gvt_init_gtt - initialize mm components of a GVT device
2737  * @gvt: GVT device
2738  *
2739  * This function is called at the initialization stage, to initialize
2740  * the mm components of a GVT device.
2741  *
2742  * Returns:
2743  * zero on success, negative error code if failed.
2744  */
2745 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2746 {
2747 	int ret;
2748 	void *page;
2749 	struct device *dev = gvt->gt->i915->drm.dev;
2750 	dma_addr_t daddr;
2751 
2752 	gvt_dbg_core("init gtt\n");
2753 
2754 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2755 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2756 
2757 	page = (void *)get_zeroed_page(GFP_KERNEL);
2758 	if (!page) {
2759 		gvt_err("fail to allocate scratch ggtt page\n");
2760 		return -ENOMEM;
2761 	}
2762 
2763 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2764 			4096, DMA_BIDIRECTIONAL);
2765 	if (dma_mapping_error(dev, daddr)) {
2766 		gvt_err("fail to dmamap scratch ggtt page\n");
2767 		__free_page(virt_to_page(page));
2768 		return -ENOMEM;
2769 	}
2770 
2771 	gvt->gtt.scratch_page = virt_to_page(page);
2772 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2773 
2774 	if (enable_out_of_sync) {
2775 		ret = setup_spt_oos(gvt);
2776 		if (ret) {
2777 			gvt_err("fail to initialize SPT oos\n");
2778 			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2779 			__free_page(gvt->gtt.scratch_page);
2780 			return ret;
2781 		}
2782 	}
2783 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2784 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2785 	return 0;
2786 }
2787 
2788 /**
2789  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2790  * @gvt: GVT device
2791  *
2792  * This function is called at the driver unloading stage, to clean up
2793  * the mm components of a GVT device.
2794  *
2795  */
2796 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2797 {
2798 	struct device *dev = gvt->gt->i915->drm.dev;
2799 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2800 					I915_GTT_PAGE_SHIFT);
2801 
2802 	dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2803 
2804 	__free_page(gvt->gtt.scratch_page);
2805 
2806 	if (enable_out_of_sync)
2807 		clean_spt_oos(gvt);
2808 }
2809 
2810 /**
2811  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2812  * @vgpu: a vGPU
2813  *
2814  * This function is called when invalidate all PPGTT instances of a vGPU.
2815  *
2816  */
2817 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2818 {
2819 	struct list_head *pos, *n;
2820 	struct intel_vgpu_mm *mm;
2821 
2822 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2823 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2824 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2825 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2826 			list_del_init(&mm->ppgtt_mm.lru_list);
2827 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2828 			if (mm->ppgtt_mm.shadowed)
2829 				invalidate_ppgtt_mm(mm);
2830 		}
2831 	}
2832 }
2833 
2834 /**
2835  * intel_vgpu_reset_ggtt - reset the GGTT entry
2836  * @vgpu: a vGPU
2837  * @invalidate_old: invalidate old entries
2838  *
2839  * This function is called at the vGPU create stage
2840  * to reset all the GGTT entries.
2841  *
2842  */
2843 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2844 {
2845 	struct intel_gvt *gvt = vgpu->gvt;
2846 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2847 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2848 	struct intel_gvt_gtt_entry old_entry;
2849 	u32 index;
2850 	u32 num_entries;
2851 
2852 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2853 	pte_ops->set_present(&entry);
2854 
2855 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2856 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2857 	while (num_entries--) {
2858 		if (invalidate_old) {
2859 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2860 			ggtt_invalidate_pte(vgpu, &old_entry);
2861 		}
2862 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2863 	}
2864 
2865 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2866 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2867 	while (num_entries--) {
2868 		if (invalidate_old) {
2869 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2870 			ggtt_invalidate_pte(vgpu, &old_entry);
2871 		}
2872 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2873 	}
2874 
2875 	ggtt_invalidate(gvt->gt);
2876 }
2877 
2878 /**
2879  * intel_vgpu_reset_gtt - reset the all GTT related status
2880  * @vgpu: a vGPU
2881  *
2882  * This function is called from vfio core to reset reset all
2883  * GTT related status, including GGTT, PPGTT, scratch page.
2884  *
2885  */
2886 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2887 {
2888 	/* Shadow pages are only created when there is no page
2889 	 * table tracking data, so remove page tracking data after
2890 	 * removing the shadow pages.
2891 	 */
2892 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2893 	intel_vgpu_reset_ggtt(vgpu, true);
2894 }
2895 
2896 /**
2897  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2898  * @gvt: intel gvt device
2899  *
2900  * This function is called at driver resume stage to restore
2901  * GGTT entries of every vGPU.
2902  *
2903  */
2904 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2905 {
2906 	struct intel_vgpu *vgpu;
2907 	struct intel_vgpu_mm *mm;
2908 	int id;
2909 	gen8_pte_t pte;
2910 	u32 idx, num_low, num_hi, offset;
2911 
2912 	/* Restore dirty host ggtt for all vGPUs */
2913 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2914 		mm = vgpu->gtt.ggtt_mm;
2915 
2916 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2917 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2918 		for (idx = 0; idx < num_low; idx++) {
2919 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2920 			if (pte & GEN8_PAGE_PRESENT)
2921 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2922 		}
2923 
2924 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2925 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2926 		for (idx = 0; idx < num_hi; idx++) {
2927 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2928 			if (pte & GEN8_PAGE_PRESENT)
2929 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2930 		}
2931 	}
2932 }
2933