xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 5d0e4d78)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43 
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 				addr, size);
54 		return false;
55 	}
56 	return true;
57 }
58 
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 		 "invalid guest gmadr %llx\n", g_addr))
64 		return -EACCES;
65 
66 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
68 			  + (g_addr - vgpu_aperture_offset(vgpu));
69 	else
70 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
71 			  + (g_addr - vgpu_hidden_offset(vgpu));
72 	return 0;
73 }
74 
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 		 "invalid host gmadr %llx\n", h_addr))
80 		return -EACCES;
81 
82 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
84 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 	else
86 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
87 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 	return 0;
89 }
90 
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 			     unsigned long *h_index)
93 {
94 	u64 h_addr;
95 	int ret;
96 
97 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 				       &h_addr);
99 	if (ret)
100 		return ret;
101 
102 	*h_index = h_addr >> GTT_PAGE_SHIFT;
103 	return 0;
104 }
105 
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 			     unsigned long *g_index)
108 {
109 	u64 g_addr;
110 	int ret;
111 
112 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 				       &g_addr);
114 	if (ret)
115 		return ret;
116 
117 	*g_index = g_addr >> GTT_PAGE_SHIFT;
118 	return 0;
119 }
120 
121 #define gtt_type_is_entry(type) \
122 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125 
126 #define gtt_type_is_pt(type) \
127 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128 
129 #define gtt_type_is_pte_pt(type) \
130 	(type == GTT_TYPE_PPGTT_PTE_PT)
131 
132 #define gtt_type_is_root_pointer(type) \
133 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134 
135 #define gtt_init_entry(e, t, p, v) do { \
136 	(e)->type = t; \
137 	(e)->pdev = p; \
138 	memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140 
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156 
157 struct gtt_type_table_entry {
158 	int entry_type;
159 	int next_pt_type;
160 	int pse_entry_type;
161 };
162 
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164 	[type] = { \
165 		.entry_type = e_type, \
166 		.next_pt_type = npt_type, \
167 		.pse_entry_type = pse_type, \
168 	}
169 
170 static struct gtt_type_table_entry gtt_type_table[] = {
171 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173 			GTT_TYPE_PPGTT_PML4_PT,
174 			GTT_TYPE_INVALID),
175 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176 			GTT_TYPE_PPGTT_PML4_ENTRY,
177 			GTT_TYPE_PPGTT_PDP_PT,
178 			GTT_TYPE_INVALID),
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180 			GTT_TYPE_PPGTT_PML4_ENTRY,
181 			GTT_TYPE_PPGTT_PDP_PT,
182 			GTT_TYPE_INVALID),
183 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184 			GTT_TYPE_PPGTT_PDP_ENTRY,
185 			GTT_TYPE_PPGTT_PDE_PT,
186 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189 			GTT_TYPE_PPGTT_PDE_PT,
190 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192 			GTT_TYPE_PPGTT_PDP_ENTRY,
193 			GTT_TYPE_PPGTT_PDE_PT,
194 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196 			GTT_TYPE_PPGTT_PDE_ENTRY,
197 			GTT_TYPE_PPGTT_PTE_PT,
198 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200 			GTT_TYPE_PPGTT_PDE_ENTRY,
201 			GTT_TYPE_PPGTT_PTE_PT,
202 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205 			GTT_TYPE_INVALID,
206 			GTT_TYPE_INVALID),
207 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209 			GTT_TYPE_INVALID,
210 			GTT_TYPE_INVALID),
211 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212 			GTT_TYPE_PPGTT_PDE_ENTRY,
213 			GTT_TYPE_INVALID,
214 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_ENTRY,
217 			GTT_TYPE_INVALID,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220 			GTT_TYPE_GGTT_PTE,
221 			GTT_TYPE_INVALID,
222 			GTT_TYPE_INVALID),
223 };
224 
225 static inline int get_next_pt_type(int type)
226 {
227 	return gtt_type_table[type].next_pt_type;
228 }
229 
230 static inline int get_entry_type(int type)
231 {
232 	return gtt_type_table[type].entry_type;
233 }
234 
235 static inline int get_pse_type(int type)
236 {
237 	return gtt_type_table[type].pse_entry_type;
238 }
239 
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243 
244 	return readq(addr);
245 }
246 
247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249 	mmio_hw_access_pre(dev_priv);
250 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251 	mmio_hw_access_post(dev_priv);
252 }
253 
254 static void write_pte64(struct drm_i915_private *dev_priv,
255 		unsigned long index, u64 pte)
256 {
257 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258 
259 	writeq(pte, addr);
260 }
261 
262 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
263 		struct intel_gvt_gtt_entry *e,
264 		unsigned long index, bool hypervisor_access, unsigned long gpa,
265 		struct intel_vgpu *vgpu)
266 {
267 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268 	int ret;
269 
270 	if (WARN_ON(info->gtt_entry_size != 8))
271 		return e;
272 
273 	if (hypervisor_access) {
274 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275 				(index << info->gtt_entry_size_shift),
276 				&e->val64, 8);
277 		WARN_ON(ret);
278 	} else if (!pt) {
279 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
280 	} else {
281 		e->val64 = *((u64 *)pt + index);
282 	}
283 	return e;
284 }
285 
286 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
287 		struct intel_gvt_gtt_entry *e,
288 		unsigned long index, bool hypervisor_access, unsigned long gpa,
289 		struct intel_vgpu *vgpu)
290 {
291 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
292 	int ret;
293 
294 	if (WARN_ON(info->gtt_entry_size != 8))
295 		return e;
296 
297 	if (hypervisor_access) {
298 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
299 				(index << info->gtt_entry_size_shift),
300 				&e->val64, 8);
301 		WARN_ON(ret);
302 	} else if (!pt) {
303 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
304 	} else {
305 		*((u64 *)pt + index) = e->val64;
306 	}
307 	return e;
308 }
309 
310 #define GTT_HAW 46
311 
312 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
313 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
314 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
315 
316 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
317 {
318 	unsigned long pfn;
319 
320 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
321 		pfn = (e->val64 & ADDR_1G_MASK) >> 12;
322 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
323 		pfn = (e->val64 & ADDR_2M_MASK) >> 12;
324 	else
325 		pfn = (e->val64 & ADDR_4K_MASK) >> 12;
326 	return pfn;
327 }
328 
329 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
330 {
331 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
332 		e->val64 &= ~ADDR_1G_MASK;
333 		pfn &= (ADDR_1G_MASK >> 12);
334 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
335 		e->val64 &= ~ADDR_2M_MASK;
336 		pfn &= (ADDR_2M_MASK >> 12);
337 	} else {
338 		e->val64 &= ~ADDR_4K_MASK;
339 		pfn &= (ADDR_4K_MASK >> 12);
340 	}
341 
342 	e->val64 |= (pfn << 12);
343 }
344 
345 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
346 {
347 	/* Entry doesn't have PSE bit. */
348 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
349 		return false;
350 
351 	e->type = get_entry_type(e->type);
352 	if (!(e->val64 & (1 << 7)))
353 		return false;
354 
355 	e->type = get_pse_type(e->type);
356 	return true;
357 }
358 
359 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
360 {
361 	/*
362 	 * i915 writes PDP root pointer registers without present bit,
363 	 * it also works, so we need to treat root pointer entry
364 	 * specifically.
365 	 */
366 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
367 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
368 		return (e->val64 != 0);
369 	else
370 		return (e->val64 & (1 << 0));
371 }
372 
373 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
374 {
375 	e->val64 &= ~(1 << 0);
376 }
377 
378 /*
379  * Per-platform GMA routines.
380  */
381 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
382 {
383 	unsigned long x = (gma >> GTT_PAGE_SHIFT);
384 
385 	trace_gma_index(__func__, gma, x);
386 	return x;
387 }
388 
389 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
390 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
391 { \
392 	unsigned long x = (exp); \
393 	trace_gma_index(__func__, gma, x); \
394 	return x; \
395 }
396 
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
398 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
402 
403 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
404 	.get_entry = gtt_get_entry64,
405 	.set_entry = gtt_set_entry64,
406 	.clear_present = gtt_entry_clear_present,
407 	.test_present = gen8_gtt_test_present,
408 	.test_pse = gen8_gtt_test_pse,
409 	.get_pfn = gen8_gtt_get_pfn,
410 	.set_pfn = gen8_gtt_set_pfn,
411 };
412 
413 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
414 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
415 	.gma_to_pte_index = gen8_gma_to_pte_index,
416 	.gma_to_pde_index = gen8_gma_to_pde_index,
417 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
418 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
419 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
420 };
421 
422 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
423 		struct intel_gvt_gtt_entry *m)
424 {
425 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
426 	unsigned long gfn, mfn;
427 
428 	*m = *p;
429 
430 	if (!ops->test_present(p))
431 		return 0;
432 
433 	gfn = ops->get_pfn(p);
434 
435 	mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
436 	if (mfn == INTEL_GVT_INVALID_ADDR) {
437 		gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
438 		return -ENXIO;
439 	}
440 
441 	ops->set_pfn(m, mfn);
442 	return 0;
443 }
444 
445 /*
446  * MM helpers.
447  */
448 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
449 		void *page_table, struct intel_gvt_gtt_entry *e,
450 		unsigned long index)
451 {
452 	struct intel_gvt *gvt = mm->vgpu->gvt;
453 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
454 
455 	e->type = mm->page_table_entry_type;
456 
457 	ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
458 	ops->test_pse(e);
459 	return e;
460 }
461 
462 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
463 		void *page_table, struct intel_gvt_gtt_entry *e,
464 		unsigned long index)
465 {
466 	struct intel_gvt *gvt = mm->vgpu->gvt;
467 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
468 
469 	return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
470 }
471 
472 /*
473  * PPGTT shadow page table helpers.
474  */
475 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
476 		struct intel_vgpu_ppgtt_spt *spt,
477 		void *page_table, int type,
478 		struct intel_gvt_gtt_entry *e, unsigned long index,
479 		bool guest)
480 {
481 	struct intel_gvt *gvt = spt->vgpu->gvt;
482 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
483 
484 	e->type = get_entry_type(type);
485 
486 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
487 		return e;
488 
489 	ops->get_entry(page_table, e, index, guest,
490 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
491 			spt->vgpu);
492 	ops->test_pse(e);
493 	return e;
494 }
495 
496 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
497 		struct intel_vgpu_ppgtt_spt *spt,
498 		void *page_table, int type,
499 		struct intel_gvt_gtt_entry *e, unsigned long index,
500 		bool guest)
501 {
502 	struct intel_gvt *gvt = spt->vgpu->gvt;
503 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
504 
505 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
506 		return e;
507 
508 	return ops->set_entry(page_table, e, index, guest,
509 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
510 			spt->vgpu);
511 }
512 
513 #define ppgtt_get_guest_entry(spt, e, index) \
514 	ppgtt_spt_get_entry(spt, NULL, \
515 		spt->guest_page_type, e, index, true)
516 
517 #define ppgtt_set_guest_entry(spt, e, index) \
518 	ppgtt_spt_set_entry(spt, NULL, \
519 		spt->guest_page_type, e, index, true)
520 
521 #define ppgtt_get_shadow_entry(spt, e, index) \
522 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
523 		spt->shadow_page.type, e, index, false)
524 
525 #define ppgtt_set_shadow_entry(spt, e, index) \
526 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
527 		spt->shadow_page.type, e, index, false)
528 
529 /**
530  * intel_vgpu_init_guest_page - init a guest page data structure
531  * @vgpu: a vGPU
532  * @p: a guest page data structure
533  * @gfn: guest memory page frame number
534  * @handler: function will be called when target guest memory page has
535  * been modified.
536  *
537  * This function is called when user wants to track a guest memory page.
538  *
539  * Returns:
540  * Zero on success, negative error code if failed.
541  */
542 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
543 		struct intel_vgpu_guest_page *p,
544 		unsigned long gfn,
545 		int (*handler)(void *, u64, void *, int),
546 		void *data)
547 {
548 	INIT_HLIST_NODE(&p->node);
549 
550 	p->writeprotection = false;
551 	p->gfn = gfn;
552 	p->handler = handler;
553 	p->data = data;
554 	p->oos_page = NULL;
555 	p->write_cnt = 0;
556 
557 	hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
558 	return 0;
559 }
560 
561 static int detach_oos_page(struct intel_vgpu *vgpu,
562 		struct intel_vgpu_oos_page *oos_page);
563 
564 /**
565  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
566  * structure
567  * @vgpu: a vGPU
568  * @p: a tracked guest page
569  *
570  * This function is called when user tries to stop tracking a guest memory
571  * page.
572  */
573 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
574 		struct intel_vgpu_guest_page *p)
575 {
576 	if (!hlist_unhashed(&p->node))
577 		hash_del(&p->node);
578 
579 	if (p->oos_page)
580 		detach_oos_page(vgpu, p->oos_page);
581 
582 	if (p->writeprotection)
583 		intel_gvt_hypervisor_unset_wp_page(vgpu, p);
584 }
585 
586 /**
587  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
588  * @vgpu: a vGPU
589  * @gfn: guest memory page frame number
590  *
591  * This function is called when emulation logic wants to know if a trapped GFN
592  * is a tracked guest page.
593  *
594  * Returns:
595  * Pointer to guest page data structure, NULL if failed.
596  */
597 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
598 		struct intel_vgpu *vgpu, unsigned long gfn)
599 {
600 	struct intel_vgpu_guest_page *p;
601 
602 	hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
603 		p, node, gfn) {
604 		if (p->gfn == gfn)
605 			return p;
606 	}
607 	return NULL;
608 }
609 
610 static inline int init_shadow_page(struct intel_vgpu *vgpu,
611 		struct intel_vgpu_shadow_page *p, int type)
612 {
613 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
614 	dma_addr_t daddr;
615 
616 	daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
617 	if (dma_mapping_error(kdev, daddr)) {
618 		gvt_vgpu_err("fail to map dma addr\n");
619 		return -EINVAL;
620 	}
621 
622 	p->vaddr = page_address(p->page);
623 	p->type = type;
624 
625 	INIT_HLIST_NODE(&p->node);
626 
627 	p->mfn = daddr >> GTT_PAGE_SHIFT;
628 	hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
629 	return 0;
630 }
631 
632 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
633 		struct intel_vgpu_shadow_page *p)
634 {
635 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
636 
637 	dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
638 			PCI_DMA_BIDIRECTIONAL);
639 
640 	if (!hlist_unhashed(&p->node))
641 		hash_del(&p->node);
642 }
643 
644 static inline struct intel_vgpu_shadow_page *find_shadow_page(
645 		struct intel_vgpu *vgpu, unsigned long mfn)
646 {
647 	struct intel_vgpu_shadow_page *p;
648 
649 	hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
650 		p, node, mfn) {
651 		if (p->mfn == mfn)
652 			return p;
653 	}
654 	return NULL;
655 }
656 
657 #define guest_page_to_ppgtt_spt(ptr) \
658 	container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
659 
660 #define shadow_page_to_ppgtt_spt(ptr) \
661 	container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
662 
663 static void *alloc_spt(gfp_t gfp_mask)
664 {
665 	struct intel_vgpu_ppgtt_spt *spt;
666 
667 	spt = kzalloc(sizeof(*spt), gfp_mask);
668 	if (!spt)
669 		return NULL;
670 
671 	spt->shadow_page.page = alloc_page(gfp_mask);
672 	if (!spt->shadow_page.page) {
673 		kfree(spt);
674 		return NULL;
675 	}
676 	return spt;
677 }
678 
679 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
680 {
681 	__free_page(spt->shadow_page.page);
682 	kfree(spt);
683 }
684 
685 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
686 {
687 	trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
688 
689 	clean_shadow_page(spt->vgpu, &spt->shadow_page);
690 	intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
691 	list_del_init(&spt->post_shadow_list);
692 
693 	free_spt(spt);
694 }
695 
696 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
697 {
698 	struct hlist_node *n;
699 	struct intel_vgpu_shadow_page *sp;
700 	int i;
701 
702 	hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
703 		ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
704 }
705 
706 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
707 		u64 pa, void *p_data, int bytes);
708 
709 static int ppgtt_write_protection_handler(void *gp, u64 pa,
710 		void *p_data, int bytes)
711 {
712 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
713 	int ret;
714 
715 	if (bytes != 4 && bytes != 8)
716 		return -EINVAL;
717 
718 	if (!gpt->writeprotection)
719 		return -EINVAL;
720 
721 	ret = ppgtt_handle_guest_write_page_table_bytes(gp,
722 		pa, p_data, bytes);
723 	if (ret)
724 		return ret;
725 	return ret;
726 }
727 
728 static int reclaim_one_mm(struct intel_gvt *gvt);
729 
730 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
731 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
732 {
733 	struct intel_vgpu_ppgtt_spt *spt = NULL;
734 	int ret;
735 
736 retry:
737 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
738 	if (!spt) {
739 		if (reclaim_one_mm(vgpu->gvt))
740 			goto retry;
741 
742 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
743 		return ERR_PTR(-ENOMEM);
744 	}
745 
746 	spt->vgpu = vgpu;
747 	spt->guest_page_type = type;
748 	atomic_set(&spt->refcount, 1);
749 	INIT_LIST_HEAD(&spt->post_shadow_list);
750 
751 	/*
752 	 * TODO: guest page type may be different with shadow page type,
753 	 *	 when we support PSE page in future.
754 	 */
755 	ret = init_shadow_page(vgpu, &spt->shadow_page, type);
756 	if (ret) {
757 		gvt_vgpu_err("fail to initialize shadow page for spt\n");
758 		goto err;
759 	}
760 
761 	ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
762 			gfn, ppgtt_write_protection_handler, NULL);
763 	if (ret) {
764 		gvt_vgpu_err("fail to initialize guest page for spt\n");
765 		goto err;
766 	}
767 
768 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
769 	return spt;
770 err:
771 	ppgtt_free_shadow_page(spt);
772 	return ERR_PTR(ret);
773 }
774 
775 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
776 		struct intel_vgpu *vgpu, unsigned long mfn)
777 {
778 	struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
779 
780 	if (p)
781 		return shadow_page_to_ppgtt_spt(p);
782 
783 	gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
784 	return NULL;
785 }
786 
787 #define pt_entry_size_shift(spt) \
788 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
789 
790 #define pt_entries(spt) \
791 	(GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
792 
793 #define for_each_present_guest_entry(spt, e, i) \
794 	for (i = 0; i < pt_entries(spt); i++) \
795 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
796 		ppgtt_get_guest_entry(spt, e, i)))
797 
798 #define for_each_present_shadow_entry(spt, e, i) \
799 	for (i = 0; i < pt_entries(spt); i++) \
800 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
801 		ppgtt_get_shadow_entry(spt, e, i)))
802 
803 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
804 {
805 	int v = atomic_read(&spt->refcount);
806 
807 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
808 
809 	atomic_inc(&spt->refcount);
810 }
811 
812 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
813 
814 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
815 		struct intel_gvt_gtt_entry *e)
816 {
817 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
818 	struct intel_vgpu_ppgtt_spt *s;
819 	intel_gvt_gtt_type_t cur_pt_type;
820 
821 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
822 		return -EINVAL;
823 
824 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
825 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
826 		cur_pt_type = get_next_pt_type(e->type) + 1;
827 		if (ops->get_pfn(e) ==
828 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
829 			return 0;
830 	}
831 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
832 	if (!s) {
833 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
834 				ops->get_pfn(e));
835 		return -ENXIO;
836 	}
837 	return ppgtt_invalidate_shadow_page(s);
838 }
839 
840 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
841 {
842 	struct intel_vgpu *vgpu = spt->vgpu;
843 	struct intel_gvt_gtt_entry e;
844 	unsigned long index;
845 	int ret;
846 	int v = atomic_read(&spt->refcount);
847 
848 	trace_spt_change(spt->vgpu->id, "die", spt,
849 			spt->guest_page.gfn, spt->shadow_page.type);
850 
851 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
852 
853 	if (atomic_dec_return(&spt->refcount) > 0)
854 		return 0;
855 
856 	if (gtt_type_is_pte_pt(spt->shadow_page.type))
857 		goto release;
858 
859 	for_each_present_shadow_entry(spt, &e, index) {
860 		if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
861 			gvt_vgpu_err("GVT doesn't support pse bit for now\n");
862 			return -EINVAL;
863 		}
864 		ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
865 				spt->vgpu, &e);
866 		if (ret)
867 			goto fail;
868 	}
869 release:
870 	trace_spt_change(spt->vgpu->id, "release", spt,
871 			spt->guest_page.gfn, spt->shadow_page.type);
872 	ppgtt_free_shadow_page(spt);
873 	return 0;
874 fail:
875 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
876 			spt, e.val64, e.type);
877 	return ret;
878 }
879 
880 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
881 
882 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
883 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
884 {
885 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
886 	struct intel_vgpu_ppgtt_spt *s = NULL;
887 	struct intel_vgpu_guest_page *g;
888 	int ret;
889 
890 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
891 		ret = -EINVAL;
892 		goto fail;
893 	}
894 
895 	g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
896 	if (g) {
897 		s = guest_page_to_ppgtt_spt(g);
898 		ppgtt_get_shadow_page(s);
899 	} else {
900 		int type = get_next_pt_type(we->type);
901 
902 		s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
903 		if (IS_ERR(s)) {
904 			ret = PTR_ERR(s);
905 			goto fail;
906 		}
907 
908 		ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
909 		if (ret)
910 			goto fail;
911 
912 		ret = ppgtt_populate_shadow_page(s);
913 		if (ret)
914 			goto fail;
915 
916 		trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
917 			s->shadow_page.type);
918 	}
919 	return s;
920 fail:
921 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
922 			s, we->val64, we->type);
923 	return ERR_PTR(ret);
924 }
925 
926 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
927 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
928 {
929 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
930 
931 	se->type = ge->type;
932 	se->val64 = ge->val64;
933 
934 	ops->set_pfn(se, s->shadow_page.mfn);
935 }
936 
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
938 {
939 	struct intel_vgpu *vgpu = spt->vgpu;
940 	struct intel_vgpu_ppgtt_spt *s;
941 	struct intel_gvt_gtt_entry se, ge;
942 	unsigned long i;
943 	int ret;
944 
945 	trace_spt_change(spt->vgpu->id, "born", spt,
946 			spt->guest_page.gfn, spt->shadow_page.type);
947 
948 	if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
949 		for_each_present_guest_entry(spt, &ge, i) {
950 			ret = gtt_entry_p2m(vgpu, &ge, &se);
951 			if (ret)
952 				goto fail;
953 			ppgtt_set_shadow_entry(spt, &se, i);
954 		}
955 		return 0;
956 	}
957 
958 	for_each_present_guest_entry(spt, &ge, i) {
959 		if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
960 			gvt_vgpu_err("GVT doesn't support pse bit now\n");
961 			ret = -EINVAL;
962 			goto fail;
963 		}
964 
965 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
966 		if (IS_ERR(s)) {
967 			ret = PTR_ERR(s);
968 			goto fail;
969 		}
970 		ppgtt_get_shadow_entry(spt, &se, i);
971 		ppgtt_generate_shadow_entry(&se, s, &ge);
972 		ppgtt_set_shadow_entry(spt, &se, i);
973 	}
974 	return 0;
975 fail:
976 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
977 			spt, ge.val64, ge.type);
978 	return ret;
979 }
980 
981 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
982 		unsigned long index)
983 {
984 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
985 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
986 	struct intel_vgpu *vgpu = spt->vgpu;
987 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 	struct intel_gvt_gtt_entry e;
989 	int ret;
990 
991 	ppgtt_get_shadow_entry(spt, &e, index);
992 
993 	trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
994 			 index);
995 
996 	if (!ops->test_present(&e))
997 		return 0;
998 
999 	if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1000 		return 0;
1001 
1002 	if (gtt_type_is_pt(get_next_pt_type(e.type))) {
1003 		struct intel_vgpu_ppgtt_spt *s =
1004 			ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1005 		if (!s) {
1006 			gvt_vgpu_err("fail to find guest page\n");
1007 			ret = -ENXIO;
1008 			goto fail;
1009 		}
1010 		ret = ppgtt_invalidate_shadow_page(s);
1011 		if (ret)
1012 			goto fail;
1013 	}
1014 	ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1015 	ppgtt_set_shadow_entry(spt, &e, index);
1016 	return 0;
1017 fail:
1018 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1019 			spt, e.val64, e.type);
1020 	return ret;
1021 }
1022 
1023 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1024 		struct intel_gvt_gtt_entry *we, unsigned long index)
1025 {
1026 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1027 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1028 	struct intel_vgpu *vgpu = spt->vgpu;
1029 	struct intel_gvt_gtt_entry m;
1030 	struct intel_vgpu_ppgtt_spt *s;
1031 	int ret;
1032 
1033 	trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1034 		we->val64, index);
1035 
1036 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1037 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1038 		if (IS_ERR(s)) {
1039 			ret = PTR_ERR(s);
1040 			goto fail;
1041 		}
1042 		ppgtt_get_shadow_entry(spt, &m, index);
1043 		ppgtt_generate_shadow_entry(&m, s, we);
1044 		ppgtt_set_shadow_entry(spt, &m, index);
1045 	} else {
1046 		ret = gtt_entry_p2m(vgpu, we, &m);
1047 		if (ret)
1048 			goto fail;
1049 		ppgtt_set_shadow_entry(spt, &m, index);
1050 	}
1051 	return 0;
1052 fail:
1053 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1054 		spt, we->val64, we->type);
1055 	return ret;
1056 }
1057 
1058 static int sync_oos_page(struct intel_vgpu *vgpu,
1059 		struct intel_vgpu_oos_page *oos_page)
1060 {
1061 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1062 	struct intel_gvt *gvt = vgpu->gvt;
1063 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1064 	struct intel_vgpu_ppgtt_spt *spt =
1065 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1066 	struct intel_gvt_gtt_entry old, new, m;
1067 	int index;
1068 	int ret;
1069 
1070 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1071 			oos_page->guest_page, spt->guest_page_type);
1072 
1073 	old.type = new.type = get_entry_type(spt->guest_page_type);
1074 	old.val64 = new.val64 = 0;
1075 
1076 	for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1077 		index++) {
1078 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1079 		ops->get_entry(NULL, &new, index, true,
1080 			oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1081 
1082 		if (old.val64 == new.val64
1083 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1084 			continue;
1085 
1086 		trace_oos_sync(vgpu->id, oos_page->id,
1087 				oos_page->guest_page, spt->guest_page_type,
1088 				new.val64, index);
1089 
1090 		ret = gtt_entry_p2m(vgpu, &new, &m);
1091 		if (ret)
1092 			return ret;
1093 
1094 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1095 		ppgtt_set_shadow_entry(spt, &m, index);
1096 	}
1097 
1098 	oos_page->guest_page->write_cnt = 0;
1099 	list_del_init(&spt->post_shadow_list);
1100 	return 0;
1101 }
1102 
1103 static int detach_oos_page(struct intel_vgpu *vgpu,
1104 		struct intel_vgpu_oos_page *oos_page)
1105 {
1106 	struct intel_gvt *gvt = vgpu->gvt;
1107 	struct intel_vgpu_ppgtt_spt *spt =
1108 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1109 
1110 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1111 			oos_page->guest_page, spt->guest_page_type);
1112 
1113 	oos_page->guest_page->write_cnt = 0;
1114 	oos_page->guest_page->oos_page = NULL;
1115 	oos_page->guest_page = NULL;
1116 
1117 	list_del_init(&oos_page->vm_list);
1118 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1119 
1120 	return 0;
1121 }
1122 
1123 static int attach_oos_page(struct intel_vgpu *vgpu,
1124 		struct intel_vgpu_oos_page *oos_page,
1125 		struct intel_vgpu_guest_page *gpt)
1126 {
1127 	struct intel_gvt *gvt = vgpu->gvt;
1128 	int ret;
1129 
1130 	ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1131 		oos_page->mem, GTT_PAGE_SIZE);
1132 	if (ret)
1133 		return ret;
1134 
1135 	oos_page->guest_page = gpt;
1136 	gpt->oos_page = oos_page;
1137 
1138 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1139 
1140 	trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1141 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1142 	return 0;
1143 }
1144 
1145 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1146 		struct intel_vgpu_guest_page *gpt)
1147 {
1148 	int ret;
1149 
1150 	ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1151 	if (ret)
1152 		return ret;
1153 
1154 	trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1155 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1156 
1157 	list_del_init(&gpt->oos_page->vm_list);
1158 	return sync_oos_page(vgpu, gpt->oos_page);
1159 }
1160 
1161 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1162 		struct intel_vgpu_guest_page *gpt)
1163 {
1164 	struct intel_gvt *gvt = vgpu->gvt;
1165 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1166 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1167 	int ret;
1168 
1169 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1170 
1171 	if (list_empty(&gtt->oos_page_free_list_head)) {
1172 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1173 			struct intel_vgpu_oos_page, list);
1174 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1175 		if (ret)
1176 			return ret;
1177 		ret = detach_oos_page(vgpu, oos_page);
1178 		if (ret)
1179 			return ret;
1180 	} else
1181 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1182 			struct intel_vgpu_oos_page, list);
1183 	return attach_oos_page(vgpu, oos_page, gpt);
1184 }
1185 
1186 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1187 		struct intel_vgpu_guest_page *gpt)
1188 {
1189 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1190 
1191 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1192 		return -EINVAL;
1193 
1194 	trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1195 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1196 
1197 	list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1198 	return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1199 }
1200 
1201 /**
1202  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1203  * @vgpu: a vGPU
1204  *
1205  * This function is called before submitting a guest workload to host,
1206  * to sync all the out-of-synced shadow for vGPU
1207  *
1208  * Returns:
1209  * Zero on success, negative error code if failed.
1210  */
1211 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1212 {
1213 	struct list_head *pos, *n;
1214 	struct intel_vgpu_oos_page *oos_page;
1215 	int ret;
1216 
1217 	if (!enable_out_of_sync)
1218 		return 0;
1219 
1220 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1221 		oos_page = container_of(pos,
1222 				struct intel_vgpu_oos_page, vm_list);
1223 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 	return 0;
1228 }
1229 
1230 /*
1231  * The heart of PPGTT shadow page table.
1232  */
1233 static int ppgtt_handle_guest_write_page_table(
1234 		struct intel_vgpu_guest_page *gpt,
1235 		struct intel_gvt_gtt_entry *we, unsigned long index)
1236 {
1237 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1238 	struct intel_vgpu *vgpu = spt->vgpu;
1239 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1240 
1241 	int ret;
1242 	int new_present;
1243 
1244 	new_present = ops->test_present(we);
1245 
1246 	ret = ppgtt_handle_guest_entry_removal(gpt, index);
1247 	if (ret)
1248 		goto fail;
1249 
1250 	if (new_present) {
1251 		ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1252 		if (ret)
1253 			goto fail;
1254 	}
1255 	return 0;
1256 fail:
1257 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1258 			spt, we->val64, we->type);
1259 	return ret;
1260 }
1261 
1262 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1263 {
1264 	return enable_out_of_sync
1265 		&& gtt_type_is_pte_pt(
1266 			guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1267 		&& gpt->write_cnt >= 2;
1268 }
1269 
1270 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1271 		unsigned long index)
1272 {
1273 	set_bit(index, spt->post_shadow_bitmap);
1274 	if (!list_empty(&spt->post_shadow_list))
1275 		return;
1276 
1277 	list_add_tail(&spt->post_shadow_list,
1278 			&spt->vgpu->gtt.post_shadow_list_head);
1279 }
1280 
1281 /**
1282  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1283  * @vgpu: a vGPU
1284  *
1285  * This function is called before submitting a guest workload to host,
1286  * to flush all the post shadows for a vGPU.
1287  *
1288  * Returns:
1289  * Zero on success, negative error code if failed.
1290  */
1291 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1292 {
1293 	struct list_head *pos, *n;
1294 	struct intel_vgpu_ppgtt_spt *spt;
1295 	struct intel_gvt_gtt_entry ge;
1296 	unsigned long index;
1297 	int ret;
1298 
1299 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1300 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1301 				post_shadow_list);
1302 
1303 		for_each_set_bit(index, spt->post_shadow_bitmap,
1304 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1305 			ppgtt_get_guest_entry(spt, &ge, index);
1306 
1307 			ret = ppgtt_handle_guest_write_page_table(
1308 					&spt->guest_page, &ge, index);
1309 			if (ret)
1310 				return ret;
1311 			clear_bit(index, spt->post_shadow_bitmap);
1312 		}
1313 		list_del_init(&spt->post_shadow_list);
1314 	}
1315 	return 0;
1316 }
1317 
1318 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1319 		u64 pa, void *p_data, int bytes)
1320 {
1321 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1322 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1323 	struct intel_vgpu *vgpu = spt->vgpu;
1324 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1326 	struct intel_gvt_gtt_entry we;
1327 	unsigned long index;
1328 	int ret;
1329 
1330 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1331 
1332 	ppgtt_get_guest_entry(spt, &we, index);
1333 
1334 	ops->test_pse(&we);
1335 
1336 	if (bytes == info->gtt_entry_size) {
1337 		ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1338 		if (ret)
1339 			return ret;
1340 	} else {
1341 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1342 			ret = ppgtt_handle_guest_entry_removal(gpt, index);
1343 			if (ret)
1344 				return ret;
1345 		}
1346 
1347 		ppgtt_set_post_shadow(spt, index);
1348 	}
1349 
1350 	if (!enable_out_of_sync)
1351 		return 0;
1352 
1353 	gpt->write_cnt++;
1354 
1355 	if (gpt->oos_page)
1356 		ops->set_entry(gpt->oos_page->mem, &we, index,
1357 				false, 0, vgpu);
1358 
1359 	if (can_do_out_of_sync(gpt)) {
1360 		if (!gpt->oos_page)
1361 			ppgtt_allocate_oos_page(vgpu, gpt);
1362 
1363 		ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1364 		if (ret < 0)
1365 			return ret;
1366 	}
1367 	return 0;
1368 }
1369 
1370 /*
1371  * mm page table allocation policy for bdw+
1372  *  - for ggtt, only virtual page table will be allocated.
1373  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1374  */
1375 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1376 {
1377 	struct intel_vgpu *vgpu = mm->vgpu;
1378 	struct intel_gvt *gvt = vgpu->gvt;
1379 	const struct intel_gvt_device_info *info = &gvt->device_info;
1380 	void *mem;
1381 
1382 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1383 		mm->page_table_entry_cnt = 4;
1384 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1385 			info->gtt_entry_size;
1386 		mem = kzalloc(mm->has_shadow_page_table ?
1387 			mm->page_table_entry_size * 2
1388 				: mm->page_table_entry_size, GFP_KERNEL);
1389 		if (!mem)
1390 			return -ENOMEM;
1391 		mm->virtual_page_table = mem;
1392 		if (!mm->has_shadow_page_table)
1393 			return 0;
1394 		mm->shadow_page_table = mem + mm->page_table_entry_size;
1395 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1396 		mm->page_table_entry_cnt =
1397 			(gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1398 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1399 			info->gtt_entry_size;
1400 		mem = vzalloc(mm->page_table_entry_size);
1401 		if (!mem)
1402 			return -ENOMEM;
1403 		mm->virtual_page_table = mem;
1404 	}
1405 	return 0;
1406 }
1407 
1408 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1409 {
1410 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1411 		kfree(mm->virtual_page_table);
1412 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1413 		if (mm->virtual_page_table)
1414 			vfree(mm->virtual_page_table);
1415 	}
1416 	mm->virtual_page_table = mm->shadow_page_table = NULL;
1417 }
1418 
1419 static void invalidate_mm(struct intel_vgpu_mm *mm)
1420 {
1421 	struct intel_vgpu *vgpu = mm->vgpu;
1422 	struct intel_gvt *gvt = vgpu->gvt;
1423 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1424 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1425 	struct intel_gvt_gtt_entry se;
1426 	int i;
1427 
1428 	if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1429 		return;
1430 
1431 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1432 		ppgtt_get_shadow_root_entry(mm, &se, i);
1433 		if (!ops->test_present(&se))
1434 			continue;
1435 		ppgtt_invalidate_shadow_page_by_shadow_entry(
1436 				vgpu, &se);
1437 		se.val64 = 0;
1438 		ppgtt_set_shadow_root_entry(mm, &se, i);
1439 
1440 		trace_gpt_change(vgpu->id, "destroy root pointer",
1441 				NULL, se.type, se.val64, i);
1442 	}
1443 	mm->shadowed = false;
1444 }
1445 
1446 /**
1447  * intel_vgpu_destroy_mm - destroy a mm object
1448  * @mm: a kref object
1449  *
1450  * This function is used to destroy a mm object for vGPU
1451  *
1452  */
1453 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1454 {
1455 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1456 	struct intel_vgpu *vgpu = mm->vgpu;
1457 	struct intel_gvt *gvt = vgpu->gvt;
1458 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1459 
1460 	if (!mm->initialized)
1461 		goto out;
1462 
1463 	list_del(&mm->list);
1464 	list_del(&mm->lru_list);
1465 
1466 	if (mm->has_shadow_page_table)
1467 		invalidate_mm(mm);
1468 
1469 	gtt->mm_free_page_table(mm);
1470 out:
1471 	kfree(mm);
1472 }
1473 
1474 static int shadow_mm(struct intel_vgpu_mm *mm)
1475 {
1476 	struct intel_vgpu *vgpu = mm->vgpu;
1477 	struct intel_gvt *gvt = vgpu->gvt;
1478 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1479 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1480 	struct intel_vgpu_ppgtt_spt *spt;
1481 	struct intel_gvt_gtt_entry ge, se;
1482 	int i;
1483 	int ret;
1484 
1485 	if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1486 		return 0;
1487 
1488 	mm->shadowed = true;
1489 
1490 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1491 		ppgtt_get_guest_root_entry(mm, &ge, i);
1492 		if (!ops->test_present(&ge))
1493 			continue;
1494 
1495 		trace_gpt_change(vgpu->id, __func__, NULL,
1496 				ge.type, ge.val64, i);
1497 
1498 		spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1499 		if (IS_ERR(spt)) {
1500 			gvt_vgpu_err("fail to populate guest root pointer\n");
1501 			ret = PTR_ERR(spt);
1502 			goto fail;
1503 		}
1504 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1505 		ppgtt_set_shadow_root_entry(mm, &se, i);
1506 
1507 		trace_gpt_change(vgpu->id, "populate root pointer",
1508 				NULL, se.type, se.val64, i);
1509 	}
1510 	return 0;
1511 fail:
1512 	invalidate_mm(mm);
1513 	return ret;
1514 }
1515 
1516 /**
1517  * intel_vgpu_create_mm - create a mm object for a vGPU
1518  * @vgpu: a vGPU
1519  * @mm_type: mm object type, should be PPGTT or GGTT
1520  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1521  *	to populate shadow later.
1522  * @page_table_level: describe the page table level of the mm object
1523  * @pde_base_index: pde root pointer base in GGTT MMIO.
1524  *
1525  * This function is used to create a mm object for a vGPU.
1526  *
1527  * Returns:
1528  * Zero on success, negative error code in pointer if failed.
1529  */
1530 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1531 		int mm_type, void *virtual_page_table, int page_table_level,
1532 		u32 pde_base_index)
1533 {
1534 	struct intel_gvt *gvt = vgpu->gvt;
1535 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1536 	struct intel_vgpu_mm *mm;
1537 	int ret;
1538 
1539 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1540 	if (!mm) {
1541 		ret = -ENOMEM;
1542 		goto fail;
1543 	}
1544 
1545 	mm->type = mm_type;
1546 
1547 	if (page_table_level == 1)
1548 		mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1549 	else if (page_table_level == 3)
1550 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1551 	else if (page_table_level == 4)
1552 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1553 	else {
1554 		WARN_ON(1);
1555 		ret = -EINVAL;
1556 		goto fail;
1557 	}
1558 
1559 	mm->page_table_level = page_table_level;
1560 	mm->pde_base_index = pde_base_index;
1561 
1562 	mm->vgpu = vgpu;
1563 	mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1564 
1565 	kref_init(&mm->ref);
1566 	atomic_set(&mm->pincount, 0);
1567 	INIT_LIST_HEAD(&mm->list);
1568 	INIT_LIST_HEAD(&mm->lru_list);
1569 	list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1570 
1571 	ret = gtt->mm_alloc_page_table(mm);
1572 	if (ret) {
1573 		gvt_vgpu_err("fail to allocate page table for mm\n");
1574 		goto fail;
1575 	}
1576 
1577 	mm->initialized = true;
1578 
1579 	if (virtual_page_table)
1580 		memcpy(mm->virtual_page_table, virtual_page_table,
1581 				mm->page_table_entry_size);
1582 
1583 	if (mm->has_shadow_page_table) {
1584 		ret = shadow_mm(mm);
1585 		if (ret)
1586 			goto fail;
1587 		list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1588 	}
1589 	return mm;
1590 fail:
1591 	gvt_vgpu_err("fail to create mm\n");
1592 	if (mm)
1593 		intel_gvt_mm_unreference(mm);
1594 	return ERR_PTR(ret);
1595 }
1596 
1597 /**
1598  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1599  * @mm: a vGPU mm object
1600  *
1601  * This function is called when user doesn't want to use a vGPU mm object
1602  */
1603 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1604 {
1605 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1606 		return;
1607 
1608 	atomic_dec(&mm->pincount);
1609 }
1610 
1611 /**
1612  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1613  * @vgpu: a vGPU
1614  *
1615  * This function is called when user wants to use a vGPU mm object. If this
1616  * mm object hasn't been shadowed yet, the shadow will be populated at this
1617  * time.
1618  *
1619  * Returns:
1620  * Zero on success, negative error code if failed.
1621  */
1622 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1623 {
1624 	int ret;
1625 
1626 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1627 		return 0;
1628 
1629 	atomic_inc(&mm->pincount);
1630 
1631 	if (!mm->shadowed) {
1632 		ret = shadow_mm(mm);
1633 		if (ret)
1634 			return ret;
1635 	}
1636 
1637 	list_del_init(&mm->lru_list);
1638 	list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1639 	return 0;
1640 }
1641 
1642 static int reclaim_one_mm(struct intel_gvt *gvt)
1643 {
1644 	struct intel_vgpu_mm *mm;
1645 	struct list_head *pos, *n;
1646 
1647 	list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1648 		mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1649 
1650 		if (mm->type != INTEL_GVT_MM_PPGTT)
1651 			continue;
1652 		if (atomic_read(&mm->pincount))
1653 			continue;
1654 
1655 		list_del_init(&mm->lru_list);
1656 		invalidate_mm(mm);
1657 		return 1;
1658 	}
1659 	return 0;
1660 }
1661 
1662 /*
1663  * GMA translation APIs.
1664  */
1665 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1666 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1667 {
1668 	struct intel_vgpu *vgpu = mm->vgpu;
1669 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1670 	struct intel_vgpu_ppgtt_spt *s;
1671 
1672 	if (WARN_ON(!mm->has_shadow_page_table))
1673 		return -EINVAL;
1674 
1675 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1676 	if (!s)
1677 		return -ENXIO;
1678 
1679 	if (!guest)
1680 		ppgtt_get_shadow_entry(s, e, index);
1681 	else
1682 		ppgtt_get_guest_entry(s, e, index);
1683 	return 0;
1684 }
1685 
1686 /**
1687  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1688  * @mm: mm object. could be a PPGTT or GGTT mm object
1689  * @gma: graphics memory address in this mm object
1690  *
1691  * This function is used to translate a graphics memory address in specific
1692  * graphics memory space to guest physical address.
1693  *
1694  * Returns:
1695  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1696  */
1697 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1698 {
1699 	struct intel_vgpu *vgpu = mm->vgpu;
1700 	struct intel_gvt *gvt = vgpu->gvt;
1701 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1702 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1703 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1704 	unsigned long gma_index[4];
1705 	struct intel_gvt_gtt_entry e;
1706 	int i, index;
1707 	int ret;
1708 
1709 	if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1710 		return INTEL_GVT_INVALID_ADDR;
1711 
1712 	if (mm->type == INTEL_GVT_MM_GGTT) {
1713 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1714 			goto err;
1715 
1716 		ggtt_get_guest_entry(mm, &e,
1717 			gma_ops->gma_to_ggtt_pte_index(gma));
1718 		gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1719 			+ (gma & ~GTT_PAGE_MASK);
1720 
1721 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1722 		return gpa;
1723 	}
1724 
1725 	switch (mm->page_table_level) {
1726 	case 4:
1727 		ppgtt_get_shadow_root_entry(mm, &e, 0);
1728 		gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1729 		gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1730 		gma_index[2] = gma_ops->gma_to_pde_index(gma);
1731 		gma_index[3] = gma_ops->gma_to_pte_index(gma);
1732 		index = 4;
1733 		break;
1734 	case 3:
1735 		ppgtt_get_shadow_root_entry(mm, &e,
1736 				gma_ops->gma_to_l3_pdp_index(gma));
1737 		gma_index[0] = gma_ops->gma_to_pde_index(gma);
1738 		gma_index[1] = gma_ops->gma_to_pte_index(gma);
1739 		index = 2;
1740 		break;
1741 	case 2:
1742 		ppgtt_get_shadow_root_entry(mm, &e,
1743 				gma_ops->gma_to_pde_index(gma));
1744 		gma_index[0] = gma_ops->gma_to_pte_index(gma);
1745 		index = 1;
1746 		break;
1747 	default:
1748 		WARN_ON(1);
1749 		goto err;
1750 	}
1751 
1752 	/* walk into the shadow page table and get gpa from guest entry */
1753 	for (i = 0; i < index; i++) {
1754 		ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1755 			(i == index - 1));
1756 		if (ret)
1757 			goto err;
1758 	}
1759 
1760 	gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1761 		+ (gma & ~GTT_PAGE_MASK);
1762 
1763 	trace_gma_translate(vgpu->id, "ppgtt", 0,
1764 			mm->page_table_level, gma, gpa);
1765 	return gpa;
1766 err:
1767 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1768 	return INTEL_GVT_INVALID_ADDR;
1769 }
1770 
1771 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1772 	unsigned int off, void *p_data, unsigned int bytes)
1773 {
1774 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1775 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1776 	unsigned long index = off >> info->gtt_entry_size_shift;
1777 	struct intel_gvt_gtt_entry e;
1778 
1779 	if (bytes != 4 && bytes != 8)
1780 		return -EINVAL;
1781 
1782 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1783 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1784 			bytes);
1785 	return 0;
1786 }
1787 
1788 /**
1789  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1790  * @vgpu: a vGPU
1791  * @off: register offset
1792  * @p_data: data will be returned to guest
1793  * @bytes: data length
1794  *
1795  * This function is used to emulate the GTT MMIO register read
1796  *
1797  * Returns:
1798  * Zero on success, error code if failed.
1799  */
1800 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1801 	void *p_data, unsigned int bytes)
1802 {
1803 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1804 	int ret;
1805 
1806 	if (bytes != 4 && bytes != 8)
1807 		return -EINVAL;
1808 
1809 	off -= info->gtt_start_offset;
1810 	ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1811 	return ret;
1812 }
1813 
1814 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1815 	void *p_data, unsigned int bytes)
1816 {
1817 	struct intel_gvt *gvt = vgpu->gvt;
1818 	const struct intel_gvt_device_info *info = &gvt->device_info;
1819 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1820 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1821 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1822 	unsigned long gma;
1823 	struct intel_gvt_gtt_entry e, m;
1824 	int ret;
1825 
1826 	if (bytes != 4 && bytes != 8)
1827 		return -EINVAL;
1828 
1829 	gma = g_gtt_index << GTT_PAGE_SHIFT;
1830 
1831 	/* the VM may configure the whole GM space when ballooning is used */
1832 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1833 		return 0;
1834 
1835 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1836 
1837 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1838 			bytes);
1839 
1840 	if (ops->test_present(&e)) {
1841 		ret = gtt_entry_p2m(vgpu, &e, &m);
1842 		if (ret) {
1843 			gvt_vgpu_err("fail to translate guest gtt entry\n");
1844 			/* guest driver may read/write the entry when partial
1845 			 * update the entry in this situation p2m will fail
1846 			 * settting the shadow entry to point to a scratch page
1847 			 */
1848 			ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1849 		}
1850 	} else {
1851 		m = e;
1852 		ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1853 	}
1854 
1855 	ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1856 	gtt_invalidate(gvt->dev_priv);
1857 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1858 	return 0;
1859 }
1860 
1861 /*
1862  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1863  * @vgpu: a vGPU
1864  * @off: register offset
1865  * @p_data: data from guest write
1866  * @bytes: data length
1867  *
1868  * This function is used to emulate the GTT MMIO register write
1869  *
1870  * Returns:
1871  * Zero on success, error code if failed.
1872  */
1873 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1874 	void *p_data, unsigned int bytes)
1875 {
1876 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1877 	int ret;
1878 
1879 	if (bytes != 4 && bytes != 8)
1880 		return -EINVAL;
1881 
1882 	off -= info->gtt_start_offset;
1883 	ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1884 	return ret;
1885 }
1886 
1887 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1888 		intel_gvt_gtt_type_t type)
1889 {
1890 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1891 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1892 	int page_entry_num = GTT_PAGE_SIZE >>
1893 				vgpu->gvt->device_info.gtt_entry_size_shift;
1894 	void *scratch_pt;
1895 	int i;
1896 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1897 	dma_addr_t daddr;
1898 
1899 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1900 		return -EINVAL;
1901 
1902 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1903 	if (!scratch_pt) {
1904 		gvt_vgpu_err("fail to allocate scratch page\n");
1905 		return -ENOMEM;
1906 	}
1907 
1908 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1909 			4096, PCI_DMA_BIDIRECTIONAL);
1910 	if (dma_mapping_error(dev, daddr)) {
1911 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
1912 		__free_page(virt_to_page(scratch_pt));
1913 		return -ENOMEM;
1914 	}
1915 	gtt->scratch_pt[type].page_mfn =
1916 		(unsigned long)(daddr >> GTT_PAGE_SHIFT);
1917 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1918 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1919 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1920 
1921 	/* Build the tree by full filled the scratch pt with the entries which
1922 	 * point to the next level scratch pt or scratch page. The
1923 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1924 	 * 'type' pt.
1925 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1926 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1927 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1928 	 */
1929 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1930 		struct intel_gvt_gtt_entry se;
1931 
1932 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1933 		se.type = get_entry_type(type - 1);
1934 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1935 
1936 		/* The entry parameters like present/writeable/cache type
1937 		 * set to the same as i915's scratch page tree.
1938 		 */
1939 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1940 		if (type == GTT_TYPE_PPGTT_PDE_PT)
1941 			se.val64 |= PPAT_CACHED_INDEX;
1942 
1943 		for (i = 0; i < page_entry_num; i++)
1944 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1951 {
1952 	int i;
1953 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1954 	dma_addr_t daddr;
1955 
1956 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1957 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
1958 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1959 					GTT_PAGE_SHIFT);
1960 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1961 			__free_page(vgpu->gtt.scratch_pt[i].page);
1962 			vgpu->gtt.scratch_pt[i].page = NULL;
1963 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
1964 		}
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1971 {
1972 	int i, ret;
1973 
1974 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1975 		ret = alloc_scratch_pages(vgpu, i);
1976 		if (ret)
1977 			goto err;
1978 	}
1979 
1980 	return 0;
1981 
1982 err:
1983 	release_scratch_page_tree(vgpu);
1984 	return ret;
1985 }
1986 
1987 /**
1988  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1989  * @vgpu: a vGPU
1990  *
1991  * This function is used to initialize per-vGPU graphics memory virtualization
1992  * components.
1993  *
1994  * Returns:
1995  * Zero on success, error code if failed.
1996  */
1997 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1998 {
1999 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2000 	struct intel_vgpu_mm *ggtt_mm;
2001 
2002 	hash_init(gtt->guest_page_hash_table);
2003 	hash_init(gtt->shadow_page_hash_table);
2004 
2005 	INIT_LIST_HEAD(&gtt->mm_list_head);
2006 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2007 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2008 
2009 	intel_vgpu_reset_ggtt(vgpu);
2010 
2011 	ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2012 			NULL, 1, 0);
2013 	if (IS_ERR(ggtt_mm)) {
2014 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2015 		return PTR_ERR(ggtt_mm);
2016 	}
2017 
2018 	gtt->ggtt_mm = ggtt_mm;
2019 
2020 	return create_scratch_page_tree(vgpu);
2021 }
2022 
2023 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2024 {
2025 	struct list_head *pos, *n;
2026 	struct intel_vgpu_mm *mm;
2027 
2028 	list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2029 		mm = container_of(pos, struct intel_vgpu_mm, list);
2030 		if (mm->type == type) {
2031 			vgpu->gvt->gtt.mm_free_page_table(mm);
2032 			list_del(&mm->list);
2033 			list_del(&mm->lru_list);
2034 			kfree(mm);
2035 		}
2036 	}
2037 }
2038 
2039 /**
2040  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2041  * @vgpu: a vGPU
2042  *
2043  * This function is used to clean up per-vGPU graphics memory virtualization
2044  * components.
2045  *
2046  * Returns:
2047  * Zero on success, error code if failed.
2048  */
2049 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2050 {
2051 	ppgtt_free_all_shadow_page(vgpu);
2052 	release_scratch_page_tree(vgpu);
2053 
2054 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2055 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2056 }
2057 
2058 static void clean_spt_oos(struct intel_gvt *gvt)
2059 {
2060 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2061 	struct list_head *pos, *n;
2062 	struct intel_vgpu_oos_page *oos_page;
2063 
2064 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2065 		"someone is still using oos page\n");
2066 
2067 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2068 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2069 		list_del(&oos_page->list);
2070 		kfree(oos_page);
2071 	}
2072 }
2073 
2074 static int setup_spt_oos(struct intel_gvt *gvt)
2075 {
2076 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2077 	struct intel_vgpu_oos_page *oos_page;
2078 	int i;
2079 	int ret;
2080 
2081 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2082 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2083 
2084 	for (i = 0; i < preallocated_oos_pages; i++) {
2085 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2086 		if (!oos_page) {
2087 			ret = -ENOMEM;
2088 			goto fail;
2089 		}
2090 
2091 		INIT_LIST_HEAD(&oos_page->list);
2092 		INIT_LIST_HEAD(&oos_page->vm_list);
2093 		oos_page->id = i;
2094 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2095 	}
2096 
2097 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2098 
2099 	return 0;
2100 fail:
2101 	clean_spt_oos(gvt);
2102 	return ret;
2103 }
2104 
2105 /**
2106  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2107  * @vgpu: a vGPU
2108  * @page_table_level: PPGTT page table level
2109  * @root_entry: PPGTT page table root pointers
2110  *
2111  * This function is used to find a PPGTT mm object from mm object pool
2112  *
2113  * Returns:
2114  * pointer to mm object on success, NULL if failed.
2115  */
2116 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2117 		int page_table_level, void *root_entry)
2118 {
2119 	struct list_head *pos;
2120 	struct intel_vgpu_mm *mm;
2121 	u64 *src, *dst;
2122 
2123 	list_for_each(pos, &vgpu->gtt.mm_list_head) {
2124 		mm = container_of(pos, struct intel_vgpu_mm, list);
2125 		if (mm->type != INTEL_GVT_MM_PPGTT)
2126 			continue;
2127 
2128 		if (mm->page_table_level != page_table_level)
2129 			continue;
2130 
2131 		src = root_entry;
2132 		dst = mm->virtual_page_table;
2133 
2134 		if (page_table_level == 3) {
2135 			if (src[0] == dst[0]
2136 					&& src[1] == dst[1]
2137 					&& src[2] == dst[2]
2138 					&& src[3] == dst[3])
2139 				return mm;
2140 		} else {
2141 			if (src[0] == dst[0])
2142 				return mm;
2143 		}
2144 	}
2145 	return NULL;
2146 }
2147 
2148 /**
2149  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2150  * g2v notification
2151  * @vgpu: a vGPU
2152  * @page_table_level: PPGTT page table level
2153  *
2154  * This function is used to create a PPGTT mm object from a guest to GVT-g
2155  * notification.
2156  *
2157  * Returns:
2158  * Zero on success, negative error code if failed.
2159  */
2160 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2161 		int page_table_level)
2162 {
2163 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2164 	struct intel_vgpu_mm *mm;
2165 
2166 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2167 		return -EINVAL;
2168 
2169 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2170 	if (mm) {
2171 		intel_gvt_mm_reference(mm);
2172 	} else {
2173 		mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2174 				pdp, page_table_level, 0);
2175 		if (IS_ERR(mm)) {
2176 			gvt_vgpu_err("fail to create mm\n");
2177 			return PTR_ERR(mm);
2178 		}
2179 	}
2180 	return 0;
2181 }
2182 
2183 /**
2184  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2185  * g2v notification
2186  * @vgpu: a vGPU
2187  * @page_table_level: PPGTT page table level
2188  *
2189  * This function is used to create a PPGTT mm object from a guest to GVT-g
2190  * notification.
2191  *
2192  * Returns:
2193  * Zero on success, negative error code if failed.
2194  */
2195 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2196 		int page_table_level)
2197 {
2198 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2199 	struct intel_vgpu_mm *mm;
2200 
2201 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2202 		return -EINVAL;
2203 
2204 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2205 	if (!mm) {
2206 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2207 		return -EINVAL;
2208 	}
2209 	intel_gvt_mm_unreference(mm);
2210 	return 0;
2211 }
2212 
2213 /**
2214  * intel_gvt_init_gtt - initialize mm components of a GVT device
2215  * @gvt: GVT device
2216  *
2217  * This function is called at the initialization stage, to initialize
2218  * the mm components of a GVT device.
2219  *
2220  * Returns:
2221  * zero on success, negative error code if failed.
2222  */
2223 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2224 {
2225 	int ret;
2226 	void *page;
2227 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2228 	dma_addr_t daddr;
2229 
2230 	gvt_dbg_core("init gtt\n");
2231 
2232 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2233 		|| IS_KABYLAKE(gvt->dev_priv)) {
2234 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2235 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2236 		gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2237 		gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2238 	} else {
2239 		return -ENODEV;
2240 	}
2241 
2242 	page = (void *)get_zeroed_page(GFP_KERNEL);
2243 	if (!page) {
2244 		gvt_err("fail to allocate scratch ggtt page\n");
2245 		return -ENOMEM;
2246 	}
2247 
2248 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2249 			4096, PCI_DMA_BIDIRECTIONAL);
2250 	if (dma_mapping_error(dev, daddr)) {
2251 		gvt_err("fail to dmamap scratch ggtt page\n");
2252 		__free_page(virt_to_page(page));
2253 		return -ENOMEM;
2254 	}
2255 	gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2256 	gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2257 
2258 	if (enable_out_of_sync) {
2259 		ret = setup_spt_oos(gvt);
2260 		if (ret) {
2261 			gvt_err("fail to initialize SPT oos\n");
2262 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2263 			__free_page(gvt->gtt.scratch_ggtt_page);
2264 			return ret;
2265 		}
2266 	}
2267 	INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2268 	return 0;
2269 }
2270 
2271 /**
2272  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2273  * @gvt: GVT device
2274  *
2275  * This function is called at the driver unloading stage, to clean up the
2276  * the mm components of a GVT device.
2277  *
2278  */
2279 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2280 {
2281 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2282 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2283 					GTT_PAGE_SHIFT);
2284 
2285 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2286 
2287 	__free_page(gvt->gtt.scratch_ggtt_page);
2288 
2289 	if (enable_out_of_sync)
2290 		clean_spt_oos(gvt);
2291 }
2292 
2293 /**
2294  * intel_vgpu_reset_ggtt - reset the GGTT entry
2295  * @vgpu: a vGPU
2296  *
2297  * This function is called at the vGPU create stage
2298  * to reset all the GGTT entries.
2299  *
2300  */
2301 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2302 {
2303 	struct intel_gvt *gvt = vgpu->gvt;
2304 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2305 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2306 	u32 index;
2307 	u32 offset;
2308 	u32 num_entries;
2309 	struct intel_gvt_gtt_entry e;
2310 
2311 	memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2312 	e.type = GTT_TYPE_GGTT_PTE;
2313 	ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2314 	e.val64 |= _PAGE_PRESENT;
2315 
2316 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2317 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2318 	for (offset = 0; offset < num_entries; offset++)
2319 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2320 
2321 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2322 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2323 	for (offset = 0; offset < num_entries; offset++)
2324 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2325 
2326 	gtt_invalidate(dev_priv);
2327 }
2328 
2329 /**
2330  * intel_vgpu_reset_gtt - reset the all GTT related status
2331  * @vgpu: a vGPU
2332  * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2333  *
2334  * This function is called from vfio core to reset reset all
2335  * GTT related status, including GGTT, PPGTT, scratch page.
2336  *
2337  */
2338 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2339 {
2340 	int i;
2341 
2342 	ppgtt_free_all_shadow_page(vgpu);
2343 
2344 	/* Shadow pages are only created when there is no page
2345 	 * table tracking data, so remove page tracking data after
2346 	 * removing the shadow pages.
2347 	 */
2348 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2349 
2350 	if (!dmlr)
2351 		return;
2352 
2353 	intel_vgpu_reset_ggtt(vgpu);
2354 
2355 	/* clear scratch page for security */
2356 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2357 		if (vgpu->gtt.scratch_pt[i].page != NULL)
2358 			memset(page_address(vgpu->gtt.scratch_pt[i].page),
2359 				0, PAGE_SIZE);
2360 	}
2361 }
2362