xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #include "gt/intel_gt_regs.h"
42 
43 #if defined(VERBOSE_DEBUG)
44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45 #else
46 #define gvt_vdbg_mm(fmt, args...)
47 #endif
48 
49 static bool enable_out_of_sync = false;
50 static int preallocated_oos_pages = 8192;
51 
52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn)
53 {
54 	struct kvm *kvm = vgpu->vfio_device.kvm;
55 	int idx;
56 	bool ret;
57 
58 	if (!vgpu->attached)
59 		return false;
60 
61 	idx = srcu_read_lock(&kvm->srcu);
62 	ret = kvm_is_visible_gfn(kvm, gfn);
63 	srcu_read_unlock(&kvm->srcu, idx);
64 
65 	return ret;
66 }
67 
68 /*
69  * validate a gm address and related range size,
70  * translate it to host gm address
71  */
72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
73 {
74 	if (size == 0)
75 		return vgpu_gmadr_is_valid(vgpu, addr);
76 
77 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
78 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
79 		return true;
80 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
81 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
82 		return true;
83 
84 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
85 		     addr, size);
86 	return false;
87 }
88 
89 /* translate a guest gmadr to host gmadr */
90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
95 		     "invalid guest gmadr %llx\n", g_addr))
96 		return -EACCES;
97 
98 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
99 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
100 			  + (g_addr - vgpu_aperture_offset(vgpu));
101 	else
102 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
103 			  + (g_addr - vgpu_hidden_offset(vgpu));
104 	return 0;
105 }
106 
107 /* translate a host gmadr to guest gmadr */
108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
109 {
110 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
111 
112 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
113 		     "invalid host gmadr %llx\n", h_addr))
114 		return -EACCES;
115 
116 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
117 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
118 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
119 	else
120 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
121 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
122 	return 0;
123 }
124 
125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
126 			     unsigned long *h_index)
127 {
128 	u64 h_addr;
129 	int ret;
130 
131 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
132 				       &h_addr);
133 	if (ret)
134 		return ret;
135 
136 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
137 	return 0;
138 }
139 
140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
141 			     unsigned long *g_index)
142 {
143 	u64 g_addr;
144 	int ret;
145 
146 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
147 				       &g_addr);
148 	if (ret)
149 		return ret;
150 
151 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
152 	return 0;
153 }
154 
155 #define gtt_type_is_entry(type) \
156 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
157 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
158 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
159 
160 #define gtt_type_is_pt(type) \
161 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
162 
163 #define gtt_type_is_pte_pt(type) \
164 	(type == GTT_TYPE_PPGTT_PTE_PT)
165 
166 #define gtt_type_is_root_pointer(type) \
167 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
168 
169 #define gtt_init_entry(e, t, p, v) do { \
170 	(e)->type = t; \
171 	(e)->pdev = p; \
172 	memcpy(&(e)->val64, &v, sizeof(v)); \
173 } while (0)
174 
175 /*
176  * Mappings between GTT_TYPE* enumerations.
177  * Following information can be found according to the given type:
178  * - type of next level page table
179  * - type of entry inside this level page table
180  * - type of entry with PSE set
181  *
182  * If the given type doesn't have such a kind of information,
183  * e.g. give a l4 root entry type, then request to get its PSE type,
184  * give a PTE page table type, then request to get its next level page
185  * table type, as we know l4 root entry doesn't have a PSE bit,
186  * and a PTE page table doesn't have a next level page table type,
187  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
188  * page table.
189  */
190 
191 struct gtt_type_table_entry {
192 	int entry_type;
193 	int pt_type;
194 	int next_pt_type;
195 	int pse_entry_type;
196 };
197 
198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
199 	[type] = { \
200 		.entry_type = e_type, \
201 		.pt_type = cpt_type, \
202 		.next_pt_type = npt_type, \
203 		.pse_entry_type = pse_type, \
204 	}
205 
206 static const struct gtt_type_table_entry gtt_type_table[] = {
207 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
208 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
209 			GTT_TYPE_INVALID,
210 			GTT_TYPE_PPGTT_PML4_PT,
211 			GTT_TYPE_INVALID),
212 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
213 			GTT_TYPE_PPGTT_PML4_ENTRY,
214 			GTT_TYPE_PPGTT_PML4_PT,
215 			GTT_TYPE_PPGTT_PDP_PT,
216 			GTT_TYPE_INVALID),
217 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
218 			GTT_TYPE_PPGTT_PML4_ENTRY,
219 			GTT_TYPE_PPGTT_PML4_PT,
220 			GTT_TYPE_PPGTT_PDP_PT,
221 			GTT_TYPE_INVALID),
222 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
223 			GTT_TYPE_PPGTT_PDP_ENTRY,
224 			GTT_TYPE_PPGTT_PDP_PT,
225 			GTT_TYPE_PPGTT_PDE_PT,
226 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
227 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
228 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
229 			GTT_TYPE_INVALID,
230 			GTT_TYPE_PPGTT_PDE_PT,
231 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
232 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
233 			GTT_TYPE_PPGTT_PDP_ENTRY,
234 			GTT_TYPE_PPGTT_PDP_PT,
235 			GTT_TYPE_PPGTT_PDE_PT,
236 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
237 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_PPGTT_PDE_ENTRY,
239 			GTT_TYPE_PPGTT_PDE_PT,
240 			GTT_TYPE_PPGTT_PTE_PT,
241 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
242 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
243 			GTT_TYPE_PPGTT_PDE_ENTRY,
244 			GTT_TYPE_PPGTT_PDE_PT,
245 			GTT_TYPE_PPGTT_PTE_PT,
246 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
247 	/* We take IPS bit as 'PSE' for PTE level. */
248 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
249 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
250 			GTT_TYPE_PPGTT_PTE_PT,
251 			GTT_TYPE_INVALID,
252 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
253 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
254 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
255 			GTT_TYPE_PPGTT_PTE_PT,
256 			GTT_TYPE_INVALID,
257 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
258 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
259 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
260 			GTT_TYPE_PPGTT_PTE_PT,
261 			GTT_TYPE_INVALID,
262 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
263 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
264 			GTT_TYPE_PPGTT_PDE_ENTRY,
265 			GTT_TYPE_PPGTT_PDE_PT,
266 			GTT_TYPE_INVALID,
267 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
268 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
269 			GTT_TYPE_PPGTT_PDP_ENTRY,
270 			GTT_TYPE_PPGTT_PDP_PT,
271 			GTT_TYPE_INVALID,
272 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
273 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
274 			GTT_TYPE_GGTT_PTE,
275 			GTT_TYPE_INVALID,
276 			GTT_TYPE_INVALID,
277 			GTT_TYPE_INVALID),
278 };
279 
280 static inline int get_next_pt_type(int type)
281 {
282 	return gtt_type_table[type].next_pt_type;
283 }
284 
285 static inline int get_pt_type(int type)
286 {
287 	return gtt_type_table[type].pt_type;
288 }
289 
290 static inline int get_entry_type(int type)
291 {
292 	return gtt_type_table[type].entry_type;
293 }
294 
295 static inline int get_pse_type(int type)
296 {
297 	return gtt_type_table[type].pse_entry_type;
298 }
299 
300 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
301 {
302 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
303 
304 	return readq(addr);
305 }
306 
307 static void ggtt_invalidate(struct intel_gt *gt)
308 {
309 	mmio_hw_access_pre(gt);
310 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
311 	mmio_hw_access_post(gt);
312 }
313 
314 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
315 {
316 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
317 
318 	writeq(pte, addr);
319 }
320 
321 static inline int gtt_get_entry64(void *pt,
322 		struct intel_gvt_gtt_entry *e,
323 		unsigned long index, bool hypervisor_access, unsigned long gpa,
324 		struct intel_vgpu *vgpu)
325 {
326 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
327 	int ret;
328 
329 	if (WARN_ON(info->gtt_entry_size != 8))
330 		return -EINVAL;
331 
332 	if (hypervisor_access) {
333 		ret = intel_gvt_read_gpa(vgpu, gpa +
334 				(index << info->gtt_entry_size_shift),
335 				&e->val64, 8);
336 		if (WARN_ON(ret))
337 			return ret;
338 	} else if (!pt) {
339 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
340 	} else {
341 		e->val64 = *((u64 *)pt + index);
342 	}
343 	return 0;
344 }
345 
346 static inline int gtt_set_entry64(void *pt,
347 		struct intel_gvt_gtt_entry *e,
348 		unsigned long index, bool hypervisor_access, unsigned long gpa,
349 		struct intel_vgpu *vgpu)
350 {
351 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
352 	int ret;
353 
354 	if (WARN_ON(info->gtt_entry_size != 8))
355 		return -EINVAL;
356 
357 	if (hypervisor_access) {
358 		ret = intel_gvt_write_gpa(vgpu, gpa +
359 				(index << info->gtt_entry_size_shift),
360 				&e->val64, 8);
361 		if (WARN_ON(ret))
362 			return ret;
363 	} else if (!pt) {
364 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
365 	} else {
366 		*((u64 *)pt + index) = e->val64;
367 	}
368 	return 0;
369 }
370 
371 #define GTT_HAW 46
372 
373 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
374 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
375 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
376 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
377 
378 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
379 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
380 
381 #define GTT_64K_PTE_STRIDE 16
382 
383 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
384 {
385 	unsigned long pfn;
386 
387 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
388 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
389 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
390 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
391 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
392 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
393 	else
394 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
395 	return pfn;
396 }
397 
398 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
399 {
400 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
401 		e->val64 &= ~ADDR_1G_MASK;
402 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
403 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
404 		e->val64 &= ~ADDR_2M_MASK;
405 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
406 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
407 		e->val64 &= ~ADDR_64K_MASK;
408 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
409 	} else {
410 		e->val64 &= ~ADDR_4K_MASK;
411 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
412 	}
413 
414 	e->val64 |= (pfn << PAGE_SHIFT);
415 }
416 
417 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
418 {
419 	return !!(e->val64 & _PAGE_PSE);
420 }
421 
422 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
423 {
424 	if (gen8_gtt_test_pse(e)) {
425 		switch (e->type) {
426 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
427 			e->val64 &= ~_PAGE_PSE;
428 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
429 			break;
430 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
431 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
432 			e->val64 &= ~_PAGE_PSE;
433 			break;
434 		default:
435 			WARN_ON(1);
436 		}
437 	}
438 }
439 
440 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
441 {
442 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
443 		return false;
444 
445 	return !!(e->val64 & GEN8_PDE_IPS_64K);
446 }
447 
448 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
449 {
450 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
451 		return;
452 
453 	e->val64 &= ~GEN8_PDE_IPS_64K;
454 }
455 
456 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
457 {
458 	/*
459 	 * i915 writes PDP root pointer registers without present bit,
460 	 * it also works, so we need to treat root pointer entry
461 	 * specifically.
462 	 */
463 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
464 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
465 		return (e->val64 != 0);
466 	else
467 		return (e->val64 & GEN8_PAGE_PRESENT);
468 }
469 
470 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
471 {
472 	e->val64 &= ~GEN8_PAGE_PRESENT;
473 }
474 
475 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
476 {
477 	e->val64 |= GEN8_PAGE_PRESENT;
478 }
479 
480 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
481 {
482 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
483 }
484 
485 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
486 {
487 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
488 }
489 
490 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
491 {
492 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
493 }
494 
495 /*
496  * Per-platform GMA routines.
497  */
498 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
499 {
500 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
501 
502 	trace_gma_index(__func__, gma, x);
503 	return x;
504 }
505 
506 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
507 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
508 { \
509 	unsigned long x = (exp); \
510 	trace_gma_index(__func__, gma, x); \
511 	return x; \
512 }
513 
514 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
515 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
516 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
517 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
518 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
519 
520 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
521 	.get_entry = gtt_get_entry64,
522 	.set_entry = gtt_set_entry64,
523 	.clear_present = gtt_entry_clear_present,
524 	.set_present = gtt_entry_set_present,
525 	.test_present = gen8_gtt_test_present,
526 	.test_pse = gen8_gtt_test_pse,
527 	.clear_pse = gen8_gtt_clear_pse,
528 	.clear_ips = gen8_gtt_clear_ips,
529 	.test_ips = gen8_gtt_test_ips,
530 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
531 	.set_64k_splited = gen8_gtt_set_64k_splited,
532 	.test_64k_splited = gen8_gtt_test_64k_splited,
533 	.get_pfn = gen8_gtt_get_pfn,
534 	.set_pfn = gen8_gtt_set_pfn,
535 };
536 
537 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
538 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
539 	.gma_to_pte_index = gen8_gma_to_pte_index,
540 	.gma_to_pde_index = gen8_gma_to_pde_index,
541 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
542 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
543 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
544 };
545 
546 /* Update entry type per pse and ips bit. */
547 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
548 	struct intel_gvt_gtt_entry *entry, bool ips)
549 {
550 	switch (entry->type) {
551 	case GTT_TYPE_PPGTT_PDE_ENTRY:
552 	case GTT_TYPE_PPGTT_PDP_ENTRY:
553 		if (pte_ops->test_pse(entry))
554 			entry->type = get_pse_type(entry->type);
555 		break;
556 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
557 		if (ips)
558 			entry->type = get_pse_type(entry->type);
559 		break;
560 	default:
561 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
562 	}
563 
564 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
565 }
566 
567 /*
568  * MM helpers.
569  */
570 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index,
572 		bool guest)
573 {
574 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575 
576 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
577 
578 	entry->type = mm->ppgtt_mm.root_entry_type;
579 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
580 			   mm->ppgtt_mm.shadow_pdps,
581 			   entry, index, false, 0, mm->vgpu);
582 	update_entry_type_for_real(pte_ops, entry, false);
583 }
584 
585 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
586 		struct intel_gvt_gtt_entry *entry, unsigned long index)
587 {
588 	_ppgtt_get_root_entry(mm, entry, index, true);
589 }
590 
591 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
592 		struct intel_gvt_gtt_entry *entry, unsigned long index)
593 {
594 	_ppgtt_get_root_entry(mm, entry, index, false);
595 }
596 
597 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
598 		struct intel_gvt_gtt_entry *entry, unsigned long index,
599 		bool guest)
600 {
601 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
602 
603 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
604 			   mm->ppgtt_mm.shadow_pdps,
605 			   entry, index, false, 0, mm->vgpu);
606 }
607 
608 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
609 		struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611 	_ppgtt_set_root_entry(mm, entry, index, false);
612 }
613 
614 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
615 		struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618 
619 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620 
621 	entry->type = GTT_TYPE_GGTT_PTE;
622 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
623 			   false, 0, mm->vgpu);
624 }
625 
626 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 
631 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 
633 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
634 			   false, 0, mm->vgpu);
635 }
636 
637 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
638 		struct intel_gvt_gtt_entry *entry, unsigned long index)
639 {
640 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
641 
642 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
643 
644 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
645 }
646 
647 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
648 		struct intel_gvt_gtt_entry *entry, unsigned long index)
649 {
650 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
651 	unsigned long offset = index;
652 
653 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
654 
655 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
656 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
657 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
658 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
659 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
660 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
661 	}
662 
663 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
664 }
665 
666 /*
667  * PPGTT shadow page table helpers.
668  */
669 static inline int ppgtt_spt_get_entry(
670 		struct intel_vgpu_ppgtt_spt *spt,
671 		void *page_table, int type,
672 		struct intel_gvt_gtt_entry *e, unsigned long index,
673 		bool guest)
674 {
675 	struct intel_gvt *gvt = spt->vgpu->gvt;
676 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
677 	int ret;
678 
679 	e->type = get_entry_type(type);
680 
681 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
682 		return -EINVAL;
683 
684 	ret = ops->get_entry(page_table, e, index, guest,
685 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
686 			spt->vgpu);
687 	if (ret)
688 		return ret;
689 
690 	update_entry_type_for_real(ops, e, guest ?
691 				   spt->guest_page.pde_ips : false);
692 
693 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
694 		    type, e->type, index, e->val64);
695 	return 0;
696 }
697 
698 static inline int ppgtt_spt_set_entry(
699 		struct intel_vgpu_ppgtt_spt *spt,
700 		void *page_table, int type,
701 		struct intel_gvt_gtt_entry *e, unsigned long index,
702 		bool guest)
703 {
704 	struct intel_gvt *gvt = spt->vgpu->gvt;
705 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
706 
707 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
708 		return -EINVAL;
709 
710 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
711 		    type, e->type, index, e->val64);
712 
713 	return ops->set_entry(page_table, e, index, guest,
714 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
715 			spt->vgpu);
716 }
717 
718 #define ppgtt_get_guest_entry(spt, e, index) \
719 	ppgtt_spt_get_entry(spt, NULL, \
720 		spt->guest_page.type, e, index, true)
721 
722 #define ppgtt_set_guest_entry(spt, e, index) \
723 	ppgtt_spt_set_entry(spt, NULL, \
724 		spt->guest_page.type, e, index, true)
725 
726 #define ppgtt_get_shadow_entry(spt, e, index) \
727 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
728 		spt->shadow_page.type, e, index, false)
729 
730 #define ppgtt_set_shadow_entry(spt, e, index) \
731 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
732 		spt->shadow_page.type, e, index, false)
733 
734 static void *alloc_spt(gfp_t gfp_mask)
735 {
736 	struct intel_vgpu_ppgtt_spt *spt;
737 
738 	spt = kzalloc(sizeof(*spt), gfp_mask);
739 	if (!spt)
740 		return NULL;
741 
742 	spt->shadow_page.page = alloc_page(gfp_mask);
743 	if (!spt->shadow_page.page) {
744 		kfree(spt);
745 		return NULL;
746 	}
747 	return spt;
748 }
749 
750 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
751 {
752 	__free_page(spt->shadow_page.page);
753 	kfree(spt);
754 }
755 
756 static int detach_oos_page(struct intel_vgpu *vgpu,
757 		struct intel_vgpu_oos_page *oos_page);
758 
759 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
760 {
761 	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
762 
763 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
764 
765 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
766 		       DMA_BIDIRECTIONAL);
767 
768 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
769 
770 	if (spt->guest_page.gfn) {
771 		if (spt->guest_page.oos_page)
772 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
773 
774 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
775 	}
776 
777 	list_del_init(&spt->post_shadow_list);
778 	free_spt(spt);
779 }
780 
781 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
782 {
783 	struct intel_vgpu_ppgtt_spt *spt, *spn;
784 	struct radix_tree_iter iter;
785 	LIST_HEAD(all_spt);
786 	void __rcu **slot;
787 
788 	rcu_read_lock();
789 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
790 		spt = radix_tree_deref_slot(slot);
791 		list_move(&spt->post_shadow_list, &all_spt);
792 	}
793 	rcu_read_unlock();
794 
795 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
796 		ppgtt_free_spt(spt);
797 }
798 
799 static int ppgtt_handle_guest_write_page_table_bytes(
800 		struct intel_vgpu_ppgtt_spt *spt,
801 		u64 pa, void *p_data, int bytes);
802 
803 static int ppgtt_write_protection_handler(
804 		struct intel_vgpu_page_track *page_track,
805 		u64 gpa, void *data, int bytes)
806 {
807 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
808 
809 	int ret;
810 
811 	if (bytes != 4 && bytes != 8)
812 		return -EINVAL;
813 
814 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
815 	if (ret)
816 		return ret;
817 	return ret;
818 }
819 
820 /* Find a spt by guest gfn. */
821 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
822 		struct intel_vgpu *vgpu, unsigned long gfn)
823 {
824 	struct intel_vgpu_page_track *track;
825 
826 	track = intel_vgpu_find_page_track(vgpu, gfn);
827 	if (track && track->handler == ppgtt_write_protection_handler)
828 		return track->priv_data;
829 
830 	return NULL;
831 }
832 
833 /* Find the spt by shadow page mfn. */
834 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
835 		struct intel_vgpu *vgpu, unsigned long mfn)
836 {
837 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
838 }
839 
840 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
841 
842 /* Allocate shadow page table without guest page. */
843 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
844 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
845 {
846 	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
847 	struct intel_vgpu_ppgtt_spt *spt = NULL;
848 	dma_addr_t daddr;
849 	int ret;
850 
851 retry:
852 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
853 	if (!spt) {
854 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
855 			goto retry;
856 
857 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
858 		return ERR_PTR(-ENOMEM);
859 	}
860 
861 	spt->vgpu = vgpu;
862 	atomic_set(&spt->refcount, 1);
863 	INIT_LIST_HEAD(&spt->post_shadow_list);
864 
865 	/*
866 	 * Init shadow_page.
867 	 */
868 	spt->shadow_page.type = type;
869 	daddr = dma_map_page(kdev, spt->shadow_page.page,
870 			     0, 4096, DMA_BIDIRECTIONAL);
871 	if (dma_mapping_error(kdev, daddr)) {
872 		gvt_vgpu_err("fail to map dma addr\n");
873 		ret = -EINVAL;
874 		goto err_free_spt;
875 	}
876 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
877 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
878 
879 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
880 	if (ret)
881 		goto err_unmap_dma;
882 
883 	return spt;
884 
885 err_unmap_dma:
886 	dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
887 err_free_spt:
888 	free_spt(spt);
889 	return ERR_PTR(ret);
890 }
891 
892 /* Allocate shadow page table associated with specific gfn. */
893 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
894 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
895 		unsigned long gfn, bool guest_pde_ips)
896 {
897 	struct intel_vgpu_ppgtt_spt *spt;
898 	int ret;
899 
900 	spt = ppgtt_alloc_spt(vgpu, type);
901 	if (IS_ERR(spt))
902 		return spt;
903 
904 	/*
905 	 * Init guest_page.
906 	 */
907 	ret = intel_vgpu_register_page_track(vgpu, gfn,
908 			ppgtt_write_protection_handler, spt);
909 	if (ret) {
910 		ppgtt_free_spt(spt);
911 		return ERR_PTR(ret);
912 	}
913 
914 	spt->guest_page.type = type;
915 	spt->guest_page.gfn = gfn;
916 	spt->guest_page.pde_ips = guest_pde_ips;
917 
918 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
919 
920 	return spt;
921 }
922 
923 #define pt_entry_size_shift(spt) \
924 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
925 
926 #define pt_entries(spt) \
927 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
928 
929 #define for_each_present_guest_entry(spt, e, i) \
930 	for (i = 0; i < pt_entries(spt); \
931 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
932 		if (!ppgtt_get_guest_entry(spt, e, i) && \
933 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
934 
935 #define for_each_present_shadow_entry(spt, e, i) \
936 	for (i = 0; i < pt_entries(spt); \
937 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
938 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
939 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
940 
941 #define for_each_shadow_entry(spt, e, i) \
942 	for (i = 0; i < pt_entries(spt); \
943 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
944 		if (!ppgtt_get_shadow_entry(spt, e, i))
945 
946 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
947 {
948 	int v = atomic_read(&spt->refcount);
949 
950 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
951 	atomic_inc(&spt->refcount);
952 }
953 
954 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
955 {
956 	int v = atomic_read(&spt->refcount);
957 
958 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
959 	return atomic_dec_return(&spt->refcount);
960 }
961 
962 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
963 
964 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
965 		struct intel_gvt_gtt_entry *e)
966 {
967 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
968 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
969 	struct intel_vgpu_ppgtt_spt *s;
970 	enum intel_gvt_gtt_type cur_pt_type;
971 
972 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
973 
974 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
975 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
976 		cur_pt_type = get_next_pt_type(e->type);
977 
978 		if (!gtt_type_is_pt(cur_pt_type) ||
979 				!gtt_type_is_pt(cur_pt_type + 1)) {
980 			drm_WARN(&i915->drm, 1,
981 				 "Invalid page table type, cur_pt_type is: %d\n",
982 				 cur_pt_type);
983 			return -EINVAL;
984 		}
985 
986 		cur_pt_type += 1;
987 
988 		if (ops->get_pfn(e) ==
989 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
990 			return 0;
991 	}
992 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
993 	if (!s) {
994 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
995 				ops->get_pfn(e));
996 		return -ENXIO;
997 	}
998 	return ppgtt_invalidate_spt(s);
999 }
1000 
1001 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
1002 		struct intel_gvt_gtt_entry *entry)
1003 {
1004 	struct intel_vgpu *vgpu = spt->vgpu;
1005 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1006 	unsigned long pfn;
1007 	int type;
1008 
1009 	pfn = ops->get_pfn(entry);
1010 	type = spt->shadow_page.type;
1011 
1012 	/* Uninitialized spte or unshadowed spte. */
1013 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1014 		return;
1015 
1016 	intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1017 }
1018 
1019 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1020 {
1021 	struct intel_vgpu *vgpu = spt->vgpu;
1022 	struct intel_gvt_gtt_entry e;
1023 	unsigned long index;
1024 	int ret;
1025 
1026 	trace_spt_change(spt->vgpu->id, "die", spt,
1027 			spt->guest_page.gfn, spt->shadow_page.type);
1028 
1029 	if (ppgtt_put_spt(spt) > 0)
1030 		return 0;
1031 
1032 	for_each_present_shadow_entry(spt, &e, index) {
1033 		switch (e.type) {
1034 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1035 			gvt_vdbg_mm("invalidate 4K entry\n");
1036 			ppgtt_invalidate_pte(spt, &e);
1037 			break;
1038 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1039 			/* We don't setup 64K shadow entry so far. */
1040 			WARN(1, "suspicious 64K gtt entry\n");
1041 			continue;
1042 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1043 			gvt_vdbg_mm("invalidate 2M entry\n");
1044 			continue;
1045 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1046 			WARN(1, "GVT doesn't support 1GB page\n");
1047 			continue;
1048 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1049 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1050 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1051 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1052 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1053 					spt->vgpu, &e);
1054 			if (ret)
1055 				goto fail;
1056 			break;
1057 		default:
1058 			GEM_BUG_ON(1);
1059 		}
1060 	}
1061 
1062 	trace_spt_change(spt->vgpu->id, "release", spt,
1063 			 spt->guest_page.gfn, spt->shadow_page.type);
1064 	ppgtt_free_spt(spt);
1065 	return 0;
1066 fail:
1067 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1068 			spt, e.val64, e.type);
1069 	return ret;
1070 }
1071 
1072 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1073 {
1074 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1075 
1076 	if (GRAPHICS_VER(dev_priv) == 9) {
1077 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1078 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1079 
1080 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1081 	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1082 		/* 64K paging only controlled by IPS bit in PTE now. */
1083 		return true;
1084 	} else
1085 		return false;
1086 }
1087 
1088 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1089 
1090 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1091 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1092 {
1093 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1094 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1095 	bool ips = false;
1096 	int ret;
1097 
1098 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1099 
1100 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1101 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1102 
1103 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1104 	if (spt) {
1105 		ppgtt_get_spt(spt);
1106 
1107 		if (ips != spt->guest_page.pde_ips) {
1108 			spt->guest_page.pde_ips = ips;
1109 
1110 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1111 			clear_page(spt->shadow_page.vaddr);
1112 			ret = ppgtt_populate_spt(spt);
1113 			if (ret) {
1114 				ppgtt_put_spt(spt);
1115 				goto err;
1116 			}
1117 		}
1118 	} else {
1119 		int type = get_next_pt_type(we->type);
1120 
1121 		if (!gtt_type_is_pt(type)) {
1122 			ret = -EINVAL;
1123 			goto err;
1124 		}
1125 
1126 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1127 		if (IS_ERR(spt)) {
1128 			ret = PTR_ERR(spt);
1129 			goto err;
1130 		}
1131 
1132 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1133 		if (ret)
1134 			goto err_free_spt;
1135 
1136 		ret = ppgtt_populate_spt(spt);
1137 		if (ret)
1138 			goto err_free_spt;
1139 
1140 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1141 				 spt->shadow_page.type);
1142 	}
1143 	return spt;
1144 
1145 err_free_spt:
1146 	ppgtt_free_spt(spt);
1147 	spt = NULL;
1148 err:
1149 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1150 		     spt, we->val64, we->type);
1151 	return ERR_PTR(ret);
1152 }
1153 
1154 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1155 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1156 {
1157 	const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1158 
1159 	se->type = ge->type;
1160 	se->val64 = ge->val64;
1161 
1162 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1163 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1164 		ops->clear_ips(se);
1165 
1166 	ops->set_pfn(se, s->shadow_page.mfn);
1167 }
1168 
1169 /*
1170  * Check if can do 2M page
1171  * @vgpu: target vgpu
1172  * @entry: target pfn's gtt entry
1173  *
1174  * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1175  * negative if found err.
1176  */
1177 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1178 	struct intel_gvt_gtt_entry *entry)
1179 {
1180 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1181 	kvm_pfn_t pfn;
1182 
1183 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1184 		return 0;
1185 
1186 	if (!vgpu->attached)
1187 		return -EINVAL;
1188 	pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry));
1189 	if (is_error_noslot_pfn(pfn))
1190 		return -EINVAL;
1191 	return PageTransHuge(pfn_to_page(pfn));
1192 }
1193 
1194 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1195 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1196 	struct intel_gvt_gtt_entry *se)
1197 {
1198 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1199 	struct intel_vgpu_ppgtt_spt *sub_spt;
1200 	struct intel_gvt_gtt_entry sub_se;
1201 	unsigned long start_gfn;
1202 	dma_addr_t dma_addr;
1203 	unsigned long sub_index;
1204 	int ret;
1205 
1206 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1207 
1208 	start_gfn = ops->get_pfn(se);
1209 
1210 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1211 	if (IS_ERR(sub_spt))
1212 		return PTR_ERR(sub_spt);
1213 
1214 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1215 		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1216 						   PAGE_SIZE, &dma_addr);
1217 		if (ret) {
1218 			ppgtt_invalidate_spt(spt);
1219 			return ret;
1220 		}
1221 		sub_se.val64 = se->val64;
1222 
1223 		/* Copy the PAT field from PDE. */
1224 		sub_se.val64 &= ~_PAGE_PAT;
1225 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1226 
1227 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1228 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1229 	}
1230 
1231 	/* Clear dirty field. */
1232 	se->val64 &= ~_PAGE_DIRTY;
1233 
1234 	ops->clear_pse(se);
1235 	ops->clear_ips(se);
1236 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1237 	ppgtt_set_shadow_entry(spt, se, index);
1238 	return 0;
1239 }
1240 
1241 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1242 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1243 	struct intel_gvt_gtt_entry *se)
1244 {
1245 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1246 	struct intel_gvt_gtt_entry entry = *se;
1247 	unsigned long start_gfn;
1248 	dma_addr_t dma_addr;
1249 	int i, ret;
1250 
1251 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1252 
1253 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1254 
1255 	start_gfn = ops->get_pfn(se);
1256 
1257 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1258 	ops->set_64k_splited(&entry);
1259 
1260 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1261 		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1262 						   PAGE_SIZE, &dma_addr);
1263 		if (ret)
1264 			return ret;
1265 
1266 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1267 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1268 	}
1269 	return 0;
1270 }
1271 
1272 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1273 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1274 	struct intel_gvt_gtt_entry *ge)
1275 {
1276 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1277 	struct intel_gvt_gtt_entry se = *ge;
1278 	unsigned long gfn, page_size = PAGE_SIZE;
1279 	dma_addr_t dma_addr;
1280 	int ret;
1281 
1282 	if (!pte_ops->test_present(ge))
1283 		return 0;
1284 
1285 	gfn = pte_ops->get_pfn(ge);
1286 
1287 	switch (ge->type) {
1288 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1289 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1290 		break;
1291 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1292 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1293 		/*
1294 		 * The layout of 64K page is special, the page size is
1295 		 * controlled by uper PDE. To be simple, we always split
1296 		 * 64K page to smaller 4K pages in shadow PT.
1297 		 */
1298 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1299 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1300 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1301 		ret = is_2MB_gtt_possible(vgpu, ge);
1302 		if (ret == 0)
1303 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1304 		else if (ret < 0)
1305 			return ret;
1306 		page_size = I915_GTT_PAGE_SIZE_2M;
1307 		break;
1308 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1309 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1310 		return -EINVAL;
1311 	default:
1312 		GEM_BUG_ON(1);
1313 	}
1314 
1315 	/* direct shadow */
1316 	ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr);
1317 	if (ret)
1318 		return -ENXIO;
1319 
1320 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1321 	ppgtt_set_shadow_entry(spt, &se, index);
1322 	return 0;
1323 }
1324 
1325 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1326 {
1327 	struct intel_vgpu *vgpu = spt->vgpu;
1328 	struct intel_gvt *gvt = vgpu->gvt;
1329 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1330 	struct intel_vgpu_ppgtt_spt *s;
1331 	struct intel_gvt_gtt_entry se, ge;
1332 	unsigned long gfn, i;
1333 	int ret;
1334 
1335 	trace_spt_change(spt->vgpu->id, "born", spt,
1336 			 spt->guest_page.gfn, spt->shadow_page.type);
1337 
1338 	for_each_present_guest_entry(spt, &ge, i) {
1339 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1340 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1341 			if (IS_ERR(s)) {
1342 				ret = PTR_ERR(s);
1343 				goto fail;
1344 			}
1345 			ppgtt_get_shadow_entry(spt, &se, i);
1346 			ppgtt_generate_shadow_entry(&se, s, &ge);
1347 			ppgtt_set_shadow_entry(spt, &se, i);
1348 		} else {
1349 			gfn = ops->get_pfn(&ge);
1350 			if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
1351 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1352 				ppgtt_set_shadow_entry(spt, &se, i);
1353 				continue;
1354 			}
1355 
1356 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1357 			if (ret)
1358 				goto fail;
1359 		}
1360 	}
1361 	return 0;
1362 fail:
1363 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1364 			spt, ge.val64, ge.type);
1365 	return ret;
1366 }
1367 
1368 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1369 		struct intel_gvt_gtt_entry *se, unsigned long index)
1370 {
1371 	struct intel_vgpu *vgpu = spt->vgpu;
1372 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1373 	int ret;
1374 
1375 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1376 			       spt->shadow_page.type, se->val64, index);
1377 
1378 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1379 		    se->type, index, se->val64);
1380 
1381 	if (!ops->test_present(se))
1382 		return 0;
1383 
1384 	if (ops->get_pfn(se) ==
1385 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1386 		return 0;
1387 
1388 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1389 		struct intel_vgpu_ppgtt_spt *s =
1390 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1391 		if (!s) {
1392 			gvt_vgpu_err("fail to find guest page\n");
1393 			ret = -ENXIO;
1394 			goto fail;
1395 		}
1396 		ret = ppgtt_invalidate_spt(s);
1397 		if (ret)
1398 			goto fail;
1399 	} else {
1400 		/* We don't setup 64K shadow entry so far. */
1401 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1402 		     "suspicious 64K entry\n");
1403 		ppgtt_invalidate_pte(spt, se);
1404 	}
1405 
1406 	return 0;
1407 fail:
1408 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1409 			spt, se->val64, se->type);
1410 	return ret;
1411 }
1412 
1413 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1414 		struct intel_gvt_gtt_entry *we, unsigned long index)
1415 {
1416 	struct intel_vgpu *vgpu = spt->vgpu;
1417 	struct intel_gvt_gtt_entry m;
1418 	struct intel_vgpu_ppgtt_spt *s;
1419 	int ret;
1420 
1421 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1422 			       we->val64, index);
1423 
1424 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1425 		    we->type, index, we->val64);
1426 
1427 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1428 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1429 		if (IS_ERR(s)) {
1430 			ret = PTR_ERR(s);
1431 			goto fail;
1432 		}
1433 		ppgtt_get_shadow_entry(spt, &m, index);
1434 		ppgtt_generate_shadow_entry(&m, s, we);
1435 		ppgtt_set_shadow_entry(spt, &m, index);
1436 	} else {
1437 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1438 		if (ret)
1439 			goto fail;
1440 	}
1441 	return 0;
1442 fail:
1443 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1444 		spt, we->val64, we->type);
1445 	return ret;
1446 }
1447 
1448 static int sync_oos_page(struct intel_vgpu *vgpu,
1449 		struct intel_vgpu_oos_page *oos_page)
1450 {
1451 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1452 	struct intel_gvt *gvt = vgpu->gvt;
1453 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1454 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1455 	struct intel_gvt_gtt_entry old, new;
1456 	int index;
1457 	int ret;
1458 
1459 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1460 			 spt, spt->guest_page.type);
1461 
1462 	old.type = new.type = get_entry_type(spt->guest_page.type);
1463 	old.val64 = new.val64 = 0;
1464 
1465 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1466 				info->gtt_entry_size_shift); index++) {
1467 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1468 		ops->get_entry(NULL, &new, index, true,
1469 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1470 
1471 		if (old.val64 == new.val64
1472 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1473 			continue;
1474 
1475 		trace_oos_sync(vgpu->id, oos_page->id,
1476 				spt, spt->guest_page.type,
1477 				new.val64, index);
1478 
1479 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1480 		if (ret)
1481 			return ret;
1482 
1483 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1484 	}
1485 
1486 	spt->guest_page.write_cnt = 0;
1487 	list_del_init(&spt->post_shadow_list);
1488 	return 0;
1489 }
1490 
1491 static int detach_oos_page(struct intel_vgpu *vgpu,
1492 		struct intel_vgpu_oos_page *oos_page)
1493 {
1494 	struct intel_gvt *gvt = vgpu->gvt;
1495 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1496 
1497 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1498 			 spt, spt->guest_page.type);
1499 
1500 	spt->guest_page.write_cnt = 0;
1501 	spt->guest_page.oos_page = NULL;
1502 	oos_page->spt = NULL;
1503 
1504 	list_del_init(&oos_page->vm_list);
1505 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1506 
1507 	return 0;
1508 }
1509 
1510 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1511 		struct intel_vgpu_ppgtt_spt *spt)
1512 {
1513 	struct intel_gvt *gvt = spt->vgpu->gvt;
1514 	int ret;
1515 
1516 	ret = intel_gvt_read_gpa(spt->vgpu,
1517 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1518 			oos_page->mem, I915_GTT_PAGE_SIZE);
1519 	if (ret)
1520 		return ret;
1521 
1522 	oos_page->spt = spt;
1523 	spt->guest_page.oos_page = oos_page;
1524 
1525 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1526 
1527 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1528 			 spt, spt->guest_page.type);
1529 	return 0;
1530 }
1531 
1532 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1533 {
1534 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1535 	int ret;
1536 
1537 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1538 	if (ret)
1539 		return ret;
1540 
1541 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1542 			 spt, spt->guest_page.type);
1543 
1544 	list_del_init(&oos_page->vm_list);
1545 	return sync_oos_page(spt->vgpu, oos_page);
1546 }
1547 
1548 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1549 {
1550 	struct intel_gvt *gvt = spt->vgpu->gvt;
1551 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1552 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1553 	int ret;
1554 
1555 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1556 
1557 	if (list_empty(&gtt->oos_page_free_list_head)) {
1558 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1559 			struct intel_vgpu_oos_page, list);
1560 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1561 		if (ret)
1562 			return ret;
1563 		ret = detach_oos_page(spt->vgpu, oos_page);
1564 		if (ret)
1565 			return ret;
1566 	} else
1567 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1568 			struct intel_vgpu_oos_page, list);
1569 	return attach_oos_page(oos_page, spt);
1570 }
1571 
1572 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1573 {
1574 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1575 
1576 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1577 		return -EINVAL;
1578 
1579 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1580 			 spt, spt->guest_page.type);
1581 
1582 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1583 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1584 }
1585 
1586 /**
1587  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1588  * @vgpu: a vGPU
1589  *
1590  * This function is called before submitting a guest workload to host,
1591  * to sync all the out-of-synced shadow for vGPU
1592  *
1593  * Returns:
1594  * Zero on success, negative error code if failed.
1595  */
1596 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1597 {
1598 	struct list_head *pos, *n;
1599 	struct intel_vgpu_oos_page *oos_page;
1600 	int ret;
1601 
1602 	if (!enable_out_of_sync)
1603 		return 0;
1604 
1605 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1606 		oos_page = container_of(pos,
1607 				struct intel_vgpu_oos_page, vm_list);
1608 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1609 		if (ret)
1610 			return ret;
1611 	}
1612 	return 0;
1613 }
1614 
1615 /*
1616  * The heart of PPGTT shadow page table.
1617  */
1618 static int ppgtt_handle_guest_write_page_table(
1619 		struct intel_vgpu_ppgtt_spt *spt,
1620 		struct intel_gvt_gtt_entry *we, unsigned long index)
1621 {
1622 	struct intel_vgpu *vgpu = spt->vgpu;
1623 	int type = spt->shadow_page.type;
1624 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1625 	struct intel_gvt_gtt_entry old_se;
1626 	int new_present;
1627 	int i, ret;
1628 
1629 	new_present = ops->test_present(we);
1630 
1631 	/*
1632 	 * Adding the new entry first and then removing the old one, that can
1633 	 * guarantee the ppgtt table is validated during the window between
1634 	 * adding and removal.
1635 	 */
1636 	ppgtt_get_shadow_entry(spt, &old_se, index);
1637 
1638 	if (new_present) {
1639 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1640 		if (ret)
1641 			goto fail;
1642 	}
1643 
1644 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1645 	if (ret)
1646 		goto fail;
1647 
1648 	if (!new_present) {
1649 		/* For 64KB splited entries, we need clear them all. */
1650 		if (ops->test_64k_splited(&old_se) &&
1651 		    !(index % GTT_64K_PTE_STRIDE)) {
1652 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1653 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1654 				ops->clear_64k_splited(&old_se);
1655 				ops->set_pfn(&old_se,
1656 					vgpu->gtt.scratch_pt[type].page_mfn);
1657 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1658 			}
1659 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1660 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1661 			ops->clear_pse(&old_se);
1662 			ops->set_pfn(&old_se,
1663 				     vgpu->gtt.scratch_pt[type].page_mfn);
1664 			ppgtt_set_shadow_entry(spt, &old_se, index);
1665 		} else {
1666 			ops->set_pfn(&old_se,
1667 				     vgpu->gtt.scratch_pt[type].page_mfn);
1668 			ppgtt_set_shadow_entry(spt, &old_se, index);
1669 		}
1670 	}
1671 
1672 	return 0;
1673 fail:
1674 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1675 			spt, we->val64, we->type);
1676 	return ret;
1677 }
1678 
1679 
1680 
1681 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1682 {
1683 	return enable_out_of_sync
1684 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1685 		&& spt->guest_page.write_cnt >= 2;
1686 }
1687 
1688 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1689 		unsigned long index)
1690 {
1691 	set_bit(index, spt->post_shadow_bitmap);
1692 	if (!list_empty(&spt->post_shadow_list))
1693 		return;
1694 
1695 	list_add_tail(&spt->post_shadow_list,
1696 			&spt->vgpu->gtt.post_shadow_list_head);
1697 }
1698 
1699 /**
1700  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1701  * @vgpu: a vGPU
1702  *
1703  * This function is called before submitting a guest workload to host,
1704  * to flush all the post shadows for a vGPU.
1705  *
1706  * Returns:
1707  * Zero on success, negative error code if failed.
1708  */
1709 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1710 {
1711 	struct list_head *pos, *n;
1712 	struct intel_vgpu_ppgtt_spt *spt;
1713 	struct intel_gvt_gtt_entry ge;
1714 	unsigned long index;
1715 	int ret;
1716 
1717 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1718 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1719 				post_shadow_list);
1720 
1721 		for_each_set_bit(index, spt->post_shadow_bitmap,
1722 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1723 			ppgtt_get_guest_entry(spt, &ge, index);
1724 
1725 			ret = ppgtt_handle_guest_write_page_table(spt,
1726 							&ge, index);
1727 			if (ret)
1728 				return ret;
1729 			clear_bit(index, spt->post_shadow_bitmap);
1730 		}
1731 		list_del_init(&spt->post_shadow_list);
1732 	}
1733 	return 0;
1734 }
1735 
1736 static int ppgtt_handle_guest_write_page_table_bytes(
1737 		struct intel_vgpu_ppgtt_spt *spt,
1738 		u64 pa, void *p_data, int bytes)
1739 {
1740 	struct intel_vgpu *vgpu = spt->vgpu;
1741 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1742 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1743 	struct intel_gvt_gtt_entry we, se;
1744 	unsigned long index;
1745 	int ret;
1746 
1747 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1748 
1749 	ppgtt_get_guest_entry(spt, &we, index);
1750 
1751 	/*
1752 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1753 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1754 	 * ignored.
1755 	 */
1756 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1757 	    (index % GTT_64K_PTE_STRIDE)) {
1758 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1759 			    index);
1760 		return 0;
1761 	}
1762 
1763 	if (bytes == info->gtt_entry_size) {
1764 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1765 		if (ret)
1766 			return ret;
1767 	} else {
1768 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1769 			int type = spt->shadow_page.type;
1770 
1771 			ppgtt_get_shadow_entry(spt, &se, index);
1772 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1773 			if (ret)
1774 				return ret;
1775 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1776 			ppgtt_set_shadow_entry(spt, &se, index);
1777 		}
1778 		ppgtt_set_post_shadow(spt, index);
1779 	}
1780 
1781 	if (!enable_out_of_sync)
1782 		return 0;
1783 
1784 	spt->guest_page.write_cnt++;
1785 
1786 	if (spt->guest_page.oos_page)
1787 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1788 				false, 0, vgpu);
1789 
1790 	if (can_do_out_of_sync(spt)) {
1791 		if (!spt->guest_page.oos_page)
1792 			ppgtt_allocate_oos_page(spt);
1793 
1794 		ret = ppgtt_set_guest_page_oos(spt);
1795 		if (ret < 0)
1796 			return ret;
1797 	}
1798 	return 0;
1799 }
1800 
1801 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1802 {
1803 	struct intel_vgpu *vgpu = mm->vgpu;
1804 	struct intel_gvt *gvt = vgpu->gvt;
1805 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1806 	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1807 	struct intel_gvt_gtt_entry se;
1808 	int index;
1809 
1810 	if (!mm->ppgtt_mm.shadowed)
1811 		return;
1812 
1813 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1814 		ppgtt_get_shadow_root_entry(mm, &se, index);
1815 
1816 		if (!ops->test_present(&se))
1817 			continue;
1818 
1819 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1820 		se.val64 = 0;
1821 		ppgtt_set_shadow_root_entry(mm, &se, index);
1822 
1823 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1824 				       NULL, se.type, se.val64, index);
1825 	}
1826 
1827 	mm->ppgtt_mm.shadowed = false;
1828 }
1829 
1830 
1831 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1832 {
1833 	struct intel_vgpu *vgpu = mm->vgpu;
1834 	struct intel_gvt *gvt = vgpu->gvt;
1835 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1836 	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1837 	struct intel_vgpu_ppgtt_spt *spt;
1838 	struct intel_gvt_gtt_entry ge, se;
1839 	int index, ret;
1840 
1841 	if (mm->ppgtt_mm.shadowed)
1842 		return 0;
1843 
1844 	mm->ppgtt_mm.shadowed = true;
1845 
1846 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1847 		ppgtt_get_guest_root_entry(mm, &ge, index);
1848 
1849 		if (!ops->test_present(&ge))
1850 			continue;
1851 
1852 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1853 				       ge.type, ge.val64, index);
1854 
1855 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1856 		if (IS_ERR(spt)) {
1857 			gvt_vgpu_err("fail to populate guest root pointer\n");
1858 			ret = PTR_ERR(spt);
1859 			goto fail;
1860 		}
1861 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1862 		ppgtt_set_shadow_root_entry(mm, &se, index);
1863 
1864 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1865 				       NULL, se.type, se.val64, index);
1866 	}
1867 
1868 	return 0;
1869 fail:
1870 	invalidate_ppgtt_mm(mm);
1871 	return ret;
1872 }
1873 
1874 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1875 {
1876 	struct intel_vgpu_mm *mm;
1877 
1878 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1879 	if (!mm)
1880 		return NULL;
1881 
1882 	mm->vgpu = vgpu;
1883 	kref_init(&mm->ref);
1884 	atomic_set(&mm->pincount, 0);
1885 
1886 	return mm;
1887 }
1888 
1889 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1890 {
1891 	kfree(mm);
1892 }
1893 
1894 /**
1895  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1896  * @vgpu: a vGPU
1897  * @root_entry_type: ppgtt root entry type
1898  * @pdps: guest pdps.
1899  *
1900  * This function is used to create a ppgtt mm object for a vGPU.
1901  *
1902  * Returns:
1903  * Zero on success, negative error code in pointer if failed.
1904  */
1905 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1906 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1907 {
1908 	struct intel_gvt *gvt = vgpu->gvt;
1909 	struct intel_vgpu_mm *mm;
1910 	int ret;
1911 
1912 	mm = vgpu_alloc_mm(vgpu);
1913 	if (!mm)
1914 		return ERR_PTR(-ENOMEM);
1915 
1916 	mm->type = INTEL_GVT_MM_PPGTT;
1917 
1918 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1919 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1920 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1921 
1922 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1923 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1924 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1925 
1926 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1927 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1928 	else
1929 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1930 		       sizeof(mm->ppgtt_mm.guest_pdps));
1931 
1932 	ret = shadow_ppgtt_mm(mm);
1933 	if (ret) {
1934 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1935 		vgpu_free_mm(mm);
1936 		return ERR_PTR(ret);
1937 	}
1938 
1939 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1940 
1941 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1942 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1943 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1944 
1945 	return mm;
1946 }
1947 
1948 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1949 {
1950 	struct intel_vgpu_mm *mm;
1951 	unsigned long nr_entries;
1952 
1953 	mm = vgpu_alloc_mm(vgpu);
1954 	if (!mm)
1955 		return ERR_PTR(-ENOMEM);
1956 
1957 	mm->type = INTEL_GVT_MM_GGTT;
1958 
1959 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1960 	mm->ggtt_mm.virtual_ggtt =
1961 		vzalloc(array_size(nr_entries,
1962 				   vgpu->gvt->device_info.gtt_entry_size));
1963 	if (!mm->ggtt_mm.virtual_ggtt) {
1964 		vgpu_free_mm(mm);
1965 		return ERR_PTR(-ENOMEM);
1966 	}
1967 
1968 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1969 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1970 		vfree(mm->ggtt_mm.virtual_ggtt);
1971 		vgpu_free_mm(mm);
1972 		return ERR_PTR(-ENOMEM);
1973 	}
1974 
1975 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1976 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1977 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1978 		vfree(mm->ggtt_mm.virtual_ggtt);
1979 		vgpu_free_mm(mm);
1980 		return ERR_PTR(-ENOMEM);
1981 	}
1982 
1983 	return mm;
1984 }
1985 
1986 /**
1987  * _intel_vgpu_mm_release - destroy a mm object
1988  * @mm_ref: a kref object
1989  *
1990  * This function is used to destroy a mm object for vGPU
1991  *
1992  */
1993 void _intel_vgpu_mm_release(struct kref *mm_ref)
1994 {
1995 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1996 
1997 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1998 		gvt_err("vgpu mm pin count bug detected\n");
1999 
2000 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2001 		list_del(&mm->ppgtt_mm.list);
2002 
2003 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2004 		list_del(&mm->ppgtt_mm.lru_list);
2005 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2006 
2007 		invalidate_ppgtt_mm(mm);
2008 	} else {
2009 		vfree(mm->ggtt_mm.virtual_ggtt);
2010 		vfree(mm->ggtt_mm.host_ggtt_aperture);
2011 		vfree(mm->ggtt_mm.host_ggtt_hidden);
2012 	}
2013 
2014 	vgpu_free_mm(mm);
2015 }
2016 
2017 /**
2018  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2019  * @mm: a vGPU mm object
2020  *
2021  * This function is called when user doesn't want to use a vGPU mm object
2022  */
2023 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2024 {
2025 	atomic_dec_if_positive(&mm->pincount);
2026 }
2027 
2028 /**
2029  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2030  * @mm: target vgpu mm
2031  *
2032  * This function is called when user wants to use a vGPU mm object. If this
2033  * mm object hasn't been shadowed yet, the shadow will be populated at this
2034  * time.
2035  *
2036  * Returns:
2037  * Zero on success, negative error code if failed.
2038  */
2039 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2040 {
2041 	int ret;
2042 
2043 	atomic_inc(&mm->pincount);
2044 
2045 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2046 		ret = shadow_ppgtt_mm(mm);
2047 		if (ret)
2048 			return ret;
2049 
2050 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2051 		list_move_tail(&mm->ppgtt_mm.lru_list,
2052 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2053 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2060 {
2061 	struct intel_vgpu_mm *mm;
2062 	struct list_head *pos, *n;
2063 
2064 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2065 
2066 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2067 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2068 
2069 		if (atomic_read(&mm->pincount))
2070 			continue;
2071 
2072 		list_del_init(&mm->ppgtt_mm.lru_list);
2073 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2074 		invalidate_ppgtt_mm(mm);
2075 		return 1;
2076 	}
2077 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2078 	return 0;
2079 }
2080 
2081 /*
2082  * GMA translation APIs.
2083  */
2084 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2085 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2086 {
2087 	struct intel_vgpu *vgpu = mm->vgpu;
2088 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2089 	struct intel_vgpu_ppgtt_spt *s;
2090 
2091 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2092 	if (!s)
2093 		return -ENXIO;
2094 
2095 	if (!guest)
2096 		ppgtt_get_shadow_entry(s, e, index);
2097 	else
2098 		ppgtt_get_guest_entry(s, e, index);
2099 	return 0;
2100 }
2101 
2102 /**
2103  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2104  * @mm: mm object. could be a PPGTT or GGTT mm object
2105  * @gma: graphics memory address in this mm object
2106  *
2107  * This function is used to translate a graphics memory address in specific
2108  * graphics memory space to guest physical address.
2109  *
2110  * Returns:
2111  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2112  */
2113 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2114 {
2115 	struct intel_vgpu *vgpu = mm->vgpu;
2116 	struct intel_gvt *gvt = vgpu->gvt;
2117 	const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2118 	const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2119 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2120 	unsigned long gma_index[4];
2121 	struct intel_gvt_gtt_entry e;
2122 	int i, levels = 0;
2123 	int ret;
2124 
2125 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2126 		   mm->type != INTEL_GVT_MM_PPGTT);
2127 
2128 	if (mm->type == INTEL_GVT_MM_GGTT) {
2129 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2130 			goto err;
2131 
2132 		ggtt_get_guest_entry(mm, &e,
2133 			gma_ops->gma_to_ggtt_pte_index(gma));
2134 
2135 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2136 			+ (gma & ~I915_GTT_PAGE_MASK);
2137 
2138 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2139 	} else {
2140 		switch (mm->ppgtt_mm.root_entry_type) {
2141 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2142 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2143 
2144 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2145 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2146 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2147 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2148 			levels = 4;
2149 			break;
2150 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2151 			ppgtt_get_shadow_root_entry(mm, &e,
2152 					gma_ops->gma_to_l3_pdp_index(gma));
2153 
2154 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2155 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2156 			levels = 2;
2157 			break;
2158 		default:
2159 			GEM_BUG_ON(1);
2160 		}
2161 
2162 		/* walk the shadow page table and get gpa from guest entry */
2163 		for (i = 0; i < levels; i++) {
2164 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2165 				(i == levels - 1));
2166 			if (ret)
2167 				goto err;
2168 
2169 			if (!pte_ops->test_present(&e)) {
2170 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2171 				goto err;
2172 			}
2173 		}
2174 
2175 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2176 					(gma & ~I915_GTT_PAGE_MASK);
2177 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2178 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2179 	}
2180 
2181 	return gpa;
2182 err:
2183 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2184 	return INTEL_GVT_INVALID_ADDR;
2185 }
2186 
2187 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2188 	unsigned int off, void *p_data, unsigned int bytes)
2189 {
2190 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2191 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2192 	unsigned long index = off >> info->gtt_entry_size_shift;
2193 	unsigned long gma;
2194 	struct intel_gvt_gtt_entry e;
2195 
2196 	if (bytes != 4 && bytes != 8)
2197 		return -EINVAL;
2198 
2199 	gma = index << I915_GTT_PAGE_SHIFT;
2200 	if (!intel_gvt_ggtt_validate_range(vgpu,
2201 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2202 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2203 		memset(p_data, 0, bytes);
2204 		return 0;
2205 	}
2206 
2207 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2208 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2209 			bytes);
2210 	return 0;
2211 }
2212 
2213 /**
2214  * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2215  * @vgpu: a vGPU
2216  * @off: register offset
2217  * @p_data: data will be returned to guest
2218  * @bytes: data length
2219  *
2220  * This function is used to emulate the GTT MMIO register read
2221  *
2222  * Returns:
2223  * Zero on success, error code if failed.
2224  */
2225 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2226 	void *p_data, unsigned int bytes)
2227 {
2228 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2229 	int ret;
2230 
2231 	if (bytes != 4 && bytes != 8)
2232 		return -EINVAL;
2233 
2234 	off -= info->gtt_start_offset;
2235 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2236 	return ret;
2237 }
2238 
2239 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2240 		struct intel_gvt_gtt_entry *entry)
2241 {
2242 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2243 	unsigned long pfn;
2244 
2245 	pfn = pte_ops->get_pfn(entry);
2246 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2247 		intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2248 }
2249 
2250 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2251 	void *p_data, unsigned int bytes)
2252 {
2253 	struct intel_gvt *gvt = vgpu->gvt;
2254 	const struct intel_gvt_device_info *info = &gvt->device_info;
2255 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2256 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2257 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2258 	unsigned long gma, gfn;
2259 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2260 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2261 	dma_addr_t dma_addr;
2262 	int ret;
2263 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2264 	bool partial_update = false;
2265 
2266 	if (bytes != 4 && bytes != 8)
2267 		return -EINVAL;
2268 
2269 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2270 
2271 	/* the VM may configure the whole GM space when ballooning is used */
2272 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2273 		return 0;
2274 
2275 	e.type = GTT_TYPE_GGTT_PTE;
2276 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2277 			bytes);
2278 
2279 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2280 	 * write, save the first 4 bytes in a list and update virtual
2281 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2282 	 */
2283 	if (bytes < info->gtt_entry_size) {
2284 		bool found = false;
2285 
2286 		list_for_each_entry_safe(pos, n,
2287 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2288 			if (g_gtt_index == pos->offset >>
2289 					info->gtt_entry_size_shift) {
2290 				if (off != pos->offset) {
2291 					/* the second partial part*/
2292 					int last_off = pos->offset &
2293 						(info->gtt_entry_size - 1);
2294 
2295 					memcpy((void *)&e.val64 + last_off,
2296 						(void *)&pos->data + last_off,
2297 						bytes);
2298 
2299 					list_del(&pos->list);
2300 					kfree(pos);
2301 					found = true;
2302 					break;
2303 				}
2304 
2305 				/* update of the first partial part */
2306 				pos->data = e.val64;
2307 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2308 				return 0;
2309 			}
2310 		}
2311 
2312 		if (!found) {
2313 			/* the first partial part */
2314 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2315 			if (!partial_pte)
2316 				return -ENOMEM;
2317 			partial_pte->offset = off;
2318 			partial_pte->data = e.val64;
2319 			list_add_tail(&partial_pte->list,
2320 				&ggtt_mm->ggtt_mm.partial_pte_list);
2321 			partial_update = true;
2322 		}
2323 	}
2324 
2325 	if (!partial_update && (ops->test_present(&e))) {
2326 		gfn = ops->get_pfn(&e);
2327 		m.val64 = e.val64;
2328 		m.type = e.type;
2329 
2330 		/* one PTE update may be issued in multiple writes and the
2331 		 * first write may not construct a valid gfn
2332 		 */
2333 		if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
2334 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2335 			goto out;
2336 		}
2337 
2338 		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2339 						   &dma_addr);
2340 		if (ret) {
2341 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2342 			/* guest driver may read/write the entry when partial
2343 			 * update the entry in this situation p2m will fail
2344 			 * setting the shadow entry to point to a scratch page
2345 			 */
2346 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2347 		} else
2348 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2349 	} else {
2350 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2351 		ops->clear_present(&m);
2352 	}
2353 
2354 out:
2355 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2356 
2357 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2358 	ggtt_invalidate_pte(vgpu, &e);
2359 
2360 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2361 	ggtt_invalidate(gvt->gt);
2362 	return 0;
2363 }
2364 
2365 /*
2366  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2367  * @vgpu: a vGPU
2368  * @off: register offset
2369  * @p_data: data from guest write
2370  * @bytes: data length
2371  *
2372  * This function is used to emulate the GTT MMIO register write
2373  *
2374  * Returns:
2375  * Zero on success, error code if failed.
2376  */
2377 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2378 		unsigned int off, void *p_data, unsigned int bytes)
2379 {
2380 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2381 	int ret;
2382 	struct intel_vgpu_submission *s = &vgpu->submission;
2383 	struct intel_engine_cs *engine;
2384 	int i;
2385 
2386 	if (bytes != 4 && bytes != 8)
2387 		return -EINVAL;
2388 
2389 	off -= info->gtt_start_offset;
2390 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2391 
2392 	/* if ggtt of last submitted context is written,
2393 	 * that context is probably got unpinned.
2394 	 * Set last shadowed ctx to invalid.
2395 	 */
2396 	for_each_engine(engine, vgpu->gvt->gt, i) {
2397 		if (!s->last_ctx[i].valid)
2398 			continue;
2399 
2400 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2401 			s->last_ctx[i].valid = false;
2402 	}
2403 	return ret;
2404 }
2405 
2406 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2407 		enum intel_gvt_gtt_type type)
2408 {
2409 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2410 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2411 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2412 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2413 				vgpu->gvt->device_info.gtt_entry_size_shift;
2414 	void *scratch_pt;
2415 	int i;
2416 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2417 	dma_addr_t daddr;
2418 
2419 	if (drm_WARN_ON(&i915->drm,
2420 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2421 		return -EINVAL;
2422 
2423 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2424 	if (!scratch_pt) {
2425 		gvt_vgpu_err("fail to allocate scratch page\n");
2426 		return -ENOMEM;
2427 	}
2428 
2429 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2430 	if (dma_mapping_error(dev, daddr)) {
2431 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2432 		__free_page(virt_to_page(scratch_pt));
2433 		return -ENOMEM;
2434 	}
2435 	gtt->scratch_pt[type].page_mfn =
2436 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2437 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2438 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2439 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2440 
2441 	/* Build the tree by full filled the scratch pt with the entries which
2442 	 * point to the next level scratch pt or scratch page. The
2443 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2444 	 * 'type' pt.
2445 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2446 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2447 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2448 	 */
2449 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2450 		struct intel_gvt_gtt_entry se;
2451 
2452 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2453 		se.type = get_entry_type(type - 1);
2454 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2455 
2456 		/* The entry parameters like present/writeable/cache type
2457 		 * set to the same as i915's scratch page tree.
2458 		 */
2459 		se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2460 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2461 			se.val64 |= PPAT_CACHED;
2462 
2463 		for (i = 0; i < page_entry_num; i++)
2464 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2465 	}
2466 
2467 	return 0;
2468 }
2469 
2470 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2471 {
2472 	int i;
2473 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2474 	dma_addr_t daddr;
2475 
2476 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2477 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2478 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2479 					I915_GTT_PAGE_SHIFT);
2480 			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2481 			__free_page(vgpu->gtt.scratch_pt[i].page);
2482 			vgpu->gtt.scratch_pt[i].page = NULL;
2483 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2484 		}
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2491 {
2492 	int i, ret;
2493 
2494 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2495 		ret = alloc_scratch_pages(vgpu, i);
2496 		if (ret)
2497 			goto err;
2498 	}
2499 
2500 	return 0;
2501 
2502 err:
2503 	release_scratch_page_tree(vgpu);
2504 	return ret;
2505 }
2506 
2507 /**
2508  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2509  * @vgpu: a vGPU
2510  *
2511  * This function is used to initialize per-vGPU graphics memory virtualization
2512  * components.
2513  *
2514  * Returns:
2515  * Zero on success, error code if failed.
2516  */
2517 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2518 {
2519 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2520 
2521 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2522 
2523 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2524 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2525 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2526 
2527 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2528 	if (IS_ERR(gtt->ggtt_mm)) {
2529 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2530 		return PTR_ERR(gtt->ggtt_mm);
2531 	}
2532 
2533 	intel_vgpu_reset_ggtt(vgpu, false);
2534 
2535 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2536 
2537 	return create_scratch_page_tree(vgpu);
2538 }
2539 
2540 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2541 {
2542 	struct list_head *pos, *n;
2543 	struct intel_vgpu_mm *mm;
2544 
2545 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2546 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2547 		intel_vgpu_destroy_mm(mm);
2548 	}
2549 
2550 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2551 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2552 
2553 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2554 		gvt_err("Why we still has spt not freed?\n");
2555 		ppgtt_free_all_spt(vgpu);
2556 	}
2557 }
2558 
2559 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2560 {
2561 	struct intel_gvt_partial_pte *pos, *next;
2562 
2563 	list_for_each_entry_safe(pos, next,
2564 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2565 				 list) {
2566 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2567 			pos->offset, pos->data);
2568 		kfree(pos);
2569 	}
2570 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2571 	vgpu->gtt.ggtt_mm = NULL;
2572 }
2573 
2574 /**
2575  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2576  * @vgpu: a vGPU
2577  *
2578  * This function is used to clean up per-vGPU graphics memory virtualization
2579  * components.
2580  *
2581  * Returns:
2582  * Zero on success, error code if failed.
2583  */
2584 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2585 {
2586 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2587 	intel_vgpu_destroy_ggtt_mm(vgpu);
2588 	release_scratch_page_tree(vgpu);
2589 }
2590 
2591 static void clean_spt_oos(struct intel_gvt *gvt)
2592 {
2593 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2594 	struct list_head *pos, *n;
2595 	struct intel_vgpu_oos_page *oos_page;
2596 
2597 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2598 		"someone is still using oos page\n");
2599 
2600 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2601 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2602 		list_del(&oos_page->list);
2603 		free_page((unsigned long)oos_page->mem);
2604 		kfree(oos_page);
2605 	}
2606 }
2607 
2608 static int setup_spt_oos(struct intel_gvt *gvt)
2609 {
2610 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2611 	struct intel_vgpu_oos_page *oos_page;
2612 	int i;
2613 	int ret;
2614 
2615 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2616 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2617 
2618 	for (i = 0; i < preallocated_oos_pages; i++) {
2619 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2620 		if (!oos_page) {
2621 			ret = -ENOMEM;
2622 			goto fail;
2623 		}
2624 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2625 		if (!oos_page->mem) {
2626 			ret = -ENOMEM;
2627 			kfree(oos_page);
2628 			goto fail;
2629 		}
2630 
2631 		INIT_LIST_HEAD(&oos_page->list);
2632 		INIT_LIST_HEAD(&oos_page->vm_list);
2633 		oos_page->id = i;
2634 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2635 	}
2636 
2637 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2638 
2639 	return 0;
2640 fail:
2641 	clean_spt_oos(gvt);
2642 	return ret;
2643 }
2644 
2645 /**
2646  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2647  * @vgpu: a vGPU
2648  * @pdps: pdp root array
2649  *
2650  * This function is used to find a PPGTT mm object from mm object pool
2651  *
2652  * Returns:
2653  * pointer to mm object on success, NULL if failed.
2654  */
2655 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2656 		u64 pdps[])
2657 {
2658 	struct intel_vgpu_mm *mm;
2659 	struct list_head *pos;
2660 
2661 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2662 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2663 
2664 		switch (mm->ppgtt_mm.root_entry_type) {
2665 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2666 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2667 				return mm;
2668 			break;
2669 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2670 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2671 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2672 				return mm;
2673 			break;
2674 		default:
2675 			GEM_BUG_ON(1);
2676 		}
2677 	}
2678 	return NULL;
2679 }
2680 
2681 /**
2682  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2683  * @vgpu: a vGPU
2684  * @root_entry_type: ppgtt root entry type
2685  * @pdps: guest pdps
2686  *
2687  * This function is used to find or create a PPGTT mm object from a guest.
2688  *
2689  * Returns:
2690  * Zero on success, negative error code if failed.
2691  */
2692 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2693 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2694 {
2695 	struct intel_vgpu_mm *mm;
2696 
2697 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2698 	if (mm) {
2699 		intel_vgpu_mm_get(mm);
2700 	} else {
2701 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2702 		if (IS_ERR(mm))
2703 			gvt_vgpu_err("fail to create mm\n");
2704 	}
2705 	return mm;
2706 }
2707 
2708 /**
2709  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2710  * @vgpu: a vGPU
2711  * @pdps: guest pdps
2712  *
2713  * This function is used to find a PPGTT mm object from a guest and destroy it.
2714  *
2715  * Returns:
2716  * Zero on success, negative error code if failed.
2717  */
2718 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2719 {
2720 	struct intel_vgpu_mm *mm;
2721 
2722 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2723 	if (!mm) {
2724 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2725 		return -EINVAL;
2726 	}
2727 	intel_vgpu_mm_put(mm);
2728 	return 0;
2729 }
2730 
2731 /**
2732  * intel_gvt_init_gtt - initialize mm components of a GVT device
2733  * @gvt: GVT device
2734  *
2735  * This function is called at the initialization stage, to initialize
2736  * the mm components of a GVT device.
2737  *
2738  * Returns:
2739  * zero on success, negative error code if failed.
2740  */
2741 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2742 {
2743 	int ret;
2744 	void *page;
2745 	struct device *dev = gvt->gt->i915->drm.dev;
2746 	dma_addr_t daddr;
2747 
2748 	gvt_dbg_core("init gtt\n");
2749 
2750 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2751 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2752 
2753 	page = (void *)get_zeroed_page(GFP_KERNEL);
2754 	if (!page) {
2755 		gvt_err("fail to allocate scratch ggtt page\n");
2756 		return -ENOMEM;
2757 	}
2758 
2759 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2760 			4096, DMA_BIDIRECTIONAL);
2761 	if (dma_mapping_error(dev, daddr)) {
2762 		gvt_err("fail to dmamap scratch ggtt page\n");
2763 		__free_page(virt_to_page(page));
2764 		return -ENOMEM;
2765 	}
2766 
2767 	gvt->gtt.scratch_page = virt_to_page(page);
2768 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2769 
2770 	if (enable_out_of_sync) {
2771 		ret = setup_spt_oos(gvt);
2772 		if (ret) {
2773 			gvt_err("fail to initialize SPT oos\n");
2774 			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2775 			__free_page(gvt->gtt.scratch_page);
2776 			return ret;
2777 		}
2778 	}
2779 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2780 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2781 	return 0;
2782 }
2783 
2784 /**
2785  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2786  * @gvt: GVT device
2787  *
2788  * This function is called at the driver unloading stage, to clean up the
2789  * the mm components of a GVT device.
2790  *
2791  */
2792 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2793 {
2794 	struct device *dev = gvt->gt->i915->drm.dev;
2795 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2796 					I915_GTT_PAGE_SHIFT);
2797 
2798 	dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2799 
2800 	__free_page(gvt->gtt.scratch_page);
2801 
2802 	if (enable_out_of_sync)
2803 		clean_spt_oos(gvt);
2804 }
2805 
2806 /**
2807  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2808  * @vgpu: a vGPU
2809  *
2810  * This function is called when invalidate all PPGTT instances of a vGPU.
2811  *
2812  */
2813 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2814 {
2815 	struct list_head *pos, *n;
2816 	struct intel_vgpu_mm *mm;
2817 
2818 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2819 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2820 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2821 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2822 			list_del_init(&mm->ppgtt_mm.lru_list);
2823 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2824 			if (mm->ppgtt_mm.shadowed)
2825 				invalidate_ppgtt_mm(mm);
2826 		}
2827 	}
2828 }
2829 
2830 /**
2831  * intel_vgpu_reset_ggtt - reset the GGTT entry
2832  * @vgpu: a vGPU
2833  * @invalidate_old: invalidate old entries
2834  *
2835  * This function is called at the vGPU create stage
2836  * to reset all the GGTT entries.
2837  *
2838  */
2839 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2840 {
2841 	struct intel_gvt *gvt = vgpu->gvt;
2842 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2843 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2844 	struct intel_gvt_gtt_entry old_entry;
2845 	u32 index;
2846 	u32 num_entries;
2847 
2848 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2849 	pte_ops->set_present(&entry);
2850 
2851 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2852 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2853 	while (num_entries--) {
2854 		if (invalidate_old) {
2855 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2856 			ggtt_invalidate_pte(vgpu, &old_entry);
2857 		}
2858 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2859 	}
2860 
2861 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2862 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2863 	while (num_entries--) {
2864 		if (invalidate_old) {
2865 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2866 			ggtt_invalidate_pte(vgpu, &old_entry);
2867 		}
2868 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2869 	}
2870 
2871 	ggtt_invalidate(gvt->gt);
2872 }
2873 
2874 /**
2875  * intel_vgpu_reset_gtt - reset the all GTT related status
2876  * @vgpu: a vGPU
2877  *
2878  * This function is called from vfio core to reset reset all
2879  * GTT related status, including GGTT, PPGTT, scratch page.
2880  *
2881  */
2882 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2883 {
2884 	/* Shadow pages are only created when there is no page
2885 	 * table tracking data, so remove page tracking data after
2886 	 * removing the shadow pages.
2887 	 */
2888 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2889 	intel_vgpu_reset_ggtt(vgpu, true);
2890 }
2891 
2892 /**
2893  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2894  * @gvt: intel gvt device
2895  *
2896  * This function is called at driver resume stage to restore
2897  * GGTT entries of every vGPU.
2898  *
2899  */
2900 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2901 {
2902 	struct intel_vgpu *vgpu;
2903 	struct intel_vgpu_mm *mm;
2904 	int id;
2905 	gen8_pte_t pte;
2906 	u32 idx, num_low, num_hi, offset;
2907 
2908 	/* Restore dirty host ggtt for all vGPUs */
2909 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2910 		mm = vgpu->gtt.ggtt_mm;
2911 
2912 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2913 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2914 		for (idx = 0; idx < num_low; idx++) {
2915 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2916 			if (pte & GEN8_PAGE_PRESENT)
2917 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2918 		}
2919 
2920 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2921 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2922 		for (idx = 0; idx < num_hi; idx++) {
2923 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2924 			if (pte & GEN8_PAGE_PRESENT)
2925 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2926 		}
2927 	}
2928 }
2929