1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #include "gt/intel_gt_regs.h" 42 43 #if defined(VERBOSE_DEBUG) 44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 45 #else 46 #define gvt_vdbg_mm(fmt, args...) 47 #endif 48 49 static bool enable_out_of_sync = false; 50 static int preallocated_oos_pages = 8192; 51 52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn) 53 { 54 struct kvm *kvm = vgpu->vfio_device.kvm; 55 int idx; 56 bool ret; 57 58 if (!vgpu->attached) 59 return false; 60 61 idx = srcu_read_lock(&kvm->srcu); 62 ret = kvm_is_visible_gfn(kvm, gfn); 63 srcu_read_unlock(&kvm->srcu, idx); 64 65 return ret; 66 } 67 68 /* 69 * validate a gm address and related range size, 70 * translate it to host gm address 71 */ 72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 73 { 74 if (size == 0) 75 return vgpu_gmadr_is_valid(vgpu, addr); 76 77 if (vgpu_gmadr_is_aperture(vgpu, addr) && 78 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 79 return true; 80 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 81 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 82 return true; 83 84 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 85 addr, size); 86 return false; 87 } 88 89 /* translate a guest gmadr to host gmadr */ 90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 95 "invalid guest gmadr %llx\n", g_addr)) 96 return -EACCES; 97 98 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 99 *h_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (g_addr - vgpu_aperture_offset(vgpu)); 101 else 102 *h_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (g_addr - vgpu_hidden_offset(vgpu)); 104 return 0; 105 } 106 107 /* translate a host gmadr to guest gmadr */ 108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 109 { 110 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 111 112 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 113 "invalid host gmadr %llx\n", h_addr)) 114 return -EACCES; 115 116 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 117 *g_addr = vgpu_aperture_gmadr_base(vgpu) 118 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 119 else 120 *g_addr = vgpu_hidden_gmadr_base(vgpu) 121 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 122 return 0; 123 } 124 125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 126 unsigned long *h_index) 127 { 128 u64 h_addr; 129 int ret; 130 131 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 132 &h_addr); 133 if (ret) 134 return ret; 135 136 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 137 return 0; 138 } 139 140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 141 unsigned long *g_index) 142 { 143 u64 g_addr; 144 int ret; 145 146 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 147 &g_addr); 148 if (ret) 149 return ret; 150 151 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 152 return 0; 153 } 154 155 #define gtt_type_is_entry(type) \ 156 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 157 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 158 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 159 160 #define gtt_type_is_pt(type) \ 161 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 162 163 #define gtt_type_is_pte_pt(type) \ 164 (type == GTT_TYPE_PPGTT_PTE_PT) 165 166 #define gtt_type_is_root_pointer(type) \ 167 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 168 169 #define gtt_init_entry(e, t, p, v) do { \ 170 (e)->type = t; \ 171 (e)->pdev = p; \ 172 memcpy(&(e)->val64, &v, sizeof(v)); \ 173 } while (0) 174 175 /* 176 * Mappings between GTT_TYPE* enumerations. 177 * Following information can be found according to the given type: 178 * - type of next level page table 179 * - type of entry inside this level page table 180 * - type of entry with PSE set 181 * 182 * If the given type doesn't have such a kind of information, 183 * e.g. give a l4 root entry type, then request to get its PSE type, 184 * give a PTE page table type, then request to get its next level page 185 * table type, as we know l4 root entry doesn't have a PSE bit, 186 * and a PTE page table doesn't have a next level page table type, 187 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 188 * page table. 189 */ 190 191 struct gtt_type_table_entry { 192 int entry_type; 193 int pt_type; 194 int next_pt_type; 195 int pse_entry_type; 196 }; 197 198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 199 [type] = { \ 200 .entry_type = e_type, \ 201 .pt_type = cpt_type, \ 202 .next_pt_type = npt_type, \ 203 .pse_entry_type = pse_type, \ 204 } 205 206 static const struct gtt_type_table_entry gtt_type_table[] = { 207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 208 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 209 GTT_TYPE_INVALID, 210 GTT_TYPE_PPGTT_PML4_PT, 211 GTT_TYPE_INVALID), 212 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 213 GTT_TYPE_PPGTT_PML4_ENTRY, 214 GTT_TYPE_PPGTT_PML4_PT, 215 GTT_TYPE_PPGTT_PDP_PT, 216 GTT_TYPE_INVALID), 217 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 218 GTT_TYPE_PPGTT_PML4_ENTRY, 219 GTT_TYPE_PPGTT_PML4_PT, 220 GTT_TYPE_PPGTT_PDP_PT, 221 GTT_TYPE_INVALID), 222 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 223 GTT_TYPE_PPGTT_PDP_ENTRY, 224 GTT_TYPE_PPGTT_PDP_PT, 225 GTT_TYPE_PPGTT_PDE_PT, 226 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 227 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 228 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 229 GTT_TYPE_INVALID, 230 GTT_TYPE_PPGTT_PDE_PT, 231 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 233 GTT_TYPE_PPGTT_PDP_ENTRY, 234 GTT_TYPE_PPGTT_PDP_PT, 235 GTT_TYPE_PPGTT_PDE_PT, 236 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 238 GTT_TYPE_PPGTT_PDE_ENTRY, 239 GTT_TYPE_PPGTT_PDE_PT, 240 GTT_TYPE_PPGTT_PTE_PT, 241 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 243 GTT_TYPE_PPGTT_PDE_ENTRY, 244 GTT_TYPE_PPGTT_PDE_PT, 245 GTT_TYPE_PPGTT_PTE_PT, 246 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 247 /* We take IPS bit as 'PSE' for PTE level. */ 248 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 249 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 250 GTT_TYPE_PPGTT_PTE_PT, 251 GTT_TYPE_INVALID, 252 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 253 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 254 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 255 GTT_TYPE_PPGTT_PTE_PT, 256 GTT_TYPE_INVALID, 257 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 258 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 259 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 260 GTT_TYPE_PPGTT_PTE_PT, 261 GTT_TYPE_INVALID, 262 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 263 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 264 GTT_TYPE_PPGTT_PDE_ENTRY, 265 GTT_TYPE_PPGTT_PDE_PT, 266 GTT_TYPE_INVALID, 267 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 268 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 269 GTT_TYPE_PPGTT_PDP_ENTRY, 270 GTT_TYPE_PPGTT_PDP_PT, 271 GTT_TYPE_INVALID, 272 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 273 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 274 GTT_TYPE_GGTT_PTE, 275 GTT_TYPE_INVALID, 276 GTT_TYPE_INVALID, 277 GTT_TYPE_INVALID), 278 }; 279 280 static inline int get_next_pt_type(int type) 281 { 282 return gtt_type_table[type].next_pt_type; 283 } 284 285 static inline int get_pt_type(int type) 286 { 287 return gtt_type_table[type].pt_type; 288 } 289 290 static inline int get_entry_type(int type) 291 { 292 return gtt_type_table[type].entry_type; 293 } 294 295 static inline int get_pse_type(int type) 296 { 297 return gtt_type_table[type].pse_entry_type; 298 } 299 300 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 301 { 302 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 303 304 return readq(addr); 305 } 306 307 static void ggtt_invalidate(struct intel_gt *gt) 308 { 309 mmio_hw_access_pre(gt); 310 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 311 mmio_hw_access_post(gt); 312 } 313 314 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 315 { 316 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 317 318 writeq(pte, addr); 319 } 320 321 static inline int gtt_get_entry64(void *pt, 322 struct intel_gvt_gtt_entry *e, 323 unsigned long index, bool hypervisor_access, unsigned long gpa, 324 struct intel_vgpu *vgpu) 325 { 326 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 327 int ret; 328 329 if (WARN_ON(info->gtt_entry_size != 8)) 330 return -EINVAL; 331 332 if (hypervisor_access) { 333 ret = intel_gvt_read_gpa(vgpu, gpa + 334 (index << info->gtt_entry_size_shift), 335 &e->val64, 8); 336 if (WARN_ON(ret)) 337 return ret; 338 } else if (!pt) { 339 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 340 } else { 341 e->val64 = *((u64 *)pt + index); 342 } 343 return 0; 344 } 345 346 static inline int gtt_set_entry64(void *pt, 347 struct intel_gvt_gtt_entry *e, 348 unsigned long index, bool hypervisor_access, unsigned long gpa, 349 struct intel_vgpu *vgpu) 350 { 351 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 352 int ret; 353 354 if (WARN_ON(info->gtt_entry_size != 8)) 355 return -EINVAL; 356 357 if (hypervisor_access) { 358 ret = intel_gvt_write_gpa(vgpu, gpa + 359 (index << info->gtt_entry_size_shift), 360 &e->val64, 8); 361 if (WARN_ON(ret)) 362 return ret; 363 } else if (!pt) { 364 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 365 } else { 366 *((u64 *)pt + index) = e->val64; 367 } 368 return 0; 369 } 370 371 #define GTT_HAW 46 372 373 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 374 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 375 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 376 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 377 378 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 379 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 380 381 #define GTT_64K_PTE_STRIDE 16 382 383 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 384 { 385 unsigned long pfn; 386 387 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 388 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 389 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 390 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 391 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 392 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 393 else 394 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 395 return pfn; 396 } 397 398 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 399 { 400 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 401 e->val64 &= ~ADDR_1G_MASK; 402 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 403 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 404 e->val64 &= ~ADDR_2M_MASK; 405 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 406 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 407 e->val64 &= ~ADDR_64K_MASK; 408 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 409 } else { 410 e->val64 &= ~ADDR_4K_MASK; 411 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 412 } 413 414 e->val64 |= (pfn << PAGE_SHIFT); 415 } 416 417 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 418 { 419 return !!(e->val64 & _PAGE_PSE); 420 } 421 422 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 423 { 424 if (gen8_gtt_test_pse(e)) { 425 switch (e->type) { 426 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 427 e->val64 &= ~_PAGE_PSE; 428 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 429 break; 430 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 431 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 432 e->val64 &= ~_PAGE_PSE; 433 break; 434 default: 435 WARN_ON(1); 436 } 437 } 438 } 439 440 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 441 { 442 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 443 return false; 444 445 return !!(e->val64 & GEN8_PDE_IPS_64K); 446 } 447 448 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 449 { 450 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 451 return; 452 453 e->val64 &= ~GEN8_PDE_IPS_64K; 454 } 455 456 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 457 { 458 /* 459 * i915 writes PDP root pointer registers without present bit, 460 * it also works, so we need to treat root pointer entry 461 * specifically. 462 */ 463 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 464 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 465 return (e->val64 != 0); 466 else 467 return (e->val64 & GEN8_PAGE_PRESENT); 468 } 469 470 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 471 { 472 e->val64 &= ~GEN8_PAGE_PRESENT; 473 } 474 475 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 476 { 477 e->val64 |= GEN8_PAGE_PRESENT; 478 } 479 480 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 481 { 482 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 483 } 484 485 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 486 { 487 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 488 } 489 490 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 491 { 492 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 493 } 494 495 /* 496 * Per-platform GMA routines. 497 */ 498 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 499 { 500 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 501 502 trace_gma_index(__func__, gma, x); 503 return x; 504 } 505 506 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 507 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 508 { \ 509 unsigned long x = (exp); \ 510 trace_gma_index(__func__, gma, x); \ 511 return x; \ 512 } 513 514 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 515 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 516 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 517 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 518 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 519 520 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 521 .get_entry = gtt_get_entry64, 522 .set_entry = gtt_set_entry64, 523 .clear_present = gtt_entry_clear_present, 524 .set_present = gtt_entry_set_present, 525 .test_present = gen8_gtt_test_present, 526 .test_pse = gen8_gtt_test_pse, 527 .clear_pse = gen8_gtt_clear_pse, 528 .clear_ips = gen8_gtt_clear_ips, 529 .test_ips = gen8_gtt_test_ips, 530 .clear_64k_splited = gen8_gtt_clear_64k_splited, 531 .set_64k_splited = gen8_gtt_set_64k_splited, 532 .test_64k_splited = gen8_gtt_test_64k_splited, 533 .get_pfn = gen8_gtt_get_pfn, 534 .set_pfn = gen8_gtt_set_pfn, 535 }; 536 537 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 538 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 539 .gma_to_pte_index = gen8_gma_to_pte_index, 540 .gma_to_pde_index = gen8_gma_to_pde_index, 541 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 542 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 543 .gma_to_pml4_index = gen8_gma_to_pml4_index, 544 }; 545 546 /* Update entry type per pse and ips bit. */ 547 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops, 548 struct intel_gvt_gtt_entry *entry, bool ips) 549 { 550 switch (entry->type) { 551 case GTT_TYPE_PPGTT_PDE_ENTRY: 552 case GTT_TYPE_PPGTT_PDP_ENTRY: 553 if (pte_ops->test_pse(entry)) 554 entry->type = get_pse_type(entry->type); 555 break; 556 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 557 if (ips) 558 entry->type = get_pse_type(entry->type); 559 break; 560 default: 561 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 562 } 563 564 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 565 } 566 567 /* 568 * MM helpers. 569 */ 570 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 571 struct intel_gvt_gtt_entry *entry, unsigned long index, 572 bool guest) 573 { 574 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 575 576 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 577 578 entry->type = mm->ppgtt_mm.root_entry_type; 579 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 580 mm->ppgtt_mm.shadow_pdps, 581 entry, index, false, 0, mm->vgpu); 582 update_entry_type_for_real(pte_ops, entry, false); 583 } 584 585 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 586 struct intel_gvt_gtt_entry *entry, unsigned long index) 587 { 588 _ppgtt_get_root_entry(mm, entry, index, true); 589 } 590 591 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 592 struct intel_gvt_gtt_entry *entry, unsigned long index) 593 { 594 _ppgtt_get_root_entry(mm, entry, index, false); 595 } 596 597 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 598 struct intel_gvt_gtt_entry *entry, unsigned long index, 599 bool guest) 600 { 601 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 602 603 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 604 mm->ppgtt_mm.shadow_pdps, 605 entry, index, false, 0, mm->vgpu); 606 } 607 608 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 609 struct intel_gvt_gtt_entry *entry, unsigned long index) 610 { 611 _ppgtt_set_root_entry(mm, entry, index, false); 612 } 613 614 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 615 struct intel_gvt_gtt_entry *entry, unsigned long index) 616 { 617 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 618 619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 620 621 entry->type = GTT_TYPE_GGTT_PTE; 622 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 623 false, 0, mm->vgpu); 624 } 625 626 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 627 struct intel_gvt_gtt_entry *entry, unsigned long index) 628 { 629 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 630 631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 632 633 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 634 false, 0, mm->vgpu); 635 } 636 637 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 638 struct intel_gvt_gtt_entry *entry, unsigned long index) 639 { 640 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 641 642 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 643 644 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 645 } 646 647 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 648 struct intel_gvt_gtt_entry *entry, unsigned long index) 649 { 650 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 651 unsigned long offset = index; 652 653 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 654 655 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 656 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 657 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 658 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 659 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 660 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 661 } 662 663 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 664 } 665 666 /* 667 * PPGTT shadow page table helpers. 668 */ 669 static inline int ppgtt_spt_get_entry( 670 struct intel_vgpu_ppgtt_spt *spt, 671 void *page_table, int type, 672 struct intel_gvt_gtt_entry *e, unsigned long index, 673 bool guest) 674 { 675 struct intel_gvt *gvt = spt->vgpu->gvt; 676 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 677 int ret; 678 679 e->type = get_entry_type(type); 680 681 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 682 return -EINVAL; 683 684 ret = ops->get_entry(page_table, e, index, guest, 685 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 686 spt->vgpu); 687 if (ret) 688 return ret; 689 690 update_entry_type_for_real(ops, e, guest ? 691 spt->guest_page.pde_ips : false); 692 693 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 694 type, e->type, index, e->val64); 695 return 0; 696 } 697 698 static inline int ppgtt_spt_set_entry( 699 struct intel_vgpu_ppgtt_spt *spt, 700 void *page_table, int type, 701 struct intel_gvt_gtt_entry *e, unsigned long index, 702 bool guest) 703 { 704 struct intel_gvt *gvt = spt->vgpu->gvt; 705 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 706 707 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 708 return -EINVAL; 709 710 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 711 type, e->type, index, e->val64); 712 713 return ops->set_entry(page_table, e, index, guest, 714 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 715 spt->vgpu); 716 } 717 718 #define ppgtt_get_guest_entry(spt, e, index) \ 719 ppgtt_spt_get_entry(spt, NULL, \ 720 spt->guest_page.type, e, index, true) 721 722 #define ppgtt_set_guest_entry(spt, e, index) \ 723 ppgtt_spt_set_entry(spt, NULL, \ 724 spt->guest_page.type, e, index, true) 725 726 #define ppgtt_get_shadow_entry(spt, e, index) \ 727 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 728 spt->shadow_page.type, e, index, false) 729 730 #define ppgtt_set_shadow_entry(spt, e, index) \ 731 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 732 spt->shadow_page.type, e, index, false) 733 734 static void *alloc_spt(gfp_t gfp_mask) 735 { 736 struct intel_vgpu_ppgtt_spt *spt; 737 738 spt = kzalloc(sizeof(*spt), gfp_mask); 739 if (!spt) 740 return NULL; 741 742 spt->shadow_page.page = alloc_page(gfp_mask); 743 if (!spt->shadow_page.page) { 744 kfree(spt); 745 return NULL; 746 } 747 return spt; 748 } 749 750 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 751 { 752 __free_page(spt->shadow_page.page); 753 kfree(spt); 754 } 755 756 static int detach_oos_page(struct intel_vgpu *vgpu, 757 struct intel_vgpu_oos_page *oos_page); 758 759 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 760 { 761 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; 762 763 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 764 765 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 766 DMA_BIDIRECTIONAL); 767 768 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 769 770 if (spt->guest_page.gfn) { 771 if (spt->guest_page.oos_page) 772 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 773 774 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 775 } 776 777 list_del_init(&spt->post_shadow_list); 778 free_spt(spt); 779 } 780 781 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 782 { 783 struct intel_vgpu_ppgtt_spt *spt, *spn; 784 struct radix_tree_iter iter; 785 LIST_HEAD(all_spt); 786 void __rcu **slot; 787 788 rcu_read_lock(); 789 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 790 spt = radix_tree_deref_slot(slot); 791 list_move(&spt->post_shadow_list, &all_spt); 792 } 793 rcu_read_unlock(); 794 795 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 796 ppgtt_free_spt(spt); 797 } 798 799 static int ppgtt_handle_guest_write_page_table_bytes( 800 struct intel_vgpu_ppgtt_spt *spt, 801 u64 pa, void *p_data, int bytes); 802 803 static int ppgtt_write_protection_handler( 804 struct intel_vgpu_page_track *page_track, 805 u64 gpa, void *data, int bytes) 806 { 807 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 808 809 int ret; 810 811 if (bytes != 4 && bytes != 8) 812 return -EINVAL; 813 814 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 815 if (ret) 816 return ret; 817 return ret; 818 } 819 820 /* Find a spt by guest gfn. */ 821 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 822 struct intel_vgpu *vgpu, unsigned long gfn) 823 { 824 struct intel_vgpu_page_track *track; 825 826 track = intel_vgpu_find_page_track(vgpu, gfn); 827 if (track && track->handler == ppgtt_write_protection_handler) 828 return track->priv_data; 829 830 return NULL; 831 } 832 833 /* Find the spt by shadow page mfn. */ 834 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 835 struct intel_vgpu *vgpu, unsigned long mfn) 836 { 837 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 838 } 839 840 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 841 842 /* Allocate shadow page table without guest page. */ 843 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 844 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 845 { 846 struct device *kdev = vgpu->gvt->gt->i915->drm.dev; 847 struct intel_vgpu_ppgtt_spt *spt = NULL; 848 dma_addr_t daddr; 849 int ret; 850 851 retry: 852 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 853 if (!spt) { 854 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 855 goto retry; 856 857 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 858 return ERR_PTR(-ENOMEM); 859 } 860 861 spt->vgpu = vgpu; 862 atomic_set(&spt->refcount, 1); 863 INIT_LIST_HEAD(&spt->post_shadow_list); 864 865 /* 866 * Init shadow_page. 867 */ 868 spt->shadow_page.type = type; 869 daddr = dma_map_page(kdev, spt->shadow_page.page, 870 0, 4096, DMA_BIDIRECTIONAL); 871 if (dma_mapping_error(kdev, daddr)) { 872 gvt_vgpu_err("fail to map dma addr\n"); 873 ret = -EINVAL; 874 goto err_free_spt; 875 } 876 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 877 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 878 879 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 880 if (ret) 881 goto err_unmap_dma; 882 883 return spt; 884 885 err_unmap_dma: 886 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL); 887 err_free_spt: 888 free_spt(spt); 889 return ERR_PTR(ret); 890 } 891 892 /* Allocate shadow page table associated with specific gfn. */ 893 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 894 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 895 unsigned long gfn, bool guest_pde_ips) 896 { 897 struct intel_vgpu_ppgtt_spt *spt; 898 int ret; 899 900 spt = ppgtt_alloc_spt(vgpu, type); 901 if (IS_ERR(spt)) 902 return spt; 903 904 /* 905 * Init guest_page. 906 */ 907 ret = intel_vgpu_register_page_track(vgpu, gfn, 908 ppgtt_write_protection_handler, spt); 909 if (ret) { 910 ppgtt_free_spt(spt); 911 return ERR_PTR(ret); 912 } 913 914 spt->guest_page.type = type; 915 spt->guest_page.gfn = gfn; 916 spt->guest_page.pde_ips = guest_pde_ips; 917 918 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 919 920 return spt; 921 } 922 923 #define pt_entry_size_shift(spt) \ 924 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 925 926 #define pt_entries(spt) \ 927 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 928 929 #define for_each_present_guest_entry(spt, e, i) \ 930 for (i = 0; i < pt_entries(spt); \ 931 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 932 if (!ppgtt_get_guest_entry(spt, e, i) && \ 933 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 934 935 #define for_each_present_shadow_entry(spt, e, i) \ 936 for (i = 0; i < pt_entries(spt); \ 937 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 938 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 939 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 940 941 #define for_each_shadow_entry(spt, e, i) \ 942 for (i = 0; i < pt_entries(spt); \ 943 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 944 if (!ppgtt_get_shadow_entry(spt, e, i)) 945 946 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 947 { 948 int v = atomic_read(&spt->refcount); 949 950 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 951 atomic_inc(&spt->refcount); 952 } 953 954 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 955 { 956 int v = atomic_read(&spt->refcount); 957 958 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 959 return atomic_dec_return(&spt->refcount); 960 } 961 962 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 963 964 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 965 struct intel_gvt_gtt_entry *e) 966 { 967 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 968 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 969 struct intel_vgpu_ppgtt_spt *s; 970 enum intel_gvt_gtt_type cur_pt_type; 971 972 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 973 974 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 975 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 976 cur_pt_type = get_next_pt_type(e->type); 977 978 if (!gtt_type_is_pt(cur_pt_type) || 979 !gtt_type_is_pt(cur_pt_type + 1)) { 980 drm_WARN(&i915->drm, 1, 981 "Invalid page table type, cur_pt_type is: %d\n", 982 cur_pt_type); 983 return -EINVAL; 984 } 985 986 cur_pt_type += 1; 987 988 if (ops->get_pfn(e) == 989 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 990 return 0; 991 } 992 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 993 if (!s) { 994 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 995 ops->get_pfn(e)); 996 return -ENXIO; 997 } 998 return ppgtt_invalidate_spt(s); 999 } 1000 1001 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 1002 struct intel_gvt_gtt_entry *entry) 1003 { 1004 struct intel_vgpu *vgpu = spt->vgpu; 1005 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1006 unsigned long pfn; 1007 int type; 1008 1009 pfn = ops->get_pfn(entry); 1010 type = spt->shadow_page.type; 1011 1012 /* Uninitialized spte or unshadowed spte. */ 1013 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 1014 return; 1015 1016 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 1017 } 1018 1019 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1020 { 1021 struct intel_vgpu *vgpu = spt->vgpu; 1022 struct intel_gvt_gtt_entry e; 1023 unsigned long index; 1024 int ret; 1025 1026 trace_spt_change(spt->vgpu->id, "die", spt, 1027 spt->guest_page.gfn, spt->shadow_page.type); 1028 1029 if (ppgtt_put_spt(spt) > 0) 1030 return 0; 1031 1032 for_each_present_shadow_entry(spt, &e, index) { 1033 switch (e.type) { 1034 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1035 gvt_vdbg_mm("invalidate 4K entry\n"); 1036 ppgtt_invalidate_pte(spt, &e); 1037 break; 1038 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1039 /* We don't setup 64K shadow entry so far. */ 1040 WARN(1, "suspicious 64K gtt entry\n"); 1041 continue; 1042 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1043 gvt_vdbg_mm("invalidate 2M entry\n"); 1044 continue; 1045 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1046 WARN(1, "GVT doesn't support 1GB page\n"); 1047 continue; 1048 case GTT_TYPE_PPGTT_PML4_ENTRY: 1049 case GTT_TYPE_PPGTT_PDP_ENTRY: 1050 case GTT_TYPE_PPGTT_PDE_ENTRY: 1051 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1052 ret = ppgtt_invalidate_spt_by_shadow_entry( 1053 spt->vgpu, &e); 1054 if (ret) 1055 goto fail; 1056 break; 1057 default: 1058 GEM_BUG_ON(1); 1059 } 1060 } 1061 1062 trace_spt_change(spt->vgpu->id, "release", spt, 1063 spt->guest_page.gfn, spt->shadow_page.type); 1064 ppgtt_free_spt(spt); 1065 return 0; 1066 fail: 1067 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1068 spt, e.val64, e.type); 1069 return ret; 1070 } 1071 1072 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1073 { 1074 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1075 1076 if (GRAPHICS_VER(dev_priv) == 9) { 1077 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1078 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1079 1080 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1081 } else if (GRAPHICS_VER(dev_priv) >= 11) { 1082 /* 64K paging only controlled by IPS bit in PTE now. */ 1083 return true; 1084 } else 1085 return false; 1086 } 1087 1088 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1089 1090 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1091 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1092 { 1093 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1094 struct intel_vgpu_ppgtt_spt *spt = NULL; 1095 bool ips = false; 1096 int ret; 1097 1098 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1099 1100 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1101 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1102 1103 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1104 if (spt) { 1105 ppgtt_get_spt(spt); 1106 1107 if (ips != spt->guest_page.pde_ips) { 1108 spt->guest_page.pde_ips = ips; 1109 1110 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1111 clear_page(spt->shadow_page.vaddr); 1112 ret = ppgtt_populate_spt(spt); 1113 if (ret) { 1114 ppgtt_put_spt(spt); 1115 goto err; 1116 } 1117 } 1118 } else { 1119 int type = get_next_pt_type(we->type); 1120 1121 if (!gtt_type_is_pt(type)) { 1122 ret = -EINVAL; 1123 goto err; 1124 } 1125 1126 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1127 if (IS_ERR(spt)) { 1128 ret = PTR_ERR(spt); 1129 goto err; 1130 } 1131 1132 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1133 if (ret) 1134 goto err_free_spt; 1135 1136 ret = ppgtt_populate_spt(spt); 1137 if (ret) 1138 goto err_free_spt; 1139 1140 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1141 spt->shadow_page.type); 1142 } 1143 return spt; 1144 1145 err_free_spt: 1146 ppgtt_free_spt(spt); 1147 spt = NULL; 1148 err: 1149 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1150 spt, we->val64, we->type); 1151 return ERR_PTR(ret); 1152 } 1153 1154 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1155 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1156 { 1157 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1158 1159 se->type = ge->type; 1160 se->val64 = ge->val64; 1161 1162 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1163 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1164 ops->clear_ips(se); 1165 1166 ops->set_pfn(se, s->shadow_page.mfn); 1167 } 1168 1169 /* 1170 * Check if can do 2M page 1171 * @vgpu: target vgpu 1172 * @entry: target pfn's gtt entry 1173 * 1174 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, 1175 * negative if found err. 1176 */ 1177 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1178 struct intel_gvt_gtt_entry *entry) 1179 { 1180 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1181 kvm_pfn_t pfn; 1182 1183 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1184 return 0; 1185 1186 if (!vgpu->attached) 1187 return -EINVAL; 1188 pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry)); 1189 if (is_error_noslot_pfn(pfn)) 1190 return -EINVAL; 1191 return PageTransHuge(pfn_to_page(pfn)); 1192 } 1193 1194 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1195 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1196 struct intel_gvt_gtt_entry *se) 1197 { 1198 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1199 struct intel_vgpu_ppgtt_spt *sub_spt; 1200 struct intel_gvt_gtt_entry sub_se; 1201 unsigned long start_gfn; 1202 dma_addr_t dma_addr; 1203 unsigned long sub_index; 1204 int ret; 1205 1206 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1207 1208 start_gfn = ops->get_pfn(se); 1209 1210 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1211 if (IS_ERR(sub_spt)) 1212 return PTR_ERR(sub_spt); 1213 1214 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1215 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index, 1216 PAGE_SIZE, &dma_addr); 1217 if (ret) { 1218 ppgtt_invalidate_spt(spt); 1219 return ret; 1220 } 1221 sub_se.val64 = se->val64; 1222 1223 /* Copy the PAT field from PDE. */ 1224 sub_se.val64 &= ~_PAGE_PAT; 1225 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1226 1227 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1228 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1229 } 1230 1231 /* Clear dirty field. */ 1232 se->val64 &= ~_PAGE_DIRTY; 1233 1234 ops->clear_pse(se); 1235 ops->clear_ips(se); 1236 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1237 ppgtt_set_shadow_entry(spt, se, index); 1238 return 0; 1239 } 1240 1241 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1242 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1243 struct intel_gvt_gtt_entry *se) 1244 { 1245 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1246 struct intel_gvt_gtt_entry entry = *se; 1247 unsigned long start_gfn; 1248 dma_addr_t dma_addr; 1249 int i, ret; 1250 1251 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1252 1253 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1254 1255 start_gfn = ops->get_pfn(se); 1256 1257 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1258 ops->set_64k_splited(&entry); 1259 1260 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1261 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i, 1262 PAGE_SIZE, &dma_addr); 1263 if (ret) 1264 return ret; 1265 1266 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1267 ppgtt_set_shadow_entry(spt, &entry, index + i); 1268 } 1269 return 0; 1270 } 1271 1272 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1273 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1274 struct intel_gvt_gtt_entry *ge) 1275 { 1276 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1277 struct intel_gvt_gtt_entry se = *ge; 1278 unsigned long gfn, page_size = PAGE_SIZE; 1279 dma_addr_t dma_addr; 1280 int ret; 1281 1282 if (!pte_ops->test_present(ge)) 1283 return 0; 1284 1285 gfn = pte_ops->get_pfn(ge); 1286 1287 switch (ge->type) { 1288 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1289 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1290 break; 1291 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1292 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1293 /* 1294 * The layout of 64K page is special, the page size is 1295 * controlled by uper PDE. To be simple, we always split 1296 * 64K page to smaller 4K pages in shadow PT. 1297 */ 1298 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1299 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1300 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1301 ret = is_2MB_gtt_possible(vgpu, ge); 1302 if (ret == 0) 1303 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1304 else if (ret < 0) 1305 return ret; 1306 page_size = I915_GTT_PAGE_SIZE_2M; 1307 break; 1308 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1309 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1310 return -EINVAL; 1311 default: 1312 GEM_BUG_ON(1); 1313 } 1314 1315 /* direct shadow */ 1316 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr); 1317 if (ret) 1318 return -ENXIO; 1319 1320 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1321 ppgtt_set_shadow_entry(spt, &se, index); 1322 return 0; 1323 } 1324 1325 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1326 { 1327 struct intel_vgpu *vgpu = spt->vgpu; 1328 struct intel_gvt *gvt = vgpu->gvt; 1329 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1330 struct intel_vgpu_ppgtt_spt *s; 1331 struct intel_gvt_gtt_entry se, ge; 1332 unsigned long gfn, i; 1333 int ret; 1334 1335 trace_spt_change(spt->vgpu->id, "born", spt, 1336 spt->guest_page.gfn, spt->shadow_page.type); 1337 1338 for_each_present_guest_entry(spt, &ge, i) { 1339 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1340 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1341 if (IS_ERR(s)) { 1342 ret = PTR_ERR(s); 1343 goto fail; 1344 } 1345 ppgtt_get_shadow_entry(spt, &se, i); 1346 ppgtt_generate_shadow_entry(&se, s, &ge); 1347 ppgtt_set_shadow_entry(spt, &se, i); 1348 } else { 1349 gfn = ops->get_pfn(&ge); 1350 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 1351 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1352 ppgtt_set_shadow_entry(spt, &se, i); 1353 continue; 1354 } 1355 1356 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1357 if (ret) 1358 goto fail; 1359 } 1360 } 1361 return 0; 1362 fail: 1363 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1364 spt, ge.val64, ge.type); 1365 return ret; 1366 } 1367 1368 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1369 struct intel_gvt_gtt_entry *se, unsigned long index) 1370 { 1371 struct intel_vgpu *vgpu = spt->vgpu; 1372 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1373 int ret; 1374 1375 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1376 spt->shadow_page.type, se->val64, index); 1377 1378 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1379 se->type, index, se->val64); 1380 1381 if (!ops->test_present(se)) 1382 return 0; 1383 1384 if (ops->get_pfn(se) == 1385 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1386 return 0; 1387 1388 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1389 struct intel_vgpu_ppgtt_spt *s = 1390 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1391 if (!s) { 1392 gvt_vgpu_err("fail to find guest page\n"); 1393 ret = -ENXIO; 1394 goto fail; 1395 } 1396 ret = ppgtt_invalidate_spt(s); 1397 if (ret) 1398 goto fail; 1399 } else { 1400 /* We don't setup 64K shadow entry so far. */ 1401 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1402 "suspicious 64K entry\n"); 1403 ppgtt_invalidate_pte(spt, se); 1404 } 1405 1406 return 0; 1407 fail: 1408 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1409 spt, se->val64, se->type); 1410 return ret; 1411 } 1412 1413 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1414 struct intel_gvt_gtt_entry *we, unsigned long index) 1415 { 1416 struct intel_vgpu *vgpu = spt->vgpu; 1417 struct intel_gvt_gtt_entry m; 1418 struct intel_vgpu_ppgtt_spt *s; 1419 int ret; 1420 1421 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1422 we->val64, index); 1423 1424 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1425 we->type, index, we->val64); 1426 1427 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1428 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1429 if (IS_ERR(s)) { 1430 ret = PTR_ERR(s); 1431 goto fail; 1432 } 1433 ppgtt_get_shadow_entry(spt, &m, index); 1434 ppgtt_generate_shadow_entry(&m, s, we); 1435 ppgtt_set_shadow_entry(spt, &m, index); 1436 } else { 1437 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1438 if (ret) 1439 goto fail; 1440 } 1441 return 0; 1442 fail: 1443 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1444 spt, we->val64, we->type); 1445 return ret; 1446 } 1447 1448 static int sync_oos_page(struct intel_vgpu *vgpu, 1449 struct intel_vgpu_oos_page *oos_page) 1450 { 1451 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1452 struct intel_gvt *gvt = vgpu->gvt; 1453 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1454 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1455 struct intel_gvt_gtt_entry old, new; 1456 int index; 1457 int ret; 1458 1459 trace_oos_change(vgpu->id, "sync", oos_page->id, 1460 spt, spt->guest_page.type); 1461 1462 old.type = new.type = get_entry_type(spt->guest_page.type); 1463 old.val64 = new.val64 = 0; 1464 1465 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1466 info->gtt_entry_size_shift); index++) { 1467 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1468 ops->get_entry(NULL, &new, index, true, 1469 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1470 1471 if (old.val64 == new.val64 1472 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1473 continue; 1474 1475 trace_oos_sync(vgpu->id, oos_page->id, 1476 spt, spt->guest_page.type, 1477 new.val64, index); 1478 1479 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1480 if (ret) 1481 return ret; 1482 1483 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1484 } 1485 1486 spt->guest_page.write_cnt = 0; 1487 list_del_init(&spt->post_shadow_list); 1488 return 0; 1489 } 1490 1491 static int detach_oos_page(struct intel_vgpu *vgpu, 1492 struct intel_vgpu_oos_page *oos_page) 1493 { 1494 struct intel_gvt *gvt = vgpu->gvt; 1495 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1496 1497 trace_oos_change(vgpu->id, "detach", oos_page->id, 1498 spt, spt->guest_page.type); 1499 1500 spt->guest_page.write_cnt = 0; 1501 spt->guest_page.oos_page = NULL; 1502 oos_page->spt = NULL; 1503 1504 list_del_init(&oos_page->vm_list); 1505 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1506 1507 return 0; 1508 } 1509 1510 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1511 struct intel_vgpu_ppgtt_spt *spt) 1512 { 1513 struct intel_gvt *gvt = spt->vgpu->gvt; 1514 int ret; 1515 1516 ret = intel_gvt_read_gpa(spt->vgpu, 1517 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1518 oos_page->mem, I915_GTT_PAGE_SIZE); 1519 if (ret) 1520 return ret; 1521 1522 oos_page->spt = spt; 1523 spt->guest_page.oos_page = oos_page; 1524 1525 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1526 1527 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1528 spt, spt->guest_page.type); 1529 return 0; 1530 } 1531 1532 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1533 { 1534 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1535 int ret; 1536 1537 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1538 if (ret) 1539 return ret; 1540 1541 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1542 spt, spt->guest_page.type); 1543 1544 list_del_init(&oos_page->vm_list); 1545 return sync_oos_page(spt->vgpu, oos_page); 1546 } 1547 1548 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1549 { 1550 struct intel_gvt *gvt = spt->vgpu->gvt; 1551 struct intel_gvt_gtt *gtt = &gvt->gtt; 1552 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1553 int ret; 1554 1555 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1556 1557 if (list_empty(>t->oos_page_free_list_head)) { 1558 oos_page = container_of(gtt->oos_page_use_list_head.next, 1559 struct intel_vgpu_oos_page, list); 1560 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1561 if (ret) 1562 return ret; 1563 ret = detach_oos_page(spt->vgpu, oos_page); 1564 if (ret) 1565 return ret; 1566 } else 1567 oos_page = container_of(gtt->oos_page_free_list_head.next, 1568 struct intel_vgpu_oos_page, list); 1569 return attach_oos_page(oos_page, spt); 1570 } 1571 1572 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1573 { 1574 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1575 1576 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1577 return -EINVAL; 1578 1579 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1580 spt, spt->guest_page.type); 1581 1582 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1583 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1584 } 1585 1586 /** 1587 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1588 * @vgpu: a vGPU 1589 * 1590 * This function is called before submitting a guest workload to host, 1591 * to sync all the out-of-synced shadow for vGPU 1592 * 1593 * Returns: 1594 * Zero on success, negative error code if failed. 1595 */ 1596 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1597 { 1598 struct list_head *pos, *n; 1599 struct intel_vgpu_oos_page *oos_page; 1600 int ret; 1601 1602 if (!enable_out_of_sync) 1603 return 0; 1604 1605 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1606 oos_page = container_of(pos, 1607 struct intel_vgpu_oos_page, vm_list); 1608 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1609 if (ret) 1610 return ret; 1611 } 1612 return 0; 1613 } 1614 1615 /* 1616 * The heart of PPGTT shadow page table. 1617 */ 1618 static int ppgtt_handle_guest_write_page_table( 1619 struct intel_vgpu_ppgtt_spt *spt, 1620 struct intel_gvt_gtt_entry *we, unsigned long index) 1621 { 1622 struct intel_vgpu *vgpu = spt->vgpu; 1623 int type = spt->shadow_page.type; 1624 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1625 struct intel_gvt_gtt_entry old_se; 1626 int new_present; 1627 int i, ret; 1628 1629 new_present = ops->test_present(we); 1630 1631 /* 1632 * Adding the new entry first and then removing the old one, that can 1633 * guarantee the ppgtt table is validated during the window between 1634 * adding and removal. 1635 */ 1636 ppgtt_get_shadow_entry(spt, &old_se, index); 1637 1638 if (new_present) { 1639 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1640 if (ret) 1641 goto fail; 1642 } 1643 1644 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1645 if (ret) 1646 goto fail; 1647 1648 if (!new_present) { 1649 /* For 64KB splited entries, we need clear them all. */ 1650 if (ops->test_64k_splited(&old_se) && 1651 !(index % GTT_64K_PTE_STRIDE)) { 1652 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1653 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1654 ops->clear_64k_splited(&old_se); 1655 ops->set_pfn(&old_se, 1656 vgpu->gtt.scratch_pt[type].page_mfn); 1657 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1658 } 1659 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1660 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1661 ops->clear_pse(&old_se); 1662 ops->set_pfn(&old_se, 1663 vgpu->gtt.scratch_pt[type].page_mfn); 1664 ppgtt_set_shadow_entry(spt, &old_se, index); 1665 } else { 1666 ops->set_pfn(&old_se, 1667 vgpu->gtt.scratch_pt[type].page_mfn); 1668 ppgtt_set_shadow_entry(spt, &old_se, index); 1669 } 1670 } 1671 1672 return 0; 1673 fail: 1674 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1675 spt, we->val64, we->type); 1676 return ret; 1677 } 1678 1679 1680 1681 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1682 { 1683 return enable_out_of_sync 1684 && gtt_type_is_pte_pt(spt->guest_page.type) 1685 && spt->guest_page.write_cnt >= 2; 1686 } 1687 1688 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1689 unsigned long index) 1690 { 1691 set_bit(index, spt->post_shadow_bitmap); 1692 if (!list_empty(&spt->post_shadow_list)) 1693 return; 1694 1695 list_add_tail(&spt->post_shadow_list, 1696 &spt->vgpu->gtt.post_shadow_list_head); 1697 } 1698 1699 /** 1700 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1701 * @vgpu: a vGPU 1702 * 1703 * This function is called before submitting a guest workload to host, 1704 * to flush all the post shadows for a vGPU. 1705 * 1706 * Returns: 1707 * Zero on success, negative error code if failed. 1708 */ 1709 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1710 { 1711 struct list_head *pos, *n; 1712 struct intel_vgpu_ppgtt_spt *spt; 1713 struct intel_gvt_gtt_entry ge; 1714 unsigned long index; 1715 int ret; 1716 1717 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1718 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1719 post_shadow_list); 1720 1721 for_each_set_bit(index, spt->post_shadow_bitmap, 1722 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1723 ppgtt_get_guest_entry(spt, &ge, index); 1724 1725 ret = ppgtt_handle_guest_write_page_table(spt, 1726 &ge, index); 1727 if (ret) 1728 return ret; 1729 clear_bit(index, spt->post_shadow_bitmap); 1730 } 1731 list_del_init(&spt->post_shadow_list); 1732 } 1733 return 0; 1734 } 1735 1736 static int ppgtt_handle_guest_write_page_table_bytes( 1737 struct intel_vgpu_ppgtt_spt *spt, 1738 u64 pa, void *p_data, int bytes) 1739 { 1740 struct intel_vgpu *vgpu = spt->vgpu; 1741 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1742 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1743 struct intel_gvt_gtt_entry we, se; 1744 unsigned long index; 1745 int ret; 1746 1747 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1748 1749 ppgtt_get_guest_entry(spt, &we, index); 1750 1751 /* 1752 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1753 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1754 * ignored. 1755 */ 1756 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1757 (index % GTT_64K_PTE_STRIDE)) { 1758 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1759 index); 1760 return 0; 1761 } 1762 1763 if (bytes == info->gtt_entry_size) { 1764 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1765 if (ret) 1766 return ret; 1767 } else { 1768 if (!test_bit(index, spt->post_shadow_bitmap)) { 1769 int type = spt->shadow_page.type; 1770 1771 ppgtt_get_shadow_entry(spt, &se, index); 1772 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1773 if (ret) 1774 return ret; 1775 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1776 ppgtt_set_shadow_entry(spt, &se, index); 1777 } 1778 ppgtt_set_post_shadow(spt, index); 1779 } 1780 1781 if (!enable_out_of_sync) 1782 return 0; 1783 1784 spt->guest_page.write_cnt++; 1785 1786 if (spt->guest_page.oos_page) 1787 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1788 false, 0, vgpu); 1789 1790 if (can_do_out_of_sync(spt)) { 1791 if (!spt->guest_page.oos_page) 1792 ppgtt_allocate_oos_page(spt); 1793 1794 ret = ppgtt_set_guest_page_oos(spt); 1795 if (ret < 0) 1796 return ret; 1797 } 1798 return 0; 1799 } 1800 1801 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1802 { 1803 struct intel_vgpu *vgpu = mm->vgpu; 1804 struct intel_gvt *gvt = vgpu->gvt; 1805 struct intel_gvt_gtt *gtt = &gvt->gtt; 1806 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1807 struct intel_gvt_gtt_entry se; 1808 int index; 1809 1810 if (!mm->ppgtt_mm.shadowed) 1811 return; 1812 1813 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1814 ppgtt_get_shadow_root_entry(mm, &se, index); 1815 1816 if (!ops->test_present(&se)) 1817 continue; 1818 1819 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1820 se.val64 = 0; 1821 ppgtt_set_shadow_root_entry(mm, &se, index); 1822 1823 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1824 NULL, se.type, se.val64, index); 1825 } 1826 1827 mm->ppgtt_mm.shadowed = false; 1828 } 1829 1830 1831 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1832 { 1833 struct intel_vgpu *vgpu = mm->vgpu; 1834 struct intel_gvt *gvt = vgpu->gvt; 1835 struct intel_gvt_gtt *gtt = &gvt->gtt; 1836 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1837 struct intel_vgpu_ppgtt_spt *spt; 1838 struct intel_gvt_gtt_entry ge, se; 1839 int index, ret; 1840 1841 if (mm->ppgtt_mm.shadowed) 1842 return 0; 1843 1844 mm->ppgtt_mm.shadowed = true; 1845 1846 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1847 ppgtt_get_guest_root_entry(mm, &ge, index); 1848 1849 if (!ops->test_present(&ge)) 1850 continue; 1851 1852 trace_spt_guest_change(vgpu->id, __func__, NULL, 1853 ge.type, ge.val64, index); 1854 1855 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1856 if (IS_ERR(spt)) { 1857 gvt_vgpu_err("fail to populate guest root pointer\n"); 1858 ret = PTR_ERR(spt); 1859 goto fail; 1860 } 1861 ppgtt_generate_shadow_entry(&se, spt, &ge); 1862 ppgtt_set_shadow_root_entry(mm, &se, index); 1863 1864 trace_spt_guest_change(vgpu->id, "populate root pointer", 1865 NULL, se.type, se.val64, index); 1866 } 1867 1868 return 0; 1869 fail: 1870 invalidate_ppgtt_mm(mm); 1871 return ret; 1872 } 1873 1874 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1875 { 1876 struct intel_vgpu_mm *mm; 1877 1878 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1879 if (!mm) 1880 return NULL; 1881 1882 mm->vgpu = vgpu; 1883 kref_init(&mm->ref); 1884 atomic_set(&mm->pincount, 0); 1885 1886 return mm; 1887 } 1888 1889 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1890 { 1891 kfree(mm); 1892 } 1893 1894 /** 1895 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1896 * @vgpu: a vGPU 1897 * @root_entry_type: ppgtt root entry type 1898 * @pdps: guest pdps. 1899 * 1900 * This function is used to create a ppgtt mm object for a vGPU. 1901 * 1902 * Returns: 1903 * Zero on success, negative error code in pointer if failed. 1904 */ 1905 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1906 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1907 { 1908 struct intel_gvt *gvt = vgpu->gvt; 1909 struct intel_vgpu_mm *mm; 1910 int ret; 1911 1912 mm = vgpu_alloc_mm(vgpu); 1913 if (!mm) 1914 return ERR_PTR(-ENOMEM); 1915 1916 mm->type = INTEL_GVT_MM_PPGTT; 1917 1918 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1919 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1920 mm->ppgtt_mm.root_entry_type = root_entry_type; 1921 1922 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1923 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1924 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1925 1926 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1927 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1928 else 1929 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1930 sizeof(mm->ppgtt_mm.guest_pdps)); 1931 1932 ret = shadow_ppgtt_mm(mm); 1933 if (ret) { 1934 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1935 vgpu_free_mm(mm); 1936 return ERR_PTR(ret); 1937 } 1938 1939 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1940 1941 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1942 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1943 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1944 1945 return mm; 1946 } 1947 1948 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1949 { 1950 struct intel_vgpu_mm *mm; 1951 unsigned long nr_entries; 1952 1953 mm = vgpu_alloc_mm(vgpu); 1954 if (!mm) 1955 return ERR_PTR(-ENOMEM); 1956 1957 mm->type = INTEL_GVT_MM_GGTT; 1958 1959 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1960 mm->ggtt_mm.virtual_ggtt = 1961 vzalloc(array_size(nr_entries, 1962 vgpu->gvt->device_info.gtt_entry_size)); 1963 if (!mm->ggtt_mm.virtual_ggtt) { 1964 vgpu_free_mm(mm); 1965 return ERR_PTR(-ENOMEM); 1966 } 1967 1968 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1969 if (!mm->ggtt_mm.host_ggtt_aperture) { 1970 vfree(mm->ggtt_mm.virtual_ggtt); 1971 vgpu_free_mm(mm); 1972 return ERR_PTR(-ENOMEM); 1973 } 1974 1975 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1976 if (!mm->ggtt_mm.host_ggtt_hidden) { 1977 vfree(mm->ggtt_mm.host_ggtt_aperture); 1978 vfree(mm->ggtt_mm.virtual_ggtt); 1979 vgpu_free_mm(mm); 1980 return ERR_PTR(-ENOMEM); 1981 } 1982 1983 return mm; 1984 } 1985 1986 /** 1987 * _intel_vgpu_mm_release - destroy a mm object 1988 * @mm_ref: a kref object 1989 * 1990 * This function is used to destroy a mm object for vGPU 1991 * 1992 */ 1993 void _intel_vgpu_mm_release(struct kref *mm_ref) 1994 { 1995 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1996 1997 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1998 gvt_err("vgpu mm pin count bug detected\n"); 1999 2000 if (mm->type == INTEL_GVT_MM_PPGTT) { 2001 list_del(&mm->ppgtt_mm.list); 2002 2003 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2004 list_del(&mm->ppgtt_mm.lru_list); 2005 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2006 2007 invalidate_ppgtt_mm(mm); 2008 } else { 2009 vfree(mm->ggtt_mm.virtual_ggtt); 2010 vfree(mm->ggtt_mm.host_ggtt_aperture); 2011 vfree(mm->ggtt_mm.host_ggtt_hidden); 2012 } 2013 2014 vgpu_free_mm(mm); 2015 } 2016 2017 /** 2018 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2019 * @mm: a vGPU mm object 2020 * 2021 * This function is called when user doesn't want to use a vGPU mm object 2022 */ 2023 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2024 { 2025 atomic_dec_if_positive(&mm->pincount); 2026 } 2027 2028 /** 2029 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2030 * @mm: target vgpu mm 2031 * 2032 * This function is called when user wants to use a vGPU mm object. If this 2033 * mm object hasn't been shadowed yet, the shadow will be populated at this 2034 * time. 2035 * 2036 * Returns: 2037 * Zero on success, negative error code if failed. 2038 */ 2039 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2040 { 2041 int ret; 2042 2043 atomic_inc(&mm->pincount); 2044 2045 if (mm->type == INTEL_GVT_MM_PPGTT) { 2046 ret = shadow_ppgtt_mm(mm); 2047 if (ret) 2048 return ret; 2049 2050 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2051 list_move_tail(&mm->ppgtt_mm.lru_list, 2052 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2053 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2054 } 2055 2056 return 0; 2057 } 2058 2059 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2060 { 2061 struct intel_vgpu_mm *mm; 2062 struct list_head *pos, *n; 2063 2064 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2065 2066 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2067 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2068 2069 if (atomic_read(&mm->pincount)) 2070 continue; 2071 2072 list_del_init(&mm->ppgtt_mm.lru_list); 2073 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2074 invalidate_ppgtt_mm(mm); 2075 return 1; 2076 } 2077 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2078 return 0; 2079 } 2080 2081 /* 2082 * GMA translation APIs. 2083 */ 2084 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2085 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2086 { 2087 struct intel_vgpu *vgpu = mm->vgpu; 2088 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2089 struct intel_vgpu_ppgtt_spt *s; 2090 2091 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2092 if (!s) 2093 return -ENXIO; 2094 2095 if (!guest) 2096 ppgtt_get_shadow_entry(s, e, index); 2097 else 2098 ppgtt_get_guest_entry(s, e, index); 2099 return 0; 2100 } 2101 2102 /** 2103 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2104 * @mm: mm object. could be a PPGTT or GGTT mm object 2105 * @gma: graphics memory address in this mm object 2106 * 2107 * This function is used to translate a graphics memory address in specific 2108 * graphics memory space to guest physical address. 2109 * 2110 * Returns: 2111 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2112 */ 2113 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2114 { 2115 struct intel_vgpu *vgpu = mm->vgpu; 2116 struct intel_gvt *gvt = vgpu->gvt; 2117 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2118 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2119 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2120 unsigned long gma_index[4]; 2121 struct intel_gvt_gtt_entry e; 2122 int i, levels = 0; 2123 int ret; 2124 2125 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2126 mm->type != INTEL_GVT_MM_PPGTT); 2127 2128 if (mm->type == INTEL_GVT_MM_GGTT) { 2129 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2130 goto err; 2131 2132 ggtt_get_guest_entry(mm, &e, 2133 gma_ops->gma_to_ggtt_pte_index(gma)); 2134 2135 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2136 + (gma & ~I915_GTT_PAGE_MASK); 2137 2138 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2139 } else { 2140 switch (mm->ppgtt_mm.root_entry_type) { 2141 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2142 ppgtt_get_shadow_root_entry(mm, &e, 0); 2143 2144 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2145 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2146 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2147 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2148 levels = 4; 2149 break; 2150 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2151 ppgtt_get_shadow_root_entry(mm, &e, 2152 gma_ops->gma_to_l3_pdp_index(gma)); 2153 2154 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2155 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2156 levels = 2; 2157 break; 2158 default: 2159 GEM_BUG_ON(1); 2160 } 2161 2162 /* walk the shadow page table and get gpa from guest entry */ 2163 for (i = 0; i < levels; i++) { 2164 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2165 (i == levels - 1)); 2166 if (ret) 2167 goto err; 2168 2169 if (!pte_ops->test_present(&e)) { 2170 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2171 goto err; 2172 } 2173 } 2174 2175 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2176 (gma & ~I915_GTT_PAGE_MASK); 2177 trace_gma_translate(vgpu->id, "ppgtt", 0, 2178 mm->ppgtt_mm.root_entry_type, gma, gpa); 2179 } 2180 2181 return gpa; 2182 err: 2183 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2184 return INTEL_GVT_INVALID_ADDR; 2185 } 2186 2187 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2188 unsigned int off, void *p_data, unsigned int bytes) 2189 { 2190 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2191 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2192 unsigned long index = off >> info->gtt_entry_size_shift; 2193 unsigned long gma; 2194 struct intel_gvt_gtt_entry e; 2195 2196 if (bytes != 4 && bytes != 8) 2197 return -EINVAL; 2198 2199 gma = index << I915_GTT_PAGE_SHIFT; 2200 if (!intel_gvt_ggtt_validate_range(vgpu, 2201 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2202 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2203 memset(p_data, 0, bytes); 2204 return 0; 2205 } 2206 2207 ggtt_get_guest_entry(ggtt_mm, &e, index); 2208 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2209 bytes); 2210 return 0; 2211 } 2212 2213 /** 2214 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read 2215 * @vgpu: a vGPU 2216 * @off: register offset 2217 * @p_data: data will be returned to guest 2218 * @bytes: data length 2219 * 2220 * This function is used to emulate the GTT MMIO register read 2221 * 2222 * Returns: 2223 * Zero on success, error code if failed. 2224 */ 2225 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2226 void *p_data, unsigned int bytes) 2227 { 2228 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2229 int ret; 2230 2231 if (bytes != 4 && bytes != 8) 2232 return -EINVAL; 2233 2234 off -= info->gtt_start_offset; 2235 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2236 return ret; 2237 } 2238 2239 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2240 struct intel_gvt_gtt_entry *entry) 2241 { 2242 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2243 unsigned long pfn; 2244 2245 pfn = pte_ops->get_pfn(entry); 2246 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2247 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 2248 } 2249 2250 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2251 void *p_data, unsigned int bytes) 2252 { 2253 struct intel_gvt *gvt = vgpu->gvt; 2254 const struct intel_gvt_device_info *info = &gvt->device_info; 2255 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2256 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2257 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2258 unsigned long gma, gfn; 2259 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2260 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2261 dma_addr_t dma_addr; 2262 int ret; 2263 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2264 bool partial_update = false; 2265 2266 if (bytes != 4 && bytes != 8) 2267 return -EINVAL; 2268 2269 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2270 2271 /* the VM may configure the whole GM space when ballooning is used */ 2272 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2273 return 0; 2274 2275 e.type = GTT_TYPE_GGTT_PTE; 2276 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2277 bytes); 2278 2279 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2280 * write, save the first 4 bytes in a list and update virtual 2281 * PTE. Only update shadow PTE when the second 4 bytes comes. 2282 */ 2283 if (bytes < info->gtt_entry_size) { 2284 bool found = false; 2285 2286 list_for_each_entry_safe(pos, n, 2287 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2288 if (g_gtt_index == pos->offset >> 2289 info->gtt_entry_size_shift) { 2290 if (off != pos->offset) { 2291 /* the second partial part*/ 2292 int last_off = pos->offset & 2293 (info->gtt_entry_size - 1); 2294 2295 memcpy((void *)&e.val64 + last_off, 2296 (void *)&pos->data + last_off, 2297 bytes); 2298 2299 list_del(&pos->list); 2300 kfree(pos); 2301 found = true; 2302 break; 2303 } 2304 2305 /* update of the first partial part */ 2306 pos->data = e.val64; 2307 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2308 return 0; 2309 } 2310 } 2311 2312 if (!found) { 2313 /* the first partial part */ 2314 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2315 if (!partial_pte) 2316 return -ENOMEM; 2317 partial_pte->offset = off; 2318 partial_pte->data = e.val64; 2319 list_add_tail(&partial_pte->list, 2320 &ggtt_mm->ggtt_mm.partial_pte_list); 2321 partial_update = true; 2322 } 2323 } 2324 2325 if (!partial_update && (ops->test_present(&e))) { 2326 gfn = ops->get_pfn(&e); 2327 m.val64 = e.val64; 2328 m.type = e.type; 2329 2330 /* one PTE update may be issued in multiple writes and the 2331 * first write may not construct a valid gfn 2332 */ 2333 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 2334 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2335 goto out; 2336 } 2337 2338 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, 2339 &dma_addr); 2340 if (ret) { 2341 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2342 /* guest driver may read/write the entry when partial 2343 * update the entry in this situation p2m will fail 2344 * settting the shadow entry to point to a scratch page 2345 */ 2346 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2347 } else 2348 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2349 } else { 2350 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2351 ops->clear_present(&m); 2352 } 2353 2354 out: 2355 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2356 2357 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2358 ggtt_invalidate_pte(vgpu, &e); 2359 2360 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2361 ggtt_invalidate(gvt->gt); 2362 return 0; 2363 } 2364 2365 /* 2366 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2367 * @vgpu: a vGPU 2368 * @off: register offset 2369 * @p_data: data from guest write 2370 * @bytes: data length 2371 * 2372 * This function is used to emulate the GTT MMIO register write 2373 * 2374 * Returns: 2375 * Zero on success, error code if failed. 2376 */ 2377 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2378 unsigned int off, void *p_data, unsigned int bytes) 2379 { 2380 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2381 int ret; 2382 struct intel_vgpu_submission *s = &vgpu->submission; 2383 struct intel_engine_cs *engine; 2384 int i; 2385 2386 if (bytes != 4 && bytes != 8) 2387 return -EINVAL; 2388 2389 off -= info->gtt_start_offset; 2390 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2391 2392 /* if ggtt of last submitted context is written, 2393 * that context is probably got unpinned. 2394 * Set last shadowed ctx to invalid. 2395 */ 2396 for_each_engine(engine, vgpu->gvt->gt, i) { 2397 if (!s->last_ctx[i].valid) 2398 continue; 2399 2400 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2401 s->last_ctx[i].valid = false; 2402 } 2403 return ret; 2404 } 2405 2406 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2407 enum intel_gvt_gtt_type type) 2408 { 2409 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2410 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2411 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2412 int page_entry_num = I915_GTT_PAGE_SIZE >> 2413 vgpu->gvt->device_info.gtt_entry_size_shift; 2414 void *scratch_pt; 2415 int i; 2416 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2417 dma_addr_t daddr; 2418 2419 if (drm_WARN_ON(&i915->drm, 2420 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2421 return -EINVAL; 2422 2423 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2424 if (!scratch_pt) { 2425 gvt_vgpu_err("fail to allocate scratch page\n"); 2426 return -ENOMEM; 2427 } 2428 2429 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL); 2430 if (dma_mapping_error(dev, daddr)) { 2431 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2432 __free_page(virt_to_page(scratch_pt)); 2433 return -ENOMEM; 2434 } 2435 gtt->scratch_pt[type].page_mfn = 2436 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2437 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2438 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2439 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2440 2441 /* Build the tree by full filled the scratch pt with the entries which 2442 * point to the next level scratch pt or scratch page. The 2443 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2444 * 'type' pt. 2445 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2446 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2447 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2448 */ 2449 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2450 struct intel_gvt_gtt_entry se; 2451 2452 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2453 se.type = get_entry_type(type - 1); 2454 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2455 2456 /* The entry parameters like present/writeable/cache type 2457 * set to the same as i915's scratch page tree. 2458 */ 2459 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 2460 if (type == GTT_TYPE_PPGTT_PDE_PT) 2461 se.val64 |= PPAT_CACHED; 2462 2463 for (i = 0; i < page_entry_num; i++) 2464 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2465 } 2466 2467 return 0; 2468 } 2469 2470 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2471 { 2472 int i; 2473 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2474 dma_addr_t daddr; 2475 2476 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2477 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2478 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2479 I915_GTT_PAGE_SHIFT); 2480 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2481 __free_page(vgpu->gtt.scratch_pt[i].page); 2482 vgpu->gtt.scratch_pt[i].page = NULL; 2483 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2484 } 2485 } 2486 2487 return 0; 2488 } 2489 2490 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2491 { 2492 int i, ret; 2493 2494 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2495 ret = alloc_scratch_pages(vgpu, i); 2496 if (ret) 2497 goto err; 2498 } 2499 2500 return 0; 2501 2502 err: 2503 release_scratch_page_tree(vgpu); 2504 return ret; 2505 } 2506 2507 /** 2508 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2509 * @vgpu: a vGPU 2510 * 2511 * This function is used to initialize per-vGPU graphics memory virtualization 2512 * components. 2513 * 2514 * Returns: 2515 * Zero on success, error code if failed. 2516 */ 2517 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2518 { 2519 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2520 2521 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2522 2523 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2524 INIT_LIST_HEAD(>t->oos_page_list_head); 2525 INIT_LIST_HEAD(>t->post_shadow_list_head); 2526 2527 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2528 if (IS_ERR(gtt->ggtt_mm)) { 2529 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2530 return PTR_ERR(gtt->ggtt_mm); 2531 } 2532 2533 intel_vgpu_reset_ggtt(vgpu, false); 2534 2535 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2536 2537 return create_scratch_page_tree(vgpu); 2538 } 2539 2540 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2541 { 2542 struct list_head *pos, *n; 2543 struct intel_vgpu_mm *mm; 2544 2545 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2546 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2547 intel_vgpu_destroy_mm(mm); 2548 } 2549 2550 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2551 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2552 2553 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2554 gvt_err("Why we still has spt not freed?\n"); 2555 ppgtt_free_all_spt(vgpu); 2556 } 2557 } 2558 2559 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2560 { 2561 struct intel_gvt_partial_pte *pos, *next; 2562 2563 list_for_each_entry_safe(pos, next, 2564 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2565 list) { 2566 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2567 pos->offset, pos->data); 2568 kfree(pos); 2569 } 2570 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2571 vgpu->gtt.ggtt_mm = NULL; 2572 } 2573 2574 /** 2575 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2576 * @vgpu: a vGPU 2577 * 2578 * This function is used to clean up per-vGPU graphics memory virtualization 2579 * components. 2580 * 2581 * Returns: 2582 * Zero on success, error code if failed. 2583 */ 2584 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2585 { 2586 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2587 intel_vgpu_destroy_ggtt_mm(vgpu); 2588 release_scratch_page_tree(vgpu); 2589 } 2590 2591 static void clean_spt_oos(struct intel_gvt *gvt) 2592 { 2593 struct intel_gvt_gtt *gtt = &gvt->gtt; 2594 struct list_head *pos, *n; 2595 struct intel_vgpu_oos_page *oos_page; 2596 2597 WARN(!list_empty(>t->oos_page_use_list_head), 2598 "someone is still using oos page\n"); 2599 2600 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2601 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2602 list_del(&oos_page->list); 2603 free_page((unsigned long)oos_page->mem); 2604 kfree(oos_page); 2605 } 2606 } 2607 2608 static int setup_spt_oos(struct intel_gvt *gvt) 2609 { 2610 struct intel_gvt_gtt *gtt = &gvt->gtt; 2611 struct intel_vgpu_oos_page *oos_page; 2612 int i; 2613 int ret; 2614 2615 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2616 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2617 2618 for (i = 0; i < preallocated_oos_pages; i++) { 2619 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2620 if (!oos_page) { 2621 ret = -ENOMEM; 2622 goto fail; 2623 } 2624 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2625 if (!oos_page->mem) { 2626 ret = -ENOMEM; 2627 kfree(oos_page); 2628 goto fail; 2629 } 2630 2631 INIT_LIST_HEAD(&oos_page->list); 2632 INIT_LIST_HEAD(&oos_page->vm_list); 2633 oos_page->id = i; 2634 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2635 } 2636 2637 gvt_dbg_mm("%d oos pages preallocated\n", i); 2638 2639 return 0; 2640 fail: 2641 clean_spt_oos(gvt); 2642 return ret; 2643 } 2644 2645 /** 2646 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2647 * @vgpu: a vGPU 2648 * @pdps: pdp root array 2649 * 2650 * This function is used to find a PPGTT mm object from mm object pool 2651 * 2652 * Returns: 2653 * pointer to mm object on success, NULL if failed. 2654 */ 2655 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2656 u64 pdps[]) 2657 { 2658 struct intel_vgpu_mm *mm; 2659 struct list_head *pos; 2660 2661 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2662 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2663 2664 switch (mm->ppgtt_mm.root_entry_type) { 2665 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2666 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2667 return mm; 2668 break; 2669 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2670 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2671 sizeof(mm->ppgtt_mm.guest_pdps))) 2672 return mm; 2673 break; 2674 default: 2675 GEM_BUG_ON(1); 2676 } 2677 } 2678 return NULL; 2679 } 2680 2681 /** 2682 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2683 * @vgpu: a vGPU 2684 * @root_entry_type: ppgtt root entry type 2685 * @pdps: guest pdps 2686 * 2687 * This function is used to find or create a PPGTT mm object from a guest. 2688 * 2689 * Returns: 2690 * Zero on success, negative error code if failed. 2691 */ 2692 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2693 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2694 { 2695 struct intel_vgpu_mm *mm; 2696 2697 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2698 if (mm) { 2699 intel_vgpu_mm_get(mm); 2700 } else { 2701 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2702 if (IS_ERR(mm)) 2703 gvt_vgpu_err("fail to create mm\n"); 2704 } 2705 return mm; 2706 } 2707 2708 /** 2709 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2710 * @vgpu: a vGPU 2711 * @pdps: guest pdps 2712 * 2713 * This function is used to find a PPGTT mm object from a guest and destroy it. 2714 * 2715 * Returns: 2716 * Zero on success, negative error code if failed. 2717 */ 2718 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2719 { 2720 struct intel_vgpu_mm *mm; 2721 2722 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2723 if (!mm) { 2724 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2725 return -EINVAL; 2726 } 2727 intel_vgpu_mm_put(mm); 2728 return 0; 2729 } 2730 2731 /** 2732 * intel_gvt_init_gtt - initialize mm components of a GVT device 2733 * @gvt: GVT device 2734 * 2735 * This function is called at the initialization stage, to initialize 2736 * the mm components of a GVT device. 2737 * 2738 * Returns: 2739 * zero on success, negative error code if failed. 2740 */ 2741 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2742 { 2743 int ret; 2744 void *page; 2745 struct device *dev = gvt->gt->i915->drm.dev; 2746 dma_addr_t daddr; 2747 2748 gvt_dbg_core("init gtt\n"); 2749 2750 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2751 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2752 2753 page = (void *)get_zeroed_page(GFP_KERNEL); 2754 if (!page) { 2755 gvt_err("fail to allocate scratch ggtt page\n"); 2756 return -ENOMEM; 2757 } 2758 2759 daddr = dma_map_page(dev, virt_to_page(page), 0, 2760 4096, DMA_BIDIRECTIONAL); 2761 if (dma_mapping_error(dev, daddr)) { 2762 gvt_err("fail to dmamap scratch ggtt page\n"); 2763 __free_page(virt_to_page(page)); 2764 return -ENOMEM; 2765 } 2766 2767 gvt->gtt.scratch_page = virt_to_page(page); 2768 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2769 2770 if (enable_out_of_sync) { 2771 ret = setup_spt_oos(gvt); 2772 if (ret) { 2773 gvt_err("fail to initialize SPT oos\n"); 2774 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2775 __free_page(gvt->gtt.scratch_page); 2776 return ret; 2777 } 2778 } 2779 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2780 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2781 return 0; 2782 } 2783 2784 /** 2785 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2786 * @gvt: GVT device 2787 * 2788 * This function is called at the driver unloading stage, to clean up the 2789 * the mm components of a GVT device. 2790 * 2791 */ 2792 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2793 { 2794 struct device *dev = gvt->gt->i915->drm.dev; 2795 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2796 I915_GTT_PAGE_SHIFT); 2797 2798 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2799 2800 __free_page(gvt->gtt.scratch_page); 2801 2802 if (enable_out_of_sync) 2803 clean_spt_oos(gvt); 2804 } 2805 2806 /** 2807 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2808 * @vgpu: a vGPU 2809 * 2810 * This function is called when invalidate all PPGTT instances of a vGPU. 2811 * 2812 */ 2813 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2814 { 2815 struct list_head *pos, *n; 2816 struct intel_vgpu_mm *mm; 2817 2818 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2819 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2820 if (mm->type == INTEL_GVT_MM_PPGTT) { 2821 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2822 list_del_init(&mm->ppgtt_mm.lru_list); 2823 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2824 if (mm->ppgtt_mm.shadowed) 2825 invalidate_ppgtt_mm(mm); 2826 } 2827 } 2828 } 2829 2830 /** 2831 * intel_vgpu_reset_ggtt - reset the GGTT entry 2832 * @vgpu: a vGPU 2833 * @invalidate_old: invalidate old entries 2834 * 2835 * This function is called at the vGPU create stage 2836 * to reset all the GGTT entries. 2837 * 2838 */ 2839 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2840 { 2841 struct intel_gvt *gvt = vgpu->gvt; 2842 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2843 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2844 struct intel_gvt_gtt_entry old_entry; 2845 u32 index; 2846 u32 num_entries; 2847 2848 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2849 pte_ops->set_present(&entry); 2850 2851 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2852 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2853 while (num_entries--) { 2854 if (invalidate_old) { 2855 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2856 ggtt_invalidate_pte(vgpu, &old_entry); 2857 } 2858 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2859 } 2860 2861 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2862 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2863 while (num_entries--) { 2864 if (invalidate_old) { 2865 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2866 ggtt_invalidate_pte(vgpu, &old_entry); 2867 } 2868 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2869 } 2870 2871 ggtt_invalidate(gvt->gt); 2872 } 2873 2874 /** 2875 * intel_vgpu_reset_gtt - reset the all GTT related status 2876 * @vgpu: a vGPU 2877 * 2878 * This function is called from vfio core to reset reset all 2879 * GTT related status, including GGTT, PPGTT, scratch page. 2880 * 2881 */ 2882 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2883 { 2884 /* Shadow pages are only created when there is no page 2885 * table tracking data, so remove page tracking data after 2886 * removing the shadow pages. 2887 */ 2888 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2889 intel_vgpu_reset_ggtt(vgpu, true); 2890 } 2891 2892 /** 2893 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2894 * @gvt: intel gvt device 2895 * 2896 * This function is called at driver resume stage to restore 2897 * GGTT entries of every vGPU. 2898 * 2899 */ 2900 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2901 { 2902 struct intel_vgpu *vgpu; 2903 struct intel_vgpu_mm *mm; 2904 int id; 2905 gen8_pte_t pte; 2906 u32 idx, num_low, num_hi, offset; 2907 2908 /* Restore dirty host ggtt for all vGPUs */ 2909 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2910 mm = vgpu->gtt.ggtt_mm; 2911 2912 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2913 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2914 for (idx = 0; idx < num_low; idx++) { 2915 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2916 if (pte & GEN8_PAGE_PRESENT) 2917 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2918 } 2919 2920 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2921 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2922 for (idx = 0; idx < num_hi; idx++) { 2923 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2924 if (pte & GEN8_PAGE_PRESENT) 2925 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2926 } 2927 } 2928 } 2929