xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	/* We take IPS bit as 'PSE' for PTE level. */
220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_INVALID,
224 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_INVALID,
229 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 			GTT_TYPE_PPGTT_PDE_ENTRY,
237 			GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 			GTT_TYPE_PPGTT_PDP_ENTRY,
242 			GTT_TYPE_PPGTT_PDP_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 			GTT_TYPE_GGTT_PTE,
247 			GTT_TYPE_INVALID,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_INVALID),
250 };
251 
252 static inline int get_next_pt_type(int type)
253 {
254 	return gtt_type_table[type].next_pt_type;
255 }
256 
257 static inline int get_pt_type(int type)
258 {
259 	return gtt_type_table[type].pt_type;
260 }
261 
262 static inline int get_entry_type(int type)
263 {
264 	return gtt_type_table[type].entry_type;
265 }
266 
267 static inline int get_pse_type(int type)
268 {
269 	return gtt_type_table[type].pse_entry_type;
270 }
271 
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275 
276 	return readq(addr);
277 }
278 
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281 	mmio_hw_access_pre(dev_priv);
282 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 	mmio_hw_access_post(dev_priv);
284 }
285 
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 		unsigned long index, u64 pte)
288 {
289 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290 
291 	writeq(pte, addr);
292 }
293 
294 static inline int gtt_get_entry64(void *pt,
295 		struct intel_gvt_gtt_entry *e,
296 		unsigned long index, bool hypervisor_access, unsigned long gpa,
297 		struct intel_vgpu *vgpu)
298 {
299 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 	int ret;
301 
302 	if (WARN_ON(info->gtt_entry_size != 8))
303 		return -EINVAL;
304 
305 	if (hypervisor_access) {
306 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 				(index << info->gtt_entry_size_shift),
308 				&e->val64, 8);
309 		if (WARN_ON(ret))
310 			return ret;
311 	} else if (!pt) {
312 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 	} else {
314 		e->val64 = *((u64 *)pt + index);
315 	}
316 	return 0;
317 }
318 
319 static inline int gtt_set_entry64(void *pt,
320 		struct intel_gvt_gtt_entry *e,
321 		unsigned long index, bool hypervisor_access, unsigned long gpa,
322 		struct intel_vgpu *vgpu)
323 {
324 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 	int ret;
326 
327 	if (WARN_ON(info->gtt_entry_size != 8))
328 		return -EINVAL;
329 
330 	if (hypervisor_access) {
331 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 				(index << info->gtt_entry_size_shift),
333 				&e->val64, 8);
334 		if (WARN_ON(ret))
335 			return ret;
336 	} else if (!pt) {
337 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 	} else {
339 		*((u64 *)pt + index) = e->val64;
340 	}
341 	return 0;
342 }
343 
344 #define GTT_HAW 46
345 
346 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
350 
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353 
354 #define GTT_64K_PTE_STRIDE 16
355 
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358 	unsigned long pfn;
359 
360 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 	else
367 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 	return pfn;
369 }
370 
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 		e->val64 &= ~ADDR_1G_MASK;
375 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 		e->val64 &= ~ADDR_2M_MASK;
378 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 		e->val64 &= ~ADDR_64K_MASK;
381 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 	} else {
383 		e->val64 &= ~ADDR_4K_MASK;
384 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385 	}
386 
387 	e->val64 |= (pfn << PAGE_SHIFT);
388 }
389 
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392 	return !!(e->val64 & _PAGE_PSE);
393 }
394 
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397 	if (gen8_gtt_test_pse(e)) {
398 		switch (e->type) {
399 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 			e->val64 &= ~_PAGE_PSE;
401 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 			break;
403 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 			e->val64 &= ~_PAGE_PSE;
406 			break;
407 		default:
408 			WARN_ON(1);
409 		}
410 	}
411 }
412 
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 		return false;
417 
418 	return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420 
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 		return;
425 
426 	e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428 
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431 	/*
432 	 * i915 writes PDP root pointer registers without present bit,
433 	 * it also works, so we need to treat root pointer entry
434 	 * specifically.
435 	 */
436 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 		return (e->val64 != 0);
439 	else
440 		return (e->val64 & _PAGE_PRESENT);
441 }
442 
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445 	e->val64 &= ~_PAGE_PRESENT;
446 }
447 
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450 	e->val64 |= _PAGE_PRESENT;
451 }
452 
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457 
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462 
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467 
468 /*
469  * Per-platform GMA routines.
470  */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474 
475 	trace_gma_index(__func__, gma, x);
476 	return x;
477 }
478 
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482 	unsigned long x = (exp); \
483 	trace_gma_index(__func__, gma, x); \
484 	return x; \
485 }
486 
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492 
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 	.get_entry = gtt_get_entry64,
495 	.set_entry = gtt_set_entry64,
496 	.clear_present = gtt_entry_clear_present,
497 	.set_present = gtt_entry_set_present,
498 	.test_present = gen8_gtt_test_present,
499 	.test_pse = gen8_gtt_test_pse,
500 	.clear_pse = gen8_gtt_clear_pse,
501 	.clear_ips = gen8_gtt_clear_ips,
502 	.test_ips = gen8_gtt_test_ips,
503 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
504 	.set_64k_splited = gen8_gtt_set_64k_splited,
505 	.test_64k_splited = gen8_gtt_test_64k_splited,
506 	.get_pfn = gen8_gtt_get_pfn,
507 	.set_pfn = gen8_gtt_set_pfn,
508 };
509 
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 	.gma_to_pte_index = gen8_gma_to_pte_index,
513 	.gma_to_pde_index = gen8_gma_to_pde_index,
514 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518 
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 	struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523 	switch (entry->type) {
524 	case GTT_TYPE_PPGTT_PDE_ENTRY:
525 	case GTT_TYPE_PPGTT_PDP_ENTRY:
526 		if (pte_ops->test_pse(entry))
527 			entry->type = get_pse_type(entry->type);
528 		break;
529 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 		if (ips)
531 			entry->type = get_pse_type(entry->type);
532 		break;
533 	default:
534 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535 	}
536 
537 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539 
540 /*
541  * MM helpers.
542  */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index,
545 		bool guest)
546 {
547 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548 
549 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550 
551 	entry->type = mm->ppgtt_mm.root_entry_type;
552 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 			   mm->ppgtt_mm.shadow_pdps,
554 			   entry, index, false, 0, mm->vgpu);
555 	update_entry_type_for_real(pte_ops, entry, false);
556 }
557 
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 		struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561 	_ppgtt_get_root_entry(mm, entry, index, true);
562 }
563 
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, false);
568 }
569 
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index,
572 		bool guest)
573 {
574 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575 
576 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 			   mm->ppgtt_mm.shadow_pdps,
578 			   entry, index, false, 0, mm->vgpu);
579 }
580 
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 		struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584 	_ppgtt_set_root_entry(mm, entry, index, true);
585 }
586 
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, false);
591 }
592 
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599 
600 	entry->type = GTT_TYPE_GGTT_PTE;
601 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 			   false, 0, mm->vgpu);
603 }
604 
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 		struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609 
610 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611 
612 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 			   false, 0, mm->vgpu);
614 }
615 
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620 
621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622 
623 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625 
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 
631 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 
633 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635 
636 /*
637  * PPGTT shadow page table helpers.
638  */
639 static inline int ppgtt_spt_get_entry(
640 		struct intel_vgpu_ppgtt_spt *spt,
641 		void *page_table, int type,
642 		struct intel_gvt_gtt_entry *e, unsigned long index,
643 		bool guest)
644 {
645 	struct intel_gvt *gvt = spt->vgpu->gvt;
646 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 	int ret;
648 
649 	e->type = get_entry_type(type);
650 
651 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 		return -EINVAL;
653 
654 	ret = ops->get_entry(page_table, e, index, guest,
655 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 			spt->vgpu);
657 	if (ret)
658 		return ret;
659 
660 	update_entry_type_for_real(ops, e, guest ?
661 				   spt->guest_page.pde_ips : false);
662 
663 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 		    type, e->type, index, e->val64);
665 	return 0;
666 }
667 
668 static inline int ppgtt_spt_set_entry(
669 		struct intel_vgpu_ppgtt_spt *spt,
670 		void *page_table, int type,
671 		struct intel_gvt_gtt_entry *e, unsigned long index,
672 		bool guest)
673 {
674 	struct intel_gvt *gvt = spt->vgpu->gvt;
675 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676 
677 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 		return -EINVAL;
679 
680 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 		    type, e->type, index, e->val64);
682 
683 	return ops->set_entry(page_table, e, index, guest,
684 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 			spt->vgpu);
686 }
687 
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 	ppgtt_spt_get_entry(spt, NULL, \
690 		spt->guest_page.type, e, index, true)
691 
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 	ppgtt_spt_set_entry(spt, NULL, \
694 		spt->guest_page.type, e, index, true)
695 
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 		spt->shadow_page.type, e, index, false)
699 
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 		spt->shadow_page.type, e, index, false)
703 
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706 	struct intel_vgpu_ppgtt_spt *spt;
707 
708 	spt = kzalloc(sizeof(*spt), gfp_mask);
709 	if (!spt)
710 		return NULL;
711 
712 	spt->shadow_page.page = alloc_page(gfp_mask);
713 	if (!spt->shadow_page.page) {
714 		kfree(spt);
715 		return NULL;
716 	}
717 	return spt;
718 }
719 
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722 	__free_page(spt->shadow_page.page);
723 	kfree(spt);
724 }
725 
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 		struct intel_vgpu_oos_page *oos_page);
728 
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732 
733 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734 
735 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 		       PCI_DMA_BIDIRECTIONAL);
737 
738 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739 
740 	if (spt->guest_page.gfn) {
741 		if (spt->guest_page.oos_page)
742 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743 
744 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745 	}
746 
747 	list_del_init(&spt->post_shadow_list);
748 	free_spt(spt);
749 }
750 
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753 	struct intel_vgpu_ppgtt_spt *spt;
754 	struct radix_tree_iter iter;
755 	void **slot;
756 
757 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
758 		spt = radix_tree_deref_slot(slot);
759 		ppgtt_free_spt(spt);
760 	}
761 }
762 
763 static int ppgtt_handle_guest_write_page_table_bytes(
764 		struct intel_vgpu_ppgtt_spt *spt,
765 		u64 pa, void *p_data, int bytes);
766 
767 static int ppgtt_write_protection_handler(
768 		struct intel_vgpu_page_track *page_track,
769 		u64 gpa, void *data, int bytes)
770 {
771 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
772 
773 	int ret;
774 
775 	if (bytes != 4 && bytes != 8)
776 		return -EINVAL;
777 
778 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
779 	if (ret)
780 		return ret;
781 	return ret;
782 }
783 
784 /* Find a spt by guest gfn. */
785 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
786 		struct intel_vgpu *vgpu, unsigned long gfn)
787 {
788 	struct intel_vgpu_page_track *track;
789 
790 	track = intel_vgpu_find_page_track(vgpu, gfn);
791 	if (track && track->handler == ppgtt_write_protection_handler)
792 		return track->priv_data;
793 
794 	return NULL;
795 }
796 
797 /* Find the spt by shadow page mfn. */
798 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
799 		struct intel_vgpu *vgpu, unsigned long mfn)
800 {
801 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
802 }
803 
804 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
805 
806 /* Allocate shadow page table without guest page. */
807 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
808 		struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
809 {
810 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
811 	struct intel_vgpu_ppgtt_spt *spt = NULL;
812 	dma_addr_t daddr;
813 	int ret;
814 
815 retry:
816 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
817 	if (!spt) {
818 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
819 			goto retry;
820 
821 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
822 		return ERR_PTR(-ENOMEM);
823 	}
824 
825 	spt->vgpu = vgpu;
826 	atomic_set(&spt->refcount, 1);
827 	INIT_LIST_HEAD(&spt->post_shadow_list);
828 
829 	/*
830 	 * Init shadow_page.
831 	 */
832 	spt->shadow_page.type = type;
833 	daddr = dma_map_page(kdev, spt->shadow_page.page,
834 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
835 	if (dma_mapping_error(kdev, daddr)) {
836 		gvt_vgpu_err("fail to map dma addr\n");
837 		ret = -EINVAL;
838 		goto err_free_spt;
839 	}
840 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
841 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
842 
843 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
844 	if (ret)
845 		goto err_unmap_dma;
846 
847 	return spt;
848 
849 err_unmap_dma:
850 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
851 err_free_spt:
852 	free_spt(spt);
853 	return ERR_PTR(ret);
854 }
855 
856 /* Allocate shadow page table associated with specific gfn. */
857 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
858 		struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
859 		unsigned long gfn, bool guest_pde_ips)
860 {
861 	struct intel_vgpu_ppgtt_spt *spt;
862 	int ret;
863 
864 	spt = ppgtt_alloc_spt(vgpu, type);
865 	if (IS_ERR(spt))
866 		return spt;
867 
868 	/*
869 	 * Init guest_page.
870 	 */
871 	ret = intel_vgpu_register_page_track(vgpu, gfn,
872 			ppgtt_write_protection_handler, spt);
873 	if (ret) {
874 		ppgtt_free_spt(spt);
875 		return ERR_PTR(ret);
876 	}
877 
878 	spt->guest_page.type = type;
879 	spt->guest_page.gfn = gfn;
880 	spt->guest_page.pde_ips = guest_pde_ips;
881 
882 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
883 
884 	return spt;
885 }
886 
887 #define pt_entry_size_shift(spt) \
888 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
889 
890 #define pt_entries(spt) \
891 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
892 
893 #define for_each_present_guest_entry(spt, e, i) \
894 	for (i = 0; i < pt_entries(spt); \
895 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
896 		if (!ppgtt_get_guest_entry(spt, e, i) && \
897 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
898 
899 #define for_each_present_shadow_entry(spt, e, i) \
900 	for (i = 0; i < pt_entries(spt); \
901 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
903 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904 
905 #define for_each_shadow_entry(spt, e, i) \
906 	for (i = 0; i < pt_entries(spt); \
907 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
908 		if (!ppgtt_get_shadow_entry(spt, e, i))
909 
910 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
911 {
912 	int v = atomic_read(&spt->refcount);
913 
914 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
915 	atomic_inc(&spt->refcount);
916 }
917 
918 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
919 {
920 	int v = atomic_read(&spt->refcount);
921 
922 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
923 	return atomic_dec_return(&spt->refcount);
924 }
925 
926 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
927 
928 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
929 		struct intel_gvt_gtt_entry *e)
930 {
931 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
932 	struct intel_vgpu_ppgtt_spt *s;
933 	intel_gvt_gtt_type_t cur_pt_type;
934 
935 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
936 
937 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
938 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
939 		cur_pt_type = get_next_pt_type(e->type) + 1;
940 		if (ops->get_pfn(e) ==
941 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
942 			return 0;
943 	}
944 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
945 	if (!s) {
946 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
947 				ops->get_pfn(e));
948 		return -ENXIO;
949 	}
950 	return ppgtt_invalidate_spt(s);
951 }
952 
953 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
954 		struct intel_gvt_gtt_entry *entry)
955 {
956 	struct intel_vgpu *vgpu = spt->vgpu;
957 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
958 	unsigned long pfn;
959 	int type;
960 
961 	pfn = ops->get_pfn(entry);
962 	type = spt->shadow_page.type;
963 
964 	/* Uninitialized spte or unshadowed spte. */
965 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
966 		return;
967 
968 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
969 }
970 
971 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
972 {
973 	struct intel_vgpu *vgpu = spt->vgpu;
974 	struct intel_gvt_gtt_entry e;
975 	unsigned long index;
976 	int ret;
977 
978 	trace_spt_change(spt->vgpu->id, "die", spt,
979 			spt->guest_page.gfn, spt->shadow_page.type);
980 
981 	if (ppgtt_put_spt(spt) > 0)
982 		return 0;
983 
984 	for_each_present_shadow_entry(spt, &e, index) {
985 		switch (e.type) {
986 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
987 			gvt_vdbg_mm("invalidate 4K entry\n");
988 			ppgtt_invalidate_pte(spt, &e);
989 			break;
990 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
991 			/* We don't setup 64K shadow entry so far. */
992 			WARN(1, "suspicious 64K gtt entry\n");
993 			continue;
994 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
995 			gvt_vdbg_mm("invalidate 2M entry\n");
996 			continue;
997 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
998 			WARN(1, "GVT doesn't support 1GB page\n");
999 			continue;
1000 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1001 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1002 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1003 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1004 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1005 					spt->vgpu, &e);
1006 			if (ret)
1007 				goto fail;
1008 			break;
1009 		default:
1010 			GEM_BUG_ON(1);
1011 		}
1012 	}
1013 
1014 	trace_spt_change(spt->vgpu->id, "release", spt,
1015 			 spt->guest_page.gfn, spt->shadow_page.type);
1016 	ppgtt_free_spt(spt);
1017 	return 0;
1018 fail:
1019 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1020 			spt, e.val64, e.type);
1021 	return ret;
1022 }
1023 
1024 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1025 {
1026 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1027 
1028 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1029 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1030 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1031 
1032 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1033 	} else if (INTEL_GEN(dev_priv) >= 11) {
1034 		/* 64K paging only controlled by IPS bit in PTE now. */
1035 		return true;
1036 	} else
1037 		return false;
1038 }
1039 
1040 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1041 
1042 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1043 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1044 {
1045 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1046 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1047 	bool ips = false;
1048 	int ret;
1049 
1050 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1051 
1052 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1053 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1054 
1055 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1056 	if (spt) {
1057 		ppgtt_get_spt(spt);
1058 
1059 		if (ips != spt->guest_page.pde_ips) {
1060 			spt->guest_page.pde_ips = ips;
1061 
1062 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1063 			clear_page(spt->shadow_page.vaddr);
1064 			ret = ppgtt_populate_spt(spt);
1065 			if (ret) {
1066 				ppgtt_put_spt(spt);
1067 				goto err;
1068 			}
1069 		}
1070 	} else {
1071 		int type = get_next_pt_type(we->type);
1072 
1073 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1074 		if (IS_ERR(spt)) {
1075 			ret = PTR_ERR(spt);
1076 			goto err;
1077 		}
1078 
1079 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1080 		if (ret)
1081 			goto err_free_spt;
1082 
1083 		ret = ppgtt_populate_spt(spt);
1084 		if (ret)
1085 			goto err_free_spt;
1086 
1087 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1088 				 spt->shadow_page.type);
1089 	}
1090 	return spt;
1091 
1092 err_free_spt:
1093 	ppgtt_free_spt(spt);
1094 err:
1095 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1096 		     spt, we->val64, we->type);
1097 	return ERR_PTR(ret);
1098 }
1099 
1100 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1101 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1102 {
1103 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1104 
1105 	se->type = ge->type;
1106 	se->val64 = ge->val64;
1107 
1108 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1109 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1110 		ops->clear_ips(se);
1111 
1112 	ops->set_pfn(se, s->shadow_page.mfn);
1113 }
1114 
1115 /**
1116  * Check if can do 2M page
1117  * @vgpu: target vgpu
1118  * @entry: target pfn's gtt entry
1119  *
1120  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1121  * negtive if found err.
1122  */
1123 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1124 	struct intel_gvt_gtt_entry *entry)
1125 {
1126 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1127 	unsigned long pfn;
1128 
1129 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1130 		return 0;
1131 
1132 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1133 	if (pfn == INTEL_GVT_INVALID_ADDR)
1134 		return -EINVAL;
1135 
1136 	return PageTransHuge(pfn_to_page(pfn));
1137 }
1138 
1139 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1140 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1141 	struct intel_gvt_gtt_entry *se)
1142 {
1143 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1144 	struct intel_vgpu_ppgtt_spt *sub_spt;
1145 	struct intel_gvt_gtt_entry sub_se;
1146 	unsigned long start_gfn;
1147 	dma_addr_t dma_addr;
1148 	unsigned long sub_index;
1149 	int ret;
1150 
1151 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1152 
1153 	start_gfn = ops->get_pfn(se);
1154 
1155 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1156 	if (IS_ERR(sub_spt))
1157 		return PTR_ERR(sub_spt);
1158 
1159 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1160 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1161 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1162 		if (ret) {
1163 			ppgtt_invalidate_spt(spt);
1164 			return ret;
1165 		}
1166 		sub_se.val64 = se->val64;
1167 
1168 		/* Copy the PAT field from PDE. */
1169 		sub_se.val64 &= ~_PAGE_PAT;
1170 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1171 
1172 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1173 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1174 	}
1175 
1176 	/* Clear dirty field. */
1177 	se->val64 &= ~_PAGE_DIRTY;
1178 
1179 	ops->clear_pse(se);
1180 	ops->clear_ips(se);
1181 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1182 	ppgtt_set_shadow_entry(spt, se, index);
1183 	return 0;
1184 }
1185 
1186 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1187 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1188 	struct intel_gvt_gtt_entry *se)
1189 {
1190 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1191 	struct intel_gvt_gtt_entry entry = *se;
1192 	unsigned long start_gfn;
1193 	dma_addr_t dma_addr;
1194 	int i, ret;
1195 
1196 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1197 
1198 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1199 
1200 	start_gfn = ops->get_pfn(se);
1201 
1202 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1203 	ops->set_64k_splited(&entry);
1204 
1205 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1206 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1207 					start_gfn + i, PAGE_SIZE, &dma_addr);
1208 		if (ret)
1209 			return ret;
1210 
1211 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1212 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1213 	}
1214 	return 0;
1215 }
1216 
1217 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1218 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1219 	struct intel_gvt_gtt_entry *ge)
1220 {
1221 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1222 	struct intel_gvt_gtt_entry se = *ge;
1223 	unsigned long gfn, page_size = PAGE_SIZE;
1224 	dma_addr_t dma_addr;
1225 	int ret;
1226 
1227 	if (!pte_ops->test_present(ge))
1228 		return 0;
1229 
1230 	gfn = pte_ops->get_pfn(ge);
1231 
1232 	switch (ge->type) {
1233 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1234 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1235 		break;
1236 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1237 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1238 		/*
1239 		 * The layout of 64K page is special, the page size is
1240 		 * controlled by uper PDE. To be simple, we always split
1241 		 * 64K page to smaller 4K pages in shadow PT.
1242 		 */
1243 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1244 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1245 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1246 		ret = is_2MB_gtt_possible(vgpu, ge);
1247 		if (ret == 0)
1248 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1249 		else if (ret < 0)
1250 			return ret;
1251 		page_size = I915_GTT_PAGE_SIZE_2M;
1252 		break;
1253 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1254 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1255 		return -EINVAL;
1256 	default:
1257 		GEM_BUG_ON(1);
1258 	};
1259 
1260 	/* direct shadow */
1261 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1262 						      &dma_addr);
1263 	if (ret)
1264 		return -ENXIO;
1265 
1266 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1267 	ppgtt_set_shadow_entry(spt, &se, index);
1268 	return 0;
1269 }
1270 
1271 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1272 {
1273 	struct intel_vgpu *vgpu = spt->vgpu;
1274 	struct intel_gvt *gvt = vgpu->gvt;
1275 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1276 	struct intel_vgpu_ppgtt_spt *s;
1277 	struct intel_gvt_gtt_entry se, ge;
1278 	unsigned long gfn, i;
1279 	int ret;
1280 
1281 	trace_spt_change(spt->vgpu->id, "born", spt,
1282 			 spt->guest_page.gfn, spt->shadow_page.type);
1283 
1284 	for_each_present_guest_entry(spt, &ge, i) {
1285 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1286 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1287 			if (IS_ERR(s)) {
1288 				ret = PTR_ERR(s);
1289 				goto fail;
1290 			}
1291 			ppgtt_get_shadow_entry(spt, &se, i);
1292 			ppgtt_generate_shadow_entry(&se, s, &ge);
1293 			ppgtt_set_shadow_entry(spt, &se, i);
1294 		} else {
1295 			gfn = ops->get_pfn(&ge);
1296 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1297 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1298 				ppgtt_set_shadow_entry(spt, &se, i);
1299 				continue;
1300 			}
1301 
1302 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1303 			if (ret)
1304 				goto fail;
1305 		}
1306 	}
1307 	return 0;
1308 fail:
1309 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1310 			spt, ge.val64, ge.type);
1311 	return ret;
1312 }
1313 
1314 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1315 		struct intel_gvt_gtt_entry *se, unsigned long index)
1316 {
1317 	struct intel_vgpu *vgpu = spt->vgpu;
1318 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1319 	int ret;
1320 
1321 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1322 			       spt->shadow_page.type, se->val64, index);
1323 
1324 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1325 		    se->type, index, se->val64);
1326 
1327 	if (!ops->test_present(se))
1328 		return 0;
1329 
1330 	if (ops->get_pfn(se) ==
1331 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1332 		return 0;
1333 
1334 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1335 		struct intel_vgpu_ppgtt_spt *s =
1336 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1337 		if (!s) {
1338 			gvt_vgpu_err("fail to find guest page\n");
1339 			ret = -ENXIO;
1340 			goto fail;
1341 		}
1342 		ret = ppgtt_invalidate_spt(s);
1343 		if (ret)
1344 			goto fail;
1345 	} else {
1346 		/* We don't setup 64K shadow entry so far. */
1347 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1348 		     "suspicious 64K entry\n");
1349 		ppgtt_invalidate_pte(spt, se);
1350 	}
1351 
1352 	return 0;
1353 fail:
1354 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1355 			spt, se->val64, se->type);
1356 	return ret;
1357 }
1358 
1359 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1360 		struct intel_gvt_gtt_entry *we, unsigned long index)
1361 {
1362 	struct intel_vgpu *vgpu = spt->vgpu;
1363 	struct intel_gvt_gtt_entry m;
1364 	struct intel_vgpu_ppgtt_spt *s;
1365 	int ret;
1366 
1367 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1368 			       we->val64, index);
1369 
1370 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1371 		    we->type, index, we->val64);
1372 
1373 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1374 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1375 		if (IS_ERR(s)) {
1376 			ret = PTR_ERR(s);
1377 			goto fail;
1378 		}
1379 		ppgtt_get_shadow_entry(spt, &m, index);
1380 		ppgtt_generate_shadow_entry(&m, s, we);
1381 		ppgtt_set_shadow_entry(spt, &m, index);
1382 	} else {
1383 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1384 		if (ret)
1385 			goto fail;
1386 	}
1387 	return 0;
1388 fail:
1389 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1390 		spt, we->val64, we->type);
1391 	return ret;
1392 }
1393 
1394 static int sync_oos_page(struct intel_vgpu *vgpu,
1395 		struct intel_vgpu_oos_page *oos_page)
1396 {
1397 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1398 	struct intel_gvt *gvt = vgpu->gvt;
1399 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1400 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1401 	struct intel_gvt_gtt_entry old, new;
1402 	int index;
1403 	int ret;
1404 
1405 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1406 			 spt, spt->guest_page.type);
1407 
1408 	old.type = new.type = get_entry_type(spt->guest_page.type);
1409 	old.val64 = new.val64 = 0;
1410 
1411 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1412 				info->gtt_entry_size_shift); index++) {
1413 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1414 		ops->get_entry(NULL, &new, index, true,
1415 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1416 
1417 		if (old.val64 == new.val64
1418 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1419 			continue;
1420 
1421 		trace_oos_sync(vgpu->id, oos_page->id,
1422 				spt, spt->guest_page.type,
1423 				new.val64, index);
1424 
1425 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1426 		if (ret)
1427 			return ret;
1428 
1429 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1430 	}
1431 
1432 	spt->guest_page.write_cnt = 0;
1433 	list_del_init(&spt->post_shadow_list);
1434 	return 0;
1435 }
1436 
1437 static int detach_oos_page(struct intel_vgpu *vgpu,
1438 		struct intel_vgpu_oos_page *oos_page)
1439 {
1440 	struct intel_gvt *gvt = vgpu->gvt;
1441 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1442 
1443 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1444 			 spt, spt->guest_page.type);
1445 
1446 	spt->guest_page.write_cnt = 0;
1447 	spt->guest_page.oos_page = NULL;
1448 	oos_page->spt = NULL;
1449 
1450 	list_del_init(&oos_page->vm_list);
1451 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1452 
1453 	return 0;
1454 }
1455 
1456 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1457 		struct intel_vgpu_ppgtt_spt *spt)
1458 {
1459 	struct intel_gvt *gvt = spt->vgpu->gvt;
1460 	int ret;
1461 
1462 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1463 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1464 			oos_page->mem, I915_GTT_PAGE_SIZE);
1465 	if (ret)
1466 		return ret;
1467 
1468 	oos_page->spt = spt;
1469 	spt->guest_page.oos_page = oos_page;
1470 
1471 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1472 
1473 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1474 			 spt, spt->guest_page.type);
1475 	return 0;
1476 }
1477 
1478 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1479 {
1480 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1481 	int ret;
1482 
1483 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1484 	if (ret)
1485 		return ret;
1486 
1487 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1488 			 spt, spt->guest_page.type);
1489 
1490 	list_del_init(&oos_page->vm_list);
1491 	return sync_oos_page(spt->vgpu, oos_page);
1492 }
1493 
1494 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1495 {
1496 	struct intel_gvt *gvt = spt->vgpu->gvt;
1497 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1498 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1499 	int ret;
1500 
1501 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1502 
1503 	if (list_empty(&gtt->oos_page_free_list_head)) {
1504 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1505 			struct intel_vgpu_oos_page, list);
1506 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1507 		if (ret)
1508 			return ret;
1509 		ret = detach_oos_page(spt->vgpu, oos_page);
1510 		if (ret)
1511 			return ret;
1512 	} else
1513 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1514 			struct intel_vgpu_oos_page, list);
1515 	return attach_oos_page(oos_page, spt);
1516 }
1517 
1518 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1519 {
1520 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1521 
1522 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1523 		return -EINVAL;
1524 
1525 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1526 			 spt, spt->guest_page.type);
1527 
1528 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1529 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1530 }
1531 
1532 /**
1533  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1534  * @vgpu: a vGPU
1535  *
1536  * This function is called before submitting a guest workload to host,
1537  * to sync all the out-of-synced shadow for vGPU
1538  *
1539  * Returns:
1540  * Zero on success, negative error code if failed.
1541  */
1542 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1543 {
1544 	struct list_head *pos, *n;
1545 	struct intel_vgpu_oos_page *oos_page;
1546 	int ret;
1547 
1548 	if (!enable_out_of_sync)
1549 		return 0;
1550 
1551 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1552 		oos_page = container_of(pos,
1553 				struct intel_vgpu_oos_page, vm_list);
1554 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1555 		if (ret)
1556 			return ret;
1557 	}
1558 	return 0;
1559 }
1560 
1561 /*
1562  * The heart of PPGTT shadow page table.
1563  */
1564 static int ppgtt_handle_guest_write_page_table(
1565 		struct intel_vgpu_ppgtt_spt *spt,
1566 		struct intel_gvt_gtt_entry *we, unsigned long index)
1567 {
1568 	struct intel_vgpu *vgpu = spt->vgpu;
1569 	int type = spt->shadow_page.type;
1570 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1571 	struct intel_gvt_gtt_entry old_se;
1572 	int new_present;
1573 	int i, ret;
1574 
1575 	new_present = ops->test_present(we);
1576 
1577 	/*
1578 	 * Adding the new entry first and then removing the old one, that can
1579 	 * guarantee the ppgtt table is validated during the window between
1580 	 * adding and removal.
1581 	 */
1582 	ppgtt_get_shadow_entry(spt, &old_se, index);
1583 
1584 	if (new_present) {
1585 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1586 		if (ret)
1587 			goto fail;
1588 	}
1589 
1590 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1591 	if (ret)
1592 		goto fail;
1593 
1594 	if (!new_present) {
1595 		/* For 64KB splited entries, we need clear them all. */
1596 		if (ops->test_64k_splited(&old_se) &&
1597 		    !(index % GTT_64K_PTE_STRIDE)) {
1598 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1599 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1600 				ops->clear_64k_splited(&old_se);
1601 				ops->set_pfn(&old_se,
1602 					vgpu->gtt.scratch_pt[type].page_mfn);
1603 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1604 			}
1605 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1606 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1607 			ops->clear_pse(&old_se);
1608 			ops->set_pfn(&old_se,
1609 				     vgpu->gtt.scratch_pt[type].page_mfn);
1610 			ppgtt_set_shadow_entry(spt, &old_se, index);
1611 		} else {
1612 			ops->set_pfn(&old_se,
1613 				     vgpu->gtt.scratch_pt[type].page_mfn);
1614 			ppgtt_set_shadow_entry(spt, &old_se, index);
1615 		}
1616 	}
1617 
1618 	return 0;
1619 fail:
1620 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1621 			spt, we->val64, we->type);
1622 	return ret;
1623 }
1624 
1625 
1626 
1627 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1628 {
1629 	return enable_out_of_sync
1630 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1631 		&& spt->guest_page.write_cnt >= 2;
1632 }
1633 
1634 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1635 		unsigned long index)
1636 {
1637 	set_bit(index, spt->post_shadow_bitmap);
1638 	if (!list_empty(&spt->post_shadow_list))
1639 		return;
1640 
1641 	list_add_tail(&spt->post_shadow_list,
1642 			&spt->vgpu->gtt.post_shadow_list_head);
1643 }
1644 
1645 /**
1646  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1647  * @vgpu: a vGPU
1648  *
1649  * This function is called before submitting a guest workload to host,
1650  * to flush all the post shadows for a vGPU.
1651  *
1652  * Returns:
1653  * Zero on success, negative error code if failed.
1654  */
1655 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1656 {
1657 	struct list_head *pos, *n;
1658 	struct intel_vgpu_ppgtt_spt *spt;
1659 	struct intel_gvt_gtt_entry ge;
1660 	unsigned long index;
1661 	int ret;
1662 
1663 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1664 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1665 				post_shadow_list);
1666 
1667 		for_each_set_bit(index, spt->post_shadow_bitmap,
1668 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1669 			ppgtt_get_guest_entry(spt, &ge, index);
1670 
1671 			ret = ppgtt_handle_guest_write_page_table(spt,
1672 							&ge, index);
1673 			if (ret)
1674 				return ret;
1675 			clear_bit(index, spt->post_shadow_bitmap);
1676 		}
1677 		list_del_init(&spt->post_shadow_list);
1678 	}
1679 	return 0;
1680 }
1681 
1682 static int ppgtt_handle_guest_write_page_table_bytes(
1683 		struct intel_vgpu_ppgtt_spt *spt,
1684 		u64 pa, void *p_data, int bytes)
1685 {
1686 	struct intel_vgpu *vgpu = spt->vgpu;
1687 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1688 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1689 	struct intel_gvt_gtt_entry we, se;
1690 	unsigned long index;
1691 	int ret;
1692 
1693 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1694 
1695 	ppgtt_get_guest_entry(spt, &we, index);
1696 
1697 	/*
1698 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1699 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1700 	 * ignored.
1701 	 */
1702 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1703 	    (index % GTT_64K_PTE_STRIDE)) {
1704 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1705 			    index);
1706 		return 0;
1707 	}
1708 
1709 	if (bytes == info->gtt_entry_size) {
1710 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1711 		if (ret)
1712 			return ret;
1713 	} else {
1714 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1715 			int type = spt->shadow_page.type;
1716 
1717 			ppgtt_get_shadow_entry(spt, &se, index);
1718 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1719 			if (ret)
1720 				return ret;
1721 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1722 			ppgtt_set_shadow_entry(spt, &se, index);
1723 		}
1724 		ppgtt_set_post_shadow(spt, index);
1725 	}
1726 
1727 	if (!enable_out_of_sync)
1728 		return 0;
1729 
1730 	spt->guest_page.write_cnt++;
1731 
1732 	if (spt->guest_page.oos_page)
1733 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1734 				false, 0, vgpu);
1735 
1736 	if (can_do_out_of_sync(spt)) {
1737 		if (!spt->guest_page.oos_page)
1738 			ppgtt_allocate_oos_page(spt);
1739 
1740 		ret = ppgtt_set_guest_page_oos(spt);
1741 		if (ret < 0)
1742 			return ret;
1743 	}
1744 	return 0;
1745 }
1746 
1747 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1748 {
1749 	struct intel_vgpu *vgpu = mm->vgpu;
1750 	struct intel_gvt *gvt = vgpu->gvt;
1751 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1752 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1753 	struct intel_gvt_gtt_entry se;
1754 	int index;
1755 
1756 	if (!mm->ppgtt_mm.shadowed)
1757 		return;
1758 
1759 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1760 		ppgtt_get_shadow_root_entry(mm, &se, index);
1761 
1762 		if (!ops->test_present(&se))
1763 			continue;
1764 
1765 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1766 		se.val64 = 0;
1767 		ppgtt_set_shadow_root_entry(mm, &se, index);
1768 
1769 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1770 				       NULL, se.type, se.val64, index);
1771 	}
1772 
1773 	mm->ppgtt_mm.shadowed = false;
1774 }
1775 
1776 
1777 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1778 {
1779 	struct intel_vgpu *vgpu = mm->vgpu;
1780 	struct intel_gvt *gvt = vgpu->gvt;
1781 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1782 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1783 	struct intel_vgpu_ppgtt_spt *spt;
1784 	struct intel_gvt_gtt_entry ge, se;
1785 	int index, ret;
1786 
1787 	if (mm->ppgtt_mm.shadowed)
1788 		return 0;
1789 
1790 	mm->ppgtt_mm.shadowed = true;
1791 
1792 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1793 		ppgtt_get_guest_root_entry(mm, &ge, index);
1794 
1795 		if (!ops->test_present(&ge))
1796 			continue;
1797 
1798 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1799 				       ge.type, ge.val64, index);
1800 
1801 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1802 		if (IS_ERR(spt)) {
1803 			gvt_vgpu_err("fail to populate guest root pointer\n");
1804 			ret = PTR_ERR(spt);
1805 			goto fail;
1806 		}
1807 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1808 		ppgtt_set_shadow_root_entry(mm, &se, index);
1809 
1810 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1811 				       NULL, se.type, se.val64, index);
1812 	}
1813 
1814 	return 0;
1815 fail:
1816 	invalidate_ppgtt_mm(mm);
1817 	return ret;
1818 }
1819 
1820 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1821 {
1822 	struct intel_vgpu_mm *mm;
1823 
1824 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1825 	if (!mm)
1826 		return NULL;
1827 
1828 	mm->vgpu = vgpu;
1829 	kref_init(&mm->ref);
1830 	atomic_set(&mm->pincount, 0);
1831 
1832 	return mm;
1833 }
1834 
1835 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1836 {
1837 	kfree(mm);
1838 }
1839 
1840 /**
1841  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1842  * @vgpu: a vGPU
1843  * @root_entry_type: ppgtt root entry type
1844  * @pdps: guest pdps.
1845  *
1846  * This function is used to create a ppgtt mm object for a vGPU.
1847  *
1848  * Returns:
1849  * Zero on success, negative error code in pointer if failed.
1850  */
1851 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1852 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1853 {
1854 	struct intel_gvt *gvt = vgpu->gvt;
1855 	struct intel_vgpu_mm *mm;
1856 	int ret;
1857 
1858 	mm = vgpu_alloc_mm(vgpu);
1859 	if (!mm)
1860 		return ERR_PTR(-ENOMEM);
1861 
1862 	mm->type = INTEL_GVT_MM_PPGTT;
1863 
1864 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1865 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1866 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1867 
1868 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1869 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1870 
1871 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1872 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1873 	else
1874 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1875 		       sizeof(mm->ppgtt_mm.guest_pdps));
1876 
1877 	ret = shadow_ppgtt_mm(mm);
1878 	if (ret) {
1879 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1880 		vgpu_free_mm(mm);
1881 		return ERR_PTR(ret);
1882 	}
1883 
1884 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1885 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1886 	return mm;
1887 }
1888 
1889 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1890 {
1891 	struct intel_vgpu_mm *mm;
1892 	unsigned long nr_entries;
1893 
1894 	mm = vgpu_alloc_mm(vgpu);
1895 	if (!mm)
1896 		return ERR_PTR(-ENOMEM);
1897 
1898 	mm->type = INTEL_GVT_MM_GGTT;
1899 
1900 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1901 	mm->ggtt_mm.virtual_ggtt =
1902 		vzalloc(array_size(nr_entries,
1903 				   vgpu->gvt->device_info.gtt_entry_size));
1904 	if (!mm->ggtt_mm.virtual_ggtt) {
1905 		vgpu_free_mm(mm);
1906 		return ERR_PTR(-ENOMEM);
1907 	}
1908 
1909 	return mm;
1910 }
1911 
1912 /**
1913  * _intel_vgpu_mm_release - destroy a mm object
1914  * @mm_ref: a kref object
1915  *
1916  * This function is used to destroy a mm object for vGPU
1917  *
1918  */
1919 void _intel_vgpu_mm_release(struct kref *mm_ref)
1920 {
1921 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1922 
1923 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1924 		gvt_err("vgpu mm pin count bug detected\n");
1925 
1926 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1927 		list_del(&mm->ppgtt_mm.list);
1928 		list_del(&mm->ppgtt_mm.lru_list);
1929 		invalidate_ppgtt_mm(mm);
1930 	} else {
1931 		vfree(mm->ggtt_mm.virtual_ggtt);
1932 	}
1933 
1934 	vgpu_free_mm(mm);
1935 }
1936 
1937 /**
1938  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1939  * @mm: a vGPU mm object
1940  *
1941  * This function is called when user doesn't want to use a vGPU mm object
1942  */
1943 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1944 {
1945 	atomic_dec(&mm->pincount);
1946 }
1947 
1948 /**
1949  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1950  * @mm: target vgpu mm
1951  *
1952  * This function is called when user wants to use a vGPU mm object. If this
1953  * mm object hasn't been shadowed yet, the shadow will be populated at this
1954  * time.
1955  *
1956  * Returns:
1957  * Zero on success, negative error code if failed.
1958  */
1959 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1960 {
1961 	int ret;
1962 
1963 	atomic_inc(&mm->pincount);
1964 
1965 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1966 		ret = shadow_ppgtt_mm(mm);
1967 		if (ret)
1968 			return ret;
1969 
1970 		list_move_tail(&mm->ppgtt_mm.lru_list,
1971 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1972 
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1979 {
1980 	struct intel_vgpu_mm *mm;
1981 	struct list_head *pos, *n;
1982 
1983 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1984 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1985 
1986 		if (atomic_read(&mm->pincount))
1987 			continue;
1988 
1989 		list_del_init(&mm->ppgtt_mm.lru_list);
1990 		invalidate_ppgtt_mm(mm);
1991 		return 1;
1992 	}
1993 	return 0;
1994 }
1995 
1996 /*
1997  * GMA translation APIs.
1998  */
1999 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2000 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2001 {
2002 	struct intel_vgpu *vgpu = mm->vgpu;
2003 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2004 	struct intel_vgpu_ppgtt_spt *s;
2005 
2006 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2007 	if (!s)
2008 		return -ENXIO;
2009 
2010 	if (!guest)
2011 		ppgtt_get_shadow_entry(s, e, index);
2012 	else
2013 		ppgtt_get_guest_entry(s, e, index);
2014 	return 0;
2015 }
2016 
2017 /**
2018  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2019  * @mm: mm object. could be a PPGTT or GGTT mm object
2020  * @gma: graphics memory address in this mm object
2021  *
2022  * This function is used to translate a graphics memory address in specific
2023  * graphics memory space to guest physical address.
2024  *
2025  * Returns:
2026  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2027  */
2028 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2029 {
2030 	struct intel_vgpu *vgpu = mm->vgpu;
2031 	struct intel_gvt *gvt = vgpu->gvt;
2032 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2033 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2034 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2035 	unsigned long gma_index[4];
2036 	struct intel_gvt_gtt_entry e;
2037 	int i, levels = 0;
2038 	int ret;
2039 
2040 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2041 		   mm->type != INTEL_GVT_MM_PPGTT);
2042 
2043 	if (mm->type == INTEL_GVT_MM_GGTT) {
2044 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2045 			goto err;
2046 
2047 		ggtt_get_guest_entry(mm, &e,
2048 			gma_ops->gma_to_ggtt_pte_index(gma));
2049 
2050 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2051 			+ (gma & ~I915_GTT_PAGE_MASK);
2052 
2053 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2054 	} else {
2055 		switch (mm->ppgtt_mm.root_entry_type) {
2056 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2057 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2058 
2059 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2060 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2061 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2062 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2063 			levels = 4;
2064 			break;
2065 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2066 			ppgtt_get_shadow_root_entry(mm, &e,
2067 					gma_ops->gma_to_l3_pdp_index(gma));
2068 
2069 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2070 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2071 			levels = 2;
2072 			break;
2073 		default:
2074 			GEM_BUG_ON(1);
2075 		}
2076 
2077 		/* walk the shadow page table and get gpa from guest entry */
2078 		for (i = 0; i < levels; i++) {
2079 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2080 				(i == levels - 1));
2081 			if (ret)
2082 				goto err;
2083 
2084 			if (!pte_ops->test_present(&e)) {
2085 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2086 				goto err;
2087 			}
2088 		}
2089 
2090 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2091 					(gma & ~I915_GTT_PAGE_MASK);
2092 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2093 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2094 	}
2095 
2096 	return gpa;
2097 err:
2098 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2099 	return INTEL_GVT_INVALID_ADDR;
2100 }
2101 
2102 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2103 	unsigned int off, void *p_data, unsigned int bytes)
2104 {
2105 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2106 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2107 	unsigned long index = off >> info->gtt_entry_size_shift;
2108 	struct intel_gvt_gtt_entry e;
2109 
2110 	if (bytes != 4 && bytes != 8)
2111 		return -EINVAL;
2112 
2113 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2114 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2115 			bytes);
2116 	return 0;
2117 }
2118 
2119 /**
2120  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2121  * @vgpu: a vGPU
2122  * @off: register offset
2123  * @p_data: data will be returned to guest
2124  * @bytes: data length
2125  *
2126  * This function is used to emulate the GTT MMIO register read
2127  *
2128  * Returns:
2129  * Zero on success, error code if failed.
2130  */
2131 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2132 	void *p_data, unsigned int bytes)
2133 {
2134 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2135 	int ret;
2136 
2137 	if (bytes != 4 && bytes != 8)
2138 		return -EINVAL;
2139 
2140 	off -= info->gtt_start_offset;
2141 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2142 	return ret;
2143 }
2144 
2145 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2146 		struct intel_gvt_gtt_entry *entry)
2147 {
2148 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2149 	unsigned long pfn;
2150 
2151 	pfn = pte_ops->get_pfn(entry);
2152 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2153 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2154 						pfn << PAGE_SHIFT);
2155 }
2156 
2157 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2158 	void *p_data, unsigned int bytes)
2159 {
2160 	struct intel_gvt *gvt = vgpu->gvt;
2161 	const struct intel_gvt_device_info *info = &gvt->device_info;
2162 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2163 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2164 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2165 	unsigned long gma, gfn;
2166 	struct intel_gvt_gtt_entry e, m;
2167 	dma_addr_t dma_addr;
2168 	int ret;
2169 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2170 	bool partial_update = false;
2171 
2172 	if (bytes != 4 && bytes != 8)
2173 		return -EINVAL;
2174 
2175 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2176 
2177 	/* the VM may configure the whole GM space when ballooning is used */
2178 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2179 		return 0;
2180 
2181 	e.type = GTT_TYPE_GGTT_PTE;
2182 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2183 			bytes);
2184 
2185 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2186 	 * write, save the first 4 bytes in a list and update virtual
2187 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2188 	 */
2189 	if (bytes < info->gtt_entry_size) {
2190 		bool found = false;
2191 
2192 		list_for_each_entry_safe(pos, n,
2193 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2194 			if (g_gtt_index == pos->offset >>
2195 					info->gtt_entry_size_shift) {
2196 				if (off != pos->offset) {
2197 					/* the second partial part*/
2198 					int last_off = pos->offset &
2199 						(info->gtt_entry_size - 1);
2200 
2201 					memcpy((void *)&e.val64 + last_off,
2202 						(void *)&pos->data + last_off,
2203 						bytes);
2204 
2205 					list_del(&pos->list);
2206 					kfree(pos);
2207 					found = true;
2208 					break;
2209 				}
2210 
2211 				/* update of the first partial part */
2212 				pos->data = e.val64;
2213 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2214 				return 0;
2215 			}
2216 		}
2217 
2218 		if (!found) {
2219 			/* the first partial part */
2220 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2221 			if (!partial_pte)
2222 				return -ENOMEM;
2223 			partial_pte->offset = off;
2224 			partial_pte->data = e.val64;
2225 			list_add_tail(&partial_pte->list,
2226 				&ggtt_mm->ggtt_mm.partial_pte_list);
2227 			partial_update = true;
2228 		}
2229 	}
2230 
2231 	if (!partial_update && (ops->test_present(&e))) {
2232 		gfn = ops->get_pfn(&e);
2233 		m = e;
2234 
2235 		/* one PTE update may be issued in multiple writes and the
2236 		 * first write may not construct a valid gfn
2237 		 */
2238 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2239 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2240 			goto out;
2241 		}
2242 
2243 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2244 							PAGE_SIZE, &dma_addr);
2245 		if (ret) {
2246 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2247 			/* guest driver may read/write the entry when partial
2248 			 * update the entry in this situation p2m will fail
2249 			 * settting the shadow entry to point to a scratch page
2250 			 */
2251 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2252 		} else
2253 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2254 	} else {
2255 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2256 		ops->clear_present(&m);
2257 	}
2258 
2259 out:
2260 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2261 
2262 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2263 	ggtt_invalidate_pte(vgpu, &e);
2264 
2265 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2266 	ggtt_invalidate(gvt->dev_priv);
2267 	return 0;
2268 }
2269 
2270 /*
2271  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2272  * @vgpu: a vGPU
2273  * @off: register offset
2274  * @p_data: data from guest write
2275  * @bytes: data length
2276  *
2277  * This function is used to emulate the GTT MMIO register write
2278  *
2279  * Returns:
2280  * Zero on success, error code if failed.
2281  */
2282 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2283 		unsigned int off, void *p_data, unsigned int bytes)
2284 {
2285 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2286 	int ret;
2287 
2288 	if (bytes != 4 && bytes != 8)
2289 		return -EINVAL;
2290 
2291 	off -= info->gtt_start_offset;
2292 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2293 	return ret;
2294 }
2295 
2296 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2297 		intel_gvt_gtt_type_t type)
2298 {
2299 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2300 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2301 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2302 				vgpu->gvt->device_info.gtt_entry_size_shift;
2303 	void *scratch_pt;
2304 	int i;
2305 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2306 	dma_addr_t daddr;
2307 
2308 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2309 		return -EINVAL;
2310 
2311 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2312 	if (!scratch_pt) {
2313 		gvt_vgpu_err("fail to allocate scratch page\n");
2314 		return -ENOMEM;
2315 	}
2316 
2317 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2318 			4096, PCI_DMA_BIDIRECTIONAL);
2319 	if (dma_mapping_error(dev, daddr)) {
2320 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2321 		__free_page(virt_to_page(scratch_pt));
2322 		return -ENOMEM;
2323 	}
2324 	gtt->scratch_pt[type].page_mfn =
2325 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2326 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2327 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2328 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2329 
2330 	/* Build the tree by full filled the scratch pt with the entries which
2331 	 * point to the next level scratch pt or scratch page. The
2332 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2333 	 * 'type' pt.
2334 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2335 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2336 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2337 	 */
2338 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2339 		struct intel_gvt_gtt_entry se;
2340 
2341 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2342 		se.type = get_entry_type(type - 1);
2343 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2344 
2345 		/* The entry parameters like present/writeable/cache type
2346 		 * set to the same as i915's scratch page tree.
2347 		 */
2348 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2349 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2350 			se.val64 |= PPAT_CACHED;
2351 
2352 		for (i = 0; i < page_entry_num; i++)
2353 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2360 {
2361 	int i;
2362 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2363 	dma_addr_t daddr;
2364 
2365 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2366 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2367 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2368 					I915_GTT_PAGE_SHIFT);
2369 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2370 			__free_page(vgpu->gtt.scratch_pt[i].page);
2371 			vgpu->gtt.scratch_pt[i].page = NULL;
2372 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2373 		}
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2380 {
2381 	int i, ret;
2382 
2383 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2384 		ret = alloc_scratch_pages(vgpu, i);
2385 		if (ret)
2386 			goto err;
2387 	}
2388 
2389 	return 0;
2390 
2391 err:
2392 	release_scratch_page_tree(vgpu);
2393 	return ret;
2394 }
2395 
2396 /**
2397  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2398  * @vgpu: a vGPU
2399  *
2400  * This function is used to initialize per-vGPU graphics memory virtualization
2401  * components.
2402  *
2403  * Returns:
2404  * Zero on success, error code if failed.
2405  */
2406 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2407 {
2408 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2409 
2410 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2411 
2412 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2413 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2414 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2415 
2416 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2417 	if (IS_ERR(gtt->ggtt_mm)) {
2418 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2419 		return PTR_ERR(gtt->ggtt_mm);
2420 	}
2421 
2422 	intel_vgpu_reset_ggtt(vgpu, false);
2423 
2424 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2425 
2426 	return create_scratch_page_tree(vgpu);
2427 }
2428 
2429 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2430 {
2431 	struct list_head *pos, *n;
2432 	struct intel_vgpu_mm *mm;
2433 
2434 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2435 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2436 		intel_vgpu_destroy_mm(mm);
2437 	}
2438 
2439 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2440 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2441 
2442 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2443 		gvt_err("Why we still has spt not freed?\n");
2444 		ppgtt_free_all_spt(vgpu);
2445 	}
2446 }
2447 
2448 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2449 {
2450 	struct intel_gvt_partial_pte *pos;
2451 
2452 	list_for_each_entry(pos,
2453 			&vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, list) {
2454 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2455 			pos->offset, pos->data);
2456 		kfree(pos);
2457 	}
2458 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2459 	vgpu->gtt.ggtt_mm = NULL;
2460 }
2461 
2462 /**
2463  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2464  * @vgpu: a vGPU
2465  *
2466  * This function is used to clean up per-vGPU graphics memory virtualization
2467  * components.
2468  *
2469  * Returns:
2470  * Zero on success, error code if failed.
2471  */
2472 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2473 {
2474 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2475 	intel_vgpu_destroy_ggtt_mm(vgpu);
2476 	release_scratch_page_tree(vgpu);
2477 }
2478 
2479 static void clean_spt_oos(struct intel_gvt *gvt)
2480 {
2481 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2482 	struct list_head *pos, *n;
2483 	struct intel_vgpu_oos_page *oos_page;
2484 
2485 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2486 		"someone is still using oos page\n");
2487 
2488 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2489 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2490 		list_del(&oos_page->list);
2491 		kfree(oos_page);
2492 	}
2493 }
2494 
2495 static int setup_spt_oos(struct intel_gvt *gvt)
2496 {
2497 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2498 	struct intel_vgpu_oos_page *oos_page;
2499 	int i;
2500 	int ret;
2501 
2502 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2503 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2504 
2505 	for (i = 0; i < preallocated_oos_pages; i++) {
2506 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2507 		if (!oos_page) {
2508 			ret = -ENOMEM;
2509 			goto fail;
2510 		}
2511 
2512 		INIT_LIST_HEAD(&oos_page->list);
2513 		INIT_LIST_HEAD(&oos_page->vm_list);
2514 		oos_page->id = i;
2515 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2516 	}
2517 
2518 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2519 
2520 	return 0;
2521 fail:
2522 	clean_spt_oos(gvt);
2523 	return ret;
2524 }
2525 
2526 /**
2527  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2528  * @vgpu: a vGPU
2529  * @pdps: pdp root array
2530  *
2531  * This function is used to find a PPGTT mm object from mm object pool
2532  *
2533  * Returns:
2534  * pointer to mm object on success, NULL if failed.
2535  */
2536 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2537 		u64 pdps[])
2538 {
2539 	struct intel_vgpu_mm *mm;
2540 	struct list_head *pos;
2541 
2542 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2543 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2544 
2545 		switch (mm->ppgtt_mm.root_entry_type) {
2546 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2547 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2548 				return mm;
2549 			break;
2550 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2551 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2552 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2553 				return mm;
2554 			break;
2555 		default:
2556 			GEM_BUG_ON(1);
2557 		}
2558 	}
2559 	return NULL;
2560 }
2561 
2562 /**
2563  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2564  * @vgpu: a vGPU
2565  * @root_entry_type: ppgtt root entry type
2566  * @pdps: guest pdps
2567  *
2568  * This function is used to find or create a PPGTT mm object from a guest.
2569  *
2570  * Returns:
2571  * Zero on success, negative error code if failed.
2572  */
2573 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2574 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2575 {
2576 	struct intel_vgpu_mm *mm;
2577 
2578 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2579 	if (mm) {
2580 		intel_vgpu_mm_get(mm);
2581 	} else {
2582 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2583 		if (IS_ERR(mm))
2584 			gvt_vgpu_err("fail to create mm\n");
2585 	}
2586 	return mm;
2587 }
2588 
2589 /**
2590  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2591  * @vgpu: a vGPU
2592  * @pdps: guest pdps
2593  *
2594  * This function is used to find a PPGTT mm object from a guest and destroy it.
2595  *
2596  * Returns:
2597  * Zero on success, negative error code if failed.
2598  */
2599 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2600 {
2601 	struct intel_vgpu_mm *mm;
2602 
2603 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2604 	if (!mm) {
2605 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2606 		return -EINVAL;
2607 	}
2608 	intel_vgpu_mm_put(mm);
2609 	return 0;
2610 }
2611 
2612 /**
2613  * intel_gvt_init_gtt - initialize mm components of a GVT device
2614  * @gvt: GVT device
2615  *
2616  * This function is called at the initialization stage, to initialize
2617  * the mm components of a GVT device.
2618  *
2619  * Returns:
2620  * zero on success, negative error code if failed.
2621  */
2622 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2623 {
2624 	int ret;
2625 	void *page;
2626 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2627 	dma_addr_t daddr;
2628 
2629 	gvt_dbg_core("init gtt\n");
2630 
2631 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2632 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2633 
2634 	page = (void *)get_zeroed_page(GFP_KERNEL);
2635 	if (!page) {
2636 		gvt_err("fail to allocate scratch ggtt page\n");
2637 		return -ENOMEM;
2638 	}
2639 
2640 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2641 			4096, PCI_DMA_BIDIRECTIONAL);
2642 	if (dma_mapping_error(dev, daddr)) {
2643 		gvt_err("fail to dmamap scratch ggtt page\n");
2644 		__free_page(virt_to_page(page));
2645 		return -ENOMEM;
2646 	}
2647 
2648 	gvt->gtt.scratch_page = virt_to_page(page);
2649 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2650 
2651 	if (enable_out_of_sync) {
2652 		ret = setup_spt_oos(gvt);
2653 		if (ret) {
2654 			gvt_err("fail to initialize SPT oos\n");
2655 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2656 			__free_page(gvt->gtt.scratch_page);
2657 			return ret;
2658 		}
2659 	}
2660 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2661 	return 0;
2662 }
2663 
2664 /**
2665  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2666  * @gvt: GVT device
2667  *
2668  * This function is called at the driver unloading stage, to clean up the
2669  * the mm components of a GVT device.
2670  *
2671  */
2672 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2673 {
2674 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2675 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2676 					I915_GTT_PAGE_SHIFT);
2677 
2678 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2679 
2680 	__free_page(gvt->gtt.scratch_page);
2681 
2682 	if (enable_out_of_sync)
2683 		clean_spt_oos(gvt);
2684 }
2685 
2686 /**
2687  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2688  * @vgpu: a vGPU
2689  *
2690  * This function is called when invalidate all PPGTT instances of a vGPU.
2691  *
2692  */
2693 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2694 {
2695 	struct list_head *pos, *n;
2696 	struct intel_vgpu_mm *mm;
2697 
2698 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2699 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2700 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2701 			list_del_init(&mm->ppgtt_mm.lru_list);
2702 			if (mm->ppgtt_mm.shadowed)
2703 				invalidate_ppgtt_mm(mm);
2704 		}
2705 	}
2706 }
2707 
2708 /**
2709  * intel_vgpu_reset_ggtt - reset the GGTT entry
2710  * @vgpu: a vGPU
2711  * @invalidate_old: invalidate old entries
2712  *
2713  * This function is called at the vGPU create stage
2714  * to reset all the GGTT entries.
2715  *
2716  */
2717 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2718 {
2719 	struct intel_gvt *gvt = vgpu->gvt;
2720 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2721 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2722 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2723 	struct intel_gvt_gtt_entry old_entry;
2724 	u32 index;
2725 	u32 num_entries;
2726 
2727 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2728 	pte_ops->set_present(&entry);
2729 
2730 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2731 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2732 	while (num_entries--) {
2733 		if (invalidate_old) {
2734 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2735 			ggtt_invalidate_pte(vgpu, &old_entry);
2736 		}
2737 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2738 	}
2739 
2740 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2741 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2742 	while (num_entries--) {
2743 		if (invalidate_old) {
2744 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2745 			ggtt_invalidate_pte(vgpu, &old_entry);
2746 		}
2747 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2748 	}
2749 
2750 	ggtt_invalidate(dev_priv);
2751 }
2752 
2753 /**
2754  * intel_vgpu_reset_gtt - reset the all GTT related status
2755  * @vgpu: a vGPU
2756  *
2757  * This function is called from vfio core to reset reset all
2758  * GTT related status, including GGTT, PPGTT, scratch page.
2759  *
2760  */
2761 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2762 {
2763 	/* Shadow pages are only created when there is no page
2764 	 * table tracking data, so remove page tracking data after
2765 	 * removing the shadow pages.
2766 	 */
2767 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2768 	intel_vgpu_reset_ggtt(vgpu, true);
2769 }
2770