xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 457c8996)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	/* We take IPS bit as 'PSE' for PTE level. */
220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_INVALID,
224 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_INVALID,
229 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 			GTT_TYPE_PPGTT_PDE_ENTRY,
237 			GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 			GTT_TYPE_PPGTT_PDP_ENTRY,
242 			GTT_TYPE_PPGTT_PDP_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 			GTT_TYPE_GGTT_PTE,
247 			GTT_TYPE_INVALID,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_INVALID),
250 };
251 
252 static inline int get_next_pt_type(int type)
253 {
254 	return gtt_type_table[type].next_pt_type;
255 }
256 
257 static inline int get_pt_type(int type)
258 {
259 	return gtt_type_table[type].pt_type;
260 }
261 
262 static inline int get_entry_type(int type)
263 {
264 	return gtt_type_table[type].entry_type;
265 }
266 
267 static inline int get_pse_type(int type)
268 {
269 	return gtt_type_table[type].pse_entry_type;
270 }
271 
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275 
276 	return readq(addr);
277 }
278 
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281 	mmio_hw_access_pre(dev_priv);
282 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 	mmio_hw_access_post(dev_priv);
284 }
285 
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 		unsigned long index, u64 pte)
288 {
289 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290 
291 	writeq(pte, addr);
292 }
293 
294 static inline int gtt_get_entry64(void *pt,
295 		struct intel_gvt_gtt_entry *e,
296 		unsigned long index, bool hypervisor_access, unsigned long gpa,
297 		struct intel_vgpu *vgpu)
298 {
299 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 	int ret;
301 
302 	if (WARN_ON(info->gtt_entry_size != 8))
303 		return -EINVAL;
304 
305 	if (hypervisor_access) {
306 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 				(index << info->gtt_entry_size_shift),
308 				&e->val64, 8);
309 		if (WARN_ON(ret))
310 			return ret;
311 	} else if (!pt) {
312 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 	} else {
314 		e->val64 = *((u64 *)pt + index);
315 	}
316 	return 0;
317 }
318 
319 static inline int gtt_set_entry64(void *pt,
320 		struct intel_gvt_gtt_entry *e,
321 		unsigned long index, bool hypervisor_access, unsigned long gpa,
322 		struct intel_vgpu *vgpu)
323 {
324 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 	int ret;
326 
327 	if (WARN_ON(info->gtt_entry_size != 8))
328 		return -EINVAL;
329 
330 	if (hypervisor_access) {
331 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 				(index << info->gtt_entry_size_shift),
333 				&e->val64, 8);
334 		if (WARN_ON(ret))
335 			return ret;
336 	} else if (!pt) {
337 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 	} else {
339 		*((u64 *)pt + index) = e->val64;
340 	}
341 	return 0;
342 }
343 
344 #define GTT_HAW 46
345 
346 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
350 
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353 
354 #define GTT_64K_PTE_STRIDE 16
355 
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358 	unsigned long pfn;
359 
360 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 	else
367 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 	return pfn;
369 }
370 
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 		e->val64 &= ~ADDR_1G_MASK;
375 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 		e->val64 &= ~ADDR_2M_MASK;
378 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 		e->val64 &= ~ADDR_64K_MASK;
381 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 	} else {
383 		e->val64 &= ~ADDR_4K_MASK;
384 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385 	}
386 
387 	e->val64 |= (pfn << PAGE_SHIFT);
388 }
389 
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392 	return !!(e->val64 & _PAGE_PSE);
393 }
394 
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397 	if (gen8_gtt_test_pse(e)) {
398 		switch (e->type) {
399 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 			e->val64 &= ~_PAGE_PSE;
401 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 			break;
403 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 			e->val64 &= ~_PAGE_PSE;
406 			break;
407 		default:
408 			WARN_ON(1);
409 		}
410 	}
411 }
412 
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 		return false;
417 
418 	return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420 
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 		return;
425 
426 	e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428 
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431 	/*
432 	 * i915 writes PDP root pointer registers without present bit,
433 	 * it also works, so we need to treat root pointer entry
434 	 * specifically.
435 	 */
436 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 		return (e->val64 != 0);
439 	else
440 		return (e->val64 & _PAGE_PRESENT);
441 }
442 
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445 	e->val64 &= ~_PAGE_PRESENT;
446 }
447 
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450 	e->val64 |= _PAGE_PRESENT;
451 }
452 
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457 
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462 
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467 
468 /*
469  * Per-platform GMA routines.
470  */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474 
475 	trace_gma_index(__func__, gma, x);
476 	return x;
477 }
478 
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482 	unsigned long x = (exp); \
483 	trace_gma_index(__func__, gma, x); \
484 	return x; \
485 }
486 
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492 
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 	.get_entry = gtt_get_entry64,
495 	.set_entry = gtt_set_entry64,
496 	.clear_present = gtt_entry_clear_present,
497 	.set_present = gtt_entry_set_present,
498 	.test_present = gen8_gtt_test_present,
499 	.test_pse = gen8_gtt_test_pse,
500 	.clear_pse = gen8_gtt_clear_pse,
501 	.clear_ips = gen8_gtt_clear_ips,
502 	.test_ips = gen8_gtt_test_ips,
503 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
504 	.set_64k_splited = gen8_gtt_set_64k_splited,
505 	.test_64k_splited = gen8_gtt_test_64k_splited,
506 	.get_pfn = gen8_gtt_get_pfn,
507 	.set_pfn = gen8_gtt_set_pfn,
508 };
509 
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 	.gma_to_pte_index = gen8_gma_to_pte_index,
513 	.gma_to_pde_index = gen8_gma_to_pde_index,
514 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518 
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 	struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523 	switch (entry->type) {
524 	case GTT_TYPE_PPGTT_PDE_ENTRY:
525 	case GTT_TYPE_PPGTT_PDP_ENTRY:
526 		if (pte_ops->test_pse(entry))
527 			entry->type = get_pse_type(entry->type);
528 		break;
529 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 		if (ips)
531 			entry->type = get_pse_type(entry->type);
532 		break;
533 	default:
534 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535 	}
536 
537 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539 
540 /*
541  * MM helpers.
542  */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index,
545 		bool guest)
546 {
547 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548 
549 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550 
551 	entry->type = mm->ppgtt_mm.root_entry_type;
552 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 			   mm->ppgtt_mm.shadow_pdps,
554 			   entry, index, false, 0, mm->vgpu);
555 	update_entry_type_for_real(pte_ops, entry, false);
556 }
557 
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 		struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561 	_ppgtt_get_root_entry(mm, entry, index, true);
562 }
563 
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, false);
568 }
569 
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index,
572 		bool guest)
573 {
574 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575 
576 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 			   mm->ppgtt_mm.shadow_pdps,
578 			   entry, index, false, 0, mm->vgpu);
579 }
580 
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 		struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584 	_ppgtt_set_root_entry(mm, entry, index, true);
585 }
586 
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, false);
591 }
592 
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599 
600 	entry->type = GTT_TYPE_GGTT_PTE;
601 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 			   false, 0, mm->vgpu);
603 }
604 
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 		struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609 
610 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611 
612 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 			   false, 0, mm->vgpu);
614 }
615 
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620 
621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622 
623 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625 
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 
631 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 
633 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635 
636 /*
637  * PPGTT shadow page table helpers.
638  */
639 static inline int ppgtt_spt_get_entry(
640 		struct intel_vgpu_ppgtt_spt *spt,
641 		void *page_table, int type,
642 		struct intel_gvt_gtt_entry *e, unsigned long index,
643 		bool guest)
644 {
645 	struct intel_gvt *gvt = spt->vgpu->gvt;
646 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 	int ret;
648 
649 	e->type = get_entry_type(type);
650 
651 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 		return -EINVAL;
653 
654 	ret = ops->get_entry(page_table, e, index, guest,
655 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 			spt->vgpu);
657 	if (ret)
658 		return ret;
659 
660 	update_entry_type_for_real(ops, e, guest ?
661 				   spt->guest_page.pde_ips : false);
662 
663 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 		    type, e->type, index, e->val64);
665 	return 0;
666 }
667 
668 static inline int ppgtt_spt_set_entry(
669 		struct intel_vgpu_ppgtt_spt *spt,
670 		void *page_table, int type,
671 		struct intel_gvt_gtt_entry *e, unsigned long index,
672 		bool guest)
673 {
674 	struct intel_gvt *gvt = spt->vgpu->gvt;
675 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676 
677 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 		return -EINVAL;
679 
680 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 		    type, e->type, index, e->val64);
682 
683 	return ops->set_entry(page_table, e, index, guest,
684 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 			spt->vgpu);
686 }
687 
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 	ppgtt_spt_get_entry(spt, NULL, \
690 		spt->guest_page.type, e, index, true)
691 
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 	ppgtt_spt_set_entry(spt, NULL, \
694 		spt->guest_page.type, e, index, true)
695 
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 		spt->shadow_page.type, e, index, false)
699 
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 		spt->shadow_page.type, e, index, false)
703 
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706 	struct intel_vgpu_ppgtt_spt *spt;
707 
708 	spt = kzalloc(sizeof(*spt), gfp_mask);
709 	if (!spt)
710 		return NULL;
711 
712 	spt->shadow_page.page = alloc_page(gfp_mask);
713 	if (!spt->shadow_page.page) {
714 		kfree(spt);
715 		return NULL;
716 	}
717 	return spt;
718 }
719 
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722 	__free_page(spt->shadow_page.page);
723 	kfree(spt);
724 }
725 
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 		struct intel_vgpu_oos_page *oos_page);
728 
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732 
733 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734 
735 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 		       PCI_DMA_BIDIRECTIONAL);
737 
738 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739 
740 	if (spt->guest_page.gfn) {
741 		if (spt->guest_page.oos_page)
742 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743 
744 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745 	}
746 
747 	list_del_init(&spt->post_shadow_list);
748 	free_spt(spt);
749 }
750 
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753 	struct intel_vgpu_ppgtt_spt *spt, *spn;
754 	struct radix_tree_iter iter;
755 	LIST_HEAD(all_spt);
756 	void __rcu **slot;
757 
758 	rcu_read_lock();
759 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
760 		spt = radix_tree_deref_slot(slot);
761 		list_move(&spt->post_shadow_list, &all_spt);
762 	}
763 	rcu_read_unlock();
764 
765 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
766 		ppgtt_free_spt(spt);
767 }
768 
769 static int ppgtt_handle_guest_write_page_table_bytes(
770 		struct intel_vgpu_ppgtt_spt *spt,
771 		u64 pa, void *p_data, int bytes);
772 
773 static int ppgtt_write_protection_handler(
774 		struct intel_vgpu_page_track *page_track,
775 		u64 gpa, void *data, int bytes)
776 {
777 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
778 
779 	int ret;
780 
781 	if (bytes != 4 && bytes != 8)
782 		return -EINVAL;
783 
784 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
785 	if (ret)
786 		return ret;
787 	return ret;
788 }
789 
790 /* Find a spt by guest gfn. */
791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
792 		struct intel_vgpu *vgpu, unsigned long gfn)
793 {
794 	struct intel_vgpu_page_track *track;
795 
796 	track = intel_vgpu_find_page_track(vgpu, gfn);
797 	if (track && track->handler == ppgtt_write_protection_handler)
798 		return track->priv_data;
799 
800 	return NULL;
801 }
802 
803 /* Find the spt by shadow page mfn. */
804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
805 		struct intel_vgpu *vgpu, unsigned long mfn)
806 {
807 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
808 }
809 
810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
811 
812 /* Allocate shadow page table without guest page. */
813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
814 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
815 {
816 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
817 	struct intel_vgpu_ppgtt_spt *spt = NULL;
818 	dma_addr_t daddr;
819 	int ret;
820 
821 retry:
822 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
823 	if (!spt) {
824 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
825 			goto retry;
826 
827 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
828 		return ERR_PTR(-ENOMEM);
829 	}
830 
831 	spt->vgpu = vgpu;
832 	atomic_set(&spt->refcount, 1);
833 	INIT_LIST_HEAD(&spt->post_shadow_list);
834 
835 	/*
836 	 * Init shadow_page.
837 	 */
838 	spt->shadow_page.type = type;
839 	daddr = dma_map_page(kdev, spt->shadow_page.page,
840 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
841 	if (dma_mapping_error(kdev, daddr)) {
842 		gvt_vgpu_err("fail to map dma addr\n");
843 		ret = -EINVAL;
844 		goto err_free_spt;
845 	}
846 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
847 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
848 
849 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
850 	if (ret)
851 		goto err_unmap_dma;
852 
853 	return spt;
854 
855 err_unmap_dma:
856 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
857 err_free_spt:
858 	free_spt(spt);
859 	return ERR_PTR(ret);
860 }
861 
862 /* Allocate shadow page table associated with specific gfn. */
863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
864 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
865 		unsigned long gfn, bool guest_pde_ips)
866 {
867 	struct intel_vgpu_ppgtt_spt *spt;
868 	int ret;
869 
870 	spt = ppgtt_alloc_spt(vgpu, type);
871 	if (IS_ERR(spt))
872 		return spt;
873 
874 	/*
875 	 * Init guest_page.
876 	 */
877 	ret = intel_vgpu_register_page_track(vgpu, gfn,
878 			ppgtt_write_protection_handler, spt);
879 	if (ret) {
880 		ppgtt_free_spt(spt);
881 		return ERR_PTR(ret);
882 	}
883 
884 	spt->guest_page.type = type;
885 	spt->guest_page.gfn = gfn;
886 	spt->guest_page.pde_ips = guest_pde_ips;
887 
888 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
889 
890 	return spt;
891 }
892 
893 #define pt_entry_size_shift(spt) \
894 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
895 
896 #define pt_entries(spt) \
897 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
898 
899 #define for_each_present_guest_entry(spt, e, i) \
900 	for (i = 0; i < pt_entries(spt); \
901 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 		if (!ppgtt_get_guest_entry(spt, e, i) && \
903 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904 
905 #define for_each_present_shadow_entry(spt, e, i) \
906 	for (i = 0; i < pt_entries(spt); \
907 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
909 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910 
911 #define for_each_shadow_entry(spt, e, i) \
912 	for (i = 0; i < pt_entries(spt); \
913 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
914 		if (!ppgtt_get_shadow_entry(spt, e, i))
915 
916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
917 {
918 	int v = atomic_read(&spt->refcount);
919 
920 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
921 	atomic_inc(&spt->refcount);
922 }
923 
924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
925 {
926 	int v = atomic_read(&spt->refcount);
927 
928 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
929 	return atomic_dec_return(&spt->refcount);
930 }
931 
932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
933 
934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
935 		struct intel_gvt_gtt_entry *e)
936 {
937 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
938 	struct intel_vgpu_ppgtt_spt *s;
939 	enum intel_gvt_gtt_type cur_pt_type;
940 
941 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
942 
943 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
944 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
945 		cur_pt_type = get_next_pt_type(e->type) + 1;
946 		if (ops->get_pfn(e) ==
947 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
948 			return 0;
949 	}
950 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
951 	if (!s) {
952 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
953 				ops->get_pfn(e));
954 		return -ENXIO;
955 	}
956 	return ppgtt_invalidate_spt(s);
957 }
958 
959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
960 		struct intel_gvt_gtt_entry *entry)
961 {
962 	struct intel_vgpu *vgpu = spt->vgpu;
963 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964 	unsigned long pfn;
965 	int type;
966 
967 	pfn = ops->get_pfn(entry);
968 	type = spt->shadow_page.type;
969 
970 	/* Uninitialized spte or unshadowed spte. */
971 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
972 		return;
973 
974 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
975 }
976 
977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
978 {
979 	struct intel_vgpu *vgpu = spt->vgpu;
980 	struct intel_gvt_gtt_entry e;
981 	unsigned long index;
982 	int ret;
983 
984 	trace_spt_change(spt->vgpu->id, "die", spt,
985 			spt->guest_page.gfn, spt->shadow_page.type);
986 
987 	if (ppgtt_put_spt(spt) > 0)
988 		return 0;
989 
990 	for_each_present_shadow_entry(spt, &e, index) {
991 		switch (e.type) {
992 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
993 			gvt_vdbg_mm("invalidate 4K entry\n");
994 			ppgtt_invalidate_pte(spt, &e);
995 			break;
996 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
997 			/* We don't setup 64K shadow entry so far. */
998 			WARN(1, "suspicious 64K gtt entry\n");
999 			continue;
1000 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1001 			gvt_vdbg_mm("invalidate 2M entry\n");
1002 			continue;
1003 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1004 			WARN(1, "GVT doesn't support 1GB page\n");
1005 			continue;
1006 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1007 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1008 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1009 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1010 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1011 					spt->vgpu, &e);
1012 			if (ret)
1013 				goto fail;
1014 			break;
1015 		default:
1016 			GEM_BUG_ON(1);
1017 		}
1018 	}
1019 
1020 	trace_spt_change(spt->vgpu->id, "release", spt,
1021 			 spt->guest_page.gfn, spt->shadow_page.type);
1022 	ppgtt_free_spt(spt);
1023 	return 0;
1024 fail:
1025 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1026 			spt, e.val64, e.type);
1027 	return ret;
1028 }
1029 
1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1031 {
1032 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1033 
1034 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1035 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1036 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1037 
1038 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1039 	} else if (INTEL_GEN(dev_priv) >= 11) {
1040 		/* 64K paging only controlled by IPS bit in PTE now. */
1041 		return true;
1042 	} else
1043 		return false;
1044 }
1045 
1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1047 
1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1049 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1050 {
1051 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1052 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1053 	bool ips = false;
1054 	int ret;
1055 
1056 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1057 
1058 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1059 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1060 
1061 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1062 	if (spt) {
1063 		ppgtt_get_spt(spt);
1064 
1065 		if (ips != spt->guest_page.pde_ips) {
1066 			spt->guest_page.pde_ips = ips;
1067 
1068 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1069 			clear_page(spt->shadow_page.vaddr);
1070 			ret = ppgtt_populate_spt(spt);
1071 			if (ret) {
1072 				ppgtt_put_spt(spt);
1073 				goto err;
1074 			}
1075 		}
1076 	} else {
1077 		int type = get_next_pt_type(we->type);
1078 
1079 		if (!gtt_type_is_pt(type))
1080 			goto err;
1081 
1082 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1083 		if (IS_ERR(spt)) {
1084 			ret = PTR_ERR(spt);
1085 			goto err;
1086 		}
1087 
1088 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1089 		if (ret)
1090 			goto err_free_spt;
1091 
1092 		ret = ppgtt_populate_spt(spt);
1093 		if (ret)
1094 			goto err_free_spt;
1095 
1096 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1097 				 spt->shadow_page.type);
1098 	}
1099 	return spt;
1100 
1101 err_free_spt:
1102 	ppgtt_free_spt(spt);
1103 err:
1104 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1105 		     spt, we->val64, we->type);
1106 	return ERR_PTR(ret);
1107 }
1108 
1109 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1110 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1111 {
1112 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1113 
1114 	se->type = ge->type;
1115 	se->val64 = ge->val64;
1116 
1117 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1118 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1119 		ops->clear_ips(se);
1120 
1121 	ops->set_pfn(se, s->shadow_page.mfn);
1122 }
1123 
1124 /**
1125  * Check if can do 2M page
1126  * @vgpu: target vgpu
1127  * @entry: target pfn's gtt entry
1128  *
1129  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1130  * negtive if found err.
1131  */
1132 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1133 	struct intel_gvt_gtt_entry *entry)
1134 {
1135 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1136 	unsigned long pfn;
1137 
1138 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1139 		return 0;
1140 
1141 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1142 	if (pfn == INTEL_GVT_INVALID_ADDR)
1143 		return -EINVAL;
1144 
1145 	return PageTransHuge(pfn_to_page(pfn));
1146 }
1147 
1148 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1149 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1150 	struct intel_gvt_gtt_entry *se)
1151 {
1152 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1153 	struct intel_vgpu_ppgtt_spt *sub_spt;
1154 	struct intel_gvt_gtt_entry sub_se;
1155 	unsigned long start_gfn;
1156 	dma_addr_t dma_addr;
1157 	unsigned long sub_index;
1158 	int ret;
1159 
1160 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1161 
1162 	start_gfn = ops->get_pfn(se);
1163 
1164 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1165 	if (IS_ERR(sub_spt))
1166 		return PTR_ERR(sub_spt);
1167 
1168 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1169 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1170 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1171 		if (ret) {
1172 			ppgtt_invalidate_spt(spt);
1173 			return ret;
1174 		}
1175 		sub_se.val64 = se->val64;
1176 
1177 		/* Copy the PAT field from PDE. */
1178 		sub_se.val64 &= ~_PAGE_PAT;
1179 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1180 
1181 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1182 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1183 	}
1184 
1185 	/* Clear dirty field. */
1186 	se->val64 &= ~_PAGE_DIRTY;
1187 
1188 	ops->clear_pse(se);
1189 	ops->clear_ips(se);
1190 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1191 	ppgtt_set_shadow_entry(spt, se, index);
1192 	return 0;
1193 }
1194 
1195 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1196 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1197 	struct intel_gvt_gtt_entry *se)
1198 {
1199 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1200 	struct intel_gvt_gtt_entry entry = *se;
1201 	unsigned long start_gfn;
1202 	dma_addr_t dma_addr;
1203 	int i, ret;
1204 
1205 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1206 
1207 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1208 
1209 	start_gfn = ops->get_pfn(se);
1210 
1211 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1212 	ops->set_64k_splited(&entry);
1213 
1214 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1215 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1216 					start_gfn + i, PAGE_SIZE, &dma_addr);
1217 		if (ret)
1218 			return ret;
1219 
1220 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1221 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1222 	}
1223 	return 0;
1224 }
1225 
1226 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1227 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1228 	struct intel_gvt_gtt_entry *ge)
1229 {
1230 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1231 	struct intel_gvt_gtt_entry se = *ge;
1232 	unsigned long gfn, page_size = PAGE_SIZE;
1233 	dma_addr_t dma_addr;
1234 	int ret;
1235 
1236 	if (!pte_ops->test_present(ge))
1237 		return 0;
1238 
1239 	gfn = pte_ops->get_pfn(ge);
1240 
1241 	switch (ge->type) {
1242 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1243 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1244 		break;
1245 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1246 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1247 		/*
1248 		 * The layout of 64K page is special, the page size is
1249 		 * controlled by uper PDE. To be simple, we always split
1250 		 * 64K page to smaller 4K pages in shadow PT.
1251 		 */
1252 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1253 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1254 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1255 		ret = is_2MB_gtt_possible(vgpu, ge);
1256 		if (ret == 0)
1257 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1258 		else if (ret < 0)
1259 			return ret;
1260 		page_size = I915_GTT_PAGE_SIZE_2M;
1261 		break;
1262 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1263 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1264 		return -EINVAL;
1265 	default:
1266 		GEM_BUG_ON(1);
1267 	};
1268 
1269 	/* direct shadow */
1270 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1271 						      &dma_addr);
1272 	if (ret)
1273 		return -ENXIO;
1274 
1275 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1276 	ppgtt_set_shadow_entry(spt, &se, index);
1277 	return 0;
1278 }
1279 
1280 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1281 {
1282 	struct intel_vgpu *vgpu = spt->vgpu;
1283 	struct intel_gvt *gvt = vgpu->gvt;
1284 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1285 	struct intel_vgpu_ppgtt_spt *s;
1286 	struct intel_gvt_gtt_entry se, ge;
1287 	unsigned long gfn, i;
1288 	int ret;
1289 
1290 	trace_spt_change(spt->vgpu->id, "born", spt,
1291 			 spt->guest_page.gfn, spt->shadow_page.type);
1292 
1293 	for_each_present_guest_entry(spt, &ge, i) {
1294 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1295 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1296 			if (IS_ERR(s)) {
1297 				ret = PTR_ERR(s);
1298 				goto fail;
1299 			}
1300 			ppgtt_get_shadow_entry(spt, &se, i);
1301 			ppgtt_generate_shadow_entry(&se, s, &ge);
1302 			ppgtt_set_shadow_entry(spt, &se, i);
1303 		} else {
1304 			gfn = ops->get_pfn(&ge);
1305 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1306 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1307 				ppgtt_set_shadow_entry(spt, &se, i);
1308 				continue;
1309 			}
1310 
1311 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1312 			if (ret)
1313 				goto fail;
1314 		}
1315 	}
1316 	return 0;
1317 fail:
1318 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1319 			spt, ge.val64, ge.type);
1320 	return ret;
1321 }
1322 
1323 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1324 		struct intel_gvt_gtt_entry *se, unsigned long index)
1325 {
1326 	struct intel_vgpu *vgpu = spt->vgpu;
1327 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1328 	int ret;
1329 
1330 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1331 			       spt->shadow_page.type, se->val64, index);
1332 
1333 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1334 		    se->type, index, se->val64);
1335 
1336 	if (!ops->test_present(se))
1337 		return 0;
1338 
1339 	if (ops->get_pfn(se) ==
1340 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1341 		return 0;
1342 
1343 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1344 		struct intel_vgpu_ppgtt_spt *s =
1345 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1346 		if (!s) {
1347 			gvt_vgpu_err("fail to find guest page\n");
1348 			ret = -ENXIO;
1349 			goto fail;
1350 		}
1351 		ret = ppgtt_invalidate_spt(s);
1352 		if (ret)
1353 			goto fail;
1354 	} else {
1355 		/* We don't setup 64K shadow entry so far. */
1356 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1357 		     "suspicious 64K entry\n");
1358 		ppgtt_invalidate_pte(spt, se);
1359 	}
1360 
1361 	return 0;
1362 fail:
1363 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1364 			spt, se->val64, se->type);
1365 	return ret;
1366 }
1367 
1368 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1369 		struct intel_gvt_gtt_entry *we, unsigned long index)
1370 {
1371 	struct intel_vgpu *vgpu = spt->vgpu;
1372 	struct intel_gvt_gtt_entry m;
1373 	struct intel_vgpu_ppgtt_spt *s;
1374 	int ret;
1375 
1376 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1377 			       we->val64, index);
1378 
1379 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1380 		    we->type, index, we->val64);
1381 
1382 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1383 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1384 		if (IS_ERR(s)) {
1385 			ret = PTR_ERR(s);
1386 			goto fail;
1387 		}
1388 		ppgtt_get_shadow_entry(spt, &m, index);
1389 		ppgtt_generate_shadow_entry(&m, s, we);
1390 		ppgtt_set_shadow_entry(spt, &m, index);
1391 	} else {
1392 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1393 		if (ret)
1394 			goto fail;
1395 	}
1396 	return 0;
1397 fail:
1398 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1399 		spt, we->val64, we->type);
1400 	return ret;
1401 }
1402 
1403 static int sync_oos_page(struct intel_vgpu *vgpu,
1404 		struct intel_vgpu_oos_page *oos_page)
1405 {
1406 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1407 	struct intel_gvt *gvt = vgpu->gvt;
1408 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1409 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1410 	struct intel_gvt_gtt_entry old, new;
1411 	int index;
1412 	int ret;
1413 
1414 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1415 			 spt, spt->guest_page.type);
1416 
1417 	old.type = new.type = get_entry_type(spt->guest_page.type);
1418 	old.val64 = new.val64 = 0;
1419 
1420 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1421 				info->gtt_entry_size_shift); index++) {
1422 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1423 		ops->get_entry(NULL, &new, index, true,
1424 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1425 
1426 		if (old.val64 == new.val64
1427 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1428 			continue;
1429 
1430 		trace_oos_sync(vgpu->id, oos_page->id,
1431 				spt, spt->guest_page.type,
1432 				new.val64, index);
1433 
1434 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1435 		if (ret)
1436 			return ret;
1437 
1438 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1439 	}
1440 
1441 	spt->guest_page.write_cnt = 0;
1442 	list_del_init(&spt->post_shadow_list);
1443 	return 0;
1444 }
1445 
1446 static int detach_oos_page(struct intel_vgpu *vgpu,
1447 		struct intel_vgpu_oos_page *oos_page)
1448 {
1449 	struct intel_gvt *gvt = vgpu->gvt;
1450 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1451 
1452 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1453 			 spt, spt->guest_page.type);
1454 
1455 	spt->guest_page.write_cnt = 0;
1456 	spt->guest_page.oos_page = NULL;
1457 	oos_page->spt = NULL;
1458 
1459 	list_del_init(&oos_page->vm_list);
1460 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1461 
1462 	return 0;
1463 }
1464 
1465 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1466 		struct intel_vgpu_ppgtt_spt *spt)
1467 {
1468 	struct intel_gvt *gvt = spt->vgpu->gvt;
1469 	int ret;
1470 
1471 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1472 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1473 			oos_page->mem, I915_GTT_PAGE_SIZE);
1474 	if (ret)
1475 		return ret;
1476 
1477 	oos_page->spt = spt;
1478 	spt->guest_page.oos_page = oos_page;
1479 
1480 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1481 
1482 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1483 			 spt, spt->guest_page.type);
1484 	return 0;
1485 }
1486 
1487 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1488 {
1489 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1490 	int ret;
1491 
1492 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1493 	if (ret)
1494 		return ret;
1495 
1496 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1497 			 spt, spt->guest_page.type);
1498 
1499 	list_del_init(&oos_page->vm_list);
1500 	return sync_oos_page(spt->vgpu, oos_page);
1501 }
1502 
1503 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1504 {
1505 	struct intel_gvt *gvt = spt->vgpu->gvt;
1506 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1507 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1508 	int ret;
1509 
1510 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1511 
1512 	if (list_empty(&gtt->oos_page_free_list_head)) {
1513 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1514 			struct intel_vgpu_oos_page, list);
1515 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1516 		if (ret)
1517 			return ret;
1518 		ret = detach_oos_page(spt->vgpu, oos_page);
1519 		if (ret)
1520 			return ret;
1521 	} else
1522 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1523 			struct intel_vgpu_oos_page, list);
1524 	return attach_oos_page(oos_page, spt);
1525 }
1526 
1527 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1528 {
1529 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1530 
1531 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1532 		return -EINVAL;
1533 
1534 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1535 			 spt, spt->guest_page.type);
1536 
1537 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1538 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1539 }
1540 
1541 /**
1542  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1543  * @vgpu: a vGPU
1544  *
1545  * This function is called before submitting a guest workload to host,
1546  * to sync all the out-of-synced shadow for vGPU
1547  *
1548  * Returns:
1549  * Zero on success, negative error code if failed.
1550  */
1551 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1552 {
1553 	struct list_head *pos, *n;
1554 	struct intel_vgpu_oos_page *oos_page;
1555 	int ret;
1556 
1557 	if (!enable_out_of_sync)
1558 		return 0;
1559 
1560 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1561 		oos_page = container_of(pos,
1562 				struct intel_vgpu_oos_page, vm_list);
1563 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1564 		if (ret)
1565 			return ret;
1566 	}
1567 	return 0;
1568 }
1569 
1570 /*
1571  * The heart of PPGTT shadow page table.
1572  */
1573 static int ppgtt_handle_guest_write_page_table(
1574 		struct intel_vgpu_ppgtt_spt *spt,
1575 		struct intel_gvt_gtt_entry *we, unsigned long index)
1576 {
1577 	struct intel_vgpu *vgpu = spt->vgpu;
1578 	int type = spt->shadow_page.type;
1579 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1580 	struct intel_gvt_gtt_entry old_se;
1581 	int new_present;
1582 	int i, ret;
1583 
1584 	new_present = ops->test_present(we);
1585 
1586 	/*
1587 	 * Adding the new entry first and then removing the old one, that can
1588 	 * guarantee the ppgtt table is validated during the window between
1589 	 * adding and removal.
1590 	 */
1591 	ppgtt_get_shadow_entry(spt, &old_se, index);
1592 
1593 	if (new_present) {
1594 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1595 		if (ret)
1596 			goto fail;
1597 	}
1598 
1599 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1600 	if (ret)
1601 		goto fail;
1602 
1603 	if (!new_present) {
1604 		/* For 64KB splited entries, we need clear them all. */
1605 		if (ops->test_64k_splited(&old_se) &&
1606 		    !(index % GTT_64K_PTE_STRIDE)) {
1607 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1608 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1609 				ops->clear_64k_splited(&old_se);
1610 				ops->set_pfn(&old_se,
1611 					vgpu->gtt.scratch_pt[type].page_mfn);
1612 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1613 			}
1614 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1615 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1616 			ops->clear_pse(&old_se);
1617 			ops->set_pfn(&old_se,
1618 				     vgpu->gtt.scratch_pt[type].page_mfn);
1619 			ppgtt_set_shadow_entry(spt, &old_se, index);
1620 		} else {
1621 			ops->set_pfn(&old_se,
1622 				     vgpu->gtt.scratch_pt[type].page_mfn);
1623 			ppgtt_set_shadow_entry(spt, &old_se, index);
1624 		}
1625 	}
1626 
1627 	return 0;
1628 fail:
1629 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1630 			spt, we->val64, we->type);
1631 	return ret;
1632 }
1633 
1634 
1635 
1636 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1637 {
1638 	return enable_out_of_sync
1639 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1640 		&& spt->guest_page.write_cnt >= 2;
1641 }
1642 
1643 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1644 		unsigned long index)
1645 {
1646 	set_bit(index, spt->post_shadow_bitmap);
1647 	if (!list_empty(&spt->post_shadow_list))
1648 		return;
1649 
1650 	list_add_tail(&spt->post_shadow_list,
1651 			&spt->vgpu->gtt.post_shadow_list_head);
1652 }
1653 
1654 /**
1655  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1656  * @vgpu: a vGPU
1657  *
1658  * This function is called before submitting a guest workload to host,
1659  * to flush all the post shadows for a vGPU.
1660  *
1661  * Returns:
1662  * Zero on success, negative error code if failed.
1663  */
1664 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1665 {
1666 	struct list_head *pos, *n;
1667 	struct intel_vgpu_ppgtt_spt *spt;
1668 	struct intel_gvt_gtt_entry ge;
1669 	unsigned long index;
1670 	int ret;
1671 
1672 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1673 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1674 				post_shadow_list);
1675 
1676 		for_each_set_bit(index, spt->post_shadow_bitmap,
1677 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1678 			ppgtt_get_guest_entry(spt, &ge, index);
1679 
1680 			ret = ppgtt_handle_guest_write_page_table(spt,
1681 							&ge, index);
1682 			if (ret)
1683 				return ret;
1684 			clear_bit(index, spt->post_shadow_bitmap);
1685 		}
1686 		list_del_init(&spt->post_shadow_list);
1687 	}
1688 	return 0;
1689 }
1690 
1691 static int ppgtt_handle_guest_write_page_table_bytes(
1692 		struct intel_vgpu_ppgtt_spt *spt,
1693 		u64 pa, void *p_data, int bytes)
1694 {
1695 	struct intel_vgpu *vgpu = spt->vgpu;
1696 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1697 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1698 	struct intel_gvt_gtt_entry we, se;
1699 	unsigned long index;
1700 	int ret;
1701 
1702 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1703 
1704 	ppgtt_get_guest_entry(spt, &we, index);
1705 
1706 	/*
1707 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1708 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1709 	 * ignored.
1710 	 */
1711 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1712 	    (index % GTT_64K_PTE_STRIDE)) {
1713 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1714 			    index);
1715 		return 0;
1716 	}
1717 
1718 	if (bytes == info->gtt_entry_size) {
1719 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1720 		if (ret)
1721 			return ret;
1722 	} else {
1723 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1724 			int type = spt->shadow_page.type;
1725 
1726 			ppgtt_get_shadow_entry(spt, &se, index);
1727 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1728 			if (ret)
1729 				return ret;
1730 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1731 			ppgtt_set_shadow_entry(spt, &se, index);
1732 		}
1733 		ppgtt_set_post_shadow(spt, index);
1734 	}
1735 
1736 	if (!enable_out_of_sync)
1737 		return 0;
1738 
1739 	spt->guest_page.write_cnt++;
1740 
1741 	if (spt->guest_page.oos_page)
1742 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1743 				false, 0, vgpu);
1744 
1745 	if (can_do_out_of_sync(spt)) {
1746 		if (!spt->guest_page.oos_page)
1747 			ppgtt_allocate_oos_page(spt);
1748 
1749 		ret = ppgtt_set_guest_page_oos(spt);
1750 		if (ret < 0)
1751 			return ret;
1752 	}
1753 	return 0;
1754 }
1755 
1756 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1757 {
1758 	struct intel_vgpu *vgpu = mm->vgpu;
1759 	struct intel_gvt *gvt = vgpu->gvt;
1760 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1761 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1762 	struct intel_gvt_gtt_entry se;
1763 	int index;
1764 
1765 	if (!mm->ppgtt_mm.shadowed)
1766 		return;
1767 
1768 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1769 		ppgtt_get_shadow_root_entry(mm, &se, index);
1770 
1771 		if (!ops->test_present(&se))
1772 			continue;
1773 
1774 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1775 		se.val64 = 0;
1776 		ppgtt_set_shadow_root_entry(mm, &se, index);
1777 
1778 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1779 				       NULL, se.type, se.val64, index);
1780 	}
1781 
1782 	mm->ppgtt_mm.shadowed = false;
1783 }
1784 
1785 
1786 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1787 {
1788 	struct intel_vgpu *vgpu = mm->vgpu;
1789 	struct intel_gvt *gvt = vgpu->gvt;
1790 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1791 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1792 	struct intel_vgpu_ppgtt_spt *spt;
1793 	struct intel_gvt_gtt_entry ge, se;
1794 	int index, ret;
1795 
1796 	if (mm->ppgtt_mm.shadowed)
1797 		return 0;
1798 
1799 	mm->ppgtt_mm.shadowed = true;
1800 
1801 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1802 		ppgtt_get_guest_root_entry(mm, &ge, index);
1803 
1804 		if (!ops->test_present(&ge))
1805 			continue;
1806 
1807 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1808 				       ge.type, ge.val64, index);
1809 
1810 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1811 		if (IS_ERR(spt)) {
1812 			gvt_vgpu_err("fail to populate guest root pointer\n");
1813 			ret = PTR_ERR(spt);
1814 			goto fail;
1815 		}
1816 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1817 		ppgtt_set_shadow_root_entry(mm, &se, index);
1818 
1819 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1820 				       NULL, se.type, se.val64, index);
1821 	}
1822 
1823 	return 0;
1824 fail:
1825 	invalidate_ppgtt_mm(mm);
1826 	return ret;
1827 }
1828 
1829 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1830 {
1831 	struct intel_vgpu_mm *mm;
1832 
1833 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1834 	if (!mm)
1835 		return NULL;
1836 
1837 	mm->vgpu = vgpu;
1838 	kref_init(&mm->ref);
1839 	atomic_set(&mm->pincount, 0);
1840 
1841 	return mm;
1842 }
1843 
1844 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1845 {
1846 	kfree(mm);
1847 }
1848 
1849 /**
1850  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1851  * @vgpu: a vGPU
1852  * @root_entry_type: ppgtt root entry type
1853  * @pdps: guest pdps.
1854  *
1855  * This function is used to create a ppgtt mm object for a vGPU.
1856  *
1857  * Returns:
1858  * Zero on success, negative error code in pointer if failed.
1859  */
1860 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1861 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1862 {
1863 	struct intel_gvt *gvt = vgpu->gvt;
1864 	struct intel_vgpu_mm *mm;
1865 	int ret;
1866 
1867 	mm = vgpu_alloc_mm(vgpu);
1868 	if (!mm)
1869 		return ERR_PTR(-ENOMEM);
1870 
1871 	mm->type = INTEL_GVT_MM_PPGTT;
1872 
1873 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1874 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1875 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1876 
1877 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1878 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1879 
1880 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1881 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1882 	else
1883 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1884 		       sizeof(mm->ppgtt_mm.guest_pdps));
1885 
1886 	ret = shadow_ppgtt_mm(mm);
1887 	if (ret) {
1888 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1889 		vgpu_free_mm(mm);
1890 		return ERR_PTR(ret);
1891 	}
1892 
1893 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1894 
1895 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1896 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1897 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1898 
1899 	return mm;
1900 }
1901 
1902 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1903 {
1904 	struct intel_vgpu_mm *mm;
1905 	unsigned long nr_entries;
1906 
1907 	mm = vgpu_alloc_mm(vgpu);
1908 	if (!mm)
1909 		return ERR_PTR(-ENOMEM);
1910 
1911 	mm->type = INTEL_GVT_MM_GGTT;
1912 
1913 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1914 	mm->ggtt_mm.virtual_ggtt =
1915 		vzalloc(array_size(nr_entries,
1916 				   vgpu->gvt->device_info.gtt_entry_size));
1917 	if (!mm->ggtt_mm.virtual_ggtt) {
1918 		vgpu_free_mm(mm);
1919 		return ERR_PTR(-ENOMEM);
1920 	}
1921 
1922 	return mm;
1923 }
1924 
1925 /**
1926  * _intel_vgpu_mm_release - destroy a mm object
1927  * @mm_ref: a kref object
1928  *
1929  * This function is used to destroy a mm object for vGPU
1930  *
1931  */
1932 void _intel_vgpu_mm_release(struct kref *mm_ref)
1933 {
1934 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1935 
1936 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1937 		gvt_err("vgpu mm pin count bug detected\n");
1938 
1939 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1940 		list_del(&mm->ppgtt_mm.list);
1941 		list_del(&mm->ppgtt_mm.lru_list);
1942 		invalidate_ppgtt_mm(mm);
1943 	} else {
1944 		vfree(mm->ggtt_mm.virtual_ggtt);
1945 	}
1946 
1947 	vgpu_free_mm(mm);
1948 }
1949 
1950 /**
1951  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1952  * @mm: a vGPU mm object
1953  *
1954  * This function is called when user doesn't want to use a vGPU mm object
1955  */
1956 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1957 {
1958 	atomic_dec_if_positive(&mm->pincount);
1959 }
1960 
1961 /**
1962  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1963  * @mm: target vgpu mm
1964  *
1965  * This function is called when user wants to use a vGPU mm object. If this
1966  * mm object hasn't been shadowed yet, the shadow will be populated at this
1967  * time.
1968  *
1969  * Returns:
1970  * Zero on success, negative error code if failed.
1971  */
1972 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1973 {
1974 	int ret;
1975 
1976 	atomic_inc(&mm->pincount);
1977 
1978 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1979 		ret = shadow_ppgtt_mm(mm);
1980 		if (ret)
1981 			return ret;
1982 
1983 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1984 		list_move_tail(&mm->ppgtt_mm.lru_list,
1985 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1986 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1993 {
1994 	struct intel_vgpu_mm *mm;
1995 	struct list_head *pos, *n;
1996 
1997 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1998 
1999 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2000 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2001 
2002 		if (atomic_read(&mm->pincount))
2003 			continue;
2004 
2005 		list_del_init(&mm->ppgtt_mm.lru_list);
2006 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2007 		invalidate_ppgtt_mm(mm);
2008 		return 1;
2009 	}
2010 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2011 	return 0;
2012 }
2013 
2014 /*
2015  * GMA translation APIs.
2016  */
2017 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2018 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2019 {
2020 	struct intel_vgpu *vgpu = mm->vgpu;
2021 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2022 	struct intel_vgpu_ppgtt_spt *s;
2023 
2024 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2025 	if (!s)
2026 		return -ENXIO;
2027 
2028 	if (!guest)
2029 		ppgtt_get_shadow_entry(s, e, index);
2030 	else
2031 		ppgtt_get_guest_entry(s, e, index);
2032 	return 0;
2033 }
2034 
2035 /**
2036  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2037  * @mm: mm object. could be a PPGTT or GGTT mm object
2038  * @gma: graphics memory address in this mm object
2039  *
2040  * This function is used to translate a graphics memory address in specific
2041  * graphics memory space to guest physical address.
2042  *
2043  * Returns:
2044  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2045  */
2046 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2047 {
2048 	struct intel_vgpu *vgpu = mm->vgpu;
2049 	struct intel_gvt *gvt = vgpu->gvt;
2050 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2051 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2052 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2053 	unsigned long gma_index[4];
2054 	struct intel_gvt_gtt_entry e;
2055 	int i, levels = 0;
2056 	int ret;
2057 
2058 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2059 		   mm->type != INTEL_GVT_MM_PPGTT);
2060 
2061 	if (mm->type == INTEL_GVT_MM_GGTT) {
2062 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2063 			goto err;
2064 
2065 		ggtt_get_guest_entry(mm, &e,
2066 			gma_ops->gma_to_ggtt_pte_index(gma));
2067 
2068 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2069 			+ (gma & ~I915_GTT_PAGE_MASK);
2070 
2071 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2072 	} else {
2073 		switch (mm->ppgtt_mm.root_entry_type) {
2074 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2075 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2076 
2077 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2078 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2079 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2080 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2081 			levels = 4;
2082 			break;
2083 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2084 			ppgtt_get_shadow_root_entry(mm, &e,
2085 					gma_ops->gma_to_l3_pdp_index(gma));
2086 
2087 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2088 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2089 			levels = 2;
2090 			break;
2091 		default:
2092 			GEM_BUG_ON(1);
2093 		}
2094 
2095 		/* walk the shadow page table and get gpa from guest entry */
2096 		for (i = 0; i < levels; i++) {
2097 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2098 				(i == levels - 1));
2099 			if (ret)
2100 				goto err;
2101 
2102 			if (!pte_ops->test_present(&e)) {
2103 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2104 				goto err;
2105 			}
2106 		}
2107 
2108 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2109 					(gma & ~I915_GTT_PAGE_MASK);
2110 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2111 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2112 	}
2113 
2114 	return gpa;
2115 err:
2116 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2117 	return INTEL_GVT_INVALID_ADDR;
2118 }
2119 
2120 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2121 	unsigned int off, void *p_data, unsigned int bytes)
2122 {
2123 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2124 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2125 	unsigned long index = off >> info->gtt_entry_size_shift;
2126 	struct intel_gvt_gtt_entry e;
2127 
2128 	if (bytes != 4 && bytes != 8)
2129 		return -EINVAL;
2130 
2131 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2132 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2133 			bytes);
2134 	return 0;
2135 }
2136 
2137 /**
2138  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2139  * @vgpu: a vGPU
2140  * @off: register offset
2141  * @p_data: data will be returned to guest
2142  * @bytes: data length
2143  *
2144  * This function is used to emulate the GTT MMIO register read
2145  *
2146  * Returns:
2147  * Zero on success, error code if failed.
2148  */
2149 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2150 	void *p_data, unsigned int bytes)
2151 {
2152 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2153 	int ret;
2154 
2155 	if (bytes != 4 && bytes != 8)
2156 		return -EINVAL;
2157 
2158 	off -= info->gtt_start_offset;
2159 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2160 	return ret;
2161 }
2162 
2163 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2164 		struct intel_gvt_gtt_entry *entry)
2165 {
2166 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2167 	unsigned long pfn;
2168 
2169 	pfn = pte_ops->get_pfn(entry);
2170 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2171 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2172 						pfn << PAGE_SHIFT);
2173 }
2174 
2175 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2176 	void *p_data, unsigned int bytes)
2177 {
2178 	struct intel_gvt *gvt = vgpu->gvt;
2179 	const struct intel_gvt_device_info *info = &gvt->device_info;
2180 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2181 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2182 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2183 	unsigned long gma, gfn;
2184 	struct intel_gvt_gtt_entry e, m;
2185 	dma_addr_t dma_addr;
2186 	int ret;
2187 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2188 	bool partial_update = false;
2189 
2190 	if (bytes != 4 && bytes != 8)
2191 		return -EINVAL;
2192 
2193 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2194 
2195 	/* the VM may configure the whole GM space when ballooning is used */
2196 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2197 		return 0;
2198 
2199 	e.type = GTT_TYPE_GGTT_PTE;
2200 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2201 			bytes);
2202 
2203 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2204 	 * write, save the first 4 bytes in a list and update virtual
2205 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2206 	 */
2207 	if (bytes < info->gtt_entry_size) {
2208 		bool found = false;
2209 
2210 		list_for_each_entry_safe(pos, n,
2211 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2212 			if (g_gtt_index == pos->offset >>
2213 					info->gtt_entry_size_shift) {
2214 				if (off != pos->offset) {
2215 					/* the second partial part*/
2216 					int last_off = pos->offset &
2217 						(info->gtt_entry_size - 1);
2218 
2219 					memcpy((void *)&e.val64 + last_off,
2220 						(void *)&pos->data + last_off,
2221 						bytes);
2222 
2223 					list_del(&pos->list);
2224 					kfree(pos);
2225 					found = true;
2226 					break;
2227 				}
2228 
2229 				/* update of the first partial part */
2230 				pos->data = e.val64;
2231 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2232 				return 0;
2233 			}
2234 		}
2235 
2236 		if (!found) {
2237 			/* the first partial part */
2238 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2239 			if (!partial_pte)
2240 				return -ENOMEM;
2241 			partial_pte->offset = off;
2242 			partial_pte->data = e.val64;
2243 			list_add_tail(&partial_pte->list,
2244 				&ggtt_mm->ggtt_mm.partial_pte_list);
2245 			partial_update = true;
2246 		}
2247 	}
2248 
2249 	if (!partial_update && (ops->test_present(&e))) {
2250 		gfn = ops->get_pfn(&e);
2251 		m = e;
2252 
2253 		/* one PTE update may be issued in multiple writes and the
2254 		 * first write may not construct a valid gfn
2255 		 */
2256 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2257 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2258 			goto out;
2259 		}
2260 
2261 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2262 							PAGE_SIZE, &dma_addr);
2263 		if (ret) {
2264 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2265 			/* guest driver may read/write the entry when partial
2266 			 * update the entry in this situation p2m will fail
2267 			 * settting the shadow entry to point to a scratch page
2268 			 */
2269 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2270 		} else
2271 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2272 	} else {
2273 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2274 		ops->clear_present(&m);
2275 	}
2276 
2277 out:
2278 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2279 
2280 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2281 	ggtt_invalidate_pte(vgpu, &e);
2282 
2283 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2284 	ggtt_invalidate(gvt->dev_priv);
2285 	return 0;
2286 }
2287 
2288 /*
2289  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2290  * @vgpu: a vGPU
2291  * @off: register offset
2292  * @p_data: data from guest write
2293  * @bytes: data length
2294  *
2295  * This function is used to emulate the GTT MMIO register write
2296  *
2297  * Returns:
2298  * Zero on success, error code if failed.
2299  */
2300 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2301 		unsigned int off, void *p_data, unsigned int bytes)
2302 {
2303 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2304 	int ret;
2305 
2306 	if (bytes != 4 && bytes != 8)
2307 		return -EINVAL;
2308 
2309 	off -= info->gtt_start_offset;
2310 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2311 	return ret;
2312 }
2313 
2314 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2315 		enum intel_gvt_gtt_type type)
2316 {
2317 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2318 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2319 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2320 				vgpu->gvt->device_info.gtt_entry_size_shift;
2321 	void *scratch_pt;
2322 	int i;
2323 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2324 	dma_addr_t daddr;
2325 
2326 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2327 		return -EINVAL;
2328 
2329 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2330 	if (!scratch_pt) {
2331 		gvt_vgpu_err("fail to allocate scratch page\n");
2332 		return -ENOMEM;
2333 	}
2334 
2335 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2336 			4096, PCI_DMA_BIDIRECTIONAL);
2337 	if (dma_mapping_error(dev, daddr)) {
2338 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2339 		__free_page(virt_to_page(scratch_pt));
2340 		return -ENOMEM;
2341 	}
2342 	gtt->scratch_pt[type].page_mfn =
2343 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2344 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2345 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2346 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2347 
2348 	/* Build the tree by full filled the scratch pt with the entries which
2349 	 * point to the next level scratch pt or scratch page. The
2350 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2351 	 * 'type' pt.
2352 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2353 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2354 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2355 	 */
2356 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2357 		struct intel_gvt_gtt_entry se;
2358 
2359 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2360 		se.type = get_entry_type(type - 1);
2361 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2362 
2363 		/* The entry parameters like present/writeable/cache type
2364 		 * set to the same as i915's scratch page tree.
2365 		 */
2366 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2367 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2368 			se.val64 |= PPAT_CACHED;
2369 
2370 		for (i = 0; i < page_entry_num; i++)
2371 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2372 	}
2373 
2374 	return 0;
2375 }
2376 
2377 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2378 {
2379 	int i;
2380 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2381 	dma_addr_t daddr;
2382 
2383 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2384 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2385 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2386 					I915_GTT_PAGE_SHIFT);
2387 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2388 			__free_page(vgpu->gtt.scratch_pt[i].page);
2389 			vgpu->gtt.scratch_pt[i].page = NULL;
2390 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2391 		}
2392 	}
2393 
2394 	return 0;
2395 }
2396 
2397 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2398 {
2399 	int i, ret;
2400 
2401 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2402 		ret = alloc_scratch_pages(vgpu, i);
2403 		if (ret)
2404 			goto err;
2405 	}
2406 
2407 	return 0;
2408 
2409 err:
2410 	release_scratch_page_tree(vgpu);
2411 	return ret;
2412 }
2413 
2414 /**
2415  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2416  * @vgpu: a vGPU
2417  *
2418  * This function is used to initialize per-vGPU graphics memory virtualization
2419  * components.
2420  *
2421  * Returns:
2422  * Zero on success, error code if failed.
2423  */
2424 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2425 {
2426 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2427 
2428 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2429 
2430 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2431 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2432 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2433 
2434 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2435 	if (IS_ERR(gtt->ggtt_mm)) {
2436 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2437 		return PTR_ERR(gtt->ggtt_mm);
2438 	}
2439 
2440 	intel_vgpu_reset_ggtt(vgpu, false);
2441 
2442 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2443 
2444 	return create_scratch_page_tree(vgpu);
2445 }
2446 
2447 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2448 {
2449 	struct list_head *pos, *n;
2450 	struct intel_vgpu_mm *mm;
2451 
2452 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2453 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2454 		intel_vgpu_destroy_mm(mm);
2455 	}
2456 
2457 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2458 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2459 
2460 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2461 		gvt_err("Why we still has spt not freed?\n");
2462 		ppgtt_free_all_spt(vgpu);
2463 	}
2464 }
2465 
2466 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2467 {
2468 	struct intel_gvt_partial_pte *pos, *next;
2469 
2470 	list_for_each_entry_safe(pos, next,
2471 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2472 				 list) {
2473 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2474 			pos->offset, pos->data);
2475 		kfree(pos);
2476 	}
2477 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2478 	vgpu->gtt.ggtt_mm = NULL;
2479 }
2480 
2481 /**
2482  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2483  * @vgpu: a vGPU
2484  *
2485  * This function is used to clean up per-vGPU graphics memory virtualization
2486  * components.
2487  *
2488  * Returns:
2489  * Zero on success, error code if failed.
2490  */
2491 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2492 {
2493 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2494 	intel_vgpu_destroy_ggtt_mm(vgpu);
2495 	release_scratch_page_tree(vgpu);
2496 }
2497 
2498 static void clean_spt_oos(struct intel_gvt *gvt)
2499 {
2500 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2501 	struct list_head *pos, *n;
2502 	struct intel_vgpu_oos_page *oos_page;
2503 
2504 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2505 		"someone is still using oos page\n");
2506 
2507 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2508 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2509 		list_del(&oos_page->list);
2510 		free_page((unsigned long)oos_page->mem);
2511 		kfree(oos_page);
2512 	}
2513 }
2514 
2515 static int setup_spt_oos(struct intel_gvt *gvt)
2516 {
2517 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2518 	struct intel_vgpu_oos_page *oos_page;
2519 	int i;
2520 	int ret;
2521 
2522 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2523 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2524 
2525 	for (i = 0; i < preallocated_oos_pages; i++) {
2526 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2527 		if (!oos_page) {
2528 			ret = -ENOMEM;
2529 			goto fail;
2530 		}
2531 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2532 		if (!oos_page->mem) {
2533 			ret = -ENOMEM;
2534 			kfree(oos_page);
2535 			goto fail;
2536 		}
2537 
2538 		INIT_LIST_HEAD(&oos_page->list);
2539 		INIT_LIST_HEAD(&oos_page->vm_list);
2540 		oos_page->id = i;
2541 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2542 	}
2543 
2544 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2545 
2546 	return 0;
2547 fail:
2548 	clean_spt_oos(gvt);
2549 	return ret;
2550 }
2551 
2552 /**
2553  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2554  * @vgpu: a vGPU
2555  * @pdps: pdp root array
2556  *
2557  * This function is used to find a PPGTT mm object from mm object pool
2558  *
2559  * Returns:
2560  * pointer to mm object on success, NULL if failed.
2561  */
2562 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2563 		u64 pdps[])
2564 {
2565 	struct intel_vgpu_mm *mm;
2566 	struct list_head *pos;
2567 
2568 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2569 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2570 
2571 		switch (mm->ppgtt_mm.root_entry_type) {
2572 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2573 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2574 				return mm;
2575 			break;
2576 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2577 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2578 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2579 				return mm;
2580 			break;
2581 		default:
2582 			GEM_BUG_ON(1);
2583 		}
2584 	}
2585 	return NULL;
2586 }
2587 
2588 /**
2589  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2590  * @vgpu: a vGPU
2591  * @root_entry_type: ppgtt root entry type
2592  * @pdps: guest pdps
2593  *
2594  * This function is used to find or create a PPGTT mm object from a guest.
2595  *
2596  * Returns:
2597  * Zero on success, negative error code if failed.
2598  */
2599 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2600 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2601 {
2602 	struct intel_vgpu_mm *mm;
2603 
2604 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2605 	if (mm) {
2606 		intel_vgpu_mm_get(mm);
2607 	} else {
2608 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2609 		if (IS_ERR(mm))
2610 			gvt_vgpu_err("fail to create mm\n");
2611 	}
2612 	return mm;
2613 }
2614 
2615 /**
2616  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2617  * @vgpu: a vGPU
2618  * @pdps: guest pdps
2619  *
2620  * This function is used to find a PPGTT mm object from a guest and destroy it.
2621  *
2622  * Returns:
2623  * Zero on success, negative error code if failed.
2624  */
2625 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2626 {
2627 	struct intel_vgpu_mm *mm;
2628 
2629 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2630 	if (!mm) {
2631 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2632 		return -EINVAL;
2633 	}
2634 	intel_vgpu_mm_put(mm);
2635 	return 0;
2636 }
2637 
2638 /**
2639  * intel_gvt_init_gtt - initialize mm components of a GVT device
2640  * @gvt: GVT device
2641  *
2642  * This function is called at the initialization stage, to initialize
2643  * the mm components of a GVT device.
2644  *
2645  * Returns:
2646  * zero on success, negative error code if failed.
2647  */
2648 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2649 {
2650 	int ret;
2651 	void *page;
2652 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2653 	dma_addr_t daddr;
2654 
2655 	gvt_dbg_core("init gtt\n");
2656 
2657 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2658 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2659 
2660 	page = (void *)get_zeroed_page(GFP_KERNEL);
2661 	if (!page) {
2662 		gvt_err("fail to allocate scratch ggtt page\n");
2663 		return -ENOMEM;
2664 	}
2665 
2666 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2667 			4096, PCI_DMA_BIDIRECTIONAL);
2668 	if (dma_mapping_error(dev, daddr)) {
2669 		gvt_err("fail to dmamap scratch ggtt page\n");
2670 		__free_page(virt_to_page(page));
2671 		return -ENOMEM;
2672 	}
2673 
2674 	gvt->gtt.scratch_page = virt_to_page(page);
2675 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2676 
2677 	if (enable_out_of_sync) {
2678 		ret = setup_spt_oos(gvt);
2679 		if (ret) {
2680 			gvt_err("fail to initialize SPT oos\n");
2681 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2682 			__free_page(gvt->gtt.scratch_page);
2683 			return ret;
2684 		}
2685 	}
2686 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2687 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2688 	return 0;
2689 }
2690 
2691 /**
2692  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2693  * @gvt: GVT device
2694  *
2695  * This function is called at the driver unloading stage, to clean up the
2696  * the mm components of a GVT device.
2697  *
2698  */
2699 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2700 {
2701 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2702 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2703 					I915_GTT_PAGE_SHIFT);
2704 
2705 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2706 
2707 	__free_page(gvt->gtt.scratch_page);
2708 
2709 	if (enable_out_of_sync)
2710 		clean_spt_oos(gvt);
2711 }
2712 
2713 /**
2714  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2715  * @vgpu: a vGPU
2716  *
2717  * This function is called when invalidate all PPGTT instances of a vGPU.
2718  *
2719  */
2720 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2721 {
2722 	struct list_head *pos, *n;
2723 	struct intel_vgpu_mm *mm;
2724 
2725 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2726 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2727 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2728 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2729 			list_del_init(&mm->ppgtt_mm.lru_list);
2730 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2731 			if (mm->ppgtt_mm.shadowed)
2732 				invalidate_ppgtt_mm(mm);
2733 		}
2734 	}
2735 }
2736 
2737 /**
2738  * intel_vgpu_reset_ggtt - reset the GGTT entry
2739  * @vgpu: a vGPU
2740  * @invalidate_old: invalidate old entries
2741  *
2742  * This function is called at the vGPU create stage
2743  * to reset all the GGTT entries.
2744  *
2745  */
2746 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2747 {
2748 	struct intel_gvt *gvt = vgpu->gvt;
2749 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2750 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2751 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2752 	struct intel_gvt_gtt_entry old_entry;
2753 	u32 index;
2754 	u32 num_entries;
2755 
2756 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2757 	pte_ops->set_present(&entry);
2758 
2759 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2760 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2761 	while (num_entries--) {
2762 		if (invalidate_old) {
2763 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2764 			ggtt_invalidate_pte(vgpu, &old_entry);
2765 		}
2766 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2767 	}
2768 
2769 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2770 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2771 	while (num_entries--) {
2772 		if (invalidate_old) {
2773 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2774 			ggtt_invalidate_pte(vgpu, &old_entry);
2775 		}
2776 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2777 	}
2778 
2779 	ggtt_invalidate(dev_priv);
2780 }
2781 
2782 /**
2783  * intel_vgpu_reset_gtt - reset the all GTT related status
2784  * @vgpu: a vGPU
2785  *
2786  * This function is called from vfio core to reset reset all
2787  * GTT related status, including GGTT, PPGTT, scratch page.
2788  *
2789  */
2790 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2791 {
2792 	/* Shadow pages are only created when there is no page
2793 	 * table tracking data, so remove page tracking data after
2794 	 * removing the shadow pages.
2795 	 */
2796 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2797 	intel_vgpu_reset_ggtt(vgpu, true);
2798 }
2799