1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size 57 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) { 58 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n", 59 addr, size); 60 return false; 61 } 62 return true; 63 } 64 65 /* translate a guest gmadr to host gmadr */ 66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 67 { 68 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 69 "invalid guest gmadr %llx\n", g_addr)) 70 return -EACCES; 71 72 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 73 *h_addr = vgpu_aperture_gmadr_base(vgpu) 74 + (g_addr - vgpu_aperture_offset(vgpu)); 75 else 76 *h_addr = vgpu_hidden_gmadr_base(vgpu) 77 + (g_addr - vgpu_hidden_offset(vgpu)); 78 return 0; 79 } 80 81 /* translate a host gmadr to guest gmadr */ 82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 83 { 84 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 85 "invalid host gmadr %llx\n", h_addr)) 86 return -EACCES; 87 88 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 89 *g_addr = vgpu_aperture_gmadr_base(vgpu) 90 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 91 else 92 *g_addr = vgpu_hidden_gmadr_base(vgpu) 93 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 94 return 0; 95 } 96 97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 98 unsigned long *h_index) 99 { 100 u64 h_addr; 101 int ret; 102 103 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 104 &h_addr); 105 if (ret) 106 return ret; 107 108 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 109 return 0; 110 } 111 112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 113 unsigned long *g_index) 114 { 115 u64 g_addr; 116 int ret; 117 118 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 119 &g_addr); 120 if (ret) 121 return ret; 122 123 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 124 return 0; 125 } 126 127 #define gtt_type_is_entry(type) \ 128 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 129 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 130 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 131 132 #define gtt_type_is_pt(type) \ 133 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 134 135 #define gtt_type_is_pte_pt(type) \ 136 (type == GTT_TYPE_PPGTT_PTE_PT) 137 138 #define gtt_type_is_root_pointer(type) \ 139 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 140 141 #define gtt_init_entry(e, t, p, v) do { \ 142 (e)->type = t; \ 143 (e)->pdev = p; \ 144 memcpy(&(e)->val64, &v, sizeof(v)); \ 145 } while (0) 146 147 /* 148 * Mappings between GTT_TYPE* enumerations. 149 * Following information can be found according to the given type: 150 * - type of next level page table 151 * - type of entry inside this level page table 152 * - type of entry with PSE set 153 * 154 * If the given type doesn't have such a kind of information, 155 * e.g. give a l4 root entry type, then request to get its PSE type, 156 * give a PTE page table type, then request to get its next level page 157 * table type, as we know l4 root entry doesn't have a PSE bit, 158 * and a PTE page table doesn't have a next level page table type, 159 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 160 * page table. 161 */ 162 163 struct gtt_type_table_entry { 164 int entry_type; 165 int pt_type; 166 int next_pt_type; 167 int pse_entry_type; 168 }; 169 170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 171 [type] = { \ 172 .entry_type = e_type, \ 173 .pt_type = cpt_type, \ 174 .next_pt_type = npt_type, \ 175 .pse_entry_type = pse_type, \ 176 } 177 178 static struct gtt_type_table_entry gtt_type_table[] = { 179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 180 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 181 GTT_TYPE_INVALID, 182 GTT_TYPE_PPGTT_PML4_PT, 183 GTT_TYPE_INVALID), 184 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 185 GTT_TYPE_PPGTT_PML4_ENTRY, 186 GTT_TYPE_PPGTT_PML4_PT, 187 GTT_TYPE_PPGTT_PDP_PT, 188 GTT_TYPE_INVALID), 189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 190 GTT_TYPE_PPGTT_PML4_ENTRY, 191 GTT_TYPE_PPGTT_PML4_PT, 192 GTT_TYPE_PPGTT_PDP_PT, 193 GTT_TYPE_INVALID), 194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 195 GTT_TYPE_PPGTT_PDP_ENTRY, 196 GTT_TYPE_PPGTT_PDP_PT, 197 GTT_TYPE_PPGTT_PDE_PT, 198 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 200 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 201 GTT_TYPE_INVALID, 202 GTT_TYPE_PPGTT_PDE_PT, 203 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 205 GTT_TYPE_PPGTT_PDP_ENTRY, 206 GTT_TYPE_PPGTT_PDP_PT, 207 GTT_TYPE_PPGTT_PDE_PT, 208 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 210 GTT_TYPE_PPGTT_PDE_ENTRY, 211 GTT_TYPE_PPGTT_PDE_PT, 212 GTT_TYPE_PPGTT_PTE_PT, 213 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 215 GTT_TYPE_PPGTT_PDE_ENTRY, 216 GTT_TYPE_PPGTT_PDE_PT, 217 GTT_TYPE_PPGTT_PTE_PT, 218 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 219 /* We take IPS bit as 'PSE' for PTE level. */ 220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 221 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 222 GTT_TYPE_PPGTT_PTE_PT, 223 GTT_TYPE_INVALID, 224 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 226 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 227 GTT_TYPE_PPGTT_PTE_PT, 228 GTT_TYPE_INVALID, 229 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 231 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_PT, 233 GTT_TYPE_INVALID, 234 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 236 GTT_TYPE_PPGTT_PDE_ENTRY, 237 GTT_TYPE_PPGTT_PDE_PT, 238 GTT_TYPE_INVALID, 239 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 241 GTT_TYPE_PPGTT_PDP_ENTRY, 242 GTT_TYPE_PPGTT_PDP_PT, 243 GTT_TYPE_INVALID, 244 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 246 GTT_TYPE_GGTT_PTE, 247 GTT_TYPE_INVALID, 248 GTT_TYPE_INVALID, 249 GTT_TYPE_INVALID), 250 }; 251 252 static inline int get_next_pt_type(int type) 253 { 254 return gtt_type_table[type].next_pt_type; 255 } 256 257 static inline int get_pt_type(int type) 258 { 259 return gtt_type_table[type].pt_type; 260 } 261 262 static inline int get_entry_type(int type) 263 { 264 return gtt_type_table[type].entry_type; 265 } 266 267 static inline int get_pse_type(int type) 268 { 269 return gtt_type_table[type].pse_entry_type; 270 } 271 272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 273 { 274 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 275 276 return readq(addr); 277 } 278 279 static void ggtt_invalidate(struct drm_i915_private *dev_priv) 280 { 281 mmio_hw_access_pre(dev_priv); 282 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 283 mmio_hw_access_post(dev_priv); 284 } 285 286 static void write_pte64(struct drm_i915_private *dev_priv, 287 unsigned long index, u64 pte) 288 { 289 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 290 291 writeq(pte, addr); 292 } 293 294 static inline int gtt_get_entry64(void *pt, 295 struct intel_gvt_gtt_entry *e, 296 unsigned long index, bool hypervisor_access, unsigned long gpa, 297 struct intel_vgpu *vgpu) 298 { 299 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 300 int ret; 301 302 if (WARN_ON(info->gtt_entry_size != 8)) 303 return -EINVAL; 304 305 if (hypervisor_access) { 306 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 307 (index << info->gtt_entry_size_shift), 308 &e->val64, 8); 309 if (WARN_ON(ret)) 310 return ret; 311 } else if (!pt) { 312 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 313 } else { 314 e->val64 = *((u64 *)pt + index); 315 } 316 return 0; 317 } 318 319 static inline int gtt_set_entry64(void *pt, 320 struct intel_gvt_gtt_entry *e, 321 unsigned long index, bool hypervisor_access, unsigned long gpa, 322 struct intel_vgpu *vgpu) 323 { 324 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 325 int ret; 326 327 if (WARN_ON(info->gtt_entry_size != 8)) 328 return -EINVAL; 329 330 if (hypervisor_access) { 331 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 332 (index << info->gtt_entry_size_shift), 333 &e->val64, 8); 334 if (WARN_ON(ret)) 335 return ret; 336 } else if (!pt) { 337 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 338 } else { 339 *((u64 *)pt + index) = e->val64; 340 } 341 return 0; 342 } 343 344 #define GTT_HAW 46 345 346 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 347 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 348 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 349 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 350 351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 353 354 #define GTT_64K_PTE_STRIDE 16 355 356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 357 { 358 unsigned long pfn; 359 360 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 361 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 362 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 363 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 364 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 365 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 366 else 367 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 368 return pfn; 369 } 370 371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 372 { 373 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 374 e->val64 &= ~ADDR_1G_MASK; 375 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 376 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 377 e->val64 &= ~ADDR_2M_MASK; 378 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 379 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 380 e->val64 &= ~ADDR_64K_MASK; 381 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 382 } else { 383 e->val64 &= ~ADDR_4K_MASK; 384 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 385 } 386 387 e->val64 |= (pfn << PAGE_SHIFT); 388 } 389 390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 391 { 392 return !!(e->val64 & _PAGE_PSE); 393 } 394 395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 396 { 397 if (gen8_gtt_test_pse(e)) { 398 switch (e->type) { 399 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 400 e->val64 &= ~_PAGE_PSE; 401 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 402 break; 403 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 404 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 405 e->val64 &= ~_PAGE_PSE; 406 break; 407 default: 408 WARN_ON(1); 409 } 410 } 411 } 412 413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 414 { 415 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 416 return false; 417 418 return !!(e->val64 & GEN8_PDE_IPS_64K); 419 } 420 421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 422 { 423 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 424 return; 425 426 e->val64 &= ~GEN8_PDE_IPS_64K; 427 } 428 429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 430 { 431 /* 432 * i915 writes PDP root pointer registers without present bit, 433 * it also works, so we need to treat root pointer entry 434 * specifically. 435 */ 436 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 437 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 438 return (e->val64 != 0); 439 else 440 return (e->val64 & _PAGE_PRESENT); 441 } 442 443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 444 { 445 e->val64 &= ~_PAGE_PRESENT; 446 } 447 448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 449 { 450 e->val64 |= _PAGE_PRESENT; 451 } 452 453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 454 { 455 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 456 } 457 458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 459 { 460 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 461 } 462 463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 464 { 465 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 466 } 467 468 /* 469 * Per-platform GMA routines. 470 */ 471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 472 { 473 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 474 475 trace_gma_index(__func__, gma, x); 476 return x; 477 } 478 479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 481 { \ 482 unsigned long x = (exp); \ 483 trace_gma_index(__func__, gma, x); \ 484 return x; \ 485 } 486 487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 492 493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 494 .get_entry = gtt_get_entry64, 495 .set_entry = gtt_set_entry64, 496 .clear_present = gtt_entry_clear_present, 497 .set_present = gtt_entry_set_present, 498 .test_present = gen8_gtt_test_present, 499 .test_pse = gen8_gtt_test_pse, 500 .clear_pse = gen8_gtt_clear_pse, 501 .clear_ips = gen8_gtt_clear_ips, 502 .test_ips = gen8_gtt_test_ips, 503 .clear_64k_splited = gen8_gtt_clear_64k_splited, 504 .set_64k_splited = gen8_gtt_set_64k_splited, 505 .test_64k_splited = gen8_gtt_test_64k_splited, 506 .get_pfn = gen8_gtt_get_pfn, 507 .set_pfn = gen8_gtt_set_pfn, 508 }; 509 510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 511 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 512 .gma_to_pte_index = gen8_gma_to_pte_index, 513 .gma_to_pde_index = gen8_gma_to_pde_index, 514 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 515 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 516 .gma_to_pml4_index = gen8_gma_to_pml4_index, 517 }; 518 519 /* Update entry type per pse and ips bit. */ 520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 521 struct intel_gvt_gtt_entry *entry, bool ips) 522 { 523 switch (entry->type) { 524 case GTT_TYPE_PPGTT_PDE_ENTRY: 525 case GTT_TYPE_PPGTT_PDP_ENTRY: 526 if (pte_ops->test_pse(entry)) 527 entry->type = get_pse_type(entry->type); 528 break; 529 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 530 if (ips) 531 entry->type = get_pse_type(entry->type); 532 break; 533 default: 534 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 535 } 536 537 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 538 } 539 540 /* 541 * MM helpers. 542 */ 543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 544 struct intel_gvt_gtt_entry *entry, unsigned long index, 545 bool guest) 546 { 547 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 548 549 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 550 551 entry->type = mm->ppgtt_mm.root_entry_type; 552 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 553 mm->ppgtt_mm.shadow_pdps, 554 entry, index, false, 0, mm->vgpu); 555 update_entry_type_for_real(pte_ops, entry, false); 556 } 557 558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 559 struct intel_gvt_gtt_entry *entry, unsigned long index) 560 { 561 _ppgtt_get_root_entry(mm, entry, index, true); 562 } 563 564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 565 struct intel_gvt_gtt_entry *entry, unsigned long index) 566 { 567 _ppgtt_get_root_entry(mm, entry, index, false); 568 } 569 570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 571 struct intel_gvt_gtt_entry *entry, unsigned long index, 572 bool guest) 573 { 574 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 575 576 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 577 mm->ppgtt_mm.shadow_pdps, 578 entry, index, false, 0, mm->vgpu); 579 } 580 581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 582 struct intel_gvt_gtt_entry *entry, unsigned long index) 583 { 584 _ppgtt_set_root_entry(mm, entry, index, true); 585 } 586 587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 588 struct intel_gvt_gtt_entry *entry, unsigned long index) 589 { 590 _ppgtt_set_root_entry(mm, entry, index, false); 591 } 592 593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 594 struct intel_gvt_gtt_entry *entry, unsigned long index) 595 { 596 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 597 598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 599 600 entry->type = GTT_TYPE_GGTT_PTE; 601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 602 false, 0, mm->vgpu); 603 } 604 605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 606 struct intel_gvt_gtt_entry *entry, unsigned long index) 607 { 608 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 609 610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 611 612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 613 false, 0, mm->vgpu); 614 } 615 616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 617 struct intel_gvt_gtt_entry *entry, unsigned long index) 618 { 619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 620 621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 622 623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 624 } 625 626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 627 struct intel_gvt_gtt_entry *entry, unsigned long index) 628 { 629 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 630 631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 632 633 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 634 } 635 636 /* 637 * PPGTT shadow page table helpers. 638 */ 639 static inline int ppgtt_spt_get_entry( 640 struct intel_vgpu_ppgtt_spt *spt, 641 void *page_table, int type, 642 struct intel_gvt_gtt_entry *e, unsigned long index, 643 bool guest) 644 { 645 struct intel_gvt *gvt = spt->vgpu->gvt; 646 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 647 int ret; 648 649 e->type = get_entry_type(type); 650 651 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 652 return -EINVAL; 653 654 ret = ops->get_entry(page_table, e, index, guest, 655 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 656 spt->vgpu); 657 if (ret) 658 return ret; 659 660 update_entry_type_for_real(ops, e, guest ? 661 spt->guest_page.pde_ips : false); 662 663 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 664 type, e->type, index, e->val64); 665 return 0; 666 } 667 668 static inline int ppgtt_spt_set_entry( 669 struct intel_vgpu_ppgtt_spt *spt, 670 void *page_table, int type, 671 struct intel_gvt_gtt_entry *e, unsigned long index, 672 bool guest) 673 { 674 struct intel_gvt *gvt = spt->vgpu->gvt; 675 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 676 677 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 678 return -EINVAL; 679 680 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 681 type, e->type, index, e->val64); 682 683 return ops->set_entry(page_table, e, index, guest, 684 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 685 spt->vgpu); 686 } 687 688 #define ppgtt_get_guest_entry(spt, e, index) \ 689 ppgtt_spt_get_entry(spt, NULL, \ 690 spt->guest_page.type, e, index, true) 691 692 #define ppgtt_set_guest_entry(spt, e, index) \ 693 ppgtt_spt_set_entry(spt, NULL, \ 694 spt->guest_page.type, e, index, true) 695 696 #define ppgtt_get_shadow_entry(spt, e, index) \ 697 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 698 spt->shadow_page.type, e, index, false) 699 700 #define ppgtt_set_shadow_entry(spt, e, index) \ 701 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 702 spt->shadow_page.type, e, index, false) 703 704 static void *alloc_spt(gfp_t gfp_mask) 705 { 706 struct intel_vgpu_ppgtt_spt *spt; 707 708 spt = kzalloc(sizeof(*spt), gfp_mask); 709 if (!spt) 710 return NULL; 711 712 spt->shadow_page.page = alloc_page(gfp_mask); 713 if (!spt->shadow_page.page) { 714 kfree(spt); 715 return NULL; 716 } 717 return spt; 718 } 719 720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 721 { 722 __free_page(spt->shadow_page.page); 723 kfree(spt); 724 } 725 726 static int detach_oos_page(struct intel_vgpu *vgpu, 727 struct intel_vgpu_oos_page *oos_page); 728 729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 730 { 731 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev; 732 733 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 734 735 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 736 PCI_DMA_BIDIRECTIONAL); 737 738 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 739 740 if (spt->guest_page.gfn) { 741 if (spt->guest_page.oos_page) 742 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 743 744 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 745 } 746 747 list_del_init(&spt->post_shadow_list); 748 free_spt(spt); 749 } 750 751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 752 { 753 struct intel_vgpu_ppgtt_spt *spt, *spn; 754 struct radix_tree_iter iter; 755 LIST_HEAD(all_spt); 756 void __rcu **slot; 757 758 rcu_read_lock(); 759 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 760 spt = radix_tree_deref_slot(slot); 761 list_move(&spt->post_shadow_list, &all_spt); 762 } 763 rcu_read_unlock(); 764 765 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 766 ppgtt_free_spt(spt); 767 } 768 769 static int ppgtt_handle_guest_write_page_table_bytes( 770 struct intel_vgpu_ppgtt_spt *spt, 771 u64 pa, void *p_data, int bytes); 772 773 static int ppgtt_write_protection_handler( 774 struct intel_vgpu_page_track *page_track, 775 u64 gpa, void *data, int bytes) 776 { 777 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 778 779 int ret; 780 781 if (bytes != 4 && bytes != 8) 782 return -EINVAL; 783 784 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 785 if (ret) 786 return ret; 787 return ret; 788 } 789 790 /* Find a spt by guest gfn. */ 791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 792 struct intel_vgpu *vgpu, unsigned long gfn) 793 { 794 struct intel_vgpu_page_track *track; 795 796 track = intel_vgpu_find_page_track(vgpu, gfn); 797 if (track && track->handler == ppgtt_write_protection_handler) 798 return track->priv_data; 799 800 return NULL; 801 } 802 803 /* Find the spt by shadow page mfn. */ 804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 805 struct intel_vgpu *vgpu, unsigned long mfn) 806 { 807 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 808 } 809 810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 811 812 /* Allocate shadow page table without guest page. */ 813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 814 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 815 { 816 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 817 struct intel_vgpu_ppgtt_spt *spt = NULL; 818 dma_addr_t daddr; 819 int ret; 820 821 retry: 822 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 823 if (!spt) { 824 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 825 goto retry; 826 827 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 828 return ERR_PTR(-ENOMEM); 829 } 830 831 spt->vgpu = vgpu; 832 atomic_set(&spt->refcount, 1); 833 INIT_LIST_HEAD(&spt->post_shadow_list); 834 835 /* 836 * Init shadow_page. 837 */ 838 spt->shadow_page.type = type; 839 daddr = dma_map_page(kdev, spt->shadow_page.page, 840 0, 4096, PCI_DMA_BIDIRECTIONAL); 841 if (dma_mapping_error(kdev, daddr)) { 842 gvt_vgpu_err("fail to map dma addr\n"); 843 ret = -EINVAL; 844 goto err_free_spt; 845 } 846 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 847 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 848 849 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 850 if (ret) 851 goto err_unmap_dma; 852 853 return spt; 854 855 err_unmap_dma: 856 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 857 err_free_spt: 858 free_spt(spt); 859 return ERR_PTR(ret); 860 } 861 862 /* Allocate shadow page table associated with specific gfn. */ 863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 864 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 865 unsigned long gfn, bool guest_pde_ips) 866 { 867 struct intel_vgpu_ppgtt_spt *spt; 868 int ret; 869 870 spt = ppgtt_alloc_spt(vgpu, type); 871 if (IS_ERR(spt)) 872 return spt; 873 874 /* 875 * Init guest_page. 876 */ 877 ret = intel_vgpu_register_page_track(vgpu, gfn, 878 ppgtt_write_protection_handler, spt); 879 if (ret) { 880 ppgtt_free_spt(spt); 881 return ERR_PTR(ret); 882 } 883 884 spt->guest_page.type = type; 885 spt->guest_page.gfn = gfn; 886 spt->guest_page.pde_ips = guest_pde_ips; 887 888 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 889 890 return spt; 891 } 892 893 #define pt_entry_size_shift(spt) \ 894 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 895 896 #define pt_entries(spt) \ 897 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 898 899 #define for_each_present_guest_entry(spt, e, i) \ 900 for (i = 0; i < pt_entries(spt); \ 901 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 902 if (!ppgtt_get_guest_entry(spt, e, i) && \ 903 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 904 905 #define for_each_present_shadow_entry(spt, e, i) \ 906 for (i = 0; i < pt_entries(spt); \ 907 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 908 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 909 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 910 911 #define for_each_shadow_entry(spt, e, i) \ 912 for (i = 0; i < pt_entries(spt); \ 913 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 914 if (!ppgtt_get_shadow_entry(spt, e, i)) 915 916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 917 { 918 int v = atomic_read(&spt->refcount); 919 920 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 921 atomic_inc(&spt->refcount); 922 } 923 924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 925 { 926 int v = atomic_read(&spt->refcount); 927 928 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 929 return atomic_dec_return(&spt->refcount); 930 } 931 932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 933 934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 935 struct intel_gvt_gtt_entry *e) 936 { 937 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 938 struct intel_vgpu_ppgtt_spt *s; 939 enum intel_gvt_gtt_type cur_pt_type; 940 941 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 942 943 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 944 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 945 cur_pt_type = get_next_pt_type(e->type) + 1; 946 if (ops->get_pfn(e) == 947 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 948 return 0; 949 } 950 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 951 if (!s) { 952 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 953 ops->get_pfn(e)); 954 return -ENXIO; 955 } 956 return ppgtt_invalidate_spt(s); 957 } 958 959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 960 struct intel_gvt_gtt_entry *entry) 961 { 962 struct intel_vgpu *vgpu = spt->vgpu; 963 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 964 unsigned long pfn; 965 int type; 966 967 pfn = ops->get_pfn(entry); 968 type = spt->shadow_page.type; 969 970 /* Uninitialized spte or unshadowed spte. */ 971 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 972 return; 973 974 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 975 } 976 977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 978 { 979 struct intel_vgpu *vgpu = spt->vgpu; 980 struct intel_gvt_gtt_entry e; 981 unsigned long index; 982 int ret; 983 984 trace_spt_change(spt->vgpu->id, "die", spt, 985 spt->guest_page.gfn, spt->shadow_page.type); 986 987 if (ppgtt_put_spt(spt) > 0) 988 return 0; 989 990 for_each_present_shadow_entry(spt, &e, index) { 991 switch (e.type) { 992 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 993 gvt_vdbg_mm("invalidate 4K entry\n"); 994 ppgtt_invalidate_pte(spt, &e); 995 break; 996 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 997 /* We don't setup 64K shadow entry so far. */ 998 WARN(1, "suspicious 64K gtt entry\n"); 999 continue; 1000 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1001 gvt_vdbg_mm("invalidate 2M entry\n"); 1002 continue; 1003 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1004 WARN(1, "GVT doesn't support 1GB page\n"); 1005 continue; 1006 case GTT_TYPE_PPGTT_PML4_ENTRY: 1007 case GTT_TYPE_PPGTT_PDP_ENTRY: 1008 case GTT_TYPE_PPGTT_PDE_ENTRY: 1009 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1010 ret = ppgtt_invalidate_spt_by_shadow_entry( 1011 spt->vgpu, &e); 1012 if (ret) 1013 goto fail; 1014 break; 1015 default: 1016 GEM_BUG_ON(1); 1017 } 1018 } 1019 1020 trace_spt_change(spt->vgpu->id, "release", spt, 1021 spt->guest_page.gfn, spt->shadow_page.type); 1022 ppgtt_free_spt(spt); 1023 return 0; 1024 fail: 1025 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1026 spt, e.val64, e.type); 1027 return ret; 1028 } 1029 1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1031 { 1032 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1033 1034 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1035 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1036 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1037 1038 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1039 } else if (INTEL_GEN(dev_priv) >= 11) { 1040 /* 64K paging only controlled by IPS bit in PTE now. */ 1041 return true; 1042 } else 1043 return false; 1044 } 1045 1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1047 1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1049 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1050 { 1051 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1052 struct intel_vgpu_ppgtt_spt *spt = NULL; 1053 bool ips = false; 1054 int ret; 1055 1056 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1057 1058 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1059 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1060 1061 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1062 if (spt) { 1063 ppgtt_get_spt(spt); 1064 1065 if (ips != spt->guest_page.pde_ips) { 1066 spt->guest_page.pde_ips = ips; 1067 1068 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1069 clear_page(spt->shadow_page.vaddr); 1070 ret = ppgtt_populate_spt(spt); 1071 if (ret) { 1072 ppgtt_put_spt(spt); 1073 goto err; 1074 } 1075 } 1076 } else { 1077 int type = get_next_pt_type(we->type); 1078 1079 if (!gtt_type_is_pt(type)) 1080 goto err; 1081 1082 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1083 if (IS_ERR(spt)) { 1084 ret = PTR_ERR(spt); 1085 goto err; 1086 } 1087 1088 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1089 if (ret) 1090 goto err_free_spt; 1091 1092 ret = ppgtt_populate_spt(spt); 1093 if (ret) 1094 goto err_free_spt; 1095 1096 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1097 spt->shadow_page.type); 1098 } 1099 return spt; 1100 1101 err_free_spt: 1102 ppgtt_free_spt(spt); 1103 err: 1104 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1105 spt, we->val64, we->type); 1106 return ERR_PTR(ret); 1107 } 1108 1109 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1110 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1111 { 1112 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1113 1114 se->type = ge->type; 1115 se->val64 = ge->val64; 1116 1117 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1118 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1119 ops->clear_ips(se); 1120 1121 ops->set_pfn(se, s->shadow_page.mfn); 1122 } 1123 1124 /** 1125 * Check if can do 2M page 1126 * @vgpu: target vgpu 1127 * @entry: target pfn's gtt entry 1128 * 1129 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1130 * negtive if found err. 1131 */ 1132 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1133 struct intel_gvt_gtt_entry *entry) 1134 { 1135 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1136 unsigned long pfn; 1137 1138 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M)) 1139 return 0; 1140 1141 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1142 if (pfn == INTEL_GVT_INVALID_ADDR) 1143 return -EINVAL; 1144 1145 return PageTransHuge(pfn_to_page(pfn)); 1146 } 1147 1148 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1149 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1150 struct intel_gvt_gtt_entry *se) 1151 { 1152 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1153 struct intel_vgpu_ppgtt_spt *sub_spt; 1154 struct intel_gvt_gtt_entry sub_se; 1155 unsigned long start_gfn; 1156 dma_addr_t dma_addr; 1157 unsigned long sub_index; 1158 int ret; 1159 1160 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1161 1162 start_gfn = ops->get_pfn(se); 1163 1164 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1165 if (IS_ERR(sub_spt)) 1166 return PTR_ERR(sub_spt); 1167 1168 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1169 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1170 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1171 if (ret) { 1172 ppgtt_invalidate_spt(spt); 1173 return ret; 1174 } 1175 sub_se.val64 = se->val64; 1176 1177 /* Copy the PAT field from PDE. */ 1178 sub_se.val64 &= ~_PAGE_PAT; 1179 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1180 1181 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1182 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1183 } 1184 1185 /* Clear dirty field. */ 1186 se->val64 &= ~_PAGE_DIRTY; 1187 1188 ops->clear_pse(se); 1189 ops->clear_ips(se); 1190 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1191 ppgtt_set_shadow_entry(spt, se, index); 1192 return 0; 1193 } 1194 1195 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1196 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1197 struct intel_gvt_gtt_entry *se) 1198 { 1199 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1200 struct intel_gvt_gtt_entry entry = *se; 1201 unsigned long start_gfn; 1202 dma_addr_t dma_addr; 1203 int i, ret; 1204 1205 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1206 1207 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1208 1209 start_gfn = ops->get_pfn(se); 1210 1211 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1212 ops->set_64k_splited(&entry); 1213 1214 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1215 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1216 start_gfn + i, PAGE_SIZE, &dma_addr); 1217 if (ret) 1218 return ret; 1219 1220 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1221 ppgtt_set_shadow_entry(spt, &entry, index + i); 1222 } 1223 return 0; 1224 } 1225 1226 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1227 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1228 struct intel_gvt_gtt_entry *ge) 1229 { 1230 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1231 struct intel_gvt_gtt_entry se = *ge; 1232 unsigned long gfn, page_size = PAGE_SIZE; 1233 dma_addr_t dma_addr; 1234 int ret; 1235 1236 if (!pte_ops->test_present(ge)) 1237 return 0; 1238 1239 gfn = pte_ops->get_pfn(ge); 1240 1241 switch (ge->type) { 1242 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1243 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1244 break; 1245 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1246 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1247 /* 1248 * The layout of 64K page is special, the page size is 1249 * controlled by uper PDE. To be simple, we always split 1250 * 64K page to smaller 4K pages in shadow PT. 1251 */ 1252 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1253 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1254 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1255 ret = is_2MB_gtt_possible(vgpu, ge); 1256 if (ret == 0) 1257 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1258 else if (ret < 0) 1259 return ret; 1260 page_size = I915_GTT_PAGE_SIZE_2M; 1261 break; 1262 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1263 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1264 return -EINVAL; 1265 default: 1266 GEM_BUG_ON(1); 1267 }; 1268 1269 /* direct shadow */ 1270 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1271 &dma_addr); 1272 if (ret) 1273 return -ENXIO; 1274 1275 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1276 ppgtt_set_shadow_entry(spt, &se, index); 1277 return 0; 1278 } 1279 1280 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1281 { 1282 struct intel_vgpu *vgpu = spt->vgpu; 1283 struct intel_gvt *gvt = vgpu->gvt; 1284 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1285 struct intel_vgpu_ppgtt_spt *s; 1286 struct intel_gvt_gtt_entry se, ge; 1287 unsigned long gfn, i; 1288 int ret; 1289 1290 trace_spt_change(spt->vgpu->id, "born", spt, 1291 spt->guest_page.gfn, spt->shadow_page.type); 1292 1293 for_each_present_guest_entry(spt, &ge, i) { 1294 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1295 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1296 if (IS_ERR(s)) { 1297 ret = PTR_ERR(s); 1298 goto fail; 1299 } 1300 ppgtt_get_shadow_entry(spt, &se, i); 1301 ppgtt_generate_shadow_entry(&se, s, &ge); 1302 ppgtt_set_shadow_entry(spt, &se, i); 1303 } else { 1304 gfn = ops->get_pfn(&ge); 1305 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1306 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1307 ppgtt_set_shadow_entry(spt, &se, i); 1308 continue; 1309 } 1310 1311 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1312 if (ret) 1313 goto fail; 1314 } 1315 } 1316 return 0; 1317 fail: 1318 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1319 spt, ge.val64, ge.type); 1320 return ret; 1321 } 1322 1323 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1324 struct intel_gvt_gtt_entry *se, unsigned long index) 1325 { 1326 struct intel_vgpu *vgpu = spt->vgpu; 1327 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1328 int ret; 1329 1330 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1331 spt->shadow_page.type, se->val64, index); 1332 1333 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1334 se->type, index, se->val64); 1335 1336 if (!ops->test_present(se)) 1337 return 0; 1338 1339 if (ops->get_pfn(se) == 1340 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1341 return 0; 1342 1343 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1344 struct intel_vgpu_ppgtt_spt *s = 1345 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1346 if (!s) { 1347 gvt_vgpu_err("fail to find guest page\n"); 1348 ret = -ENXIO; 1349 goto fail; 1350 } 1351 ret = ppgtt_invalidate_spt(s); 1352 if (ret) 1353 goto fail; 1354 } else { 1355 /* We don't setup 64K shadow entry so far. */ 1356 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1357 "suspicious 64K entry\n"); 1358 ppgtt_invalidate_pte(spt, se); 1359 } 1360 1361 return 0; 1362 fail: 1363 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1364 spt, se->val64, se->type); 1365 return ret; 1366 } 1367 1368 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1369 struct intel_gvt_gtt_entry *we, unsigned long index) 1370 { 1371 struct intel_vgpu *vgpu = spt->vgpu; 1372 struct intel_gvt_gtt_entry m; 1373 struct intel_vgpu_ppgtt_spt *s; 1374 int ret; 1375 1376 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1377 we->val64, index); 1378 1379 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1380 we->type, index, we->val64); 1381 1382 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1383 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1384 if (IS_ERR(s)) { 1385 ret = PTR_ERR(s); 1386 goto fail; 1387 } 1388 ppgtt_get_shadow_entry(spt, &m, index); 1389 ppgtt_generate_shadow_entry(&m, s, we); 1390 ppgtt_set_shadow_entry(spt, &m, index); 1391 } else { 1392 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1393 if (ret) 1394 goto fail; 1395 } 1396 return 0; 1397 fail: 1398 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1399 spt, we->val64, we->type); 1400 return ret; 1401 } 1402 1403 static int sync_oos_page(struct intel_vgpu *vgpu, 1404 struct intel_vgpu_oos_page *oos_page) 1405 { 1406 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1407 struct intel_gvt *gvt = vgpu->gvt; 1408 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1409 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1410 struct intel_gvt_gtt_entry old, new; 1411 int index; 1412 int ret; 1413 1414 trace_oos_change(vgpu->id, "sync", oos_page->id, 1415 spt, spt->guest_page.type); 1416 1417 old.type = new.type = get_entry_type(spt->guest_page.type); 1418 old.val64 = new.val64 = 0; 1419 1420 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1421 info->gtt_entry_size_shift); index++) { 1422 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1423 ops->get_entry(NULL, &new, index, true, 1424 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1425 1426 if (old.val64 == new.val64 1427 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1428 continue; 1429 1430 trace_oos_sync(vgpu->id, oos_page->id, 1431 spt, spt->guest_page.type, 1432 new.val64, index); 1433 1434 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1435 if (ret) 1436 return ret; 1437 1438 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1439 } 1440 1441 spt->guest_page.write_cnt = 0; 1442 list_del_init(&spt->post_shadow_list); 1443 return 0; 1444 } 1445 1446 static int detach_oos_page(struct intel_vgpu *vgpu, 1447 struct intel_vgpu_oos_page *oos_page) 1448 { 1449 struct intel_gvt *gvt = vgpu->gvt; 1450 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1451 1452 trace_oos_change(vgpu->id, "detach", oos_page->id, 1453 spt, spt->guest_page.type); 1454 1455 spt->guest_page.write_cnt = 0; 1456 spt->guest_page.oos_page = NULL; 1457 oos_page->spt = NULL; 1458 1459 list_del_init(&oos_page->vm_list); 1460 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1461 1462 return 0; 1463 } 1464 1465 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1466 struct intel_vgpu_ppgtt_spt *spt) 1467 { 1468 struct intel_gvt *gvt = spt->vgpu->gvt; 1469 int ret; 1470 1471 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1472 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1473 oos_page->mem, I915_GTT_PAGE_SIZE); 1474 if (ret) 1475 return ret; 1476 1477 oos_page->spt = spt; 1478 spt->guest_page.oos_page = oos_page; 1479 1480 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1481 1482 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1483 spt, spt->guest_page.type); 1484 return 0; 1485 } 1486 1487 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1488 { 1489 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1490 int ret; 1491 1492 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1493 if (ret) 1494 return ret; 1495 1496 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1497 spt, spt->guest_page.type); 1498 1499 list_del_init(&oos_page->vm_list); 1500 return sync_oos_page(spt->vgpu, oos_page); 1501 } 1502 1503 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1504 { 1505 struct intel_gvt *gvt = spt->vgpu->gvt; 1506 struct intel_gvt_gtt *gtt = &gvt->gtt; 1507 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1508 int ret; 1509 1510 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1511 1512 if (list_empty(>t->oos_page_free_list_head)) { 1513 oos_page = container_of(gtt->oos_page_use_list_head.next, 1514 struct intel_vgpu_oos_page, list); 1515 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1516 if (ret) 1517 return ret; 1518 ret = detach_oos_page(spt->vgpu, oos_page); 1519 if (ret) 1520 return ret; 1521 } else 1522 oos_page = container_of(gtt->oos_page_free_list_head.next, 1523 struct intel_vgpu_oos_page, list); 1524 return attach_oos_page(oos_page, spt); 1525 } 1526 1527 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1528 { 1529 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1530 1531 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1532 return -EINVAL; 1533 1534 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1535 spt, spt->guest_page.type); 1536 1537 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1538 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1539 } 1540 1541 /** 1542 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1543 * @vgpu: a vGPU 1544 * 1545 * This function is called before submitting a guest workload to host, 1546 * to sync all the out-of-synced shadow for vGPU 1547 * 1548 * Returns: 1549 * Zero on success, negative error code if failed. 1550 */ 1551 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1552 { 1553 struct list_head *pos, *n; 1554 struct intel_vgpu_oos_page *oos_page; 1555 int ret; 1556 1557 if (!enable_out_of_sync) 1558 return 0; 1559 1560 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1561 oos_page = container_of(pos, 1562 struct intel_vgpu_oos_page, vm_list); 1563 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1564 if (ret) 1565 return ret; 1566 } 1567 return 0; 1568 } 1569 1570 /* 1571 * The heart of PPGTT shadow page table. 1572 */ 1573 static int ppgtt_handle_guest_write_page_table( 1574 struct intel_vgpu_ppgtt_spt *spt, 1575 struct intel_gvt_gtt_entry *we, unsigned long index) 1576 { 1577 struct intel_vgpu *vgpu = spt->vgpu; 1578 int type = spt->shadow_page.type; 1579 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1580 struct intel_gvt_gtt_entry old_se; 1581 int new_present; 1582 int i, ret; 1583 1584 new_present = ops->test_present(we); 1585 1586 /* 1587 * Adding the new entry first and then removing the old one, that can 1588 * guarantee the ppgtt table is validated during the window between 1589 * adding and removal. 1590 */ 1591 ppgtt_get_shadow_entry(spt, &old_se, index); 1592 1593 if (new_present) { 1594 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1595 if (ret) 1596 goto fail; 1597 } 1598 1599 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1600 if (ret) 1601 goto fail; 1602 1603 if (!new_present) { 1604 /* For 64KB splited entries, we need clear them all. */ 1605 if (ops->test_64k_splited(&old_se) && 1606 !(index % GTT_64K_PTE_STRIDE)) { 1607 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1608 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1609 ops->clear_64k_splited(&old_se); 1610 ops->set_pfn(&old_se, 1611 vgpu->gtt.scratch_pt[type].page_mfn); 1612 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1613 } 1614 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1615 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1616 ops->clear_pse(&old_se); 1617 ops->set_pfn(&old_se, 1618 vgpu->gtt.scratch_pt[type].page_mfn); 1619 ppgtt_set_shadow_entry(spt, &old_se, index); 1620 } else { 1621 ops->set_pfn(&old_se, 1622 vgpu->gtt.scratch_pt[type].page_mfn); 1623 ppgtt_set_shadow_entry(spt, &old_se, index); 1624 } 1625 } 1626 1627 return 0; 1628 fail: 1629 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1630 spt, we->val64, we->type); 1631 return ret; 1632 } 1633 1634 1635 1636 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1637 { 1638 return enable_out_of_sync 1639 && gtt_type_is_pte_pt(spt->guest_page.type) 1640 && spt->guest_page.write_cnt >= 2; 1641 } 1642 1643 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1644 unsigned long index) 1645 { 1646 set_bit(index, spt->post_shadow_bitmap); 1647 if (!list_empty(&spt->post_shadow_list)) 1648 return; 1649 1650 list_add_tail(&spt->post_shadow_list, 1651 &spt->vgpu->gtt.post_shadow_list_head); 1652 } 1653 1654 /** 1655 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1656 * @vgpu: a vGPU 1657 * 1658 * This function is called before submitting a guest workload to host, 1659 * to flush all the post shadows for a vGPU. 1660 * 1661 * Returns: 1662 * Zero on success, negative error code if failed. 1663 */ 1664 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1665 { 1666 struct list_head *pos, *n; 1667 struct intel_vgpu_ppgtt_spt *spt; 1668 struct intel_gvt_gtt_entry ge; 1669 unsigned long index; 1670 int ret; 1671 1672 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1673 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1674 post_shadow_list); 1675 1676 for_each_set_bit(index, spt->post_shadow_bitmap, 1677 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1678 ppgtt_get_guest_entry(spt, &ge, index); 1679 1680 ret = ppgtt_handle_guest_write_page_table(spt, 1681 &ge, index); 1682 if (ret) 1683 return ret; 1684 clear_bit(index, spt->post_shadow_bitmap); 1685 } 1686 list_del_init(&spt->post_shadow_list); 1687 } 1688 return 0; 1689 } 1690 1691 static int ppgtt_handle_guest_write_page_table_bytes( 1692 struct intel_vgpu_ppgtt_spt *spt, 1693 u64 pa, void *p_data, int bytes) 1694 { 1695 struct intel_vgpu *vgpu = spt->vgpu; 1696 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1697 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1698 struct intel_gvt_gtt_entry we, se; 1699 unsigned long index; 1700 int ret; 1701 1702 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1703 1704 ppgtt_get_guest_entry(spt, &we, index); 1705 1706 /* 1707 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1708 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1709 * ignored. 1710 */ 1711 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1712 (index % GTT_64K_PTE_STRIDE)) { 1713 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1714 index); 1715 return 0; 1716 } 1717 1718 if (bytes == info->gtt_entry_size) { 1719 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1720 if (ret) 1721 return ret; 1722 } else { 1723 if (!test_bit(index, spt->post_shadow_bitmap)) { 1724 int type = spt->shadow_page.type; 1725 1726 ppgtt_get_shadow_entry(spt, &se, index); 1727 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1728 if (ret) 1729 return ret; 1730 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1731 ppgtt_set_shadow_entry(spt, &se, index); 1732 } 1733 ppgtt_set_post_shadow(spt, index); 1734 } 1735 1736 if (!enable_out_of_sync) 1737 return 0; 1738 1739 spt->guest_page.write_cnt++; 1740 1741 if (spt->guest_page.oos_page) 1742 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1743 false, 0, vgpu); 1744 1745 if (can_do_out_of_sync(spt)) { 1746 if (!spt->guest_page.oos_page) 1747 ppgtt_allocate_oos_page(spt); 1748 1749 ret = ppgtt_set_guest_page_oos(spt); 1750 if (ret < 0) 1751 return ret; 1752 } 1753 return 0; 1754 } 1755 1756 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1757 { 1758 struct intel_vgpu *vgpu = mm->vgpu; 1759 struct intel_gvt *gvt = vgpu->gvt; 1760 struct intel_gvt_gtt *gtt = &gvt->gtt; 1761 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1762 struct intel_gvt_gtt_entry se; 1763 int index; 1764 1765 if (!mm->ppgtt_mm.shadowed) 1766 return; 1767 1768 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1769 ppgtt_get_shadow_root_entry(mm, &se, index); 1770 1771 if (!ops->test_present(&se)) 1772 continue; 1773 1774 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1775 se.val64 = 0; 1776 ppgtt_set_shadow_root_entry(mm, &se, index); 1777 1778 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1779 NULL, se.type, se.val64, index); 1780 } 1781 1782 mm->ppgtt_mm.shadowed = false; 1783 } 1784 1785 1786 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1787 { 1788 struct intel_vgpu *vgpu = mm->vgpu; 1789 struct intel_gvt *gvt = vgpu->gvt; 1790 struct intel_gvt_gtt *gtt = &gvt->gtt; 1791 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1792 struct intel_vgpu_ppgtt_spt *spt; 1793 struct intel_gvt_gtt_entry ge, se; 1794 int index, ret; 1795 1796 if (mm->ppgtt_mm.shadowed) 1797 return 0; 1798 1799 mm->ppgtt_mm.shadowed = true; 1800 1801 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1802 ppgtt_get_guest_root_entry(mm, &ge, index); 1803 1804 if (!ops->test_present(&ge)) 1805 continue; 1806 1807 trace_spt_guest_change(vgpu->id, __func__, NULL, 1808 ge.type, ge.val64, index); 1809 1810 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1811 if (IS_ERR(spt)) { 1812 gvt_vgpu_err("fail to populate guest root pointer\n"); 1813 ret = PTR_ERR(spt); 1814 goto fail; 1815 } 1816 ppgtt_generate_shadow_entry(&se, spt, &ge); 1817 ppgtt_set_shadow_root_entry(mm, &se, index); 1818 1819 trace_spt_guest_change(vgpu->id, "populate root pointer", 1820 NULL, se.type, se.val64, index); 1821 } 1822 1823 return 0; 1824 fail: 1825 invalidate_ppgtt_mm(mm); 1826 return ret; 1827 } 1828 1829 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1830 { 1831 struct intel_vgpu_mm *mm; 1832 1833 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1834 if (!mm) 1835 return NULL; 1836 1837 mm->vgpu = vgpu; 1838 kref_init(&mm->ref); 1839 atomic_set(&mm->pincount, 0); 1840 1841 return mm; 1842 } 1843 1844 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1845 { 1846 kfree(mm); 1847 } 1848 1849 /** 1850 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1851 * @vgpu: a vGPU 1852 * @root_entry_type: ppgtt root entry type 1853 * @pdps: guest pdps. 1854 * 1855 * This function is used to create a ppgtt mm object for a vGPU. 1856 * 1857 * Returns: 1858 * Zero on success, negative error code in pointer if failed. 1859 */ 1860 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1861 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1862 { 1863 struct intel_gvt *gvt = vgpu->gvt; 1864 struct intel_vgpu_mm *mm; 1865 int ret; 1866 1867 mm = vgpu_alloc_mm(vgpu); 1868 if (!mm) 1869 return ERR_PTR(-ENOMEM); 1870 1871 mm->type = INTEL_GVT_MM_PPGTT; 1872 1873 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1874 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1875 mm->ppgtt_mm.root_entry_type = root_entry_type; 1876 1877 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1878 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1879 1880 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1881 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1882 else 1883 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1884 sizeof(mm->ppgtt_mm.guest_pdps)); 1885 1886 ret = shadow_ppgtt_mm(mm); 1887 if (ret) { 1888 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1889 vgpu_free_mm(mm); 1890 return ERR_PTR(ret); 1891 } 1892 1893 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1894 1895 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1896 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1897 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1898 1899 return mm; 1900 } 1901 1902 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1903 { 1904 struct intel_vgpu_mm *mm; 1905 unsigned long nr_entries; 1906 1907 mm = vgpu_alloc_mm(vgpu); 1908 if (!mm) 1909 return ERR_PTR(-ENOMEM); 1910 1911 mm->type = INTEL_GVT_MM_GGTT; 1912 1913 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1914 mm->ggtt_mm.virtual_ggtt = 1915 vzalloc(array_size(nr_entries, 1916 vgpu->gvt->device_info.gtt_entry_size)); 1917 if (!mm->ggtt_mm.virtual_ggtt) { 1918 vgpu_free_mm(mm); 1919 return ERR_PTR(-ENOMEM); 1920 } 1921 1922 return mm; 1923 } 1924 1925 /** 1926 * _intel_vgpu_mm_release - destroy a mm object 1927 * @mm_ref: a kref object 1928 * 1929 * This function is used to destroy a mm object for vGPU 1930 * 1931 */ 1932 void _intel_vgpu_mm_release(struct kref *mm_ref) 1933 { 1934 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1935 1936 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1937 gvt_err("vgpu mm pin count bug detected\n"); 1938 1939 if (mm->type == INTEL_GVT_MM_PPGTT) { 1940 list_del(&mm->ppgtt_mm.list); 1941 list_del(&mm->ppgtt_mm.lru_list); 1942 invalidate_ppgtt_mm(mm); 1943 } else { 1944 vfree(mm->ggtt_mm.virtual_ggtt); 1945 } 1946 1947 vgpu_free_mm(mm); 1948 } 1949 1950 /** 1951 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1952 * @mm: a vGPU mm object 1953 * 1954 * This function is called when user doesn't want to use a vGPU mm object 1955 */ 1956 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1957 { 1958 atomic_dec_if_positive(&mm->pincount); 1959 } 1960 1961 /** 1962 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1963 * @mm: target vgpu mm 1964 * 1965 * This function is called when user wants to use a vGPU mm object. If this 1966 * mm object hasn't been shadowed yet, the shadow will be populated at this 1967 * time. 1968 * 1969 * Returns: 1970 * Zero on success, negative error code if failed. 1971 */ 1972 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 1973 { 1974 int ret; 1975 1976 atomic_inc(&mm->pincount); 1977 1978 if (mm->type == INTEL_GVT_MM_PPGTT) { 1979 ret = shadow_ppgtt_mm(mm); 1980 if (ret) 1981 return ret; 1982 1983 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1984 list_move_tail(&mm->ppgtt_mm.lru_list, 1985 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 1986 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1987 } 1988 1989 return 0; 1990 } 1991 1992 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 1993 { 1994 struct intel_vgpu_mm *mm; 1995 struct list_head *pos, *n; 1996 1997 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1998 1999 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2000 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2001 2002 if (atomic_read(&mm->pincount)) 2003 continue; 2004 2005 list_del_init(&mm->ppgtt_mm.lru_list); 2006 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2007 invalidate_ppgtt_mm(mm); 2008 return 1; 2009 } 2010 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2011 return 0; 2012 } 2013 2014 /* 2015 * GMA translation APIs. 2016 */ 2017 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2018 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2019 { 2020 struct intel_vgpu *vgpu = mm->vgpu; 2021 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2022 struct intel_vgpu_ppgtt_spt *s; 2023 2024 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2025 if (!s) 2026 return -ENXIO; 2027 2028 if (!guest) 2029 ppgtt_get_shadow_entry(s, e, index); 2030 else 2031 ppgtt_get_guest_entry(s, e, index); 2032 return 0; 2033 } 2034 2035 /** 2036 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2037 * @mm: mm object. could be a PPGTT or GGTT mm object 2038 * @gma: graphics memory address in this mm object 2039 * 2040 * This function is used to translate a graphics memory address in specific 2041 * graphics memory space to guest physical address. 2042 * 2043 * Returns: 2044 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2045 */ 2046 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2047 { 2048 struct intel_vgpu *vgpu = mm->vgpu; 2049 struct intel_gvt *gvt = vgpu->gvt; 2050 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2051 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2052 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2053 unsigned long gma_index[4]; 2054 struct intel_gvt_gtt_entry e; 2055 int i, levels = 0; 2056 int ret; 2057 2058 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2059 mm->type != INTEL_GVT_MM_PPGTT); 2060 2061 if (mm->type == INTEL_GVT_MM_GGTT) { 2062 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2063 goto err; 2064 2065 ggtt_get_guest_entry(mm, &e, 2066 gma_ops->gma_to_ggtt_pte_index(gma)); 2067 2068 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2069 + (gma & ~I915_GTT_PAGE_MASK); 2070 2071 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2072 } else { 2073 switch (mm->ppgtt_mm.root_entry_type) { 2074 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2075 ppgtt_get_shadow_root_entry(mm, &e, 0); 2076 2077 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2078 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2079 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2080 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2081 levels = 4; 2082 break; 2083 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2084 ppgtt_get_shadow_root_entry(mm, &e, 2085 gma_ops->gma_to_l3_pdp_index(gma)); 2086 2087 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2088 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2089 levels = 2; 2090 break; 2091 default: 2092 GEM_BUG_ON(1); 2093 } 2094 2095 /* walk the shadow page table and get gpa from guest entry */ 2096 for (i = 0; i < levels; i++) { 2097 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2098 (i == levels - 1)); 2099 if (ret) 2100 goto err; 2101 2102 if (!pte_ops->test_present(&e)) { 2103 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2104 goto err; 2105 } 2106 } 2107 2108 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2109 (gma & ~I915_GTT_PAGE_MASK); 2110 trace_gma_translate(vgpu->id, "ppgtt", 0, 2111 mm->ppgtt_mm.root_entry_type, gma, gpa); 2112 } 2113 2114 return gpa; 2115 err: 2116 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2117 return INTEL_GVT_INVALID_ADDR; 2118 } 2119 2120 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2121 unsigned int off, void *p_data, unsigned int bytes) 2122 { 2123 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2124 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2125 unsigned long index = off >> info->gtt_entry_size_shift; 2126 struct intel_gvt_gtt_entry e; 2127 2128 if (bytes != 4 && bytes != 8) 2129 return -EINVAL; 2130 2131 ggtt_get_guest_entry(ggtt_mm, &e, index); 2132 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2133 bytes); 2134 return 0; 2135 } 2136 2137 /** 2138 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2139 * @vgpu: a vGPU 2140 * @off: register offset 2141 * @p_data: data will be returned to guest 2142 * @bytes: data length 2143 * 2144 * This function is used to emulate the GTT MMIO register read 2145 * 2146 * Returns: 2147 * Zero on success, error code if failed. 2148 */ 2149 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2150 void *p_data, unsigned int bytes) 2151 { 2152 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2153 int ret; 2154 2155 if (bytes != 4 && bytes != 8) 2156 return -EINVAL; 2157 2158 off -= info->gtt_start_offset; 2159 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2160 return ret; 2161 } 2162 2163 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2164 struct intel_gvt_gtt_entry *entry) 2165 { 2166 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2167 unsigned long pfn; 2168 2169 pfn = pte_ops->get_pfn(entry); 2170 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2171 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2172 pfn << PAGE_SHIFT); 2173 } 2174 2175 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2176 void *p_data, unsigned int bytes) 2177 { 2178 struct intel_gvt *gvt = vgpu->gvt; 2179 const struct intel_gvt_device_info *info = &gvt->device_info; 2180 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2181 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2182 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2183 unsigned long gma, gfn; 2184 struct intel_gvt_gtt_entry e, m; 2185 dma_addr_t dma_addr; 2186 int ret; 2187 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2188 bool partial_update = false; 2189 2190 if (bytes != 4 && bytes != 8) 2191 return -EINVAL; 2192 2193 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2194 2195 /* the VM may configure the whole GM space when ballooning is used */ 2196 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2197 return 0; 2198 2199 e.type = GTT_TYPE_GGTT_PTE; 2200 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2201 bytes); 2202 2203 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2204 * write, save the first 4 bytes in a list and update virtual 2205 * PTE. Only update shadow PTE when the second 4 bytes comes. 2206 */ 2207 if (bytes < info->gtt_entry_size) { 2208 bool found = false; 2209 2210 list_for_each_entry_safe(pos, n, 2211 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2212 if (g_gtt_index == pos->offset >> 2213 info->gtt_entry_size_shift) { 2214 if (off != pos->offset) { 2215 /* the second partial part*/ 2216 int last_off = pos->offset & 2217 (info->gtt_entry_size - 1); 2218 2219 memcpy((void *)&e.val64 + last_off, 2220 (void *)&pos->data + last_off, 2221 bytes); 2222 2223 list_del(&pos->list); 2224 kfree(pos); 2225 found = true; 2226 break; 2227 } 2228 2229 /* update of the first partial part */ 2230 pos->data = e.val64; 2231 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2232 return 0; 2233 } 2234 } 2235 2236 if (!found) { 2237 /* the first partial part */ 2238 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2239 if (!partial_pte) 2240 return -ENOMEM; 2241 partial_pte->offset = off; 2242 partial_pte->data = e.val64; 2243 list_add_tail(&partial_pte->list, 2244 &ggtt_mm->ggtt_mm.partial_pte_list); 2245 partial_update = true; 2246 } 2247 } 2248 2249 if (!partial_update && (ops->test_present(&e))) { 2250 gfn = ops->get_pfn(&e); 2251 m = e; 2252 2253 /* one PTE update may be issued in multiple writes and the 2254 * first write may not construct a valid gfn 2255 */ 2256 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2257 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2258 goto out; 2259 } 2260 2261 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2262 PAGE_SIZE, &dma_addr); 2263 if (ret) { 2264 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2265 /* guest driver may read/write the entry when partial 2266 * update the entry in this situation p2m will fail 2267 * settting the shadow entry to point to a scratch page 2268 */ 2269 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2270 } else 2271 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2272 } else { 2273 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2274 ops->clear_present(&m); 2275 } 2276 2277 out: 2278 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2279 2280 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2281 ggtt_invalidate_pte(vgpu, &e); 2282 2283 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2284 ggtt_invalidate(gvt->dev_priv); 2285 return 0; 2286 } 2287 2288 /* 2289 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2290 * @vgpu: a vGPU 2291 * @off: register offset 2292 * @p_data: data from guest write 2293 * @bytes: data length 2294 * 2295 * This function is used to emulate the GTT MMIO register write 2296 * 2297 * Returns: 2298 * Zero on success, error code if failed. 2299 */ 2300 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2301 unsigned int off, void *p_data, unsigned int bytes) 2302 { 2303 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2304 int ret; 2305 2306 if (bytes != 4 && bytes != 8) 2307 return -EINVAL; 2308 2309 off -= info->gtt_start_offset; 2310 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2311 return ret; 2312 } 2313 2314 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2315 enum intel_gvt_gtt_type type) 2316 { 2317 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2318 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2319 int page_entry_num = I915_GTT_PAGE_SIZE >> 2320 vgpu->gvt->device_info.gtt_entry_size_shift; 2321 void *scratch_pt; 2322 int i; 2323 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2324 dma_addr_t daddr; 2325 2326 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2327 return -EINVAL; 2328 2329 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2330 if (!scratch_pt) { 2331 gvt_vgpu_err("fail to allocate scratch page\n"); 2332 return -ENOMEM; 2333 } 2334 2335 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2336 4096, PCI_DMA_BIDIRECTIONAL); 2337 if (dma_mapping_error(dev, daddr)) { 2338 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2339 __free_page(virt_to_page(scratch_pt)); 2340 return -ENOMEM; 2341 } 2342 gtt->scratch_pt[type].page_mfn = 2343 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2344 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2345 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2346 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2347 2348 /* Build the tree by full filled the scratch pt with the entries which 2349 * point to the next level scratch pt or scratch page. The 2350 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2351 * 'type' pt. 2352 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2353 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2354 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2355 */ 2356 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2357 struct intel_gvt_gtt_entry se; 2358 2359 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2360 se.type = get_entry_type(type - 1); 2361 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2362 2363 /* The entry parameters like present/writeable/cache type 2364 * set to the same as i915's scratch page tree. 2365 */ 2366 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2367 if (type == GTT_TYPE_PPGTT_PDE_PT) 2368 se.val64 |= PPAT_CACHED; 2369 2370 for (i = 0; i < page_entry_num; i++) 2371 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2372 } 2373 2374 return 0; 2375 } 2376 2377 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2378 { 2379 int i; 2380 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2381 dma_addr_t daddr; 2382 2383 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2384 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2385 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2386 I915_GTT_PAGE_SHIFT); 2387 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2388 __free_page(vgpu->gtt.scratch_pt[i].page); 2389 vgpu->gtt.scratch_pt[i].page = NULL; 2390 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2391 } 2392 } 2393 2394 return 0; 2395 } 2396 2397 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2398 { 2399 int i, ret; 2400 2401 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2402 ret = alloc_scratch_pages(vgpu, i); 2403 if (ret) 2404 goto err; 2405 } 2406 2407 return 0; 2408 2409 err: 2410 release_scratch_page_tree(vgpu); 2411 return ret; 2412 } 2413 2414 /** 2415 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2416 * @vgpu: a vGPU 2417 * 2418 * This function is used to initialize per-vGPU graphics memory virtualization 2419 * components. 2420 * 2421 * Returns: 2422 * Zero on success, error code if failed. 2423 */ 2424 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2425 { 2426 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2427 2428 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2429 2430 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2431 INIT_LIST_HEAD(>t->oos_page_list_head); 2432 INIT_LIST_HEAD(>t->post_shadow_list_head); 2433 2434 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2435 if (IS_ERR(gtt->ggtt_mm)) { 2436 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2437 return PTR_ERR(gtt->ggtt_mm); 2438 } 2439 2440 intel_vgpu_reset_ggtt(vgpu, false); 2441 2442 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2443 2444 return create_scratch_page_tree(vgpu); 2445 } 2446 2447 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2448 { 2449 struct list_head *pos, *n; 2450 struct intel_vgpu_mm *mm; 2451 2452 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2453 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2454 intel_vgpu_destroy_mm(mm); 2455 } 2456 2457 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2458 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2459 2460 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2461 gvt_err("Why we still has spt not freed?\n"); 2462 ppgtt_free_all_spt(vgpu); 2463 } 2464 } 2465 2466 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2467 { 2468 struct intel_gvt_partial_pte *pos, *next; 2469 2470 list_for_each_entry_safe(pos, next, 2471 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2472 list) { 2473 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2474 pos->offset, pos->data); 2475 kfree(pos); 2476 } 2477 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2478 vgpu->gtt.ggtt_mm = NULL; 2479 } 2480 2481 /** 2482 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2483 * @vgpu: a vGPU 2484 * 2485 * This function is used to clean up per-vGPU graphics memory virtualization 2486 * components. 2487 * 2488 * Returns: 2489 * Zero on success, error code if failed. 2490 */ 2491 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2492 { 2493 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2494 intel_vgpu_destroy_ggtt_mm(vgpu); 2495 release_scratch_page_tree(vgpu); 2496 } 2497 2498 static void clean_spt_oos(struct intel_gvt *gvt) 2499 { 2500 struct intel_gvt_gtt *gtt = &gvt->gtt; 2501 struct list_head *pos, *n; 2502 struct intel_vgpu_oos_page *oos_page; 2503 2504 WARN(!list_empty(>t->oos_page_use_list_head), 2505 "someone is still using oos page\n"); 2506 2507 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2508 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2509 list_del(&oos_page->list); 2510 free_page((unsigned long)oos_page->mem); 2511 kfree(oos_page); 2512 } 2513 } 2514 2515 static int setup_spt_oos(struct intel_gvt *gvt) 2516 { 2517 struct intel_gvt_gtt *gtt = &gvt->gtt; 2518 struct intel_vgpu_oos_page *oos_page; 2519 int i; 2520 int ret; 2521 2522 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2523 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2524 2525 for (i = 0; i < preallocated_oos_pages; i++) { 2526 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2527 if (!oos_page) { 2528 ret = -ENOMEM; 2529 goto fail; 2530 } 2531 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2532 if (!oos_page->mem) { 2533 ret = -ENOMEM; 2534 kfree(oos_page); 2535 goto fail; 2536 } 2537 2538 INIT_LIST_HEAD(&oos_page->list); 2539 INIT_LIST_HEAD(&oos_page->vm_list); 2540 oos_page->id = i; 2541 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2542 } 2543 2544 gvt_dbg_mm("%d oos pages preallocated\n", i); 2545 2546 return 0; 2547 fail: 2548 clean_spt_oos(gvt); 2549 return ret; 2550 } 2551 2552 /** 2553 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2554 * @vgpu: a vGPU 2555 * @pdps: pdp root array 2556 * 2557 * This function is used to find a PPGTT mm object from mm object pool 2558 * 2559 * Returns: 2560 * pointer to mm object on success, NULL if failed. 2561 */ 2562 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2563 u64 pdps[]) 2564 { 2565 struct intel_vgpu_mm *mm; 2566 struct list_head *pos; 2567 2568 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2569 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2570 2571 switch (mm->ppgtt_mm.root_entry_type) { 2572 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2573 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2574 return mm; 2575 break; 2576 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2577 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2578 sizeof(mm->ppgtt_mm.guest_pdps))) 2579 return mm; 2580 break; 2581 default: 2582 GEM_BUG_ON(1); 2583 } 2584 } 2585 return NULL; 2586 } 2587 2588 /** 2589 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2590 * @vgpu: a vGPU 2591 * @root_entry_type: ppgtt root entry type 2592 * @pdps: guest pdps 2593 * 2594 * This function is used to find or create a PPGTT mm object from a guest. 2595 * 2596 * Returns: 2597 * Zero on success, negative error code if failed. 2598 */ 2599 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2600 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2601 { 2602 struct intel_vgpu_mm *mm; 2603 2604 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2605 if (mm) { 2606 intel_vgpu_mm_get(mm); 2607 } else { 2608 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2609 if (IS_ERR(mm)) 2610 gvt_vgpu_err("fail to create mm\n"); 2611 } 2612 return mm; 2613 } 2614 2615 /** 2616 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2617 * @vgpu: a vGPU 2618 * @pdps: guest pdps 2619 * 2620 * This function is used to find a PPGTT mm object from a guest and destroy it. 2621 * 2622 * Returns: 2623 * Zero on success, negative error code if failed. 2624 */ 2625 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2626 { 2627 struct intel_vgpu_mm *mm; 2628 2629 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2630 if (!mm) { 2631 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2632 return -EINVAL; 2633 } 2634 intel_vgpu_mm_put(mm); 2635 return 0; 2636 } 2637 2638 /** 2639 * intel_gvt_init_gtt - initialize mm components of a GVT device 2640 * @gvt: GVT device 2641 * 2642 * This function is called at the initialization stage, to initialize 2643 * the mm components of a GVT device. 2644 * 2645 * Returns: 2646 * zero on success, negative error code if failed. 2647 */ 2648 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2649 { 2650 int ret; 2651 void *page; 2652 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2653 dma_addr_t daddr; 2654 2655 gvt_dbg_core("init gtt\n"); 2656 2657 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2658 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2659 2660 page = (void *)get_zeroed_page(GFP_KERNEL); 2661 if (!page) { 2662 gvt_err("fail to allocate scratch ggtt page\n"); 2663 return -ENOMEM; 2664 } 2665 2666 daddr = dma_map_page(dev, virt_to_page(page), 0, 2667 4096, PCI_DMA_BIDIRECTIONAL); 2668 if (dma_mapping_error(dev, daddr)) { 2669 gvt_err("fail to dmamap scratch ggtt page\n"); 2670 __free_page(virt_to_page(page)); 2671 return -ENOMEM; 2672 } 2673 2674 gvt->gtt.scratch_page = virt_to_page(page); 2675 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2676 2677 if (enable_out_of_sync) { 2678 ret = setup_spt_oos(gvt); 2679 if (ret) { 2680 gvt_err("fail to initialize SPT oos\n"); 2681 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2682 __free_page(gvt->gtt.scratch_page); 2683 return ret; 2684 } 2685 } 2686 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2687 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2688 return 0; 2689 } 2690 2691 /** 2692 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2693 * @gvt: GVT device 2694 * 2695 * This function is called at the driver unloading stage, to clean up the 2696 * the mm components of a GVT device. 2697 * 2698 */ 2699 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2700 { 2701 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2702 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2703 I915_GTT_PAGE_SHIFT); 2704 2705 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2706 2707 __free_page(gvt->gtt.scratch_page); 2708 2709 if (enable_out_of_sync) 2710 clean_spt_oos(gvt); 2711 } 2712 2713 /** 2714 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2715 * @vgpu: a vGPU 2716 * 2717 * This function is called when invalidate all PPGTT instances of a vGPU. 2718 * 2719 */ 2720 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2721 { 2722 struct list_head *pos, *n; 2723 struct intel_vgpu_mm *mm; 2724 2725 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2726 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2727 if (mm->type == INTEL_GVT_MM_PPGTT) { 2728 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2729 list_del_init(&mm->ppgtt_mm.lru_list); 2730 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2731 if (mm->ppgtt_mm.shadowed) 2732 invalidate_ppgtt_mm(mm); 2733 } 2734 } 2735 } 2736 2737 /** 2738 * intel_vgpu_reset_ggtt - reset the GGTT entry 2739 * @vgpu: a vGPU 2740 * @invalidate_old: invalidate old entries 2741 * 2742 * This function is called at the vGPU create stage 2743 * to reset all the GGTT entries. 2744 * 2745 */ 2746 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2747 { 2748 struct intel_gvt *gvt = vgpu->gvt; 2749 struct drm_i915_private *dev_priv = gvt->dev_priv; 2750 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2751 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2752 struct intel_gvt_gtt_entry old_entry; 2753 u32 index; 2754 u32 num_entries; 2755 2756 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2757 pte_ops->set_present(&entry); 2758 2759 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2760 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2761 while (num_entries--) { 2762 if (invalidate_old) { 2763 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2764 ggtt_invalidate_pte(vgpu, &old_entry); 2765 } 2766 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2767 } 2768 2769 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2770 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2771 while (num_entries--) { 2772 if (invalidate_old) { 2773 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2774 ggtt_invalidate_pte(vgpu, &old_entry); 2775 } 2776 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2777 } 2778 2779 ggtt_invalidate(dev_priv); 2780 } 2781 2782 /** 2783 * intel_vgpu_reset_gtt - reset the all GTT related status 2784 * @vgpu: a vGPU 2785 * 2786 * This function is called from vfio core to reset reset all 2787 * GTT related status, including GGTT, PPGTT, scratch page. 2788 * 2789 */ 2790 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2791 { 2792 /* Shadow pages are only created when there is no page 2793 * table tracking data, so remove page tracking data after 2794 * removing the shadow pages. 2795 */ 2796 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2797 intel_vgpu_reset_ggtt(vgpu, true); 2798 } 2799