1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if (size == 0) 57 return vgpu_gmadr_is_valid(vgpu, addr); 58 59 if (vgpu_gmadr_is_aperture(vgpu, addr) && 60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 61 return true; 62 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 64 return true; 65 66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 67 addr, size); 68 return false; 69 } 70 71 /* translate a guest gmadr to host gmadr */ 72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 73 { 74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 75 76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 77 "invalid guest gmadr %llx\n", g_addr)) 78 return -EACCES; 79 80 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 81 *h_addr = vgpu_aperture_gmadr_base(vgpu) 82 + (g_addr - vgpu_aperture_offset(vgpu)); 83 else 84 *h_addr = vgpu_hidden_gmadr_base(vgpu) 85 + (g_addr - vgpu_hidden_offset(vgpu)); 86 return 0; 87 } 88 89 /* translate a host gmadr to guest gmadr */ 90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 95 "invalid host gmadr %llx\n", h_addr)) 96 return -EACCES; 97 98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 99 *g_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 101 else 102 *g_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 104 return 0; 105 } 106 107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 108 unsigned long *h_index) 109 { 110 u64 h_addr; 111 int ret; 112 113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 114 &h_addr); 115 if (ret) 116 return ret; 117 118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 119 return 0; 120 } 121 122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 123 unsigned long *g_index) 124 { 125 u64 g_addr; 126 int ret; 127 128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 129 &g_addr); 130 if (ret) 131 return ret; 132 133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 134 return 0; 135 } 136 137 #define gtt_type_is_entry(type) \ 138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 141 142 #define gtt_type_is_pt(type) \ 143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 144 145 #define gtt_type_is_pte_pt(type) \ 146 (type == GTT_TYPE_PPGTT_PTE_PT) 147 148 #define gtt_type_is_root_pointer(type) \ 149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 150 151 #define gtt_init_entry(e, t, p, v) do { \ 152 (e)->type = t; \ 153 (e)->pdev = p; \ 154 memcpy(&(e)->val64, &v, sizeof(v)); \ 155 } while (0) 156 157 /* 158 * Mappings between GTT_TYPE* enumerations. 159 * Following information can be found according to the given type: 160 * - type of next level page table 161 * - type of entry inside this level page table 162 * - type of entry with PSE set 163 * 164 * If the given type doesn't have such a kind of information, 165 * e.g. give a l4 root entry type, then request to get its PSE type, 166 * give a PTE page table type, then request to get its next level page 167 * table type, as we know l4 root entry doesn't have a PSE bit, 168 * and a PTE page table doesn't have a next level page table type, 169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 170 * page table. 171 */ 172 173 struct gtt_type_table_entry { 174 int entry_type; 175 int pt_type; 176 int next_pt_type; 177 int pse_entry_type; 178 }; 179 180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 181 [type] = { \ 182 .entry_type = e_type, \ 183 .pt_type = cpt_type, \ 184 .next_pt_type = npt_type, \ 185 .pse_entry_type = pse_type, \ 186 } 187 188 static struct gtt_type_table_entry gtt_type_table[] = { 189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 191 GTT_TYPE_INVALID, 192 GTT_TYPE_PPGTT_PML4_PT, 193 GTT_TYPE_INVALID), 194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 195 GTT_TYPE_PPGTT_PML4_ENTRY, 196 GTT_TYPE_PPGTT_PML4_PT, 197 GTT_TYPE_PPGTT_PDP_PT, 198 GTT_TYPE_INVALID), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 200 GTT_TYPE_PPGTT_PML4_ENTRY, 201 GTT_TYPE_PPGTT_PML4_PT, 202 GTT_TYPE_PPGTT_PDP_PT, 203 GTT_TYPE_INVALID), 204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 205 GTT_TYPE_PPGTT_PDP_ENTRY, 206 GTT_TYPE_PPGTT_PDP_PT, 207 GTT_TYPE_PPGTT_PDE_PT, 208 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 211 GTT_TYPE_INVALID, 212 GTT_TYPE_PPGTT_PDE_PT, 213 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 215 GTT_TYPE_PPGTT_PDP_ENTRY, 216 GTT_TYPE_PPGTT_PDP_PT, 217 GTT_TYPE_PPGTT_PDE_PT, 218 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 220 GTT_TYPE_PPGTT_PDE_ENTRY, 221 GTT_TYPE_PPGTT_PDE_PT, 222 GTT_TYPE_PPGTT_PTE_PT, 223 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 225 GTT_TYPE_PPGTT_PDE_ENTRY, 226 GTT_TYPE_PPGTT_PDE_PT, 227 GTT_TYPE_PPGTT_PTE_PT, 228 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 229 /* We take IPS bit as 'PSE' for PTE level. */ 230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 231 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_PT, 233 GTT_TYPE_INVALID, 234 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 236 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 237 GTT_TYPE_PPGTT_PTE_PT, 238 GTT_TYPE_INVALID, 239 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 241 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 242 GTT_TYPE_PPGTT_PTE_PT, 243 GTT_TYPE_INVALID, 244 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 246 GTT_TYPE_PPGTT_PDE_ENTRY, 247 GTT_TYPE_PPGTT_PDE_PT, 248 GTT_TYPE_INVALID, 249 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 251 GTT_TYPE_PPGTT_PDP_ENTRY, 252 GTT_TYPE_PPGTT_PDP_PT, 253 GTT_TYPE_INVALID, 254 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 256 GTT_TYPE_GGTT_PTE, 257 GTT_TYPE_INVALID, 258 GTT_TYPE_INVALID, 259 GTT_TYPE_INVALID), 260 }; 261 262 static inline int get_next_pt_type(int type) 263 { 264 return gtt_type_table[type].next_pt_type; 265 } 266 267 static inline int get_pt_type(int type) 268 { 269 return gtt_type_table[type].pt_type; 270 } 271 272 static inline int get_entry_type(int type) 273 { 274 return gtt_type_table[type].entry_type; 275 } 276 277 static inline int get_pse_type(int type) 278 { 279 return gtt_type_table[type].pse_entry_type; 280 } 281 282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 283 { 284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 285 286 return readq(addr); 287 } 288 289 static void ggtt_invalidate(struct intel_gt *gt) 290 { 291 mmio_hw_access_pre(gt); 292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 293 mmio_hw_access_post(gt); 294 } 295 296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 297 { 298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 299 300 writeq(pte, addr); 301 } 302 303 static inline int gtt_get_entry64(void *pt, 304 struct intel_gvt_gtt_entry *e, 305 unsigned long index, bool hypervisor_access, unsigned long gpa, 306 struct intel_vgpu *vgpu) 307 { 308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 309 int ret; 310 311 if (WARN_ON(info->gtt_entry_size != 8)) 312 return -EINVAL; 313 314 if (hypervisor_access) { 315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 316 (index << info->gtt_entry_size_shift), 317 &e->val64, 8); 318 if (WARN_ON(ret)) 319 return ret; 320 } else if (!pt) { 321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 322 } else { 323 e->val64 = *((u64 *)pt + index); 324 } 325 return 0; 326 } 327 328 static inline int gtt_set_entry64(void *pt, 329 struct intel_gvt_gtt_entry *e, 330 unsigned long index, bool hypervisor_access, unsigned long gpa, 331 struct intel_vgpu *vgpu) 332 { 333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 334 int ret; 335 336 if (WARN_ON(info->gtt_entry_size != 8)) 337 return -EINVAL; 338 339 if (hypervisor_access) { 340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 341 (index << info->gtt_entry_size_shift), 342 &e->val64, 8); 343 if (WARN_ON(ret)) 344 return ret; 345 } else if (!pt) { 346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 347 } else { 348 *((u64 *)pt + index) = e->val64; 349 } 350 return 0; 351 } 352 353 #define GTT_HAW 46 354 355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 359 360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 362 363 #define GTT_64K_PTE_STRIDE 16 364 365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 366 { 367 unsigned long pfn; 368 369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 375 else 376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 377 return pfn; 378 } 379 380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 381 { 382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 383 e->val64 &= ~ADDR_1G_MASK; 384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 386 e->val64 &= ~ADDR_2M_MASK; 387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 389 e->val64 &= ~ADDR_64K_MASK; 390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 391 } else { 392 e->val64 &= ~ADDR_4K_MASK; 393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 394 } 395 396 e->val64 |= (pfn << PAGE_SHIFT); 397 } 398 399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 400 { 401 return !!(e->val64 & _PAGE_PSE); 402 } 403 404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 405 { 406 if (gen8_gtt_test_pse(e)) { 407 switch (e->type) { 408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 409 e->val64 &= ~_PAGE_PSE; 410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 411 break; 412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 414 e->val64 &= ~_PAGE_PSE; 415 break; 416 default: 417 WARN_ON(1); 418 } 419 } 420 } 421 422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 423 { 424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 425 return false; 426 427 return !!(e->val64 & GEN8_PDE_IPS_64K); 428 } 429 430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 431 { 432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 433 return; 434 435 e->val64 &= ~GEN8_PDE_IPS_64K; 436 } 437 438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 439 { 440 /* 441 * i915 writes PDP root pointer registers without present bit, 442 * it also works, so we need to treat root pointer entry 443 * specifically. 444 */ 445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 447 return (e->val64 != 0); 448 else 449 return (e->val64 & _PAGE_PRESENT); 450 } 451 452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 453 { 454 e->val64 &= ~_PAGE_PRESENT; 455 } 456 457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 458 { 459 e->val64 |= _PAGE_PRESENT; 460 } 461 462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 463 { 464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 465 } 466 467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 468 { 469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 470 } 471 472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 473 { 474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 475 } 476 477 /* 478 * Per-platform GMA routines. 479 */ 480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 481 { 482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 483 484 trace_gma_index(__func__, gma, x); 485 return x; 486 } 487 488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 490 { \ 491 unsigned long x = (exp); \ 492 trace_gma_index(__func__, gma, x); \ 493 return x; \ 494 } 495 496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 501 502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 503 .get_entry = gtt_get_entry64, 504 .set_entry = gtt_set_entry64, 505 .clear_present = gtt_entry_clear_present, 506 .set_present = gtt_entry_set_present, 507 .test_present = gen8_gtt_test_present, 508 .test_pse = gen8_gtt_test_pse, 509 .clear_pse = gen8_gtt_clear_pse, 510 .clear_ips = gen8_gtt_clear_ips, 511 .test_ips = gen8_gtt_test_ips, 512 .clear_64k_splited = gen8_gtt_clear_64k_splited, 513 .set_64k_splited = gen8_gtt_set_64k_splited, 514 .test_64k_splited = gen8_gtt_test_64k_splited, 515 .get_pfn = gen8_gtt_get_pfn, 516 .set_pfn = gen8_gtt_set_pfn, 517 }; 518 519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 521 .gma_to_pte_index = gen8_gma_to_pte_index, 522 .gma_to_pde_index = gen8_gma_to_pde_index, 523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 525 .gma_to_pml4_index = gen8_gma_to_pml4_index, 526 }; 527 528 /* Update entry type per pse and ips bit. */ 529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 530 struct intel_gvt_gtt_entry *entry, bool ips) 531 { 532 switch (entry->type) { 533 case GTT_TYPE_PPGTT_PDE_ENTRY: 534 case GTT_TYPE_PPGTT_PDP_ENTRY: 535 if (pte_ops->test_pse(entry)) 536 entry->type = get_pse_type(entry->type); 537 break; 538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 539 if (ips) 540 entry->type = get_pse_type(entry->type); 541 break; 542 default: 543 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 544 } 545 546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 547 } 548 549 /* 550 * MM helpers. 551 */ 552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 553 struct intel_gvt_gtt_entry *entry, unsigned long index, 554 bool guest) 555 { 556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 557 558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 559 560 entry->type = mm->ppgtt_mm.root_entry_type; 561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 562 mm->ppgtt_mm.shadow_pdps, 563 entry, index, false, 0, mm->vgpu); 564 update_entry_type_for_real(pte_ops, entry, false); 565 } 566 567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 568 struct intel_gvt_gtt_entry *entry, unsigned long index) 569 { 570 _ppgtt_get_root_entry(mm, entry, index, true); 571 } 572 573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 574 struct intel_gvt_gtt_entry *entry, unsigned long index) 575 { 576 _ppgtt_get_root_entry(mm, entry, index, false); 577 } 578 579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 580 struct intel_gvt_gtt_entry *entry, unsigned long index, 581 bool guest) 582 { 583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 584 585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 586 mm->ppgtt_mm.shadow_pdps, 587 entry, index, false, 0, mm->vgpu); 588 } 589 590 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 591 struct intel_gvt_gtt_entry *entry, unsigned long index) 592 { 593 _ppgtt_set_root_entry(mm, entry, index, false); 594 } 595 596 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 597 struct intel_gvt_gtt_entry *entry, unsigned long index) 598 { 599 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 600 601 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 602 603 entry->type = GTT_TYPE_GGTT_PTE; 604 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 605 false, 0, mm->vgpu); 606 } 607 608 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 609 struct intel_gvt_gtt_entry *entry, unsigned long index) 610 { 611 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 612 613 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 614 615 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 616 false, 0, mm->vgpu); 617 } 618 619 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 620 struct intel_gvt_gtt_entry *entry, unsigned long index) 621 { 622 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 623 624 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 625 626 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 627 } 628 629 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 630 struct intel_gvt_gtt_entry *entry, unsigned long index) 631 { 632 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 633 unsigned long offset = index; 634 635 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 636 637 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 638 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 639 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 640 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 641 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 642 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 643 } 644 645 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 646 } 647 648 /* 649 * PPGTT shadow page table helpers. 650 */ 651 static inline int ppgtt_spt_get_entry( 652 struct intel_vgpu_ppgtt_spt *spt, 653 void *page_table, int type, 654 struct intel_gvt_gtt_entry *e, unsigned long index, 655 bool guest) 656 { 657 struct intel_gvt *gvt = spt->vgpu->gvt; 658 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 659 int ret; 660 661 e->type = get_entry_type(type); 662 663 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 664 return -EINVAL; 665 666 ret = ops->get_entry(page_table, e, index, guest, 667 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 668 spt->vgpu); 669 if (ret) 670 return ret; 671 672 update_entry_type_for_real(ops, e, guest ? 673 spt->guest_page.pde_ips : false); 674 675 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 676 type, e->type, index, e->val64); 677 return 0; 678 } 679 680 static inline int ppgtt_spt_set_entry( 681 struct intel_vgpu_ppgtt_spt *spt, 682 void *page_table, int type, 683 struct intel_gvt_gtt_entry *e, unsigned long index, 684 bool guest) 685 { 686 struct intel_gvt *gvt = spt->vgpu->gvt; 687 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 688 689 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 690 return -EINVAL; 691 692 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 693 type, e->type, index, e->val64); 694 695 return ops->set_entry(page_table, e, index, guest, 696 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 697 spt->vgpu); 698 } 699 700 #define ppgtt_get_guest_entry(spt, e, index) \ 701 ppgtt_spt_get_entry(spt, NULL, \ 702 spt->guest_page.type, e, index, true) 703 704 #define ppgtt_set_guest_entry(spt, e, index) \ 705 ppgtt_spt_set_entry(spt, NULL, \ 706 spt->guest_page.type, e, index, true) 707 708 #define ppgtt_get_shadow_entry(spt, e, index) \ 709 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 710 spt->shadow_page.type, e, index, false) 711 712 #define ppgtt_set_shadow_entry(spt, e, index) \ 713 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 714 spt->shadow_page.type, e, index, false) 715 716 static void *alloc_spt(gfp_t gfp_mask) 717 { 718 struct intel_vgpu_ppgtt_spt *spt; 719 720 spt = kzalloc(sizeof(*spt), gfp_mask); 721 if (!spt) 722 return NULL; 723 724 spt->shadow_page.page = alloc_page(gfp_mask); 725 if (!spt->shadow_page.page) { 726 kfree(spt); 727 return NULL; 728 } 729 return spt; 730 } 731 732 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 733 { 734 __free_page(spt->shadow_page.page); 735 kfree(spt); 736 } 737 738 static int detach_oos_page(struct intel_vgpu *vgpu, 739 struct intel_vgpu_oos_page *oos_page); 740 741 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 742 { 743 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; 744 745 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 746 747 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 748 PCI_DMA_BIDIRECTIONAL); 749 750 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 751 752 if (spt->guest_page.gfn) { 753 if (spt->guest_page.oos_page) 754 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 755 756 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 757 } 758 759 list_del_init(&spt->post_shadow_list); 760 free_spt(spt); 761 } 762 763 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 764 { 765 struct intel_vgpu_ppgtt_spt *spt, *spn; 766 struct radix_tree_iter iter; 767 LIST_HEAD(all_spt); 768 void __rcu **slot; 769 770 rcu_read_lock(); 771 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 772 spt = radix_tree_deref_slot(slot); 773 list_move(&spt->post_shadow_list, &all_spt); 774 } 775 rcu_read_unlock(); 776 777 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 778 ppgtt_free_spt(spt); 779 } 780 781 static int ppgtt_handle_guest_write_page_table_bytes( 782 struct intel_vgpu_ppgtt_spt *spt, 783 u64 pa, void *p_data, int bytes); 784 785 static int ppgtt_write_protection_handler( 786 struct intel_vgpu_page_track *page_track, 787 u64 gpa, void *data, int bytes) 788 { 789 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 790 791 int ret; 792 793 if (bytes != 4 && bytes != 8) 794 return -EINVAL; 795 796 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 797 if (ret) 798 return ret; 799 return ret; 800 } 801 802 /* Find a spt by guest gfn. */ 803 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 804 struct intel_vgpu *vgpu, unsigned long gfn) 805 { 806 struct intel_vgpu_page_track *track; 807 808 track = intel_vgpu_find_page_track(vgpu, gfn); 809 if (track && track->handler == ppgtt_write_protection_handler) 810 return track->priv_data; 811 812 return NULL; 813 } 814 815 /* Find the spt by shadow page mfn. */ 816 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 817 struct intel_vgpu *vgpu, unsigned long mfn) 818 { 819 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 820 } 821 822 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 823 824 /* Allocate shadow page table without guest page. */ 825 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 826 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 827 { 828 struct device *kdev = vgpu->gvt->gt->i915->drm.dev; 829 struct intel_vgpu_ppgtt_spt *spt = NULL; 830 dma_addr_t daddr; 831 int ret; 832 833 retry: 834 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 835 if (!spt) { 836 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 837 goto retry; 838 839 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 840 return ERR_PTR(-ENOMEM); 841 } 842 843 spt->vgpu = vgpu; 844 atomic_set(&spt->refcount, 1); 845 INIT_LIST_HEAD(&spt->post_shadow_list); 846 847 /* 848 * Init shadow_page. 849 */ 850 spt->shadow_page.type = type; 851 daddr = dma_map_page(kdev, spt->shadow_page.page, 852 0, 4096, PCI_DMA_BIDIRECTIONAL); 853 if (dma_mapping_error(kdev, daddr)) { 854 gvt_vgpu_err("fail to map dma addr\n"); 855 ret = -EINVAL; 856 goto err_free_spt; 857 } 858 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 859 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 860 861 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 862 if (ret) 863 goto err_unmap_dma; 864 865 return spt; 866 867 err_unmap_dma: 868 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 869 err_free_spt: 870 free_spt(spt); 871 return ERR_PTR(ret); 872 } 873 874 /* Allocate shadow page table associated with specific gfn. */ 875 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 876 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 877 unsigned long gfn, bool guest_pde_ips) 878 { 879 struct intel_vgpu_ppgtt_spt *spt; 880 int ret; 881 882 spt = ppgtt_alloc_spt(vgpu, type); 883 if (IS_ERR(spt)) 884 return spt; 885 886 /* 887 * Init guest_page. 888 */ 889 ret = intel_vgpu_register_page_track(vgpu, gfn, 890 ppgtt_write_protection_handler, spt); 891 if (ret) { 892 ppgtt_free_spt(spt); 893 return ERR_PTR(ret); 894 } 895 896 spt->guest_page.type = type; 897 spt->guest_page.gfn = gfn; 898 spt->guest_page.pde_ips = guest_pde_ips; 899 900 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 901 902 return spt; 903 } 904 905 #define pt_entry_size_shift(spt) \ 906 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 907 908 #define pt_entries(spt) \ 909 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 910 911 #define for_each_present_guest_entry(spt, e, i) \ 912 for (i = 0; i < pt_entries(spt); \ 913 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 914 if (!ppgtt_get_guest_entry(spt, e, i) && \ 915 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 916 917 #define for_each_present_shadow_entry(spt, e, i) \ 918 for (i = 0; i < pt_entries(spt); \ 919 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 920 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 921 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 922 923 #define for_each_shadow_entry(spt, e, i) \ 924 for (i = 0; i < pt_entries(spt); \ 925 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 926 if (!ppgtt_get_shadow_entry(spt, e, i)) 927 928 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 929 { 930 int v = atomic_read(&spt->refcount); 931 932 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 933 atomic_inc(&spt->refcount); 934 } 935 936 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 937 { 938 int v = atomic_read(&spt->refcount); 939 940 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 941 return atomic_dec_return(&spt->refcount); 942 } 943 944 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 945 946 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 947 struct intel_gvt_gtt_entry *e) 948 { 949 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 950 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 951 struct intel_vgpu_ppgtt_spt *s; 952 enum intel_gvt_gtt_type cur_pt_type; 953 954 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 955 956 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 957 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 958 cur_pt_type = get_next_pt_type(e->type); 959 960 if (!gtt_type_is_pt(cur_pt_type) || 961 !gtt_type_is_pt(cur_pt_type + 1)) { 962 drm_WARN(&i915->drm, 1, 963 "Invalid page table type, cur_pt_type is: %d\n", 964 cur_pt_type); 965 return -EINVAL; 966 } 967 968 cur_pt_type += 1; 969 970 if (ops->get_pfn(e) == 971 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 972 return 0; 973 } 974 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 975 if (!s) { 976 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 977 ops->get_pfn(e)); 978 return -ENXIO; 979 } 980 return ppgtt_invalidate_spt(s); 981 } 982 983 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 984 struct intel_gvt_gtt_entry *entry) 985 { 986 struct intel_vgpu *vgpu = spt->vgpu; 987 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 988 unsigned long pfn; 989 int type; 990 991 pfn = ops->get_pfn(entry); 992 type = spt->shadow_page.type; 993 994 /* Uninitialized spte or unshadowed spte. */ 995 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 996 return; 997 998 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 999 } 1000 1001 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1002 { 1003 struct intel_vgpu *vgpu = spt->vgpu; 1004 struct intel_gvt_gtt_entry e; 1005 unsigned long index; 1006 int ret; 1007 1008 trace_spt_change(spt->vgpu->id, "die", spt, 1009 spt->guest_page.gfn, spt->shadow_page.type); 1010 1011 if (ppgtt_put_spt(spt) > 0) 1012 return 0; 1013 1014 for_each_present_shadow_entry(spt, &e, index) { 1015 switch (e.type) { 1016 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1017 gvt_vdbg_mm("invalidate 4K entry\n"); 1018 ppgtt_invalidate_pte(spt, &e); 1019 break; 1020 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1021 /* We don't setup 64K shadow entry so far. */ 1022 WARN(1, "suspicious 64K gtt entry\n"); 1023 continue; 1024 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1025 gvt_vdbg_mm("invalidate 2M entry\n"); 1026 continue; 1027 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1028 WARN(1, "GVT doesn't support 1GB page\n"); 1029 continue; 1030 case GTT_TYPE_PPGTT_PML4_ENTRY: 1031 case GTT_TYPE_PPGTT_PDP_ENTRY: 1032 case GTT_TYPE_PPGTT_PDE_ENTRY: 1033 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1034 ret = ppgtt_invalidate_spt_by_shadow_entry( 1035 spt->vgpu, &e); 1036 if (ret) 1037 goto fail; 1038 break; 1039 default: 1040 GEM_BUG_ON(1); 1041 } 1042 } 1043 1044 trace_spt_change(spt->vgpu->id, "release", spt, 1045 spt->guest_page.gfn, spt->shadow_page.type); 1046 ppgtt_free_spt(spt); 1047 return 0; 1048 fail: 1049 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1050 spt, e.val64, e.type); 1051 return ret; 1052 } 1053 1054 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1055 { 1056 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1057 1058 if (GRAPHICS_VER(dev_priv) == 9) { 1059 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1060 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1061 1062 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1063 } else if (GRAPHICS_VER(dev_priv) >= 11) { 1064 /* 64K paging only controlled by IPS bit in PTE now. */ 1065 return true; 1066 } else 1067 return false; 1068 } 1069 1070 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1071 1072 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1073 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1074 { 1075 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1076 struct intel_vgpu_ppgtt_spt *spt = NULL; 1077 bool ips = false; 1078 int ret; 1079 1080 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1081 1082 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1083 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1084 1085 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1086 if (spt) { 1087 ppgtt_get_spt(spt); 1088 1089 if (ips != spt->guest_page.pde_ips) { 1090 spt->guest_page.pde_ips = ips; 1091 1092 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1093 clear_page(spt->shadow_page.vaddr); 1094 ret = ppgtt_populate_spt(spt); 1095 if (ret) { 1096 ppgtt_put_spt(spt); 1097 goto err; 1098 } 1099 } 1100 } else { 1101 int type = get_next_pt_type(we->type); 1102 1103 if (!gtt_type_is_pt(type)) { 1104 ret = -EINVAL; 1105 goto err; 1106 } 1107 1108 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1109 if (IS_ERR(spt)) { 1110 ret = PTR_ERR(spt); 1111 goto err; 1112 } 1113 1114 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1115 if (ret) 1116 goto err_free_spt; 1117 1118 ret = ppgtt_populate_spt(spt); 1119 if (ret) 1120 goto err_free_spt; 1121 1122 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1123 spt->shadow_page.type); 1124 } 1125 return spt; 1126 1127 err_free_spt: 1128 ppgtt_free_spt(spt); 1129 spt = NULL; 1130 err: 1131 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1132 spt, we->val64, we->type); 1133 return ERR_PTR(ret); 1134 } 1135 1136 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1137 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1138 { 1139 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1140 1141 se->type = ge->type; 1142 se->val64 = ge->val64; 1143 1144 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1145 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1146 ops->clear_ips(se); 1147 1148 ops->set_pfn(se, s->shadow_page.mfn); 1149 } 1150 1151 /** 1152 * Check if can do 2M page 1153 * @vgpu: target vgpu 1154 * @entry: target pfn's gtt entry 1155 * 1156 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, 1157 * negative if found err. 1158 */ 1159 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1160 struct intel_gvt_gtt_entry *entry) 1161 { 1162 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1163 unsigned long pfn; 1164 1165 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1166 return 0; 1167 1168 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1169 if (pfn == INTEL_GVT_INVALID_ADDR) 1170 return -EINVAL; 1171 1172 return PageTransHuge(pfn_to_page(pfn)); 1173 } 1174 1175 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1176 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1177 struct intel_gvt_gtt_entry *se) 1178 { 1179 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1180 struct intel_vgpu_ppgtt_spt *sub_spt; 1181 struct intel_gvt_gtt_entry sub_se; 1182 unsigned long start_gfn; 1183 dma_addr_t dma_addr; 1184 unsigned long sub_index; 1185 int ret; 1186 1187 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1188 1189 start_gfn = ops->get_pfn(se); 1190 1191 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1192 if (IS_ERR(sub_spt)) 1193 return PTR_ERR(sub_spt); 1194 1195 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1196 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1197 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1198 if (ret) { 1199 ppgtt_invalidate_spt(spt); 1200 return ret; 1201 } 1202 sub_se.val64 = se->val64; 1203 1204 /* Copy the PAT field from PDE. */ 1205 sub_se.val64 &= ~_PAGE_PAT; 1206 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1207 1208 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1209 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1210 } 1211 1212 /* Clear dirty field. */ 1213 se->val64 &= ~_PAGE_DIRTY; 1214 1215 ops->clear_pse(se); 1216 ops->clear_ips(se); 1217 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1218 ppgtt_set_shadow_entry(spt, se, index); 1219 return 0; 1220 } 1221 1222 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1223 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1224 struct intel_gvt_gtt_entry *se) 1225 { 1226 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1227 struct intel_gvt_gtt_entry entry = *se; 1228 unsigned long start_gfn; 1229 dma_addr_t dma_addr; 1230 int i, ret; 1231 1232 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1233 1234 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1235 1236 start_gfn = ops->get_pfn(se); 1237 1238 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1239 ops->set_64k_splited(&entry); 1240 1241 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1242 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1243 start_gfn + i, PAGE_SIZE, &dma_addr); 1244 if (ret) 1245 return ret; 1246 1247 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1248 ppgtt_set_shadow_entry(spt, &entry, index + i); 1249 } 1250 return 0; 1251 } 1252 1253 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1254 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1255 struct intel_gvt_gtt_entry *ge) 1256 { 1257 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1258 struct intel_gvt_gtt_entry se = *ge; 1259 unsigned long gfn, page_size = PAGE_SIZE; 1260 dma_addr_t dma_addr; 1261 int ret; 1262 1263 if (!pte_ops->test_present(ge)) 1264 return 0; 1265 1266 gfn = pte_ops->get_pfn(ge); 1267 1268 switch (ge->type) { 1269 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1270 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1271 break; 1272 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1273 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1274 /* 1275 * The layout of 64K page is special, the page size is 1276 * controlled by uper PDE. To be simple, we always split 1277 * 64K page to smaller 4K pages in shadow PT. 1278 */ 1279 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1280 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1281 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1282 ret = is_2MB_gtt_possible(vgpu, ge); 1283 if (ret == 0) 1284 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1285 else if (ret < 0) 1286 return ret; 1287 page_size = I915_GTT_PAGE_SIZE_2M; 1288 break; 1289 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1290 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1291 return -EINVAL; 1292 default: 1293 GEM_BUG_ON(1); 1294 } 1295 1296 /* direct shadow */ 1297 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1298 &dma_addr); 1299 if (ret) 1300 return -ENXIO; 1301 1302 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1303 ppgtt_set_shadow_entry(spt, &se, index); 1304 return 0; 1305 } 1306 1307 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1308 { 1309 struct intel_vgpu *vgpu = spt->vgpu; 1310 struct intel_gvt *gvt = vgpu->gvt; 1311 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1312 struct intel_vgpu_ppgtt_spt *s; 1313 struct intel_gvt_gtt_entry se, ge; 1314 unsigned long gfn, i; 1315 int ret; 1316 1317 trace_spt_change(spt->vgpu->id, "born", spt, 1318 spt->guest_page.gfn, spt->shadow_page.type); 1319 1320 for_each_present_guest_entry(spt, &ge, i) { 1321 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1322 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1323 if (IS_ERR(s)) { 1324 ret = PTR_ERR(s); 1325 goto fail; 1326 } 1327 ppgtt_get_shadow_entry(spt, &se, i); 1328 ppgtt_generate_shadow_entry(&se, s, &ge); 1329 ppgtt_set_shadow_entry(spt, &se, i); 1330 } else { 1331 gfn = ops->get_pfn(&ge); 1332 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1333 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1334 ppgtt_set_shadow_entry(spt, &se, i); 1335 continue; 1336 } 1337 1338 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1339 if (ret) 1340 goto fail; 1341 } 1342 } 1343 return 0; 1344 fail: 1345 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1346 spt, ge.val64, ge.type); 1347 return ret; 1348 } 1349 1350 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1351 struct intel_gvt_gtt_entry *se, unsigned long index) 1352 { 1353 struct intel_vgpu *vgpu = spt->vgpu; 1354 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1355 int ret; 1356 1357 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1358 spt->shadow_page.type, se->val64, index); 1359 1360 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1361 se->type, index, se->val64); 1362 1363 if (!ops->test_present(se)) 1364 return 0; 1365 1366 if (ops->get_pfn(se) == 1367 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1368 return 0; 1369 1370 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1371 struct intel_vgpu_ppgtt_spt *s = 1372 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1373 if (!s) { 1374 gvt_vgpu_err("fail to find guest page\n"); 1375 ret = -ENXIO; 1376 goto fail; 1377 } 1378 ret = ppgtt_invalidate_spt(s); 1379 if (ret) 1380 goto fail; 1381 } else { 1382 /* We don't setup 64K shadow entry so far. */ 1383 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1384 "suspicious 64K entry\n"); 1385 ppgtt_invalidate_pte(spt, se); 1386 } 1387 1388 return 0; 1389 fail: 1390 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1391 spt, se->val64, se->type); 1392 return ret; 1393 } 1394 1395 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1396 struct intel_gvt_gtt_entry *we, unsigned long index) 1397 { 1398 struct intel_vgpu *vgpu = spt->vgpu; 1399 struct intel_gvt_gtt_entry m; 1400 struct intel_vgpu_ppgtt_spt *s; 1401 int ret; 1402 1403 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1404 we->val64, index); 1405 1406 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1407 we->type, index, we->val64); 1408 1409 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1410 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1411 if (IS_ERR(s)) { 1412 ret = PTR_ERR(s); 1413 goto fail; 1414 } 1415 ppgtt_get_shadow_entry(spt, &m, index); 1416 ppgtt_generate_shadow_entry(&m, s, we); 1417 ppgtt_set_shadow_entry(spt, &m, index); 1418 } else { 1419 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1420 if (ret) 1421 goto fail; 1422 } 1423 return 0; 1424 fail: 1425 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1426 spt, we->val64, we->type); 1427 return ret; 1428 } 1429 1430 static int sync_oos_page(struct intel_vgpu *vgpu, 1431 struct intel_vgpu_oos_page *oos_page) 1432 { 1433 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1434 struct intel_gvt *gvt = vgpu->gvt; 1435 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1436 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1437 struct intel_gvt_gtt_entry old, new; 1438 int index; 1439 int ret; 1440 1441 trace_oos_change(vgpu->id, "sync", oos_page->id, 1442 spt, spt->guest_page.type); 1443 1444 old.type = new.type = get_entry_type(spt->guest_page.type); 1445 old.val64 = new.val64 = 0; 1446 1447 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1448 info->gtt_entry_size_shift); index++) { 1449 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1450 ops->get_entry(NULL, &new, index, true, 1451 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1452 1453 if (old.val64 == new.val64 1454 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1455 continue; 1456 1457 trace_oos_sync(vgpu->id, oos_page->id, 1458 spt, spt->guest_page.type, 1459 new.val64, index); 1460 1461 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1462 if (ret) 1463 return ret; 1464 1465 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1466 } 1467 1468 spt->guest_page.write_cnt = 0; 1469 list_del_init(&spt->post_shadow_list); 1470 return 0; 1471 } 1472 1473 static int detach_oos_page(struct intel_vgpu *vgpu, 1474 struct intel_vgpu_oos_page *oos_page) 1475 { 1476 struct intel_gvt *gvt = vgpu->gvt; 1477 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1478 1479 trace_oos_change(vgpu->id, "detach", oos_page->id, 1480 spt, spt->guest_page.type); 1481 1482 spt->guest_page.write_cnt = 0; 1483 spt->guest_page.oos_page = NULL; 1484 oos_page->spt = NULL; 1485 1486 list_del_init(&oos_page->vm_list); 1487 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1488 1489 return 0; 1490 } 1491 1492 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1493 struct intel_vgpu_ppgtt_spt *spt) 1494 { 1495 struct intel_gvt *gvt = spt->vgpu->gvt; 1496 int ret; 1497 1498 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1499 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1500 oos_page->mem, I915_GTT_PAGE_SIZE); 1501 if (ret) 1502 return ret; 1503 1504 oos_page->spt = spt; 1505 spt->guest_page.oos_page = oos_page; 1506 1507 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1508 1509 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1510 spt, spt->guest_page.type); 1511 return 0; 1512 } 1513 1514 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1515 { 1516 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1517 int ret; 1518 1519 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1520 if (ret) 1521 return ret; 1522 1523 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1524 spt, spt->guest_page.type); 1525 1526 list_del_init(&oos_page->vm_list); 1527 return sync_oos_page(spt->vgpu, oos_page); 1528 } 1529 1530 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1531 { 1532 struct intel_gvt *gvt = spt->vgpu->gvt; 1533 struct intel_gvt_gtt *gtt = &gvt->gtt; 1534 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1535 int ret; 1536 1537 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1538 1539 if (list_empty(>t->oos_page_free_list_head)) { 1540 oos_page = container_of(gtt->oos_page_use_list_head.next, 1541 struct intel_vgpu_oos_page, list); 1542 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1543 if (ret) 1544 return ret; 1545 ret = detach_oos_page(spt->vgpu, oos_page); 1546 if (ret) 1547 return ret; 1548 } else 1549 oos_page = container_of(gtt->oos_page_free_list_head.next, 1550 struct intel_vgpu_oos_page, list); 1551 return attach_oos_page(oos_page, spt); 1552 } 1553 1554 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1555 { 1556 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1557 1558 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1559 return -EINVAL; 1560 1561 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1562 spt, spt->guest_page.type); 1563 1564 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1565 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1566 } 1567 1568 /** 1569 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1570 * @vgpu: a vGPU 1571 * 1572 * This function is called before submitting a guest workload to host, 1573 * to sync all the out-of-synced shadow for vGPU 1574 * 1575 * Returns: 1576 * Zero on success, negative error code if failed. 1577 */ 1578 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1579 { 1580 struct list_head *pos, *n; 1581 struct intel_vgpu_oos_page *oos_page; 1582 int ret; 1583 1584 if (!enable_out_of_sync) 1585 return 0; 1586 1587 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1588 oos_page = container_of(pos, 1589 struct intel_vgpu_oos_page, vm_list); 1590 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1591 if (ret) 1592 return ret; 1593 } 1594 return 0; 1595 } 1596 1597 /* 1598 * The heart of PPGTT shadow page table. 1599 */ 1600 static int ppgtt_handle_guest_write_page_table( 1601 struct intel_vgpu_ppgtt_spt *spt, 1602 struct intel_gvt_gtt_entry *we, unsigned long index) 1603 { 1604 struct intel_vgpu *vgpu = spt->vgpu; 1605 int type = spt->shadow_page.type; 1606 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1607 struct intel_gvt_gtt_entry old_se; 1608 int new_present; 1609 int i, ret; 1610 1611 new_present = ops->test_present(we); 1612 1613 /* 1614 * Adding the new entry first and then removing the old one, that can 1615 * guarantee the ppgtt table is validated during the window between 1616 * adding and removal. 1617 */ 1618 ppgtt_get_shadow_entry(spt, &old_se, index); 1619 1620 if (new_present) { 1621 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1622 if (ret) 1623 goto fail; 1624 } 1625 1626 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1627 if (ret) 1628 goto fail; 1629 1630 if (!new_present) { 1631 /* For 64KB splited entries, we need clear them all. */ 1632 if (ops->test_64k_splited(&old_se) && 1633 !(index % GTT_64K_PTE_STRIDE)) { 1634 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1635 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1636 ops->clear_64k_splited(&old_se); 1637 ops->set_pfn(&old_se, 1638 vgpu->gtt.scratch_pt[type].page_mfn); 1639 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1640 } 1641 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1642 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1643 ops->clear_pse(&old_se); 1644 ops->set_pfn(&old_se, 1645 vgpu->gtt.scratch_pt[type].page_mfn); 1646 ppgtt_set_shadow_entry(spt, &old_se, index); 1647 } else { 1648 ops->set_pfn(&old_se, 1649 vgpu->gtt.scratch_pt[type].page_mfn); 1650 ppgtt_set_shadow_entry(spt, &old_se, index); 1651 } 1652 } 1653 1654 return 0; 1655 fail: 1656 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1657 spt, we->val64, we->type); 1658 return ret; 1659 } 1660 1661 1662 1663 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1664 { 1665 return enable_out_of_sync 1666 && gtt_type_is_pte_pt(spt->guest_page.type) 1667 && spt->guest_page.write_cnt >= 2; 1668 } 1669 1670 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1671 unsigned long index) 1672 { 1673 set_bit(index, spt->post_shadow_bitmap); 1674 if (!list_empty(&spt->post_shadow_list)) 1675 return; 1676 1677 list_add_tail(&spt->post_shadow_list, 1678 &spt->vgpu->gtt.post_shadow_list_head); 1679 } 1680 1681 /** 1682 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1683 * @vgpu: a vGPU 1684 * 1685 * This function is called before submitting a guest workload to host, 1686 * to flush all the post shadows for a vGPU. 1687 * 1688 * Returns: 1689 * Zero on success, negative error code if failed. 1690 */ 1691 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1692 { 1693 struct list_head *pos, *n; 1694 struct intel_vgpu_ppgtt_spt *spt; 1695 struct intel_gvt_gtt_entry ge; 1696 unsigned long index; 1697 int ret; 1698 1699 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1700 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1701 post_shadow_list); 1702 1703 for_each_set_bit(index, spt->post_shadow_bitmap, 1704 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1705 ppgtt_get_guest_entry(spt, &ge, index); 1706 1707 ret = ppgtt_handle_guest_write_page_table(spt, 1708 &ge, index); 1709 if (ret) 1710 return ret; 1711 clear_bit(index, spt->post_shadow_bitmap); 1712 } 1713 list_del_init(&spt->post_shadow_list); 1714 } 1715 return 0; 1716 } 1717 1718 static int ppgtt_handle_guest_write_page_table_bytes( 1719 struct intel_vgpu_ppgtt_spt *spt, 1720 u64 pa, void *p_data, int bytes) 1721 { 1722 struct intel_vgpu *vgpu = spt->vgpu; 1723 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1724 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1725 struct intel_gvt_gtt_entry we, se; 1726 unsigned long index; 1727 int ret; 1728 1729 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1730 1731 ppgtt_get_guest_entry(spt, &we, index); 1732 1733 /* 1734 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1735 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1736 * ignored. 1737 */ 1738 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1739 (index % GTT_64K_PTE_STRIDE)) { 1740 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1741 index); 1742 return 0; 1743 } 1744 1745 if (bytes == info->gtt_entry_size) { 1746 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1747 if (ret) 1748 return ret; 1749 } else { 1750 if (!test_bit(index, spt->post_shadow_bitmap)) { 1751 int type = spt->shadow_page.type; 1752 1753 ppgtt_get_shadow_entry(spt, &se, index); 1754 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1755 if (ret) 1756 return ret; 1757 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1758 ppgtt_set_shadow_entry(spt, &se, index); 1759 } 1760 ppgtt_set_post_shadow(spt, index); 1761 } 1762 1763 if (!enable_out_of_sync) 1764 return 0; 1765 1766 spt->guest_page.write_cnt++; 1767 1768 if (spt->guest_page.oos_page) 1769 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1770 false, 0, vgpu); 1771 1772 if (can_do_out_of_sync(spt)) { 1773 if (!spt->guest_page.oos_page) 1774 ppgtt_allocate_oos_page(spt); 1775 1776 ret = ppgtt_set_guest_page_oos(spt); 1777 if (ret < 0) 1778 return ret; 1779 } 1780 return 0; 1781 } 1782 1783 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1784 { 1785 struct intel_vgpu *vgpu = mm->vgpu; 1786 struct intel_gvt *gvt = vgpu->gvt; 1787 struct intel_gvt_gtt *gtt = &gvt->gtt; 1788 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1789 struct intel_gvt_gtt_entry se; 1790 int index; 1791 1792 if (!mm->ppgtt_mm.shadowed) 1793 return; 1794 1795 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1796 ppgtt_get_shadow_root_entry(mm, &se, index); 1797 1798 if (!ops->test_present(&se)) 1799 continue; 1800 1801 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1802 se.val64 = 0; 1803 ppgtt_set_shadow_root_entry(mm, &se, index); 1804 1805 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1806 NULL, se.type, se.val64, index); 1807 } 1808 1809 mm->ppgtt_mm.shadowed = false; 1810 } 1811 1812 1813 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1814 { 1815 struct intel_vgpu *vgpu = mm->vgpu; 1816 struct intel_gvt *gvt = vgpu->gvt; 1817 struct intel_gvt_gtt *gtt = &gvt->gtt; 1818 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1819 struct intel_vgpu_ppgtt_spt *spt; 1820 struct intel_gvt_gtt_entry ge, se; 1821 int index, ret; 1822 1823 if (mm->ppgtt_mm.shadowed) 1824 return 0; 1825 1826 mm->ppgtt_mm.shadowed = true; 1827 1828 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1829 ppgtt_get_guest_root_entry(mm, &ge, index); 1830 1831 if (!ops->test_present(&ge)) 1832 continue; 1833 1834 trace_spt_guest_change(vgpu->id, __func__, NULL, 1835 ge.type, ge.val64, index); 1836 1837 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1838 if (IS_ERR(spt)) { 1839 gvt_vgpu_err("fail to populate guest root pointer\n"); 1840 ret = PTR_ERR(spt); 1841 goto fail; 1842 } 1843 ppgtt_generate_shadow_entry(&se, spt, &ge); 1844 ppgtt_set_shadow_root_entry(mm, &se, index); 1845 1846 trace_spt_guest_change(vgpu->id, "populate root pointer", 1847 NULL, se.type, se.val64, index); 1848 } 1849 1850 return 0; 1851 fail: 1852 invalidate_ppgtt_mm(mm); 1853 return ret; 1854 } 1855 1856 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1857 { 1858 struct intel_vgpu_mm *mm; 1859 1860 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1861 if (!mm) 1862 return NULL; 1863 1864 mm->vgpu = vgpu; 1865 kref_init(&mm->ref); 1866 atomic_set(&mm->pincount, 0); 1867 1868 return mm; 1869 } 1870 1871 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1872 { 1873 kfree(mm); 1874 } 1875 1876 /** 1877 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1878 * @vgpu: a vGPU 1879 * @root_entry_type: ppgtt root entry type 1880 * @pdps: guest pdps. 1881 * 1882 * This function is used to create a ppgtt mm object for a vGPU. 1883 * 1884 * Returns: 1885 * Zero on success, negative error code in pointer if failed. 1886 */ 1887 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1888 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1889 { 1890 struct intel_gvt *gvt = vgpu->gvt; 1891 struct intel_vgpu_mm *mm; 1892 int ret; 1893 1894 mm = vgpu_alloc_mm(vgpu); 1895 if (!mm) 1896 return ERR_PTR(-ENOMEM); 1897 1898 mm->type = INTEL_GVT_MM_PPGTT; 1899 1900 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1901 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1902 mm->ppgtt_mm.root_entry_type = root_entry_type; 1903 1904 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1905 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1906 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1907 1908 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1909 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1910 else 1911 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1912 sizeof(mm->ppgtt_mm.guest_pdps)); 1913 1914 ret = shadow_ppgtt_mm(mm); 1915 if (ret) { 1916 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1917 vgpu_free_mm(mm); 1918 return ERR_PTR(ret); 1919 } 1920 1921 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1922 1923 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1924 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1925 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1926 1927 return mm; 1928 } 1929 1930 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1931 { 1932 struct intel_vgpu_mm *mm; 1933 unsigned long nr_entries; 1934 1935 mm = vgpu_alloc_mm(vgpu); 1936 if (!mm) 1937 return ERR_PTR(-ENOMEM); 1938 1939 mm->type = INTEL_GVT_MM_GGTT; 1940 1941 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1942 mm->ggtt_mm.virtual_ggtt = 1943 vzalloc(array_size(nr_entries, 1944 vgpu->gvt->device_info.gtt_entry_size)); 1945 if (!mm->ggtt_mm.virtual_ggtt) { 1946 vgpu_free_mm(mm); 1947 return ERR_PTR(-ENOMEM); 1948 } 1949 1950 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1951 if (!mm->ggtt_mm.host_ggtt_aperture) { 1952 vfree(mm->ggtt_mm.virtual_ggtt); 1953 vgpu_free_mm(mm); 1954 return ERR_PTR(-ENOMEM); 1955 } 1956 1957 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1958 if (!mm->ggtt_mm.host_ggtt_hidden) { 1959 vfree(mm->ggtt_mm.host_ggtt_aperture); 1960 vfree(mm->ggtt_mm.virtual_ggtt); 1961 vgpu_free_mm(mm); 1962 return ERR_PTR(-ENOMEM); 1963 } 1964 1965 return mm; 1966 } 1967 1968 /** 1969 * _intel_vgpu_mm_release - destroy a mm object 1970 * @mm_ref: a kref object 1971 * 1972 * This function is used to destroy a mm object for vGPU 1973 * 1974 */ 1975 void _intel_vgpu_mm_release(struct kref *mm_ref) 1976 { 1977 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1978 1979 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1980 gvt_err("vgpu mm pin count bug detected\n"); 1981 1982 if (mm->type == INTEL_GVT_MM_PPGTT) { 1983 list_del(&mm->ppgtt_mm.list); 1984 1985 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1986 list_del(&mm->ppgtt_mm.lru_list); 1987 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1988 1989 invalidate_ppgtt_mm(mm); 1990 } else { 1991 vfree(mm->ggtt_mm.virtual_ggtt); 1992 vfree(mm->ggtt_mm.host_ggtt_aperture); 1993 vfree(mm->ggtt_mm.host_ggtt_hidden); 1994 } 1995 1996 vgpu_free_mm(mm); 1997 } 1998 1999 /** 2000 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2001 * @mm: a vGPU mm object 2002 * 2003 * This function is called when user doesn't want to use a vGPU mm object 2004 */ 2005 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2006 { 2007 atomic_dec_if_positive(&mm->pincount); 2008 } 2009 2010 /** 2011 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2012 * @mm: target vgpu mm 2013 * 2014 * This function is called when user wants to use a vGPU mm object. If this 2015 * mm object hasn't been shadowed yet, the shadow will be populated at this 2016 * time. 2017 * 2018 * Returns: 2019 * Zero on success, negative error code if failed. 2020 */ 2021 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2022 { 2023 int ret; 2024 2025 atomic_inc(&mm->pincount); 2026 2027 if (mm->type == INTEL_GVT_MM_PPGTT) { 2028 ret = shadow_ppgtt_mm(mm); 2029 if (ret) 2030 return ret; 2031 2032 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2033 list_move_tail(&mm->ppgtt_mm.lru_list, 2034 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2035 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2036 } 2037 2038 return 0; 2039 } 2040 2041 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2042 { 2043 struct intel_vgpu_mm *mm; 2044 struct list_head *pos, *n; 2045 2046 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2047 2048 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2049 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2050 2051 if (atomic_read(&mm->pincount)) 2052 continue; 2053 2054 list_del_init(&mm->ppgtt_mm.lru_list); 2055 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2056 invalidate_ppgtt_mm(mm); 2057 return 1; 2058 } 2059 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2060 return 0; 2061 } 2062 2063 /* 2064 * GMA translation APIs. 2065 */ 2066 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2067 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2068 { 2069 struct intel_vgpu *vgpu = mm->vgpu; 2070 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2071 struct intel_vgpu_ppgtt_spt *s; 2072 2073 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2074 if (!s) 2075 return -ENXIO; 2076 2077 if (!guest) 2078 ppgtt_get_shadow_entry(s, e, index); 2079 else 2080 ppgtt_get_guest_entry(s, e, index); 2081 return 0; 2082 } 2083 2084 /** 2085 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2086 * @mm: mm object. could be a PPGTT or GGTT mm object 2087 * @gma: graphics memory address in this mm object 2088 * 2089 * This function is used to translate a graphics memory address in specific 2090 * graphics memory space to guest physical address. 2091 * 2092 * Returns: 2093 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2094 */ 2095 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2096 { 2097 struct intel_vgpu *vgpu = mm->vgpu; 2098 struct intel_gvt *gvt = vgpu->gvt; 2099 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2100 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2101 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2102 unsigned long gma_index[4]; 2103 struct intel_gvt_gtt_entry e; 2104 int i, levels = 0; 2105 int ret; 2106 2107 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2108 mm->type != INTEL_GVT_MM_PPGTT); 2109 2110 if (mm->type == INTEL_GVT_MM_GGTT) { 2111 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2112 goto err; 2113 2114 ggtt_get_guest_entry(mm, &e, 2115 gma_ops->gma_to_ggtt_pte_index(gma)); 2116 2117 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2118 + (gma & ~I915_GTT_PAGE_MASK); 2119 2120 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2121 } else { 2122 switch (mm->ppgtt_mm.root_entry_type) { 2123 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2124 ppgtt_get_shadow_root_entry(mm, &e, 0); 2125 2126 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2127 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2128 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2129 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2130 levels = 4; 2131 break; 2132 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2133 ppgtt_get_shadow_root_entry(mm, &e, 2134 gma_ops->gma_to_l3_pdp_index(gma)); 2135 2136 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2137 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2138 levels = 2; 2139 break; 2140 default: 2141 GEM_BUG_ON(1); 2142 } 2143 2144 /* walk the shadow page table and get gpa from guest entry */ 2145 for (i = 0; i < levels; i++) { 2146 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2147 (i == levels - 1)); 2148 if (ret) 2149 goto err; 2150 2151 if (!pte_ops->test_present(&e)) { 2152 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2153 goto err; 2154 } 2155 } 2156 2157 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2158 (gma & ~I915_GTT_PAGE_MASK); 2159 trace_gma_translate(vgpu->id, "ppgtt", 0, 2160 mm->ppgtt_mm.root_entry_type, gma, gpa); 2161 } 2162 2163 return gpa; 2164 err: 2165 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2166 return INTEL_GVT_INVALID_ADDR; 2167 } 2168 2169 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2170 unsigned int off, void *p_data, unsigned int bytes) 2171 { 2172 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2173 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2174 unsigned long index = off >> info->gtt_entry_size_shift; 2175 unsigned long gma; 2176 struct intel_gvt_gtt_entry e; 2177 2178 if (bytes != 4 && bytes != 8) 2179 return -EINVAL; 2180 2181 gma = index << I915_GTT_PAGE_SHIFT; 2182 if (!intel_gvt_ggtt_validate_range(vgpu, 2183 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2184 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2185 memset(p_data, 0, bytes); 2186 return 0; 2187 } 2188 2189 ggtt_get_guest_entry(ggtt_mm, &e, index); 2190 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2191 bytes); 2192 return 0; 2193 } 2194 2195 /** 2196 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2197 * @vgpu: a vGPU 2198 * @off: register offset 2199 * @p_data: data will be returned to guest 2200 * @bytes: data length 2201 * 2202 * This function is used to emulate the GTT MMIO register read 2203 * 2204 * Returns: 2205 * Zero on success, error code if failed. 2206 */ 2207 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2208 void *p_data, unsigned int bytes) 2209 { 2210 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2211 int ret; 2212 2213 if (bytes != 4 && bytes != 8) 2214 return -EINVAL; 2215 2216 off -= info->gtt_start_offset; 2217 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2218 return ret; 2219 } 2220 2221 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2222 struct intel_gvt_gtt_entry *entry) 2223 { 2224 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2225 unsigned long pfn; 2226 2227 pfn = pte_ops->get_pfn(entry); 2228 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2229 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2230 pfn << PAGE_SHIFT); 2231 } 2232 2233 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2234 void *p_data, unsigned int bytes) 2235 { 2236 struct intel_gvt *gvt = vgpu->gvt; 2237 const struct intel_gvt_device_info *info = &gvt->device_info; 2238 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2239 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2240 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2241 unsigned long gma, gfn; 2242 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2243 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2244 dma_addr_t dma_addr; 2245 int ret; 2246 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2247 bool partial_update = false; 2248 2249 if (bytes != 4 && bytes != 8) 2250 return -EINVAL; 2251 2252 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2253 2254 /* the VM may configure the whole GM space when ballooning is used */ 2255 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2256 return 0; 2257 2258 e.type = GTT_TYPE_GGTT_PTE; 2259 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2260 bytes); 2261 2262 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2263 * write, save the first 4 bytes in a list and update virtual 2264 * PTE. Only update shadow PTE when the second 4 bytes comes. 2265 */ 2266 if (bytes < info->gtt_entry_size) { 2267 bool found = false; 2268 2269 list_for_each_entry_safe(pos, n, 2270 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2271 if (g_gtt_index == pos->offset >> 2272 info->gtt_entry_size_shift) { 2273 if (off != pos->offset) { 2274 /* the second partial part*/ 2275 int last_off = pos->offset & 2276 (info->gtt_entry_size - 1); 2277 2278 memcpy((void *)&e.val64 + last_off, 2279 (void *)&pos->data + last_off, 2280 bytes); 2281 2282 list_del(&pos->list); 2283 kfree(pos); 2284 found = true; 2285 break; 2286 } 2287 2288 /* update of the first partial part */ 2289 pos->data = e.val64; 2290 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2291 return 0; 2292 } 2293 } 2294 2295 if (!found) { 2296 /* the first partial part */ 2297 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2298 if (!partial_pte) 2299 return -ENOMEM; 2300 partial_pte->offset = off; 2301 partial_pte->data = e.val64; 2302 list_add_tail(&partial_pte->list, 2303 &ggtt_mm->ggtt_mm.partial_pte_list); 2304 partial_update = true; 2305 } 2306 } 2307 2308 if (!partial_update && (ops->test_present(&e))) { 2309 gfn = ops->get_pfn(&e); 2310 m.val64 = e.val64; 2311 m.type = e.type; 2312 2313 /* one PTE update may be issued in multiple writes and the 2314 * first write may not construct a valid gfn 2315 */ 2316 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2317 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2318 goto out; 2319 } 2320 2321 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2322 PAGE_SIZE, &dma_addr); 2323 if (ret) { 2324 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2325 /* guest driver may read/write the entry when partial 2326 * update the entry in this situation p2m will fail 2327 * settting the shadow entry to point to a scratch page 2328 */ 2329 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2330 } else 2331 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2332 } else { 2333 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2334 ops->clear_present(&m); 2335 } 2336 2337 out: 2338 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2339 2340 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2341 ggtt_invalidate_pte(vgpu, &e); 2342 2343 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2344 ggtt_invalidate(gvt->gt); 2345 return 0; 2346 } 2347 2348 /* 2349 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2350 * @vgpu: a vGPU 2351 * @off: register offset 2352 * @p_data: data from guest write 2353 * @bytes: data length 2354 * 2355 * This function is used to emulate the GTT MMIO register write 2356 * 2357 * Returns: 2358 * Zero on success, error code if failed. 2359 */ 2360 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2361 unsigned int off, void *p_data, unsigned int bytes) 2362 { 2363 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2364 int ret; 2365 struct intel_vgpu_submission *s = &vgpu->submission; 2366 struct intel_engine_cs *engine; 2367 int i; 2368 2369 if (bytes != 4 && bytes != 8) 2370 return -EINVAL; 2371 2372 off -= info->gtt_start_offset; 2373 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2374 2375 /* if ggtt of last submitted context is written, 2376 * that context is probably got unpinned. 2377 * Set last shadowed ctx to invalid. 2378 */ 2379 for_each_engine(engine, vgpu->gvt->gt, i) { 2380 if (!s->last_ctx[i].valid) 2381 continue; 2382 2383 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2384 s->last_ctx[i].valid = false; 2385 } 2386 return ret; 2387 } 2388 2389 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2390 enum intel_gvt_gtt_type type) 2391 { 2392 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2393 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2394 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2395 int page_entry_num = I915_GTT_PAGE_SIZE >> 2396 vgpu->gvt->device_info.gtt_entry_size_shift; 2397 void *scratch_pt; 2398 int i; 2399 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2400 dma_addr_t daddr; 2401 2402 if (drm_WARN_ON(&i915->drm, 2403 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2404 return -EINVAL; 2405 2406 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2407 if (!scratch_pt) { 2408 gvt_vgpu_err("fail to allocate scratch page\n"); 2409 return -ENOMEM; 2410 } 2411 2412 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2413 4096, PCI_DMA_BIDIRECTIONAL); 2414 if (dma_mapping_error(dev, daddr)) { 2415 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2416 __free_page(virt_to_page(scratch_pt)); 2417 return -ENOMEM; 2418 } 2419 gtt->scratch_pt[type].page_mfn = 2420 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2421 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2422 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2423 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2424 2425 /* Build the tree by full filled the scratch pt with the entries which 2426 * point to the next level scratch pt or scratch page. The 2427 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2428 * 'type' pt. 2429 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2430 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2431 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2432 */ 2433 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2434 struct intel_gvt_gtt_entry se; 2435 2436 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2437 se.type = get_entry_type(type - 1); 2438 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2439 2440 /* The entry parameters like present/writeable/cache type 2441 * set to the same as i915's scratch page tree. 2442 */ 2443 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2444 if (type == GTT_TYPE_PPGTT_PDE_PT) 2445 se.val64 |= PPAT_CACHED; 2446 2447 for (i = 0; i < page_entry_num; i++) 2448 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2449 } 2450 2451 return 0; 2452 } 2453 2454 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2455 { 2456 int i; 2457 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2458 dma_addr_t daddr; 2459 2460 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2461 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2462 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2463 I915_GTT_PAGE_SHIFT); 2464 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2465 __free_page(vgpu->gtt.scratch_pt[i].page); 2466 vgpu->gtt.scratch_pt[i].page = NULL; 2467 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2468 } 2469 } 2470 2471 return 0; 2472 } 2473 2474 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2475 { 2476 int i, ret; 2477 2478 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2479 ret = alloc_scratch_pages(vgpu, i); 2480 if (ret) 2481 goto err; 2482 } 2483 2484 return 0; 2485 2486 err: 2487 release_scratch_page_tree(vgpu); 2488 return ret; 2489 } 2490 2491 /** 2492 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2493 * @vgpu: a vGPU 2494 * 2495 * This function is used to initialize per-vGPU graphics memory virtualization 2496 * components. 2497 * 2498 * Returns: 2499 * Zero on success, error code if failed. 2500 */ 2501 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2502 { 2503 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2504 2505 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2506 2507 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2508 INIT_LIST_HEAD(>t->oos_page_list_head); 2509 INIT_LIST_HEAD(>t->post_shadow_list_head); 2510 2511 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2512 if (IS_ERR(gtt->ggtt_mm)) { 2513 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2514 return PTR_ERR(gtt->ggtt_mm); 2515 } 2516 2517 intel_vgpu_reset_ggtt(vgpu, false); 2518 2519 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2520 2521 return create_scratch_page_tree(vgpu); 2522 } 2523 2524 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2525 { 2526 struct list_head *pos, *n; 2527 struct intel_vgpu_mm *mm; 2528 2529 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2530 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2531 intel_vgpu_destroy_mm(mm); 2532 } 2533 2534 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2535 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2536 2537 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2538 gvt_err("Why we still has spt not freed?\n"); 2539 ppgtt_free_all_spt(vgpu); 2540 } 2541 } 2542 2543 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2544 { 2545 struct intel_gvt_partial_pte *pos, *next; 2546 2547 list_for_each_entry_safe(pos, next, 2548 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2549 list) { 2550 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2551 pos->offset, pos->data); 2552 kfree(pos); 2553 } 2554 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2555 vgpu->gtt.ggtt_mm = NULL; 2556 } 2557 2558 /** 2559 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2560 * @vgpu: a vGPU 2561 * 2562 * This function is used to clean up per-vGPU graphics memory virtualization 2563 * components. 2564 * 2565 * Returns: 2566 * Zero on success, error code if failed. 2567 */ 2568 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2569 { 2570 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2571 intel_vgpu_destroy_ggtt_mm(vgpu); 2572 release_scratch_page_tree(vgpu); 2573 } 2574 2575 static void clean_spt_oos(struct intel_gvt *gvt) 2576 { 2577 struct intel_gvt_gtt *gtt = &gvt->gtt; 2578 struct list_head *pos, *n; 2579 struct intel_vgpu_oos_page *oos_page; 2580 2581 WARN(!list_empty(>t->oos_page_use_list_head), 2582 "someone is still using oos page\n"); 2583 2584 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2585 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2586 list_del(&oos_page->list); 2587 free_page((unsigned long)oos_page->mem); 2588 kfree(oos_page); 2589 } 2590 } 2591 2592 static int setup_spt_oos(struct intel_gvt *gvt) 2593 { 2594 struct intel_gvt_gtt *gtt = &gvt->gtt; 2595 struct intel_vgpu_oos_page *oos_page; 2596 int i; 2597 int ret; 2598 2599 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2600 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2601 2602 for (i = 0; i < preallocated_oos_pages; i++) { 2603 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2604 if (!oos_page) { 2605 ret = -ENOMEM; 2606 goto fail; 2607 } 2608 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2609 if (!oos_page->mem) { 2610 ret = -ENOMEM; 2611 kfree(oos_page); 2612 goto fail; 2613 } 2614 2615 INIT_LIST_HEAD(&oos_page->list); 2616 INIT_LIST_HEAD(&oos_page->vm_list); 2617 oos_page->id = i; 2618 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2619 } 2620 2621 gvt_dbg_mm("%d oos pages preallocated\n", i); 2622 2623 return 0; 2624 fail: 2625 clean_spt_oos(gvt); 2626 return ret; 2627 } 2628 2629 /** 2630 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2631 * @vgpu: a vGPU 2632 * @pdps: pdp root array 2633 * 2634 * This function is used to find a PPGTT mm object from mm object pool 2635 * 2636 * Returns: 2637 * pointer to mm object on success, NULL if failed. 2638 */ 2639 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2640 u64 pdps[]) 2641 { 2642 struct intel_vgpu_mm *mm; 2643 struct list_head *pos; 2644 2645 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2646 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2647 2648 switch (mm->ppgtt_mm.root_entry_type) { 2649 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2650 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2651 return mm; 2652 break; 2653 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2654 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2655 sizeof(mm->ppgtt_mm.guest_pdps))) 2656 return mm; 2657 break; 2658 default: 2659 GEM_BUG_ON(1); 2660 } 2661 } 2662 return NULL; 2663 } 2664 2665 /** 2666 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2667 * @vgpu: a vGPU 2668 * @root_entry_type: ppgtt root entry type 2669 * @pdps: guest pdps 2670 * 2671 * This function is used to find or create a PPGTT mm object from a guest. 2672 * 2673 * Returns: 2674 * Zero on success, negative error code if failed. 2675 */ 2676 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2677 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2678 { 2679 struct intel_vgpu_mm *mm; 2680 2681 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2682 if (mm) { 2683 intel_vgpu_mm_get(mm); 2684 } else { 2685 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2686 if (IS_ERR(mm)) 2687 gvt_vgpu_err("fail to create mm\n"); 2688 } 2689 return mm; 2690 } 2691 2692 /** 2693 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2694 * @vgpu: a vGPU 2695 * @pdps: guest pdps 2696 * 2697 * This function is used to find a PPGTT mm object from a guest and destroy it. 2698 * 2699 * Returns: 2700 * Zero on success, negative error code if failed. 2701 */ 2702 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2703 { 2704 struct intel_vgpu_mm *mm; 2705 2706 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2707 if (!mm) { 2708 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2709 return -EINVAL; 2710 } 2711 intel_vgpu_mm_put(mm); 2712 return 0; 2713 } 2714 2715 /** 2716 * intel_gvt_init_gtt - initialize mm components of a GVT device 2717 * @gvt: GVT device 2718 * 2719 * This function is called at the initialization stage, to initialize 2720 * the mm components of a GVT device. 2721 * 2722 * Returns: 2723 * zero on success, negative error code if failed. 2724 */ 2725 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2726 { 2727 int ret; 2728 void *page; 2729 struct device *dev = gvt->gt->i915->drm.dev; 2730 dma_addr_t daddr; 2731 2732 gvt_dbg_core("init gtt\n"); 2733 2734 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2735 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2736 2737 page = (void *)get_zeroed_page(GFP_KERNEL); 2738 if (!page) { 2739 gvt_err("fail to allocate scratch ggtt page\n"); 2740 return -ENOMEM; 2741 } 2742 2743 daddr = dma_map_page(dev, virt_to_page(page), 0, 2744 4096, PCI_DMA_BIDIRECTIONAL); 2745 if (dma_mapping_error(dev, daddr)) { 2746 gvt_err("fail to dmamap scratch ggtt page\n"); 2747 __free_page(virt_to_page(page)); 2748 return -ENOMEM; 2749 } 2750 2751 gvt->gtt.scratch_page = virt_to_page(page); 2752 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2753 2754 if (enable_out_of_sync) { 2755 ret = setup_spt_oos(gvt); 2756 if (ret) { 2757 gvt_err("fail to initialize SPT oos\n"); 2758 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2759 __free_page(gvt->gtt.scratch_page); 2760 return ret; 2761 } 2762 } 2763 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2764 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2765 return 0; 2766 } 2767 2768 /** 2769 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2770 * @gvt: GVT device 2771 * 2772 * This function is called at the driver unloading stage, to clean up the 2773 * the mm components of a GVT device. 2774 * 2775 */ 2776 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2777 { 2778 struct device *dev = gvt->gt->i915->drm.dev; 2779 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2780 I915_GTT_PAGE_SHIFT); 2781 2782 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2783 2784 __free_page(gvt->gtt.scratch_page); 2785 2786 if (enable_out_of_sync) 2787 clean_spt_oos(gvt); 2788 } 2789 2790 /** 2791 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2792 * @vgpu: a vGPU 2793 * 2794 * This function is called when invalidate all PPGTT instances of a vGPU. 2795 * 2796 */ 2797 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2798 { 2799 struct list_head *pos, *n; 2800 struct intel_vgpu_mm *mm; 2801 2802 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2803 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2804 if (mm->type == INTEL_GVT_MM_PPGTT) { 2805 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2806 list_del_init(&mm->ppgtt_mm.lru_list); 2807 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2808 if (mm->ppgtt_mm.shadowed) 2809 invalidate_ppgtt_mm(mm); 2810 } 2811 } 2812 } 2813 2814 /** 2815 * intel_vgpu_reset_ggtt - reset the GGTT entry 2816 * @vgpu: a vGPU 2817 * @invalidate_old: invalidate old entries 2818 * 2819 * This function is called at the vGPU create stage 2820 * to reset all the GGTT entries. 2821 * 2822 */ 2823 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2824 { 2825 struct intel_gvt *gvt = vgpu->gvt; 2826 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2827 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2828 struct intel_gvt_gtt_entry old_entry; 2829 u32 index; 2830 u32 num_entries; 2831 2832 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2833 pte_ops->set_present(&entry); 2834 2835 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2836 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2837 while (num_entries--) { 2838 if (invalidate_old) { 2839 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2840 ggtt_invalidate_pte(vgpu, &old_entry); 2841 } 2842 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2843 } 2844 2845 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2846 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2847 while (num_entries--) { 2848 if (invalidate_old) { 2849 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2850 ggtt_invalidate_pte(vgpu, &old_entry); 2851 } 2852 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2853 } 2854 2855 ggtt_invalidate(gvt->gt); 2856 } 2857 2858 /** 2859 * intel_vgpu_reset_gtt - reset the all GTT related status 2860 * @vgpu: a vGPU 2861 * 2862 * This function is called from vfio core to reset reset all 2863 * GTT related status, including GGTT, PPGTT, scratch page. 2864 * 2865 */ 2866 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2867 { 2868 /* Shadow pages are only created when there is no page 2869 * table tracking data, so remove page tracking data after 2870 * removing the shadow pages. 2871 */ 2872 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2873 intel_vgpu_reset_ggtt(vgpu, true); 2874 } 2875 2876 /** 2877 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2878 * @gvt: intel gvt device 2879 * 2880 * This function is called at driver resume stage to restore 2881 * GGTT entries of every vGPU. 2882 * 2883 */ 2884 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2885 { 2886 struct intel_vgpu *vgpu; 2887 struct intel_vgpu_mm *mm; 2888 int id; 2889 gen8_pte_t pte; 2890 u32 idx, num_low, num_hi, offset; 2891 2892 /* Restore dirty host ggtt for all vGPUs */ 2893 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2894 mm = vgpu->gtt.ggtt_mm; 2895 2896 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2897 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2898 for (idx = 0; idx < num_low; idx++) { 2899 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2900 if (pte & _PAGE_PRESENT) 2901 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2902 } 2903 2904 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2905 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2906 for (idx = 0; idx < num_hi; idx++) { 2907 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2908 if (pte & _PAGE_PRESENT) 2909 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2910 } 2911 } 2912 } 2913