xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 25b892b5)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75 
76 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 		     "invalid guest gmadr %llx\n", g_addr))
78 		return -EACCES;
79 
80 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
82 			  + (g_addr - vgpu_aperture_offset(vgpu));
83 	else
84 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
85 			  + (g_addr - vgpu_hidden_offset(vgpu));
86 	return 0;
87 }
88 
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 		     "invalid host gmadr %llx\n", h_addr))
96 		return -EACCES;
97 
98 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
100 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 	else
102 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
103 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 	return 0;
105 }
106 
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 			     unsigned long *h_index)
109 {
110 	u64 h_addr;
111 	int ret;
112 
113 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 				       &h_addr);
115 	if (ret)
116 		return ret;
117 
118 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 	return 0;
120 }
121 
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 			     unsigned long *g_index)
124 {
125 	u64 g_addr;
126 	int ret;
127 
128 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 				       &g_addr);
130 	if (ret)
131 		return ret;
132 
133 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 	return 0;
135 }
136 
137 #define gtt_type_is_entry(type) \
138 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141 
142 #define gtt_type_is_pt(type) \
143 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144 
145 #define gtt_type_is_pte_pt(type) \
146 	(type == GTT_TYPE_PPGTT_PTE_PT)
147 
148 #define gtt_type_is_root_pointer(type) \
149 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150 
151 #define gtt_init_entry(e, t, p, v) do { \
152 	(e)->type = t; \
153 	(e)->pdev = p; \
154 	memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156 
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172 
173 struct gtt_type_table_entry {
174 	int entry_type;
175 	int pt_type;
176 	int next_pt_type;
177 	int pse_entry_type;
178 };
179 
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 	[type] = { \
182 		.entry_type = e_type, \
183 		.pt_type = cpt_type, \
184 		.next_pt_type = npt_type, \
185 		.pse_entry_type = pse_type, \
186 	}
187 
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 			GTT_TYPE_INVALID,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PDP_PT,
198 			GTT_TYPE_INVALID),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 			GTT_TYPE_PPGTT_PML4_ENTRY,
201 			GTT_TYPE_PPGTT_PML4_PT,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_INVALID),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 			GTT_TYPE_INVALID,
212 			GTT_TYPE_PPGTT_PDE_PT,
213 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDP_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_PT,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_ENTRY,
226 			GTT_TYPE_PPGTT_PDE_PT,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	/* We take IPS bit as 'PSE' for PTE level. */
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 			GTT_TYPE_PPGTT_PTE_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 			GTT_TYPE_PPGTT_PDE_ENTRY,
247 			GTT_TYPE_PPGTT_PDE_PT,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 			GTT_TYPE_PPGTT_PDP_ENTRY,
252 			GTT_TYPE_PPGTT_PDP_PT,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 			GTT_TYPE_GGTT_PTE,
257 			GTT_TYPE_INVALID,
258 			GTT_TYPE_INVALID,
259 			GTT_TYPE_INVALID),
260 };
261 
262 static inline int get_next_pt_type(int type)
263 {
264 	return gtt_type_table[type].next_pt_type;
265 }
266 
267 static inline int get_pt_type(int type)
268 {
269 	return gtt_type_table[type].pt_type;
270 }
271 
272 static inline int get_entry_type(int type)
273 {
274 	return gtt_type_table[type].entry_type;
275 }
276 
277 static inline int get_pse_type(int type)
278 {
279 	return gtt_type_table[type].pse_entry_type;
280 }
281 
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285 
286 	return readq(addr);
287 }
288 
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 	mmio_hw_access_pre(gt);
292 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 	mmio_hw_access_post(gt);
294 }
295 
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299 
300 	writeq(pte, addr);
301 }
302 
303 static inline int gtt_get_entry64(void *pt,
304 		struct intel_gvt_gtt_entry *e,
305 		unsigned long index, bool hypervisor_access, unsigned long gpa,
306 		struct intel_vgpu *vgpu)
307 {
308 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 	int ret;
310 
311 	if (WARN_ON(info->gtt_entry_size != 8))
312 		return -EINVAL;
313 
314 	if (hypervisor_access) {
315 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 				(index << info->gtt_entry_size_shift),
317 				&e->val64, 8);
318 		if (WARN_ON(ret))
319 			return ret;
320 	} else if (!pt) {
321 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 	} else {
323 		e->val64 = *((u64 *)pt + index);
324 	}
325 	return 0;
326 }
327 
328 static inline int gtt_set_entry64(void *pt,
329 		struct intel_gvt_gtt_entry *e,
330 		unsigned long index, bool hypervisor_access, unsigned long gpa,
331 		struct intel_vgpu *vgpu)
332 {
333 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 	int ret;
335 
336 	if (WARN_ON(info->gtt_entry_size != 8))
337 		return -EINVAL;
338 
339 	if (hypervisor_access) {
340 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 				(index << info->gtt_entry_size_shift),
342 				&e->val64, 8);
343 		if (WARN_ON(ret))
344 			return ret;
345 	} else if (!pt) {
346 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 	} else {
348 		*((u64 *)pt + index) = e->val64;
349 	}
350 	return 0;
351 }
352 
353 #define GTT_HAW 46
354 
355 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
359 
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362 
363 #define GTT_64K_PTE_STRIDE 16
364 
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 	unsigned long pfn;
368 
369 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 	else
376 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 	return pfn;
378 }
379 
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 		e->val64 &= ~ADDR_1G_MASK;
384 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 		e->val64 &= ~ADDR_2M_MASK;
387 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 		e->val64 &= ~ADDR_64K_MASK;
390 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 	} else {
392 		e->val64 &= ~ADDR_4K_MASK;
393 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 	}
395 
396 	e->val64 |= (pfn << PAGE_SHIFT);
397 }
398 
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 	return !!(e->val64 & _PAGE_PSE);
402 }
403 
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 	if (gen8_gtt_test_pse(e)) {
407 		switch (e->type) {
408 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 			e->val64 &= ~_PAGE_PSE;
410 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 			break;
412 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 			e->val64 &= ~_PAGE_PSE;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 		return false;
426 
427 	return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429 
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 		return;
434 
435 	e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437 
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 	/*
441 	 * i915 writes PDP root pointer registers without present bit,
442 	 * it also works, so we need to treat root pointer entry
443 	 * specifically.
444 	 */
445 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 		return (e->val64 != 0);
448 	else
449 		return (e->val64 & _PAGE_PRESENT);
450 }
451 
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 	e->val64 &= ~_PAGE_PRESENT;
455 }
456 
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 	e->val64 |= _PAGE_PRESENT;
460 }
461 
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466 
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471 
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476 
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483 
484 	trace_gma_index(__func__, gma, x);
485 	return x;
486 }
487 
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 	unsigned long x = (exp); \
492 	trace_gma_index(__func__, gma, x); \
493 	return x; \
494 }
495 
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501 
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 	.get_entry = gtt_get_entry64,
504 	.set_entry = gtt_set_entry64,
505 	.clear_present = gtt_entry_clear_present,
506 	.set_present = gtt_entry_set_present,
507 	.test_present = gen8_gtt_test_present,
508 	.test_pse = gen8_gtt_test_pse,
509 	.clear_pse = gen8_gtt_clear_pse,
510 	.clear_ips = gen8_gtt_clear_ips,
511 	.test_ips = gen8_gtt_test_ips,
512 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
513 	.set_64k_splited = gen8_gtt_set_64k_splited,
514 	.test_64k_splited = gen8_gtt_test_64k_splited,
515 	.get_pfn = gen8_gtt_get_pfn,
516 	.set_pfn = gen8_gtt_set_pfn,
517 };
518 
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 	.gma_to_pte_index = gen8_gma_to_pte_index,
522 	.gma_to_pde_index = gen8_gma_to_pde_index,
523 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527 
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 	struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 	switch (entry->type) {
533 	case GTT_TYPE_PPGTT_PDE_ENTRY:
534 	case GTT_TYPE_PPGTT_PDP_ENTRY:
535 		if (pte_ops->test_pse(entry))
536 			entry->type = get_pse_type(entry->type);
537 		break;
538 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 		if (ips)
540 			entry->type = get_pse_type(entry->type);
541 		break;
542 	default:
543 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 	}
545 
546 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548 
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 		struct intel_gvt_gtt_entry *entry, unsigned long index,
554 		bool guest)
555 {
556 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557 
558 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559 
560 	entry->type = mm->ppgtt_mm.root_entry_type;
561 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 			   mm->ppgtt_mm.shadow_pdps,
563 			   entry, index, false, 0, mm->vgpu);
564 	update_entry_type_for_real(pte_ops, entry, false);
565 }
566 
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 		struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 	_ppgtt_get_root_entry(mm, entry, index, true);
571 }
572 
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 		struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 	_ppgtt_get_root_entry(mm, entry, index, false);
577 }
578 
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 		struct intel_gvt_gtt_entry *entry, unsigned long index,
581 		bool guest)
582 {
583 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584 
585 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 			   mm->ppgtt_mm.shadow_pdps,
587 			   entry, index, false, 0, mm->vgpu);
588 }
589 
590 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
591 		struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 	_ppgtt_set_root_entry(mm, entry, index, false);
594 }
595 
596 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
597 		struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
600 
601 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
602 
603 	entry->type = GTT_TYPE_GGTT_PTE;
604 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
605 			   false, 0, mm->vgpu);
606 }
607 
608 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
609 		struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
612 
613 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
614 
615 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
616 			   false, 0, mm->vgpu);
617 }
618 
619 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
620 		struct intel_gvt_gtt_entry *entry, unsigned long index)
621 {
622 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
623 
624 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
625 
626 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
627 }
628 
629 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
630 		struct intel_gvt_gtt_entry *entry, unsigned long index)
631 {
632 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
633 	unsigned long offset = index;
634 
635 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
636 
637 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
640 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
641 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
642 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
643 	}
644 
645 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 }
647 
648 /*
649  * PPGTT shadow page table helpers.
650  */
651 static inline int ppgtt_spt_get_entry(
652 		struct intel_vgpu_ppgtt_spt *spt,
653 		void *page_table, int type,
654 		struct intel_gvt_gtt_entry *e, unsigned long index,
655 		bool guest)
656 {
657 	struct intel_gvt *gvt = spt->vgpu->gvt;
658 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
659 	int ret;
660 
661 	e->type = get_entry_type(type);
662 
663 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
664 		return -EINVAL;
665 
666 	ret = ops->get_entry(page_table, e, index, guest,
667 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
668 			spt->vgpu);
669 	if (ret)
670 		return ret;
671 
672 	update_entry_type_for_real(ops, e, guest ?
673 				   spt->guest_page.pde_ips : false);
674 
675 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
676 		    type, e->type, index, e->val64);
677 	return 0;
678 }
679 
680 static inline int ppgtt_spt_set_entry(
681 		struct intel_vgpu_ppgtt_spt *spt,
682 		void *page_table, int type,
683 		struct intel_gvt_gtt_entry *e, unsigned long index,
684 		bool guest)
685 {
686 	struct intel_gvt *gvt = spt->vgpu->gvt;
687 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
688 
689 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
690 		return -EINVAL;
691 
692 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
693 		    type, e->type, index, e->val64);
694 
695 	return ops->set_entry(page_table, e, index, guest,
696 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697 			spt->vgpu);
698 }
699 
700 #define ppgtt_get_guest_entry(spt, e, index) \
701 	ppgtt_spt_get_entry(spt, NULL, \
702 		spt->guest_page.type, e, index, true)
703 
704 #define ppgtt_set_guest_entry(spt, e, index) \
705 	ppgtt_spt_set_entry(spt, NULL, \
706 		spt->guest_page.type, e, index, true)
707 
708 #define ppgtt_get_shadow_entry(spt, e, index) \
709 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
710 		spt->shadow_page.type, e, index, false)
711 
712 #define ppgtt_set_shadow_entry(spt, e, index) \
713 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
714 		spt->shadow_page.type, e, index, false)
715 
716 static void *alloc_spt(gfp_t gfp_mask)
717 {
718 	struct intel_vgpu_ppgtt_spt *spt;
719 
720 	spt = kzalloc(sizeof(*spt), gfp_mask);
721 	if (!spt)
722 		return NULL;
723 
724 	spt->shadow_page.page = alloc_page(gfp_mask);
725 	if (!spt->shadow_page.page) {
726 		kfree(spt);
727 		return NULL;
728 	}
729 	return spt;
730 }
731 
732 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
733 {
734 	__free_page(spt->shadow_page.page);
735 	kfree(spt);
736 }
737 
738 static int detach_oos_page(struct intel_vgpu *vgpu,
739 		struct intel_vgpu_oos_page *oos_page);
740 
741 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
742 {
743 	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
744 
745 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
746 
747 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
748 		       PCI_DMA_BIDIRECTIONAL);
749 
750 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
751 
752 	if (spt->guest_page.gfn) {
753 		if (spt->guest_page.oos_page)
754 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
755 
756 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
757 	}
758 
759 	list_del_init(&spt->post_shadow_list);
760 	free_spt(spt);
761 }
762 
763 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
764 {
765 	struct intel_vgpu_ppgtt_spt *spt, *spn;
766 	struct radix_tree_iter iter;
767 	LIST_HEAD(all_spt);
768 	void __rcu **slot;
769 
770 	rcu_read_lock();
771 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
772 		spt = radix_tree_deref_slot(slot);
773 		list_move(&spt->post_shadow_list, &all_spt);
774 	}
775 	rcu_read_unlock();
776 
777 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778 		ppgtt_free_spt(spt);
779 }
780 
781 static int ppgtt_handle_guest_write_page_table_bytes(
782 		struct intel_vgpu_ppgtt_spt *spt,
783 		u64 pa, void *p_data, int bytes);
784 
785 static int ppgtt_write_protection_handler(
786 		struct intel_vgpu_page_track *page_track,
787 		u64 gpa, void *data, int bytes)
788 {
789 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790 
791 	int ret;
792 
793 	if (bytes != 4 && bytes != 8)
794 		return -EINVAL;
795 
796 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
797 	if (ret)
798 		return ret;
799 	return ret;
800 }
801 
802 /* Find a spt by guest gfn. */
803 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
804 		struct intel_vgpu *vgpu, unsigned long gfn)
805 {
806 	struct intel_vgpu_page_track *track;
807 
808 	track = intel_vgpu_find_page_track(vgpu, gfn);
809 	if (track && track->handler == ppgtt_write_protection_handler)
810 		return track->priv_data;
811 
812 	return NULL;
813 }
814 
815 /* Find the spt by shadow page mfn. */
816 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
817 		struct intel_vgpu *vgpu, unsigned long mfn)
818 {
819 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
820 }
821 
822 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
823 
824 /* Allocate shadow page table without guest page. */
825 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
826 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
827 {
828 	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
829 	struct intel_vgpu_ppgtt_spt *spt = NULL;
830 	dma_addr_t daddr;
831 	int ret;
832 
833 retry:
834 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
835 	if (!spt) {
836 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
837 			goto retry;
838 
839 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
840 		return ERR_PTR(-ENOMEM);
841 	}
842 
843 	spt->vgpu = vgpu;
844 	atomic_set(&spt->refcount, 1);
845 	INIT_LIST_HEAD(&spt->post_shadow_list);
846 
847 	/*
848 	 * Init shadow_page.
849 	 */
850 	spt->shadow_page.type = type;
851 	daddr = dma_map_page(kdev, spt->shadow_page.page,
852 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
853 	if (dma_mapping_error(kdev, daddr)) {
854 		gvt_vgpu_err("fail to map dma addr\n");
855 		ret = -EINVAL;
856 		goto err_free_spt;
857 	}
858 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
859 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
860 
861 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
862 	if (ret)
863 		goto err_unmap_dma;
864 
865 	return spt;
866 
867 err_unmap_dma:
868 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
869 err_free_spt:
870 	free_spt(spt);
871 	return ERR_PTR(ret);
872 }
873 
874 /* Allocate shadow page table associated with specific gfn. */
875 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
876 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
877 		unsigned long gfn, bool guest_pde_ips)
878 {
879 	struct intel_vgpu_ppgtt_spt *spt;
880 	int ret;
881 
882 	spt = ppgtt_alloc_spt(vgpu, type);
883 	if (IS_ERR(spt))
884 		return spt;
885 
886 	/*
887 	 * Init guest_page.
888 	 */
889 	ret = intel_vgpu_register_page_track(vgpu, gfn,
890 			ppgtt_write_protection_handler, spt);
891 	if (ret) {
892 		ppgtt_free_spt(spt);
893 		return ERR_PTR(ret);
894 	}
895 
896 	spt->guest_page.type = type;
897 	spt->guest_page.gfn = gfn;
898 	spt->guest_page.pde_ips = guest_pde_ips;
899 
900 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
901 
902 	return spt;
903 }
904 
905 #define pt_entry_size_shift(spt) \
906 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
907 
908 #define pt_entries(spt) \
909 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
910 
911 #define for_each_present_guest_entry(spt, e, i) \
912 	for (i = 0; i < pt_entries(spt); \
913 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914 		if (!ppgtt_get_guest_entry(spt, e, i) && \
915 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916 
917 #define for_each_present_shadow_entry(spt, e, i) \
918 	for (i = 0; i < pt_entries(spt); \
919 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
921 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922 
923 #define for_each_shadow_entry(spt, e, i) \
924 	for (i = 0; i < pt_entries(spt); \
925 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
926 		if (!ppgtt_get_shadow_entry(spt, e, i))
927 
928 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
929 {
930 	int v = atomic_read(&spt->refcount);
931 
932 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
933 	atomic_inc(&spt->refcount);
934 }
935 
936 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
937 {
938 	int v = atomic_read(&spt->refcount);
939 
940 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
941 	return atomic_dec_return(&spt->refcount);
942 }
943 
944 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
945 
946 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
947 		struct intel_gvt_gtt_entry *e)
948 {
949 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
950 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
951 	struct intel_vgpu_ppgtt_spt *s;
952 	enum intel_gvt_gtt_type cur_pt_type;
953 
954 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
955 
956 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
957 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
958 		cur_pt_type = get_next_pt_type(e->type);
959 
960 		if (!gtt_type_is_pt(cur_pt_type) ||
961 				!gtt_type_is_pt(cur_pt_type + 1)) {
962 			drm_WARN(&i915->drm, 1,
963 				 "Invalid page table type, cur_pt_type is: %d\n",
964 				 cur_pt_type);
965 			return -EINVAL;
966 		}
967 
968 		cur_pt_type += 1;
969 
970 		if (ops->get_pfn(e) ==
971 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
972 			return 0;
973 	}
974 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
975 	if (!s) {
976 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977 				ops->get_pfn(e));
978 		return -ENXIO;
979 	}
980 	return ppgtt_invalidate_spt(s);
981 }
982 
983 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
984 		struct intel_gvt_gtt_entry *entry)
985 {
986 	struct intel_vgpu *vgpu = spt->vgpu;
987 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 	unsigned long pfn;
989 	int type;
990 
991 	pfn = ops->get_pfn(entry);
992 	type = spt->shadow_page.type;
993 
994 	/* Uninitialized spte or unshadowed spte. */
995 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
996 		return;
997 
998 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
999 }
1000 
1001 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1002 {
1003 	struct intel_vgpu *vgpu = spt->vgpu;
1004 	struct intel_gvt_gtt_entry e;
1005 	unsigned long index;
1006 	int ret;
1007 
1008 	trace_spt_change(spt->vgpu->id, "die", spt,
1009 			spt->guest_page.gfn, spt->shadow_page.type);
1010 
1011 	if (ppgtt_put_spt(spt) > 0)
1012 		return 0;
1013 
1014 	for_each_present_shadow_entry(spt, &e, index) {
1015 		switch (e.type) {
1016 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1017 			gvt_vdbg_mm("invalidate 4K entry\n");
1018 			ppgtt_invalidate_pte(spt, &e);
1019 			break;
1020 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1021 			/* We don't setup 64K shadow entry so far. */
1022 			WARN(1, "suspicious 64K gtt entry\n");
1023 			continue;
1024 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1025 			gvt_vdbg_mm("invalidate 2M entry\n");
1026 			continue;
1027 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1028 			WARN(1, "GVT doesn't support 1GB page\n");
1029 			continue;
1030 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1031 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1032 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1033 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1034 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1035 					spt->vgpu, &e);
1036 			if (ret)
1037 				goto fail;
1038 			break;
1039 		default:
1040 			GEM_BUG_ON(1);
1041 		}
1042 	}
1043 
1044 	trace_spt_change(spt->vgpu->id, "release", spt,
1045 			 spt->guest_page.gfn, spt->shadow_page.type);
1046 	ppgtt_free_spt(spt);
1047 	return 0;
1048 fail:
1049 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1050 			spt, e.val64, e.type);
1051 	return ret;
1052 }
1053 
1054 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1055 {
1056 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1057 
1058 	if (GRAPHICS_VER(dev_priv) == 9) {
1059 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1060 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061 
1062 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1063 	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1064 		/* 64K paging only controlled by IPS bit in PTE now. */
1065 		return true;
1066 	} else
1067 		return false;
1068 }
1069 
1070 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1071 
1072 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1073 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1074 {
1075 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1076 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1077 	bool ips = false;
1078 	int ret;
1079 
1080 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1081 
1082 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1083 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1084 
1085 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086 	if (spt) {
1087 		ppgtt_get_spt(spt);
1088 
1089 		if (ips != spt->guest_page.pde_ips) {
1090 			spt->guest_page.pde_ips = ips;
1091 
1092 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1093 			clear_page(spt->shadow_page.vaddr);
1094 			ret = ppgtt_populate_spt(spt);
1095 			if (ret) {
1096 				ppgtt_put_spt(spt);
1097 				goto err;
1098 			}
1099 		}
1100 	} else {
1101 		int type = get_next_pt_type(we->type);
1102 
1103 		if (!gtt_type_is_pt(type)) {
1104 			ret = -EINVAL;
1105 			goto err;
1106 		}
1107 
1108 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1109 		if (IS_ERR(spt)) {
1110 			ret = PTR_ERR(spt);
1111 			goto err;
1112 		}
1113 
1114 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115 		if (ret)
1116 			goto err_free_spt;
1117 
1118 		ret = ppgtt_populate_spt(spt);
1119 		if (ret)
1120 			goto err_free_spt;
1121 
1122 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1123 				 spt->shadow_page.type);
1124 	}
1125 	return spt;
1126 
1127 err_free_spt:
1128 	ppgtt_free_spt(spt);
1129 	spt = NULL;
1130 err:
1131 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1132 		     spt, we->val64, we->type);
1133 	return ERR_PTR(ret);
1134 }
1135 
1136 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1137 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1138 {
1139 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1140 
1141 	se->type = ge->type;
1142 	se->val64 = ge->val64;
1143 
1144 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1145 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1146 		ops->clear_ips(se);
1147 
1148 	ops->set_pfn(se, s->shadow_page.mfn);
1149 }
1150 
1151 /**
1152  * Check if can do 2M page
1153  * @vgpu: target vgpu
1154  * @entry: target pfn's gtt entry
1155  *
1156  * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1157  * negative if found err.
1158  */
1159 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1160 	struct intel_gvt_gtt_entry *entry)
1161 {
1162 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1163 	unsigned long pfn;
1164 
1165 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1166 		return 0;
1167 
1168 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1169 	if (pfn == INTEL_GVT_INVALID_ADDR)
1170 		return -EINVAL;
1171 
1172 	return PageTransHuge(pfn_to_page(pfn));
1173 }
1174 
1175 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1176 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1177 	struct intel_gvt_gtt_entry *se)
1178 {
1179 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1180 	struct intel_vgpu_ppgtt_spt *sub_spt;
1181 	struct intel_gvt_gtt_entry sub_se;
1182 	unsigned long start_gfn;
1183 	dma_addr_t dma_addr;
1184 	unsigned long sub_index;
1185 	int ret;
1186 
1187 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1188 
1189 	start_gfn = ops->get_pfn(se);
1190 
1191 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1192 	if (IS_ERR(sub_spt))
1193 		return PTR_ERR(sub_spt);
1194 
1195 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1196 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1197 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1198 		if (ret) {
1199 			ppgtt_invalidate_spt(spt);
1200 			return ret;
1201 		}
1202 		sub_se.val64 = se->val64;
1203 
1204 		/* Copy the PAT field from PDE. */
1205 		sub_se.val64 &= ~_PAGE_PAT;
1206 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1207 
1208 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1209 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1210 	}
1211 
1212 	/* Clear dirty field. */
1213 	se->val64 &= ~_PAGE_DIRTY;
1214 
1215 	ops->clear_pse(se);
1216 	ops->clear_ips(se);
1217 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1218 	ppgtt_set_shadow_entry(spt, se, index);
1219 	return 0;
1220 }
1221 
1222 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1223 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1224 	struct intel_gvt_gtt_entry *se)
1225 {
1226 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1227 	struct intel_gvt_gtt_entry entry = *se;
1228 	unsigned long start_gfn;
1229 	dma_addr_t dma_addr;
1230 	int i, ret;
1231 
1232 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1233 
1234 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1235 
1236 	start_gfn = ops->get_pfn(se);
1237 
1238 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1239 	ops->set_64k_splited(&entry);
1240 
1241 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1242 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1243 					start_gfn + i, PAGE_SIZE, &dma_addr);
1244 		if (ret)
1245 			return ret;
1246 
1247 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1248 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1249 	}
1250 	return 0;
1251 }
1252 
1253 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1254 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1255 	struct intel_gvt_gtt_entry *ge)
1256 {
1257 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1258 	struct intel_gvt_gtt_entry se = *ge;
1259 	unsigned long gfn, page_size = PAGE_SIZE;
1260 	dma_addr_t dma_addr;
1261 	int ret;
1262 
1263 	if (!pte_ops->test_present(ge))
1264 		return 0;
1265 
1266 	gfn = pte_ops->get_pfn(ge);
1267 
1268 	switch (ge->type) {
1269 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1270 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1271 		break;
1272 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1273 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1274 		/*
1275 		 * The layout of 64K page is special, the page size is
1276 		 * controlled by uper PDE. To be simple, we always split
1277 		 * 64K page to smaller 4K pages in shadow PT.
1278 		 */
1279 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1280 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1281 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1282 		ret = is_2MB_gtt_possible(vgpu, ge);
1283 		if (ret == 0)
1284 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1285 		else if (ret < 0)
1286 			return ret;
1287 		page_size = I915_GTT_PAGE_SIZE_2M;
1288 		break;
1289 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1290 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1291 		return -EINVAL;
1292 	default:
1293 		GEM_BUG_ON(1);
1294 	}
1295 
1296 	/* direct shadow */
1297 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1298 						      &dma_addr);
1299 	if (ret)
1300 		return -ENXIO;
1301 
1302 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1303 	ppgtt_set_shadow_entry(spt, &se, index);
1304 	return 0;
1305 }
1306 
1307 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1308 {
1309 	struct intel_vgpu *vgpu = spt->vgpu;
1310 	struct intel_gvt *gvt = vgpu->gvt;
1311 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1312 	struct intel_vgpu_ppgtt_spt *s;
1313 	struct intel_gvt_gtt_entry se, ge;
1314 	unsigned long gfn, i;
1315 	int ret;
1316 
1317 	trace_spt_change(spt->vgpu->id, "born", spt,
1318 			 spt->guest_page.gfn, spt->shadow_page.type);
1319 
1320 	for_each_present_guest_entry(spt, &ge, i) {
1321 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1322 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1323 			if (IS_ERR(s)) {
1324 				ret = PTR_ERR(s);
1325 				goto fail;
1326 			}
1327 			ppgtt_get_shadow_entry(spt, &se, i);
1328 			ppgtt_generate_shadow_entry(&se, s, &ge);
1329 			ppgtt_set_shadow_entry(spt, &se, i);
1330 		} else {
1331 			gfn = ops->get_pfn(&ge);
1332 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1333 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1334 				ppgtt_set_shadow_entry(spt, &se, i);
1335 				continue;
1336 			}
1337 
1338 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1339 			if (ret)
1340 				goto fail;
1341 		}
1342 	}
1343 	return 0;
1344 fail:
1345 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1346 			spt, ge.val64, ge.type);
1347 	return ret;
1348 }
1349 
1350 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1351 		struct intel_gvt_gtt_entry *se, unsigned long index)
1352 {
1353 	struct intel_vgpu *vgpu = spt->vgpu;
1354 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1355 	int ret;
1356 
1357 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1358 			       spt->shadow_page.type, se->val64, index);
1359 
1360 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1361 		    se->type, index, se->val64);
1362 
1363 	if (!ops->test_present(se))
1364 		return 0;
1365 
1366 	if (ops->get_pfn(se) ==
1367 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1368 		return 0;
1369 
1370 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1371 		struct intel_vgpu_ppgtt_spt *s =
1372 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1373 		if (!s) {
1374 			gvt_vgpu_err("fail to find guest page\n");
1375 			ret = -ENXIO;
1376 			goto fail;
1377 		}
1378 		ret = ppgtt_invalidate_spt(s);
1379 		if (ret)
1380 			goto fail;
1381 	} else {
1382 		/* We don't setup 64K shadow entry so far. */
1383 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1384 		     "suspicious 64K entry\n");
1385 		ppgtt_invalidate_pte(spt, se);
1386 	}
1387 
1388 	return 0;
1389 fail:
1390 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1391 			spt, se->val64, se->type);
1392 	return ret;
1393 }
1394 
1395 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1396 		struct intel_gvt_gtt_entry *we, unsigned long index)
1397 {
1398 	struct intel_vgpu *vgpu = spt->vgpu;
1399 	struct intel_gvt_gtt_entry m;
1400 	struct intel_vgpu_ppgtt_spt *s;
1401 	int ret;
1402 
1403 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1404 			       we->val64, index);
1405 
1406 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1407 		    we->type, index, we->val64);
1408 
1409 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1410 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1411 		if (IS_ERR(s)) {
1412 			ret = PTR_ERR(s);
1413 			goto fail;
1414 		}
1415 		ppgtt_get_shadow_entry(spt, &m, index);
1416 		ppgtt_generate_shadow_entry(&m, s, we);
1417 		ppgtt_set_shadow_entry(spt, &m, index);
1418 	} else {
1419 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1420 		if (ret)
1421 			goto fail;
1422 	}
1423 	return 0;
1424 fail:
1425 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1426 		spt, we->val64, we->type);
1427 	return ret;
1428 }
1429 
1430 static int sync_oos_page(struct intel_vgpu *vgpu,
1431 		struct intel_vgpu_oos_page *oos_page)
1432 {
1433 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1434 	struct intel_gvt *gvt = vgpu->gvt;
1435 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1436 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1437 	struct intel_gvt_gtt_entry old, new;
1438 	int index;
1439 	int ret;
1440 
1441 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1442 			 spt, spt->guest_page.type);
1443 
1444 	old.type = new.type = get_entry_type(spt->guest_page.type);
1445 	old.val64 = new.val64 = 0;
1446 
1447 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1448 				info->gtt_entry_size_shift); index++) {
1449 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1450 		ops->get_entry(NULL, &new, index, true,
1451 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1452 
1453 		if (old.val64 == new.val64
1454 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1455 			continue;
1456 
1457 		trace_oos_sync(vgpu->id, oos_page->id,
1458 				spt, spt->guest_page.type,
1459 				new.val64, index);
1460 
1461 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1462 		if (ret)
1463 			return ret;
1464 
1465 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1466 	}
1467 
1468 	spt->guest_page.write_cnt = 0;
1469 	list_del_init(&spt->post_shadow_list);
1470 	return 0;
1471 }
1472 
1473 static int detach_oos_page(struct intel_vgpu *vgpu,
1474 		struct intel_vgpu_oos_page *oos_page)
1475 {
1476 	struct intel_gvt *gvt = vgpu->gvt;
1477 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1478 
1479 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1480 			 spt, spt->guest_page.type);
1481 
1482 	spt->guest_page.write_cnt = 0;
1483 	spt->guest_page.oos_page = NULL;
1484 	oos_page->spt = NULL;
1485 
1486 	list_del_init(&oos_page->vm_list);
1487 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1488 
1489 	return 0;
1490 }
1491 
1492 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1493 		struct intel_vgpu_ppgtt_spt *spt)
1494 {
1495 	struct intel_gvt *gvt = spt->vgpu->gvt;
1496 	int ret;
1497 
1498 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1499 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1500 			oos_page->mem, I915_GTT_PAGE_SIZE);
1501 	if (ret)
1502 		return ret;
1503 
1504 	oos_page->spt = spt;
1505 	spt->guest_page.oos_page = oos_page;
1506 
1507 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1508 
1509 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1510 			 spt, spt->guest_page.type);
1511 	return 0;
1512 }
1513 
1514 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1515 {
1516 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1517 	int ret;
1518 
1519 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1520 	if (ret)
1521 		return ret;
1522 
1523 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1524 			 spt, spt->guest_page.type);
1525 
1526 	list_del_init(&oos_page->vm_list);
1527 	return sync_oos_page(spt->vgpu, oos_page);
1528 }
1529 
1530 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1531 {
1532 	struct intel_gvt *gvt = spt->vgpu->gvt;
1533 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1534 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1535 	int ret;
1536 
1537 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1538 
1539 	if (list_empty(&gtt->oos_page_free_list_head)) {
1540 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1541 			struct intel_vgpu_oos_page, list);
1542 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1543 		if (ret)
1544 			return ret;
1545 		ret = detach_oos_page(spt->vgpu, oos_page);
1546 		if (ret)
1547 			return ret;
1548 	} else
1549 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1550 			struct intel_vgpu_oos_page, list);
1551 	return attach_oos_page(oos_page, spt);
1552 }
1553 
1554 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1555 {
1556 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1557 
1558 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1559 		return -EINVAL;
1560 
1561 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1562 			 spt, spt->guest_page.type);
1563 
1564 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1565 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1566 }
1567 
1568 /**
1569  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1570  * @vgpu: a vGPU
1571  *
1572  * This function is called before submitting a guest workload to host,
1573  * to sync all the out-of-synced shadow for vGPU
1574  *
1575  * Returns:
1576  * Zero on success, negative error code if failed.
1577  */
1578 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1579 {
1580 	struct list_head *pos, *n;
1581 	struct intel_vgpu_oos_page *oos_page;
1582 	int ret;
1583 
1584 	if (!enable_out_of_sync)
1585 		return 0;
1586 
1587 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1588 		oos_page = container_of(pos,
1589 				struct intel_vgpu_oos_page, vm_list);
1590 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1591 		if (ret)
1592 			return ret;
1593 	}
1594 	return 0;
1595 }
1596 
1597 /*
1598  * The heart of PPGTT shadow page table.
1599  */
1600 static int ppgtt_handle_guest_write_page_table(
1601 		struct intel_vgpu_ppgtt_spt *spt,
1602 		struct intel_gvt_gtt_entry *we, unsigned long index)
1603 {
1604 	struct intel_vgpu *vgpu = spt->vgpu;
1605 	int type = spt->shadow_page.type;
1606 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1607 	struct intel_gvt_gtt_entry old_se;
1608 	int new_present;
1609 	int i, ret;
1610 
1611 	new_present = ops->test_present(we);
1612 
1613 	/*
1614 	 * Adding the new entry first and then removing the old one, that can
1615 	 * guarantee the ppgtt table is validated during the window between
1616 	 * adding and removal.
1617 	 */
1618 	ppgtt_get_shadow_entry(spt, &old_se, index);
1619 
1620 	if (new_present) {
1621 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1622 		if (ret)
1623 			goto fail;
1624 	}
1625 
1626 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1627 	if (ret)
1628 		goto fail;
1629 
1630 	if (!new_present) {
1631 		/* For 64KB splited entries, we need clear them all. */
1632 		if (ops->test_64k_splited(&old_se) &&
1633 		    !(index % GTT_64K_PTE_STRIDE)) {
1634 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1635 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1636 				ops->clear_64k_splited(&old_se);
1637 				ops->set_pfn(&old_se,
1638 					vgpu->gtt.scratch_pt[type].page_mfn);
1639 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1640 			}
1641 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1642 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1643 			ops->clear_pse(&old_se);
1644 			ops->set_pfn(&old_se,
1645 				     vgpu->gtt.scratch_pt[type].page_mfn);
1646 			ppgtt_set_shadow_entry(spt, &old_se, index);
1647 		} else {
1648 			ops->set_pfn(&old_se,
1649 				     vgpu->gtt.scratch_pt[type].page_mfn);
1650 			ppgtt_set_shadow_entry(spt, &old_se, index);
1651 		}
1652 	}
1653 
1654 	return 0;
1655 fail:
1656 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1657 			spt, we->val64, we->type);
1658 	return ret;
1659 }
1660 
1661 
1662 
1663 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1664 {
1665 	return enable_out_of_sync
1666 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1667 		&& spt->guest_page.write_cnt >= 2;
1668 }
1669 
1670 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1671 		unsigned long index)
1672 {
1673 	set_bit(index, spt->post_shadow_bitmap);
1674 	if (!list_empty(&spt->post_shadow_list))
1675 		return;
1676 
1677 	list_add_tail(&spt->post_shadow_list,
1678 			&spt->vgpu->gtt.post_shadow_list_head);
1679 }
1680 
1681 /**
1682  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1683  * @vgpu: a vGPU
1684  *
1685  * This function is called before submitting a guest workload to host,
1686  * to flush all the post shadows for a vGPU.
1687  *
1688  * Returns:
1689  * Zero on success, negative error code if failed.
1690  */
1691 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1692 {
1693 	struct list_head *pos, *n;
1694 	struct intel_vgpu_ppgtt_spt *spt;
1695 	struct intel_gvt_gtt_entry ge;
1696 	unsigned long index;
1697 	int ret;
1698 
1699 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1700 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1701 				post_shadow_list);
1702 
1703 		for_each_set_bit(index, spt->post_shadow_bitmap,
1704 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1705 			ppgtt_get_guest_entry(spt, &ge, index);
1706 
1707 			ret = ppgtt_handle_guest_write_page_table(spt,
1708 							&ge, index);
1709 			if (ret)
1710 				return ret;
1711 			clear_bit(index, spt->post_shadow_bitmap);
1712 		}
1713 		list_del_init(&spt->post_shadow_list);
1714 	}
1715 	return 0;
1716 }
1717 
1718 static int ppgtt_handle_guest_write_page_table_bytes(
1719 		struct intel_vgpu_ppgtt_spt *spt,
1720 		u64 pa, void *p_data, int bytes)
1721 {
1722 	struct intel_vgpu *vgpu = spt->vgpu;
1723 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1724 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1725 	struct intel_gvt_gtt_entry we, se;
1726 	unsigned long index;
1727 	int ret;
1728 
1729 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1730 
1731 	ppgtt_get_guest_entry(spt, &we, index);
1732 
1733 	/*
1734 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1735 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1736 	 * ignored.
1737 	 */
1738 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1739 	    (index % GTT_64K_PTE_STRIDE)) {
1740 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1741 			    index);
1742 		return 0;
1743 	}
1744 
1745 	if (bytes == info->gtt_entry_size) {
1746 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1747 		if (ret)
1748 			return ret;
1749 	} else {
1750 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1751 			int type = spt->shadow_page.type;
1752 
1753 			ppgtt_get_shadow_entry(spt, &se, index);
1754 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1755 			if (ret)
1756 				return ret;
1757 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1758 			ppgtt_set_shadow_entry(spt, &se, index);
1759 		}
1760 		ppgtt_set_post_shadow(spt, index);
1761 	}
1762 
1763 	if (!enable_out_of_sync)
1764 		return 0;
1765 
1766 	spt->guest_page.write_cnt++;
1767 
1768 	if (spt->guest_page.oos_page)
1769 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1770 				false, 0, vgpu);
1771 
1772 	if (can_do_out_of_sync(spt)) {
1773 		if (!spt->guest_page.oos_page)
1774 			ppgtt_allocate_oos_page(spt);
1775 
1776 		ret = ppgtt_set_guest_page_oos(spt);
1777 		if (ret < 0)
1778 			return ret;
1779 	}
1780 	return 0;
1781 }
1782 
1783 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1784 {
1785 	struct intel_vgpu *vgpu = mm->vgpu;
1786 	struct intel_gvt *gvt = vgpu->gvt;
1787 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 	struct intel_gvt_gtt_entry se;
1790 	int index;
1791 
1792 	if (!mm->ppgtt_mm.shadowed)
1793 		return;
1794 
1795 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1796 		ppgtt_get_shadow_root_entry(mm, &se, index);
1797 
1798 		if (!ops->test_present(&se))
1799 			continue;
1800 
1801 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1802 		se.val64 = 0;
1803 		ppgtt_set_shadow_root_entry(mm, &se, index);
1804 
1805 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1806 				       NULL, se.type, se.val64, index);
1807 	}
1808 
1809 	mm->ppgtt_mm.shadowed = false;
1810 }
1811 
1812 
1813 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1814 {
1815 	struct intel_vgpu *vgpu = mm->vgpu;
1816 	struct intel_gvt *gvt = vgpu->gvt;
1817 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1818 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1819 	struct intel_vgpu_ppgtt_spt *spt;
1820 	struct intel_gvt_gtt_entry ge, se;
1821 	int index, ret;
1822 
1823 	if (mm->ppgtt_mm.shadowed)
1824 		return 0;
1825 
1826 	mm->ppgtt_mm.shadowed = true;
1827 
1828 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1829 		ppgtt_get_guest_root_entry(mm, &ge, index);
1830 
1831 		if (!ops->test_present(&ge))
1832 			continue;
1833 
1834 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1835 				       ge.type, ge.val64, index);
1836 
1837 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1838 		if (IS_ERR(spt)) {
1839 			gvt_vgpu_err("fail to populate guest root pointer\n");
1840 			ret = PTR_ERR(spt);
1841 			goto fail;
1842 		}
1843 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1844 		ppgtt_set_shadow_root_entry(mm, &se, index);
1845 
1846 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1847 				       NULL, se.type, se.val64, index);
1848 	}
1849 
1850 	return 0;
1851 fail:
1852 	invalidate_ppgtt_mm(mm);
1853 	return ret;
1854 }
1855 
1856 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1857 {
1858 	struct intel_vgpu_mm *mm;
1859 
1860 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1861 	if (!mm)
1862 		return NULL;
1863 
1864 	mm->vgpu = vgpu;
1865 	kref_init(&mm->ref);
1866 	atomic_set(&mm->pincount, 0);
1867 
1868 	return mm;
1869 }
1870 
1871 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1872 {
1873 	kfree(mm);
1874 }
1875 
1876 /**
1877  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1878  * @vgpu: a vGPU
1879  * @root_entry_type: ppgtt root entry type
1880  * @pdps: guest pdps.
1881  *
1882  * This function is used to create a ppgtt mm object for a vGPU.
1883  *
1884  * Returns:
1885  * Zero on success, negative error code in pointer if failed.
1886  */
1887 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1888 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1889 {
1890 	struct intel_gvt *gvt = vgpu->gvt;
1891 	struct intel_vgpu_mm *mm;
1892 	int ret;
1893 
1894 	mm = vgpu_alloc_mm(vgpu);
1895 	if (!mm)
1896 		return ERR_PTR(-ENOMEM);
1897 
1898 	mm->type = INTEL_GVT_MM_PPGTT;
1899 
1900 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1901 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1902 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1903 
1904 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1905 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1906 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1907 
1908 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1909 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1910 	else
1911 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1912 		       sizeof(mm->ppgtt_mm.guest_pdps));
1913 
1914 	ret = shadow_ppgtt_mm(mm);
1915 	if (ret) {
1916 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1917 		vgpu_free_mm(mm);
1918 		return ERR_PTR(ret);
1919 	}
1920 
1921 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1922 
1923 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1924 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1925 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1926 
1927 	return mm;
1928 }
1929 
1930 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1931 {
1932 	struct intel_vgpu_mm *mm;
1933 	unsigned long nr_entries;
1934 
1935 	mm = vgpu_alloc_mm(vgpu);
1936 	if (!mm)
1937 		return ERR_PTR(-ENOMEM);
1938 
1939 	mm->type = INTEL_GVT_MM_GGTT;
1940 
1941 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1942 	mm->ggtt_mm.virtual_ggtt =
1943 		vzalloc(array_size(nr_entries,
1944 				   vgpu->gvt->device_info.gtt_entry_size));
1945 	if (!mm->ggtt_mm.virtual_ggtt) {
1946 		vgpu_free_mm(mm);
1947 		return ERR_PTR(-ENOMEM);
1948 	}
1949 
1950 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1951 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1952 		vfree(mm->ggtt_mm.virtual_ggtt);
1953 		vgpu_free_mm(mm);
1954 		return ERR_PTR(-ENOMEM);
1955 	}
1956 
1957 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1958 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1959 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1960 		vfree(mm->ggtt_mm.virtual_ggtt);
1961 		vgpu_free_mm(mm);
1962 		return ERR_PTR(-ENOMEM);
1963 	}
1964 
1965 	return mm;
1966 }
1967 
1968 /**
1969  * _intel_vgpu_mm_release - destroy a mm object
1970  * @mm_ref: a kref object
1971  *
1972  * This function is used to destroy a mm object for vGPU
1973  *
1974  */
1975 void _intel_vgpu_mm_release(struct kref *mm_ref)
1976 {
1977 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1978 
1979 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1980 		gvt_err("vgpu mm pin count bug detected\n");
1981 
1982 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1983 		list_del(&mm->ppgtt_mm.list);
1984 
1985 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1986 		list_del(&mm->ppgtt_mm.lru_list);
1987 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1988 
1989 		invalidate_ppgtt_mm(mm);
1990 	} else {
1991 		vfree(mm->ggtt_mm.virtual_ggtt);
1992 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1993 		vfree(mm->ggtt_mm.host_ggtt_hidden);
1994 	}
1995 
1996 	vgpu_free_mm(mm);
1997 }
1998 
1999 /**
2000  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2001  * @mm: a vGPU mm object
2002  *
2003  * This function is called when user doesn't want to use a vGPU mm object
2004  */
2005 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2006 {
2007 	atomic_dec_if_positive(&mm->pincount);
2008 }
2009 
2010 /**
2011  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2012  * @mm: target vgpu mm
2013  *
2014  * This function is called when user wants to use a vGPU mm object. If this
2015  * mm object hasn't been shadowed yet, the shadow will be populated at this
2016  * time.
2017  *
2018  * Returns:
2019  * Zero on success, negative error code if failed.
2020  */
2021 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2022 {
2023 	int ret;
2024 
2025 	atomic_inc(&mm->pincount);
2026 
2027 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2028 		ret = shadow_ppgtt_mm(mm);
2029 		if (ret)
2030 			return ret;
2031 
2032 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2033 		list_move_tail(&mm->ppgtt_mm.lru_list,
2034 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2035 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2042 {
2043 	struct intel_vgpu_mm *mm;
2044 	struct list_head *pos, *n;
2045 
2046 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2047 
2048 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2049 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2050 
2051 		if (atomic_read(&mm->pincount))
2052 			continue;
2053 
2054 		list_del_init(&mm->ppgtt_mm.lru_list);
2055 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2056 		invalidate_ppgtt_mm(mm);
2057 		return 1;
2058 	}
2059 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2060 	return 0;
2061 }
2062 
2063 /*
2064  * GMA translation APIs.
2065  */
2066 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2067 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2068 {
2069 	struct intel_vgpu *vgpu = mm->vgpu;
2070 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2071 	struct intel_vgpu_ppgtt_spt *s;
2072 
2073 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2074 	if (!s)
2075 		return -ENXIO;
2076 
2077 	if (!guest)
2078 		ppgtt_get_shadow_entry(s, e, index);
2079 	else
2080 		ppgtt_get_guest_entry(s, e, index);
2081 	return 0;
2082 }
2083 
2084 /**
2085  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2086  * @mm: mm object. could be a PPGTT or GGTT mm object
2087  * @gma: graphics memory address in this mm object
2088  *
2089  * This function is used to translate a graphics memory address in specific
2090  * graphics memory space to guest physical address.
2091  *
2092  * Returns:
2093  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2094  */
2095 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2096 {
2097 	struct intel_vgpu *vgpu = mm->vgpu;
2098 	struct intel_gvt *gvt = vgpu->gvt;
2099 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2100 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2101 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2102 	unsigned long gma_index[4];
2103 	struct intel_gvt_gtt_entry e;
2104 	int i, levels = 0;
2105 	int ret;
2106 
2107 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2108 		   mm->type != INTEL_GVT_MM_PPGTT);
2109 
2110 	if (mm->type == INTEL_GVT_MM_GGTT) {
2111 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2112 			goto err;
2113 
2114 		ggtt_get_guest_entry(mm, &e,
2115 			gma_ops->gma_to_ggtt_pte_index(gma));
2116 
2117 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2118 			+ (gma & ~I915_GTT_PAGE_MASK);
2119 
2120 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2121 	} else {
2122 		switch (mm->ppgtt_mm.root_entry_type) {
2123 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2124 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2125 
2126 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2127 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2128 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2129 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2130 			levels = 4;
2131 			break;
2132 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2133 			ppgtt_get_shadow_root_entry(mm, &e,
2134 					gma_ops->gma_to_l3_pdp_index(gma));
2135 
2136 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2137 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2138 			levels = 2;
2139 			break;
2140 		default:
2141 			GEM_BUG_ON(1);
2142 		}
2143 
2144 		/* walk the shadow page table and get gpa from guest entry */
2145 		for (i = 0; i < levels; i++) {
2146 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2147 				(i == levels - 1));
2148 			if (ret)
2149 				goto err;
2150 
2151 			if (!pte_ops->test_present(&e)) {
2152 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2153 				goto err;
2154 			}
2155 		}
2156 
2157 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2158 					(gma & ~I915_GTT_PAGE_MASK);
2159 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2160 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2161 	}
2162 
2163 	return gpa;
2164 err:
2165 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2166 	return INTEL_GVT_INVALID_ADDR;
2167 }
2168 
2169 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2170 	unsigned int off, void *p_data, unsigned int bytes)
2171 {
2172 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2173 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2174 	unsigned long index = off >> info->gtt_entry_size_shift;
2175 	unsigned long gma;
2176 	struct intel_gvt_gtt_entry e;
2177 
2178 	if (bytes != 4 && bytes != 8)
2179 		return -EINVAL;
2180 
2181 	gma = index << I915_GTT_PAGE_SHIFT;
2182 	if (!intel_gvt_ggtt_validate_range(vgpu,
2183 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2184 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2185 		memset(p_data, 0, bytes);
2186 		return 0;
2187 	}
2188 
2189 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2190 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2191 			bytes);
2192 	return 0;
2193 }
2194 
2195 /**
2196  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2197  * @vgpu: a vGPU
2198  * @off: register offset
2199  * @p_data: data will be returned to guest
2200  * @bytes: data length
2201  *
2202  * This function is used to emulate the GTT MMIO register read
2203  *
2204  * Returns:
2205  * Zero on success, error code if failed.
2206  */
2207 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2208 	void *p_data, unsigned int bytes)
2209 {
2210 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2211 	int ret;
2212 
2213 	if (bytes != 4 && bytes != 8)
2214 		return -EINVAL;
2215 
2216 	off -= info->gtt_start_offset;
2217 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2218 	return ret;
2219 }
2220 
2221 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2222 		struct intel_gvt_gtt_entry *entry)
2223 {
2224 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2225 	unsigned long pfn;
2226 
2227 	pfn = pte_ops->get_pfn(entry);
2228 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2229 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2230 						pfn << PAGE_SHIFT);
2231 }
2232 
2233 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2234 	void *p_data, unsigned int bytes)
2235 {
2236 	struct intel_gvt *gvt = vgpu->gvt;
2237 	const struct intel_gvt_device_info *info = &gvt->device_info;
2238 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2239 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2240 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2241 	unsigned long gma, gfn;
2242 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2243 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2244 	dma_addr_t dma_addr;
2245 	int ret;
2246 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2247 	bool partial_update = false;
2248 
2249 	if (bytes != 4 && bytes != 8)
2250 		return -EINVAL;
2251 
2252 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2253 
2254 	/* the VM may configure the whole GM space when ballooning is used */
2255 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2256 		return 0;
2257 
2258 	e.type = GTT_TYPE_GGTT_PTE;
2259 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2260 			bytes);
2261 
2262 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2263 	 * write, save the first 4 bytes in a list and update virtual
2264 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2265 	 */
2266 	if (bytes < info->gtt_entry_size) {
2267 		bool found = false;
2268 
2269 		list_for_each_entry_safe(pos, n,
2270 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2271 			if (g_gtt_index == pos->offset >>
2272 					info->gtt_entry_size_shift) {
2273 				if (off != pos->offset) {
2274 					/* the second partial part*/
2275 					int last_off = pos->offset &
2276 						(info->gtt_entry_size - 1);
2277 
2278 					memcpy((void *)&e.val64 + last_off,
2279 						(void *)&pos->data + last_off,
2280 						bytes);
2281 
2282 					list_del(&pos->list);
2283 					kfree(pos);
2284 					found = true;
2285 					break;
2286 				}
2287 
2288 				/* update of the first partial part */
2289 				pos->data = e.val64;
2290 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2291 				return 0;
2292 			}
2293 		}
2294 
2295 		if (!found) {
2296 			/* the first partial part */
2297 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2298 			if (!partial_pte)
2299 				return -ENOMEM;
2300 			partial_pte->offset = off;
2301 			partial_pte->data = e.val64;
2302 			list_add_tail(&partial_pte->list,
2303 				&ggtt_mm->ggtt_mm.partial_pte_list);
2304 			partial_update = true;
2305 		}
2306 	}
2307 
2308 	if (!partial_update && (ops->test_present(&e))) {
2309 		gfn = ops->get_pfn(&e);
2310 		m.val64 = e.val64;
2311 		m.type = e.type;
2312 
2313 		/* one PTE update may be issued in multiple writes and the
2314 		 * first write may not construct a valid gfn
2315 		 */
2316 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2317 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2318 			goto out;
2319 		}
2320 
2321 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2322 							PAGE_SIZE, &dma_addr);
2323 		if (ret) {
2324 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2325 			/* guest driver may read/write the entry when partial
2326 			 * update the entry in this situation p2m will fail
2327 			 * settting the shadow entry to point to a scratch page
2328 			 */
2329 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2330 		} else
2331 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2332 	} else {
2333 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2334 		ops->clear_present(&m);
2335 	}
2336 
2337 out:
2338 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2339 
2340 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2341 	ggtt_invalidate_pte(vgpu, &e);
2342 
2343 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2344 	ggtt_invalidate(gvt->gt);
2345 	return 0;
2346 }
2347 
2348 /*
2349  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2350  * @vgpu: a vGPU
2351  * @off: register offset
2352  * @p_data: data from guest write
2353  * @bytes: data length
2354  *
2355  * This function is used to emulate the GTT MMIO register write
2356  *
2357  * Returns:
2358  * Zero on success, error code if failed.
2359  */
2360 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2361 		unsigned int off, void *p_data, unsigned int bytes)
2362 {
2363 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2364 	int ret;
2365 	struct intel_vgpu_submission *s = &vgpu->submission;
2366 	struct intel_engine_cs *engine;
2367 	int i;
2368 
2369 	if (bytes != 4 && bytes != 8)
2370 		return -EINVAL;
2371 
2372 	off -= info->gtt_start_offset;
2373 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2374 
2375 	/* if ggtt of last submitted context is written,
2376 	 * that context is probably got unpinned.
2377 	 * Set last shadowed ctx to invalid.
2378 	 */
2379 	for_each_engine(engine, vgpu->gvt->gt, i) {
2380 		if (!s->last_ctx[i].valid)
2381 			continue;
2382 
2383 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2384 			s->last_ctx[i].valid = false;
2385 	}
2386 	return ret;
2387 }
2388 
2389 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2390 		enum intel_gvt_gtt_type type)
2391 {
2392 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2393 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2394 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2395 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2396 				vgpu->gvt->device_info.gtt_entry_size_shift;
2397 	void *scratch_pt;
2398 	int i;
2399 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2400 	dma_addr_t daddr;
2401 
2402 	if (drm_WARN_ON(&i915->drm,
2403 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2404 		return -EINVAL;
2405 
2406 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2407 	if (!scratch_pt) {
2408 		gvt_vgpu_err("fail to allocate scratch page\n");
2409 		return -ENOMEM;
2410 	}
2411 
2412 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2413 			4096, PCI_DMA_BIDIRECTIONAL);
2414 	if (dma_mapping_error(dev, daddr)) {
2415 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2416 		__free_page(virt_to_page(scratch_pt));
2417 		return -ENOMEM;
2418 	}
2419 	gtt->scratch_pt[type].page_mfn =
2420 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2421 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2422 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2423 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2424 
2425 	/* Build the tree by full filled the scratch pt with the entries which
2426 	 * point to the next level scratch pt or scratch page. The
2427 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2428 	 * 'type' pt.
2429 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2430 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2431 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2432 	 */
2433 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2434 		struct intel_gvt_gtt_entry se;
2435 
2436 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2437 		se.type = get_entry_type(type - 1);
2438 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2439 
2440 		/* The entry parameters like present/writeable/cache type
2441 		 * set to the same as i915's scratch page tree.
2442 		 */
2443 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2444 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2445 			se.val64 |= PPAT_CACHED;
2446 
2447 		for (i = 0; i < page_entry_num; i++)
2448 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2455 {
2456 	int i;
2457 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2458 	dma_addr_t daddr;
2459 
2460 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2461 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2462 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2463 					I915_GTT_PAGE_SHIFT);
2464 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2465 			__free_page(vgpu->gtt.scratch_pt[i].page);
2466 			vgpu->gtt.scratch_pt[i].page = NULL;
2467 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2468 		}
2469 	}
2470 
2471 	return 0;
2472 }
2473 
2474 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2475 {
2476 	int i, ret;
2477 
2478 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2479 		ret = alloc_scratch_pages(vgpu, i);
2480 		if (ret)
2481 			goto err;
2482 	}
2483 
2484 	return 0;
2485 
2486 err:
2487 	release_scratch_page_tree(vgpu);
2488 	return ret;
2489 }
2490 
2491 /**
2492  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2493  * @vgpu: a vGPU
2494  *
2495  * This function is used to initialize per-vGPU graphics memory virtualization
2496  * components.
2497  *
2498  * Returns:
2499  * Zero on success, error code if failed.
2500  */
2501 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2502 {
2503 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2504 
2505 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2506 
2507 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2508 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2509 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2510 
2511 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2512 	if (IS_ERR(gtt->ggtt_mm)) {
2513 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2514 		return PTR_ERR(gtt->ggtt_mm);
2515 	}
2516 
2517 	intel_vgpu_reset_ggtt(vgpu, false);
2518 
2519 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2520 
2521 	return create_scratch_page_tree(vgpu);
2522 }
2523 
2524 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2525 {
2526 	struct list_head *pos, *n;
2527 	struct intel_vgpu_mm *mm;
2528 
2529 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2530 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2531 		intel_vgpu_destroy_mm(mm);
2532 	}
2533 
2534 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2535 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2536 
2537 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2538 		gvt_err("Why we still has spt not freed?\n");
2539 		ppgtt_free_all_spt(vgpu);
2540 	}
2541 }
2542 
2543 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2544 {
2545 	struct intel_gvt_partial_pte *pos, *next;
2546 
2547 	list_for_each_entry_safe(pos, next,
2548 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2549 				 list) {
2550 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2551 			pos->offset, pos->data);
2552 		kfree(pos);
2553 	}
2554 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2555 	vgpu->gtt.ggtt_mm = NULL;
2556 }
2557 
2558 /**
2559  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2560  * @vgpu: a vGPU
2561  *
2562  * This function is used to clean up per-vGPU graphics memory virtualization
2563  * components.
2564  *
2565  * Returns:
2566  * Zero on success, error code if failed.
2567  */
2568 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2569 {
2570 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2571 	intel_vgpu_destroy_ggtt_mm(vgpu);
2572 	release_scratch_page_tree(vgpu);
2573 }
2574 
2575 static void clean_spt_oos(struct intel_gvt *gvt)
2576 {
2577 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2578 	struct list_head *pos, *n;
2579 	struct intel_vgpu_oos_page *oos_page;
2580 
2581 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2582 		"someone is still using oos page\n");
2583 
2584 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2585 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2586 		list_del(&oos_page->list);
2587 		free_page((unsigned long)oos_page->mem);
2588 		kfree(oos_page);
2589 	}
2590 }
2591 
2592 static int setup_spt_oos(struct intel_gvt *gvt)
2593 {
2594 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2595 	struct intel_vgpu_oos_page *oos_page;
2596 	int i;
2597 	int ret;
2598 
2599 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2600 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2601 
2602 	for (i = 0; i < preallocated_oos_pages; i++) {
2603 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2604 		if (!oos_page) {
2605 			ret = -ENOMEM;
2606 			goto fail;
2607 		}
2608 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2609 		if (!oos_page->mem) {
2610 			ret = -ENOMEM;
2611 			kfree(oos_page);
2612 			goto fail;
2613 		}
2614 
2615 		INIT_LIST_HEAD(&oos_page->list);
2616 		INIT_LIST_HEAD(&oos_page->vm_list);
2617 		oos_page->id = i;
2618 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2619 	}
2620 
2621 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2622 
2623 	return 0;
2624 fail:
2625 	clean_spt_oos(gvt);
2626 	return ret;
2627 }
2628 
2629 /**
2630  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2631  * @vgpu: a vGPU
2632  * @pdps: pdp root array
2633  *
2634  * This function is used to find a PPGTT mm object from mm object pool
2635  *
2636  * Returns:
2637  * pointer to mm object on success, NULL if failed.
2638  */
2639 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2640 		u64 pdps[])
2641 {
2642 	struct intel_vgpu_mm *mm;
2643 	struct list_head *pos;
2644 
2645 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2646 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2647 
2648 		switch (mm->ppgtt_mm.root_entry_type) {
2649 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2650 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2651 				return mm;
2652 			break;
2653 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2654 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2655 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2656 				return mm;
2657 			break;
2658 		default:
2659 			GEM_BUG_ON(1);
2660 		}
2661 	}
2662 	return NULL;
2663 }
2664 
2665 /**
2666  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2667  * @vgpu: a vGPU
2668  * @root_entry_type: ppgtt root entry type
2669  * @pdps: guest pdps
2670  *
2671  * This function is used to find or create a PPGTT mm object from a guest.
2672  *
2673  * Returns:
2674  * Zero on success, negative error code if failed.
2675  */
2676 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2677 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2678 {
2679 	struct intel_vgpu_mm *mm;
2680 
2681 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2682 	if (mm) {
2683 		intel_vgpu_mm_get(mm);
2684 	} else {
2685 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2686 		if (IS_ERR(mm))
2687 			gvt_vgpu_err("fail to create mm\n");
2688 	}
2689 	return mm;
2690 }
2691 
2692 /**
2693  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2694  * @vgpu: a vGPU
2695  * @pdps: guest pdps
2696  *
2697  * This function is used to find a PPGTT mm object from a guest and destroy it.
2698  *
2699  * Returns:
2700  * Zero on success, negative error code if failed.
2701  */
2702 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2703 {
2704 	struct intel_vgpu_mm *mm;
2705 
2706 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2707 	if (!mm) {
2708 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2709 		return -EINVAL;
2710 	}
2711 	intel_vgpu_mm_put(mm);
2712 	return 0;
2713 }
2714 
2715 /**
2716  * intel_gvt_init_gtt - initialize mm components of a GVT device
2717  * @gvt: GVT device
2718  *
2719  * This function is called at the initialization stage, to initialize
2720  * the mm components of a GVT device.
2721  *
2722  * Returns:
2723  * zero on success, negative error code if failed.
2724  */
2725 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2726 {
2727 	int ret;
2728 	void *page;
2729 	struct device *dev = gvt->gt->i915->drm.dev;
2730 	dma_addr_t daddr;
2731 
2732 	gvt_dbg_core("init gtt\n");
2733 
2734 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2735 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2736 
2737 	page = (void *)get_zeroed_page(GFP_KERNEL);
2738 	if (!page) {
2739 		gvt_err("fail to allocate scratch ggtt page\n");
2740 		return -ENOMEM;
2741 	}
2742 
2743 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2744 			4096, PCI_DMA_BIDIRECTIONAL);
2745 	if (dma_mapping_error(dev, daddr)) {
2746 		gvt_err("fail to dmamap scratch ggtt page\n");
2747 		__free_page(virt_to_page(page));
2748 		return -ENOMEM;
2749 	}
2750 
2751 	gvt->gtt.scratch_page = virt_to_page(page);
2752 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2753 
2754 	if (enable_out_of_sync) {
2755 		ret = setup_spt_oos(gvt);
2756 		if (ret) {
2757 			gvt_err("fail to initialize SPT oos\n");
2758 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2759 			__free_page(gvt->gtt.scratch_page);
2760 			return ret;
2761 		}
2762 	}
2763 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2764 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2765 	return 0;
2766 }
2767 
2768 /**
2769  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2770  * @gvt: GVT device
2771  *
2772  * This function is called at the driver unloading stage, to clean up the
2773  * the mm components of a GVT device.
2774  *
2775  */
2776 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2777 {
2778 	struct device *dev = gvt->gt->i915->drm.dev;
2779 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2780 					I915_GTT_PAGE_SHIFT);
2781 
2782 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2783 
2784 	__free_page(gvt->gtt.scratch_page);
2785 
2786 	if (enable_out_of_sync)
2787 		clean_spt_oos(gvt);
2788 }
2789 
2790 /**
2791  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2792  * @vgpu: a vGPU
2793  *
2794  * This function is called when invalidate all PPGTT instances of a vGPU.
2795  *
2796  */
2797 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2798 {
2799 	struct list_head *pos, *n;
2800 	struct intel_vgpu_mm *mm;
2801 
2802 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2803 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2804 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2805 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2806 			list_del_init(&mm->ppgtt_mm.lru_list);
2807 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2808 			if (mm->ppgtt_mm.shadowed)
2809 				invalidate_ppgtt_mm(mm);
2810 		}
2811 	}
2812 }
2813 
2814 /**
2815  * intel_vgpu_reset_ggtt - reset the GGTT entry
2816  * @vgpu: a vGPU
2817  * @invalidate_old: invalidate old entries
2818  *
2819  * This function is called at the vGPU create stage
2820  * to reset all the GGTT entries.
2821  *
2822  */
2823 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2824 {
2825 	struct intel_gvt *gvt = vgpu->gvt;
2826 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2827 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2828 	struct intel_gvt_gtt_entry old_entry;
2829 	u32 index;
2830 	u32 num_entries;
2831 
2832 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2833 	pte_ops->set_present(&entry);
2834 
2835 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2836 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2837 	while (num_entries--) {
2838 		if (invalidate_old) {
2839 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2840 			ggtt_invalidate_pte(vgpu, &old_entry);
2841 		}
2842 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2843 	}
2844 
2845 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2846 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2847 	while (num_entries--) {
2848 		if (invalidate_old) {
2849 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2850 			ggtt_invalidate_pte(vgpu, &old_entry);
2851 		}
2852 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2853 	}
2854 
2855 	ggtt_invalidate(gvt->gt);
2856 }
2857 
2858 /**
2859  * intel_vgpu_reset_gtt - reset the all GTT related status
2860  * @vgpu: a vGPU
2861  *
2862  * This function is called from vfio core to reset reset all
2863  * GTT related status, including GGTT, PPGTT, scratch page.
2864  *
2865  */
2866 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2867 {
2868 	/* Shadow pages are only created when there is no page
2869 	 * table tracking data, so remove page tracking data after
2870 	 * removing the shadow pages.
2871 	 */
2872 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2873 	intel_vgpu_reset_ggtt(vgpu, true);
2874 }
2875 
2876 /**
2877  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2878  * @gvt: intel gvt device
2879  *
2880  * This function is called at driver resume stage to restore
2881  * GGTT entries of every vGPU.
2882  *
2883  */
2884 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2885 {
2886 	struct intel_vgpu *vgpu;
2887 	struct intel_vgpu_mm *mm;
2888 	int id;
2889 	gen8_pte_t pte;
2890 	u32 idx, num_low, num_hi, offset;
2891 
2892 	/* Restore dirty host ggtt for all vGPUs */
2893 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2894 		mm = vgpu->gtt.ggtt_mm;
2895 
2896 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2897 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2898 		for (idx = 0; idx < num_low; idx++) {
2899 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2900 			if (pte & _PAGE_PRESENT)
2901 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2902 		}
2903 
2904 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2905 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2906 		for (idx = 0; idx < num_hi; idx++) {
2907 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2908 			if (pte & _PAGE_PRESENT)
2909 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2910 		}
2911 	}
2912 }
2913