xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 0c7beb2d)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	/* We take IPS bit as 'PSE' for PTE level. */
220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_INVALID,
224 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_INVALID,
229 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 			GTT_TYPE_PPGTT_PDE_ENTRY,
237 			GTT_TYPE_PPGTT_PDE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 			GTT_TYPE_PPGTT_PDP_ENTRY,
242 			GTT_TYPE_PPGTT_PDP_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 			GTT_TYPE_GGTT_PTE,
247 			GTT_TYPE_INVALID,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_INVALID),
250 };
251 
252 static inline int get_next_pt_type(int type)
253 {
254 	return gtt_type_table[type].next_pt_type;
255 }
256 
257 static inline int get_pt_type(int type)
258 {
259 	return gtt_type_table[type].pt_type;
260 }
261 
262 static inline int get_entry_type(int type)
263 {
264 	return gtt_type_table[type].entry_type;
265 }
266 
267 static inline int get_pse_type(int type)
268 {
269 	return gtt_type_table[type].pse_entry_type;
270 }
271 
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275 
276 	return readq(addr);
277 }
278 
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281 	mmio_hw_access_pre(dev_priv);
282 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 	mmio_hw_access_post(dev_priv);
284 }
285 
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 		unsigned long index, u64 pte)
288 {
289 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290 
291 	writeq(pte, addr);
292 }
293 
294 static inline int gtt_get_entry64(void *pt,
295 		struct intel_gvt_gtt_entry *e,
296 		unsigned long index, bool hypervisor_access, unsigned long gpa,
297 		struct intel_vgpu *vgpu)
298 {
299 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 	int ret;
301 
302 	if (WARN_ON(info->gtt_entry_size != 8))
303 		return -EINVAL;
304 
305 	if (hypervisor_access) {
306 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 				(index << info->gtt_entry_size_shift),
308 				&e->val64, 8);
309 		if (WARN_ON(ret))
310 			return ret;
311 	} else if (!pt) {
312 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 	} else {
314 		e->val64 = *((u64 *)pt + index);
315 	}
316 	return 0;
317 }
318 
319 static inline int gtt_set_entry64(void *pt,
320 		struct intel_gvt_gtt_entry *e,
321 		unsigned long index, bool hypervisor_access, unsigned long gpa,
322 		struct intel_vgpu *vgpu)
323 {
324 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 	int ret;
326 
327 	if (WARN_ON(info->gtt_entry_size != 8))
328 		return -EINVAL;
329 
330 	if (hypervisor_access) {
331 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 				(index << info->gtt_entry_size_shift),
333 				&e->val64, 8);
334 		if (WARN_ON(ret))
335 			return ret;
336 	} else if (!pt) {
337 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 	} else {
339 		*((u64 *)pt + index) = e->val64;
340 	}
341 	return 0;
342 }
343 
344 #define GTT_HAW 46
345 
346 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
350 
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353 
354 #define GTT_64K_PTE_STRIDE 16
355 
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358 	unsigned long pfn;
359 
360 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 	else
367 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 	return pfn;
369 }
370 
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 		e->val64 &= ~ADDR_1G_MASK;
375 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 		e->val64 &= ~ADDR_2M_MASK;
378 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 		e->val64 &= ~ADDR_64K_MASK;
381 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 	} else {
383 		e->val64 &= ~ADDR_4K_MASK;
384 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385 	}
386 
387 	e->val64 |= (pfn << PAGE_SHIFT);
388 }
389 
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392 	return !!(e->val64 & _PAGE_PSE);
393 }
394 
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397 	if (gen8_gtt_test_pse(e)) {
398 		switch (e->type) {
399 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 			e->val64 &= ~_PAGE_PSE;
401 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 			break;
403 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 			e->val64 &= ~_PAGE_PSE;
406 			break;
407 		default:
408 			WARN_ON(1);
409 		}
410 	}
411 }
412 
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 		return false;
417 
418 	return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420 
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 		return;
425 
426 	e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428 
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431 	/*
432 	 * i915 writes PDP root pointer registers without present bit,
433 	 * it also works, so we need to treat root pointer entry
434 	 * specifically.
435 	 */
436 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 		return (e->val64 != 0);
439 	else
440 		return (e->val64 & _PAGE_PRESENT);
441 }
442 
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445 	e->val64 &= ~_PAGE_PRESENT;
446 }
447 
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450 	e->val64 |= _PAGE_PRESENT;
451 }
452 
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457 
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462 
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467 
468 /*
469  * Per-platform GMA routines.
470  */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474 
475 	trace_gma_index(__func__, gma, x);
476 	return x;
477 }
478 
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482 	unsigned long x = (exp); \
483 	trace_gma_index(__func__, gma, x); \
484 	return x; \
485 }
486 
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492 
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 	.get_entry = gtt_get_entry64,
495 	.set_entry = gtt_set_entry64,
496 	.clear_present = gtt_entry_clear_present,
497 	.set_present = gtt_entry_set_present,
498 	.test_present = gen8_gtt_test_present,
499 	.test_pse = gen8_gtt_test_pse,
500 	.clear_pse = gen8_gtt_clear_pse,
501 	.clear_ips = gen8_gtt_clear_ips,
502 	.test_ips = gen8_gtt_test_ips,
503 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
504 	.set_64k_splited = gen8_gtt_set_64k_splited,
505 	.test_64k_splited = gen8_gtt_test_64k_splited,
506 	.get_pfn = gen8_gtt_get_pfn,
507 	.set_pfn = gen8_gtt_set_pfn,
508 };
509 
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 	.gma_to_pte_index = gen8_gma_to_pte_index,
513 	.gma_to_pde_index = gen8_gma_to_pde_index,
514 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518 
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 	struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523 	switch (entry->type) {
524 	case GTT_TYPE_PPGTT_PDE_ENTRY:
525 	case GTT_TYPE_PPGTT_PDP_ENTRY:
526 		if (pte_ops->test_pse(entry))
527 			entry->type = get_pse_type(entry->type);
528 		break;
529 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 		if (ips)
531 			entry->type = get_pse_type(entry->type);
532 		break;
533 	default:
534 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535 	}
536 
537 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539 
540 /*
541  * MM helpers.
542  */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index,
545 		bool guest)
546 {
547 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548 
549 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550 
551 	entry->type = mm->ppgtt_mm.root_entry_type;
552 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 			   mm->ppgtt_mm.shadow_pdps,
554 			   entry, index, false, 0, mm->vgpu);
555 	update_entry_type_for_real(pte_ops, entry, false);
556 }
557 
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 		struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561 	_ppgtt_get_root_entry(mm, entry, index, true);
562 }
563 
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, false);
568 }
569 
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index,
572 		bool guest)
573 {
574 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575 
576 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 			   mm->ppgtt_mm.shadow_pdps,
578 			   entry, index, false, 0, mm->vgpu);
579 }
580 
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 		struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584 	_ppgtt_set_root_entry(mm, entry, index, true);
585 }
586 
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, false);
591 }
592 
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599 
600 	entry->type = GTT_TYPE_GGTT_PTE;
601 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 			   false, 0, mm->vgpu);
603 }
604 
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 		struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609 
610 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611 
612 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 			   false, 0, mm->vgpu);
614 }
615 
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620 
621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622 
623 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625 
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 
631 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 
633 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635 
636 /*
637  * PPGTT shadow page table helpers.
638  */
639 static inline int ppgtt_spt_get_entry(
640 		struct intel_vgpu_ppgtt_spt *spt,
641 		void *page_table, int type,
642 		struct intel_gvt_gtt_entry *e, unsigned long index,
643 		bool guest)
644 {
645 	struct intel_gvt *gvt = spt->vgpu->gvt;
646 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 	int ret;
648 
649 	e->type = get_entry_type(type);
650 
651 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 		return -EINVAL;
653 
654 	ret = ops->get_entry(page_table, e, index, guest,
655 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 			spt->vgpu);
657 	if (ret)
658 		return ret;
659 
660 	update_entry_type_for_real(ops, e, guest ?
661 				   spt->guest_page.pde_ips : false);
662 
663 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 		    type, e->type, index, e->val64);
665 	return 0;
666 }
667 
668 static inline int ppgtt_spt_set_entry(
669 		struct intel_vgpu_ppgtt_spt *spt,
670 		void *page_table, int type,
671 		struct intel_gvt_gtt_entry *e, unsigned long index,
672 		bool guest)
673 {
674 	struct intel_gvt *gvt = spt->vgpu->gvt;
675 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676 
677 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 		return -EINVAL;
679 
680 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 		    type, e->type, index, e->val64);
682 
683 	return ops->set_entry(page_table, e, index, guest,
684 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 			spt->vgpu);
686 }
687 
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 	ppgtt_spt_get_entry(spt, NULL, \
690 		spt->guest_page.type, e, index, true)
691 
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 	ppgtt_spt_set_entry(spt, NULL, \
694 		spt->guest_page.type, e, index, true)
695 
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 		spt->shadow_page.type, e, index, false)
699 
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 		spt->shadow_page.type, e, index, false)
703 
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706 	struct intel_vgpu_ppgtt_spt *spt;
707 
708 	spt = kzalloc(sizeof(*spt), gfp_mask);
709 	if (!spt)
710 		return NULL;
711 
712 	spt->shadow_page.page = alloc_page(gfp_mask);
713 	if (!spt->shadow_page.page) {
714 		kfree(spt);
715 		return NULL;
716 	}
717 	return spt;
718 }
719 
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722 	__free_page(spt->shadow_page.page);
723 	kfree(spt);
724 }
725 
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 		struct intel_vgpu_oos_page *oos_page);
728 
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732 
733 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734 
735 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 		       PCI_DMA_BIDIRECTIONAL);
737 
738 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739 
740 	if (spt->guest_page.gfn) {
741 		if (spt->guest_page.oos_page)
742 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743 
744 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745 	}
746 
747 	list_del_init(&spt->post_shadow_list);
748 	free_spt(spt);
749 }
750 
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753 	struct intel_vgpu_ppgtt_spt *spt, *spn;
754 	struct radix_tree_iter iter;
755 	LIST_HEAD(all_spt);
756 	void __rcu **slot;
757 
758 	rcu_read_lock();
759 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
760 		spt = radix_tree_deref_slot(slot);
761 		list_move(&spt->post_shadow_list, &all_spt);
762 	}
763 	rcu_read_unlock();
764 
765 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
766 		ppgtt_free_spt(spt);
767 }
768 
769 static int ppgtt_handle_guest_write_page_table_bytes(
770 		struct intel_vgpu_ppgtt_spt *spt,
771 		u64 pa, void *p_data, int bytes);
772 
773 static int ppgtt_write_protection_handler(
774 		struct intel_vgpu_page_track *page_track,
775 		u64 gpa, void *data, int bytes)
776 {
777 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
778 
779 	int ret;
780 
781 	if (bytes != 4 && bytes != 8)
782 		return -EINVAL;
783 
784 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
785 	if (ret)
786 		return ret;
787 	return ret;
788 }
789 
790 /* Find a spt by guest gfn. */
791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
792 		struct intel_vgpu *vgpu, unsigned long gfn)
793 {
794 	struct intel_vgpu_page_track *track;
795 
796 	track = intel_vgpu_find_page_track(vgpu, gfn);
797 	if (track && track->handler == ppgtt_write_protection_handler)
798 		return track->priv_data;
799 
800 	return NULL;
801 }
802 
803 /* Find the spt by shadow page mfn. */
804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
805 		struct intel_vgpu *vgpu, unsigned long mfn)
806 {
807 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
808 }
809 
810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
811 
812 /* Allocate shadow page table without guest page. */
813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
814 		struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
815 {
816 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
817 	struct intel_vgpu_ppgtt_spt *spt = NULL;
818 	dma_addr_t daddr;
819 	int ret;
820 
821 retry:
822 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
823 	if (!spt) {
824 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
825 			goto retry;
826 
827 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
828 		return ERR_PTR(-ENOMEM);
829 	}
830 
831 	spt->vgpu = vgpu;
832 	atomic_set(&spt->refcount, 1);
833 	INIT_LIST_HEAD(&spt->post_shadow_list);
834 
835 	/*
836 	 * Init shadow_page.
837 	 */
838 	spt->shadow_page.type = type;
839 	daddr = dma_map_page(kdev, spt->shadow_page.page,
840 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
841 	if (dma_mapping_error(kdev, daddr)) {
842 		gvt_vgpu_err("fail to map dma addr\n");
843 		ret = -EINVAL;
844 		goto err_free_spt;
845 	}
846 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
847 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
848 
849 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
850 	if (ret)
851 		goto err_unmap_dma;
852 
853 	return spt;
854 
855 err_unmap_dma:
856 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
857 err_free_spt:
858 	free_spt(spt);
859 	return ERR_PTR(ret);
860 }
861 
862 /* Allocate shadow page table associated with specific gfn. */
863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
864 		struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
865 		unsigned long gfn, bool guest_pde_ips)
866 {
867 	struct intel_vgpu_ppgtt_spt *spt;
868 	int ret;
869 
870 	spt = ppgtt_alloc_spt(vgpu, type);
871 	if (IS_ERR(spt))
872 		return spt;
873 
874 	/*
875 	 * Init guest_page.
876 	 */
877 	ret = intel_vgpu_register_page_track(vgpu, gfn,
878 			ppgtt_write_protection_handler, spt);
879 	if (ret) {
880 		ppgtt_free_spt(spt);
881 		return ERR_PTR(ret);
882 	}
883 
884 	spt->guest_page.type = type;
885 	spt->guest_page.gfn = gfn;
886 	spt->guest_page.pde_ips = guest_pde_ips;
887 
888 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
889 
890 	return spt;
891 }
892 
893 #define pt_entry_size_shift(spt) \
894 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
895 
896 #define pt_entries(spt) \
897 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
898 
899 #define for_each_present_guest_entry(spt, e, i) \
900 	for (i = 0; i < pt_entries(spt); \
901 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 		if (!ppgtt_get_guest_entry(spt, e, i) && \
903 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904 
905 #define for_each_present_shadow_entry(spt, e, i) \
906 	for (i = 0; i < pt_entries(spt); \
907 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
909 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910 
911 #define for_each_shadow_entry(spt, e, i) \
912 	for (i = 0; i < pt_entries(spt); \
913 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
914 		if (!ppgtt_get_shadow_entry(spt, e, i))
915 
916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
917 {
918 	int v = atomic_read(&spt->refcount);
919 
920 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
921 	atomic_inc(&spt->refcount);
922 }
923 
924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
925 {
926 	int v = atomic_read(&spt->refcount);
927 
928 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
929 	return atomic_dec_return(&spt->refcount);
930 }
931 
932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
933 
934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
935 		struct intel_gvt_gtt_entry *e)
936 {
937 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
938 	struct intel_vgpu_ppgtt_spt *s;
939 	intel_gvt_gtt_type_t cur_pt_type;
940 
941 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
942 
943 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
944 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
945 		cur_pt_type = get_next_pt_type(e->type) + 1;
946 		if (ops->get_pfn(e) ==
947 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
948 			return 0;
949 	}
950 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
951 	if (!s) {
952 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
953 				ops->get_pfn(e));
954 		return -ENXIO;
955 	}
956 	return ppgtt_invalidate_spt(s);
957 }
958 
959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
960 		struct intel_gvt_gtt_entry *entry)
961 {
962 	struct intel_vgpu *vgpu = spt->vgpu;
963 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964 	unsigned long pfn;
965 	int type;
966 
967 	pfn = ops->get_pfn(entry);
968 	type = spt->shadow_page.type;
969 
970 	/* Uninitialized spte or unshadowed spte. */
971 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
972 		return;
973 
974 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
975 }
976 
977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
978 {
979 	struct intel_vgpu *vgpu = spt->vgpu;
980 	struct intel_gvt_gtt_entry e;
981 	unsigned long index;
982 	int ret;
983 
984 	trace_spt_change(spt->vgpu->id, "die", spt,
985 			spt->guest_page.gfn, spt->shadow_page.type);
986 
987 	if (ppgtt_put_spt(spt) > 0)
988 		return 0;
989 
990 	for_each_present_shadow_entry(spt, &e, index) {
991 		switch (e.type) {
992 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
993 			gvt_vdbg_mm("invalidate 4K entry\n");
994 			ppgtt_invalidate_pte(spt, &e);
995 			break;
996 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
997 			/* We don't setup 64K shadow entry so far. */
998 			WARN(1, "suspicious 64K gtt entry\n");
999 			continue;
1000 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1001 			gvt_vdbg_mm("invalidate 2M entry\n");
1002 			continue;
1003 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1004 			WARN(1, "GVT doesn't support 1GB page\n");
1005 			continue;
1006 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1007 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1008 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1009 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1010 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1011 					spt->vgpu, &e);
1012 			if (ret)
1013 				goto fail;
1014 			break;
1015 		default:
1016 			GEM_BUG_ON(1);
1017 		}
1018 	}
1019 
1020 	trace_spt_change(spt->vgpu->id, "release", spt,
1021 			 spt->guest_page.gfn, spt->shadow_page.type);
1022 	ppgtt_free_spt(spt);
1023 	return 0;
1024 fail:
1025 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1026 			spt, e.val64, e.type);
1027 	return ret;
1028 }
1029 
1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1031 {
1032 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1033 
1034 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1035 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1036 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1037 
1038 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1039 	} else if (INTEL_GEN(dev_priv) >= 11) {
1040 		/* 64K paging only controlled by IPS bit in PTE now. */
1041 		return true;
1042 	} else
1043 		return false;
1044 }
1045 
1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1047 
1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1049 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1050 {
1051 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1052 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1053 	bool ips = false;
1054 	int ret;
1055 
1056 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1057 
1058 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1059 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1060 
1061 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1062 	if (spt) {
1063 		ppgtt_get_spt(spt);
1064 
1065 		if (ips != spt->guest_page.pde_ips) {
1066 			spt->guest_page.pde_ips = ips;
1067 
1068 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1069 			clear_page(spt->shadow_page.vaddr);
1070 			ret = ppgtt_populate_spt(spt);
1071 			if (ret) {
1072 				ppgtt_put_spt(spt);
1073 				goto err;
1074 			}
1075 		}
1076 	} else {
1077 		int type = get_next_pt_type(we->type);
1078 
1079 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1080 		if (IS_ERR(spt)) {
1081 			ret = PTR_ERR(spt);
1082 			goto err;
1083 		}
1084 
1085 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1086 		if (ret)
1087 			goto err_free_spt;
1088 
1089 		ret = ppgtt_populate_spt(spt);
1090 		if (ret)
1091 			goto err_free_spt;
1092 
1093 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1094 				 spt->shadow_page.type);
1095 	}
1096 	return spt;
1097 
1098 err_free_spt:
1099 	ppgtt_free_spt(spt);
1100 err:
1101 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1102 		     spt, we->val64, we->type);
1103 	return ERR_PTR(ret);
1104 }
1105 
1106 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1107 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1108 {
1109 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1110 
1111 	se->type = ge->type;
1112 	se->val64 = ge->val64;
1113 
1114 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1115 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1116 		ops->clear_ips(se);
1117 
1118 	ops->set_pfn(se, s->shadow_page.mfn);
1119 }
1120 
1121 /**
1122  * Check if can do 2M page
1123  * @vgpu: target vgpu
1124  * @entry: target pfn's gtt entry
1125  *
1126  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1127  * negtive if found err.
1128  */
1129 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1130 	struct intel_gvt_gtt_entry *entry)
1131 {
1132 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1133 	unsigned long pfn;
1134 
1135 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1136 		return 0;
1137 
1138 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1139 	if (pfn == INTEL_GVT_INVALID_ADDR)
1140 		return -EINVAL;
1141 
1142 	return PageTransHuge(pfn_to_page(pfn));
1143 }
1144 
1145 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1146 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1147 	struct intel_gvt_gtt_entry *se)
1148 {
1149 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1150 	struct intel_vgpu_ppgtt_spt *sub_spt;
1151 	struct intel_gvt_gtt_entry sub_se;
1152 	unsigned long start_gfn;
1153 	dma_addr_t dma_addr;
1154 	unsigned long sub_index;
1155 	int ret;
1156 
1157 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1158 
1159 	start_gfn = ops->get_pfn(se);
1160 
1161 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1162 	if (IS_ERR(sub_spt))
1163 		return PTR_ERR(sub_spt);
1164 
1165 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1166 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1167 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1168 		if (ret) {
1169 			ppgtt_invalidate_spt(spt);
1170 			return ret;
1171 		}
1172 		sub_se.val64 = se->val64;
1173 
1174 		/* Copy the PAT field from PDE. */
1175 		sub_se.val64 &= ~_PAGE_PAT;
1176 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1177 
1178 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1179 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1180 	}
1181 
1182 	/* Clear dirty field. */
1183 	se->val64 &= ~_PAGE_DIRTY;
1184 
1185 	ops->clear_pse(se);
1186 	ops->clear_ips(se);
1187 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1188 	ppgtt_set_shadow_entry(spt, se, index);
1189 	return 0;
1190 }
1191 
1192 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1193 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1194 	struct intel_gvt_gtt_entry *se)
1195 {
1196 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1197 	struct intel_gvt_gtt_entry entry = *se;
1198 	unsigned long start_gfn;
1199 	dma_addr_t dma_addr;
1200 	int i, ret;
1201 
1202 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1203 
1204 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1205 
1206 	start_gfn = ops->get_pfn(se);
1207 
1208 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1209 	ops->set_64k_splited(&entry);
1210 
1211 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1212 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1213 					start_gfn + i, PAGE_SIZE, &dma_addr);
1214 		if (ret)
1215 			return ret;
1216 
1217 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1218 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1219 	}
1220 	return 0;
1221 }
1222 
1223 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1224 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1225 	struct intel_gvt_gtt_entry *ge)
1226 {
1227 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1228 	struct intel_gvt_gtt_entry se = *ge;
1229 	unsigned long gfn, page_size = PAGE_SIZE;
1230 	dma_addr_t dma_addr;
1231 	int ret;
1232 
1233 	if (!pte_ops->test_present(ge))
1234 		return 0;
1235 
1236 	gfn = pte_ops->get_pfn(ge);
1237 
1238 	switch (ge->type) {
1239 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1240 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1241 		break;
1242 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1243 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1244 		/*
1245 		 * The layout of 64K page is special, the page size is
1246 		 * controlled by uper PDE. To be simple, we always split
1247 		 * 64K page to smaller 4K pages in shadow PT.
1248 		 */
1249 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1250 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1251 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1252 		ret = is_2MB_gtt_possible(vgpu, ge);
1253 		if (ret == 0)
1254 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1255 		else if (ret < 0)
1256 			return ret;
1257 		page_size = I915_GTT_PAGE_SIZE_2M;
1258 		break;
1259 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1260 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1261 		return -EINVAL;
1262 	default:
1263 		GEM_BUG_ON(1);
1264 	};
1265 
1266 	/* direct shadow */
1267 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1268 						      &dma_addr);
1269 	if (ret)
1270 		return -ENXIO;
1271 
1272 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1273 	ppgtt_set_shadow_entry(spt, &se, index);
1274 	return 0;
1275 }
1276 
1277 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1278 {
1279 	struct intel_vgpu *vgpu = spt->vgpu;
1280 	struct intel_gvt *gvt = vgpu->gvt;
1281 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1282 	struct intel_vgpu_ppgtt_spt *s;
1283 	struct intel_gvt_gtt_entry se, ge;
1284 	unsigned long gfn, i;
1285 	int ret;
1286 
1287 	trace_spt_change(spt->vgpu->id, "born", spt,
1288 			 spt->guest_page.gfn, spt->shadow_page.type);
1289 
1290 	for_each_present_guest_entry(spt, &ge, i) {
1291 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1292 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1293 			if (IS_ERR(s)) {
1294 				ret = PTR_ERR(s);
1295 				goto fail;
1296 			}
1297 			ppgtt_get_shadow_entry(spt, &se, i);
1298 			ppgtt_generate_shadow_entry(&se, s, &ge);
1299 			ppgtt_set_shadow_entry(spt, &se, i);
1300 		} else {
1301 			gfn = ops->get_pfn(&ge);
1302 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1303 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1304 				ppgtt_set_shadow_entry(spt, &se, i);
1305 				continue;
1306 			}
1307 
1308 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1309 			if (ret)
1310 				goto fail;
1311 		}
1312 	}
1313 	return 0;
1314 fail:
1315 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1316 			spt, ge.val64, ge.type);
1317 	return ret;
1318 }
1319 
1320 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1321 		struct intel_gvt_gtt_entry *se, unsigned long index)
1322 {
1323 	struct intel_vgpu *vgpu = spt->vgpu;
1324 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325 	int ret;
1326 
1327 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1328 			       spt->shadow_page.type, se->val64, index);
1329 
1330 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1331 		    se->type, index, se->val64);
1332 
1333 	if (!ops->test_present(se))
1334 		return 0;
1335 
1336 	if (ops->get_pfn(se) ==
1337 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1338 		return 0;
1339 
1340 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1341 		struct intel_vgpu_ppgtt_spt *s =
1342 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1343 		if (!s) {
1344 			gvt_vgpu_err("fail to find guest page\n");
1345 			ret = -ENXIO;
1346 			goto fail;
1347 		}
1348 		ret = ppgtt_invalidate_spt(s);
1349 		if (ret)
1350 			goto fail;
1351 	} else {
1352 		/* We don't setup 64K shadow entry so far. */
1353 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1354 		     "suspicious 64K entry\n");
1355 		ppgtt_invalidate_pte(spt, se);
1356 	}
1357 
1358 	return 0;
1359 fail:
1360 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361 			spt, se->val64, se->type);
1362 	return ret;
1363 }
1364 
1365 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1366 		struct intel_gvt_gtt_entry *we, unsigned long index)
1367 {
1368 	struct intel_vgpu *vgpu = spt->vgpu;
1369 	struct intel_gvt_gtt_entry m;
1370 	struct intel_vgpu_ppgtt_spt *s;
1371 	int ret;
1372 
1373 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1374 			       we->val64, index);
1375 
1376 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1377 		    we->type, index, we->val64);
1378 
1379 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1380 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1381 		if (IS_ERR(s)) {
1382 			ret = PTR_ERR(s);
1383 			goto fail;
1384 		}
1385 		ppgtt_get_shadow_entry(spt, &m, index);
1386 		ppgtt_generate_shadow_entry(&m, s, we);
1387 		ppgtt_set_shadow_entry(spt, &m, index);
1388 	} else {
1389 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1390 		if (ret)
1391 			goto fail;
1392 	}
1393 	return 0;
1394 fail:
1395 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1396 		spt, we->val64, we->type);
1397 	return ret;
1398 }
1399 
1400 static int sync_oos_page(struct intel_vgpu *vgpu,
1401 		struct intel_vgpu_oos_page *oos_page)
1402 {
1403 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1404 	struct intel_gvt *gvt = vgpu->gvt;
1405 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1406 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1407 	struct intel_gvt_gtt_entry old, new;
1408 	int index;
1409 	int ret;
1410 
1411 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1412 			 spt, spt->guest_page.type);
1413 
1414 	old.type = new.type = get_entry_type(spt->guest_page.type);
1415 	old.val64 = new.val64 = 0;
1416 
1417 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1418 				info->gtt_entry_size_shift); index++) {
1419 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1420 		ops->get_entry(NULL, &new, index, true,
1421 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1422 
1423 		if (old.val64 == new.val64
1424 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1425 			continue;
1426 
1427 		trace_oos_sync(vgpu->id, oos_page->id,
1428 				spt, spt->guest_page.type,
1429 				new.val64, index);
1430 
1431 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1432 		if (ret)
1433 			return ret;
1434 
1435 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1436 	}
1437 
1438 	spt->guest_page.write_cnt = 0;
1439 	list_del_init(&spt->post_shadow_list);
1440 	return 0;
1441 }
1442 
1443 static int detach_oos_page(struct intel_vgpu *vgpu,
1444 		struct intel_vgpu_oos_page *oos_page)
1445 {
1446 	struct intel_gvt *gvt = vgpu->gvt;
1447 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1448 
1449 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1450 			 spt, spt->guest_page.type);
1451 
1452 	spt->guest_page.write_cnt = 0;
1453 	spt->guest_page.oos_page = NULL;
1454 	oos_page->spt = NULL;
1455 
1456 	list_del_init(&oos_page->vm_list);
1457 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1458 
1459 	return 0;
1460 }
1461 
1462 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1463 		struct intel_vgpu_ppgtt_spt *spt)
1464 {
1465 	struct intel_gvt *gvt = spt->vgpu->gvt;
1466 	int ret;
1467 
1468 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1469 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1470 			oos_page->mem, I915_GTT_PAGE_SIZE);
1471 	if (ret)
1472 		return ret;
1473 
1474 	oos_page->spt = spt;
1475 	spt->guest_page.oos_page = oos_page;
1476 
1477 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1478 
1479 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1480 			 spt, spt->guest_page.type);
1481 	return 0;
1482 }
1483 
1484 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1485 {
1486 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1487 	int ret;
1488 
1489 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1490 	if (ret)
1491 		return ret;
1492 
1493 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1494 			 spt, spt->guest_page.type);
1495 
1496 	list_del_init(&oos_page->vm_list);
1497 	return sync_oos_page(spt->vgpu, oos_page);
1498 }
1499 
1500 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1501 {
1502 	struct intel_gvt *gvt = spt->vgpu->gvt;
1503 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1504 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1505 	int ret;
1506 
1507 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1508 
1509 	if (list_empty(&gtt->oos_page_free_list_head)) {
1510 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1511 			struct intel_vgpu_oos_page, list);
1512 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1513 		if (ret)
1514 			return ret;
1515 		ret = detach_oos_page(spt->vgpu, oos_page);
1516 		if (ret)
1517 			return ret;
1518 	} else
1519 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1520 			struct intel_vgpu_oos_page, list);
1521 	return attach_oos_page(oos_page, spt);
1522 }
1523 
1524 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1525 {
1526 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1527 
1528 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1529 		return -EINVAL;
1530 
1531 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1532 			 spt, spt->guest_page.type);
1533 
1534 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1535 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1536 }
1537 
1538 /**
1539  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1540  * @vgpu: a vGPU
1541  *
1542  * This function is called before submitting a guest workload to host,
1543  * to sync all the out-of-synced shadow for vGPU
1544  *
1545  * Returns:
1546  * Zero on success, negative error code if failed.
1547  */
1548 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1549 {
1550 	struct list_head *pos, *n;
1551 	struct intel_vgpu_oos_page *oos_page;
1552 	int ret;
1553 
1554 	if (!enable_out_of_sync)
1555 		return 0;
1556 
1557 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1558 		oos_page = container_of(pos,
1559 				struct intel_vgpu_oos_page, vm_list);
1560 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1561 		if (ret)
1562 			return ret;
1563 	}
1564 	return 0;
1565 }
1566 
1567 /*
1568  * The heart of PPGTT shadow page table.
1569  */
1570 static int ppgtt_handle_guest_write_page_table(
1571 		struct intel_vgpu_ppgtt_spt *spt,
1572 		struct intel_gvt_gtt_entry *we, unsigned long index)
1573 {
1574 	struct intel_vgpu *vgpu = spt->vgpu;
1575 	int type = spt->shadow_page.type;
1576 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1577 	struct intel_gvt_gtt_entry old_se;
1578 	int new_present;
1579 	int i, ret;
1580 
1581 	new_present = ops->test_present(we);
1582 
1583 	/*
1584 	 * Adding the new entry first and then removing the old one, that can
1585 	 * guarantee the ppgtt table is validated during the window between
1586 	 * adding and removal.
1587 	 */
1588 	ppgtt_get_shadow_entry(spt, &old_se, index);
1589 
1590 	if (new_present) {
1591 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1592 		if (ret)
1593 			goto fail;
1594 	}
1595 
1596 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1597 	if (ret)
1598 		goto fail;
1599 
1600 	if (!new_present) {
1601 		/* For 64KB splited entries, we need clear them all. */
1602 		if (ops->test_64k_splited(&old_se) &&
1603 		    !(index % GTT_64K_PTE_STRIDE)) {
1604 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1605 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1606 				ops->clear_64k_splited(&old_se);
1607 				ops->set_pfn(&old_se,
1608 					vgpu->gtt.scratch_pt[type].page_mfn);
1609 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1610 			}
1611 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1612 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1613 			ops->clear_pse(&old_se);
1614 			ops->set_pfn(&old_se,
1615 				     vgpu->gtt.scratch_pt[type].page_mfn);
1616 			ppgtt_set_shadow_entry(spt, &old_se, index);
1617 		} else {
1618 			ops->set_pfn(&old_se,
1619 				     vgpu->gtt.scratch_pt[type].page_mfn);
1620 			ppgtt_set_shadow_entry(spt, &old_se, index);
1621 		}
1622 	}
1623 
1624 	return 0;
1625 fail:
1626 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1627 			spt, we->val64, we->type);
1628 	return ret;
1629 }
1630 
1631 
1632 
1633 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1634 {
1635 	return enable_out_of_sync
1636 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1637 		&& spt->guest_page.write_cnt >= 2;
1638 }
1639 
1640 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1641 		unsigned long index)
1642 {
1643 	set_bit(index, spt->post_shadow_bitmap);
1644 	if (!list_empty(&spt->post_shadow_list))
1645 		return;
1646 
1647 	list_add_tail(&spt->post_shadow_list,
1648 			&spt->vgpu->gtt.post_shadow_list_head);
1649 }
1650 
1651 /**
1652  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1653  * @vgpu: a vGPU
1654  *
1655  * This function is called before submitting a guest workload to host,
1656  * to flush all the post shadows for a vGPU.
1657  *
1658  * Returns:
1659  * Zero on success, negative error code if failed.
1660  */
1661 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1662 {
1663 	struct list_head *pos, *n;
1664 	struct intel_vgpu_ppgtt_spt *spt;
1665 	struct intel_gvt_gtt_entry ge;
1666 	unsigned long index;
1667 	int ret;
1668 
1669 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1670 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1671 				post_shadow_list);
1672 
1673 		for_each_set_bit(index, spt->post_shadow_bitmap,
1674 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1675 			ppgtt_get_guest_entry(spt, &ge, index);
1676 
1677 			ret = ppgtt_handle_guest_write_page_table(spt,
1678 							&ge, index);
1679 			if (ret)
1680 				return ret;
1681 			clear_bit(index, spt->post_shadow_bitmap);
1682 		}
1683 		list_del_init(&spt->post_shadow_list);
1684 	}
1685 	return 0;
1686 }
1687 
1688 static int ppgtt_handle_guest_write_page_table_bytes(
1689 		struct intel_vgpu_ppgtt_spt *spt,
1690 		u64 pa, void *p_data, int bytes)
1691 {
1692 	struct intel_vgpu *vgpu = spt->vgpu;
1693 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1695 	struct intel_gvt_gtt_entry we, se;
1696 	unsigned long index;
1697 	int ret;
1698 
1699 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1700 
1701 	ppgtt_get_guest_entry(spt, &we, index);
1702 
1703 	/*
1704 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1705 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1706 	 * ignored.
1707 	 */
1708 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1709 	    (index % GTT_64K_PTE_STRIDE)) {
1710 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1711 			    index);
1712 		return 0;
1713 	}
1714 
1715 	if (bytes == info->gtt_entry_size) {
1716 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1717 		if (ret)
1718 			return ret;
1719 	} else {
1720 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1721 			int type = spt->shadow_page.type;
1722 
1723 			ppgtt_get_shadow_entry(spt, &se, index);
1724 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1725 			if (ret)
1726 				return ret;
1727 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1728 			ppgtt_set_shadow_entry(spt, &se, index);
1729 		}
1730 		ppgtt_set_post_shadow(spt, index);
1731 	}
1732 
1733 	if (!enable_out_of_sync)
1734 		return 0;
1735 
1736 	spt->guest_page.write_cnt++;
1737 
1738 	if (spt->guest_page.oos_page)
1739 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1740 				false, 0, vgpu);
1741 
1742 	if (can_do_out_of_sync(spt)) {
1743 		if (!spt->guest_page.oos_page)
1744 			ppgtt_allocate_oos_page(spt);
1745 
1746 		ret = ppgtt_set_guest_page_oos(spt);
1747 		if (ret < 0)
1748 			return ret;
1749 	}
1750 	return 0;
1751 }
1752 
1753 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1754 {
1755 	struct intel_vgpu *vgpu = mm->vgpu;
1756 	struct intel_gvt *gvt = vgpu->gvt;
1757 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1758 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1759 	struct intel_gvt_gtt_entry se;
1760 	int index;
1761 
1762 	if (!mm->ppgtt_mm.shadowed)
1763 		return;
1764 
1765 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1766 		ppgtt_get_shadow_root_entry(mm, &se, index);
1767 
1768 		if (!ops->test_present(&se))
1769 			continue;
1770 
1771 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1772 		se.val64 = 0;
1773 		ppgtt_set_shadow_root_entry(mm, &se, index);
1774 
1775 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1776 				       NULL, se.type, se.val64, index);
1777 	}
1778 
1779 	mm->ppgtt_mm.shadowed = false;
1780 }
1781 
1782 
1783 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1784 {
1785 	struct intel_vgpu *vgpu = mm->vgpu;
1786 	struct intel_gvt *gvt = vgpu->gvt;
1787 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 	struct intel_vgpu_ppgtt_spt *spt;
1790 	struct intel_gvt_gtt_entry ge, se;
1791 	int index, ret;
1792 
1793 	if (mm->ppgtt_mm.shadowed)
1794 		return 0;
1795 
1796 	mm->ppgtt_mm.shadowed = true;
1797 
1798 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1799 		ppgtt_get_guest_root_entry(mm, &ge, index);
1800 
1801 		if (!ops->test_present(&ge))
1802 			continue;
1803 
1804 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1805 				       ge.type, ge.val64, index);
1806 
1807 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1808 		if (IS_ERR(spt)) {
1809 			gvt_vgpu_err("fail to populate guest root pointer\n");
1810 			ret = PTR_ERR(spt);
1811 			goto fail;
1812 		}
1813 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1814 		ppgtt_set_shadow_root_entry(mm, &se, index);
1815 
1816 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1817 				       NULL, se.type, se.val64, index);
1818 	}
1819 
1820 	return 0;
1821 fail:
1822 	invalidate_ppgtt_mm(mm);
1823 	return ret;
1824 }
1825 
1826 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1827 {
1828 	struct intel_vgpu_mm *mm;
1829 
1830 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1831 	if (!mm)
1832 		return NULL;
1833 
1834 	mm->vgpu = vgpu;
1835 	kref_init(&mm->ref);
1836 	atomic_set(&mm->pincount, 0);
1837 
1838 	return mm;
1839 }
1840 
1841 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1842 {
1843 	kfree(mm);
1844 }
1845 
1846 /**
1847  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1848  * @vgpu: a vGPU
1849  * @root_entry_type: ppgtt root entry type
1850  * @pdps: guest pdps.
1851  *
1852  * This function is used to create a ppgtt mm object for a vGPU.
1853  *
1854  * Returns:
1855  * Zero on success, negative error code in pointer if failed.
1856  */
1857 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1858 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1859 {
1860 	struct intel_gvt *gvt = vgpu->gvt;
1861 	struct intel_vgpu_mm *mm;
1862 	int ret;
1863 
1864 	mm = vgpu_alloc_mm(vgpu);
1865 	if (!mm)
1866 		return ERR_PTR(-ENOMEM);
1867 
1868 	mm->type = INTEL_GVT_MM_PPGTT;
1869 
1870 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1871 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1872 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1873 
1874 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1875 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1876 
1877 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1878 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1879 	else
1880 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1881 		       sizeof(mm->ppgtt_mm.guest_pdps));
1882 
1883 	ret = shadow_ppgtt_mm(mm);
1884 	if (ret) {
1885 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1886 		vgpu_free_mm(mm);
1887 		return ERR_PTR(ret);
1888 	}
1889 
1890 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1891 
1892 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1893 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1894 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1895 
1896 	return mm;
1897 }
1898 
1899 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1900 {
1901 	struct intel_vgpu_mm *mm;
1902 	unsigned long nr_entries;
1903 
1904 	mm = vgpu_alloc_mm(vgpu);
1905 	if (!mm)
1906 		return ERR_PTR(-ENOMEM);
1907 
1908 	mm->type = INTEL_GVT_MM_GGTT;
1909 
1910 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1911 	mm->ggtt_mm.virtual_ggtt =
1912 		vzalloc(array_size(nr_entries,
1913 				   vgpu->gvt->device_info.gtt_entry_size));
1914 	if (!mm->ggtt_mm.virtual_ggtt) {
1915 		vgpu_free_mm(mm);
1916 		return ERR_PTR(-ENOMEM);
1917 	}
1918 
1919 	return mm;
1920 }
1921 
1922 /**
1923  * _intel_vgpu_mm_release - destroy a mm object
1924  * @mm_ref: a kref object
1925  *
1926  * This function is used to destroy a mm object for vGPU
1927  *
1928  */
1929 void _intel_vgpu_mm_release(struct kref *mm_ref)
1930 {
1931 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1932 
1933 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1934 		gvt_err("vgpu mm pin count bug detected\n");
1935 
1936 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1937 		list_del(&mm->ppgtt_mm.list);
1938 		list_del(&mm->ppgtt_mm.lru_list);
1939 		invalidate_ppgtt_mm(mm);
1940 	} else {
1941 		vfree(mm->ggtt_mm.virtual_ggtt);
1942 	}
1943 
1944 	vgpu_free_mm(mm);
1945 }
1946 
1947 /**
1948  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1949  * @mm: a vGPU mm object
1950  *
1951  * This function is called when user doesn't want to use a vGPU mm object
1952  */
1953 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1954 {
1955 	atomic_dec_if_positive(&mm->pincount);
1956 }
1957 
1958 /**
1959  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1960  * @mm: target vgpu mm
1961  *
1962  * This function is called when user wants to use a vGPU mm object. If this
1963  * mm object hasn't been shadowed yet, the shadow will be populated at this
1964  * time.
1965  *
1966  * Returns:
1967  * Zero on success, negative error code if failed.
1968  */
1969 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1970 {
1971 	int ret;
1972 
1973 	atomic_inc(&mm->pincount);
1974 
1975 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1976 		ret = shadow_ppgtt_mm(mm);
1977 		if (ret)
1978 			return ret;
1979 
1980 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1981 		list_move_tail(&mm->ppgtt_mm.lru_list,
1982 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1983 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1990 {
1991 	struct intel_vgpu_mm *mm;
1992 	struct list_head *pos, *n;
1993 
1994 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1995 
1996 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1997 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1998 
1999 		if (atomic_read(&mm->pincount))
2000 			continue;
2001 
2002 		list_del_init(&mm->ppgtt_mm.lru_list);
2003 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2004 		invalidate_ppgtt_mm(mm);
2005 		return 1;
2006 	}
2007 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2008 	return 0;
2009 }
2010 
2011 /*
2012  * GMA translation APIs.
2013  */
2014 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2015 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2016 {
2017 	struct intel_vgpu *vgpu = mm->vgpu;
2018 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2019 	struct intel_vgpu_ppgtt_spt *s;
2020 
2021 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2022 	if (!s)
2023 		return -ENXIO;
2024 
2025 	if (!guest)
2026 		ppgtt_get_shadow_entry(s, e, index);
2027 	else
2028 		ppgtt_get_guest_entry(s, e, index);
2029 	return 0;
2030 }
2031 
2032 /**
2033  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2034  * @mm: mm object. could be a PPGTT or GGTT mm object
2035  * @gma: graphics memory address in this mm object
2036  *
2037  * This function is used to translate a graphics memory address in specific
2038  * graphics memory space to guest physical address.
2039  *
2040  * Returns:
2041  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2042  */
2043 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2044 {
2045 	struct intel_vgpu *vgpu = mm->vgpu;
2046 	struct intel_gvt *gvt = vgpu->gvt;
2047 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2048 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2049 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2050 	unsigned long gma_index[4];
2051 	struct intel_gvt_gtt_entry e;
2052 	int i, levels = 0;
2053 	int ret;
2054 
2055 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2056 		   mm->type != INTEL_GVT_MM_PPGTT);
2057 
2058 	if (mm->type == INTEL_GVT_MM_GGTT) {
2059 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2060 			goto err;
2061 
2062 		ggtt_get_guest_entry(mm, &e,
2063 			gma_ops->gma_to_ggtt_pte_index(gma));
2064 
2065 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2066 			+ (gma & ~I915_GTT_PAGE_MASK);
2067 
2068 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2069 	} else {
2070 		switch (mm->ppgtt_mm.root_entry_type) {
2071 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2072 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2073 
2074 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2075 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2076 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2077 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2078 			levels = 4;
2079 			break;
2080 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2081 			ppgtt_get_shadow_root_entry(mm, &e,
2082 					gma_ops->gma_to_l3_pdp_index(gma));
2083 
2084 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2085 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2086 			levels = 2;
2087 			break;
2088 		default:
2089 			GEM_BUG_ON(1);
2090 		}
2091 
2092 		/* walk the shadow page table and get gpa from guest entry */
2093 		for (i = 0; i < levels; i++) {
2094 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2095 				(i == levels - 1));
2096 			if (ret)
2097 				goto err;
2098 
2099 			if (!pte_ops->test_present(&e)) {
2100 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2101 				goto err;
2102 			}
2103 		}
2104 
2105 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2106 					(gma & ~I915_GTT_PAGE_MASK);
2107 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2108 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2109 	}
2110 
2111 	return gpa;
2112 err:
2113 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2114 	return INTEL_GVT_INVALID_ADDR;
2115 }
2116 
2117 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2118 	unsigned int off, void *p_data, unsigned int bytes)
2119 {
2120 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2121 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2122 	unsigned long index = off >> info->gtt_entry_size_shift;
2123 	struct intel_gvt_gtt_entry e;
2124 
2125 	if (bytes != 4 && bytes != 8)
2126 		return -EINVAL;
2127 
2128 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2129 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2130 			bytes);
2131 	return 0;
2132 }
2133 
2134 /**
2135  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2136  * @vgpu: a vGPU
2137  * @off: register offset
2138  * @p_data: data will be returned to guest
2139  * @bytes: data length
2140  *
2141  * This function is used to emulate the GTT MMIO register read
2142  *
2143  * Returns:
2144  * Zero on success, error code if failed.
2145  */
2146 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2147 	void *p_data, unsigned int bytes)
2148 {
2149 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2150 	int ret;
2151 
2152 	if (bytes != 4 && bytes != 8)
2153 		return -EINVAL;
2154 
2155 	off -= info->gtt_start_offset;
2156 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2157 	return ret;
2158 }
2159 
2160 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2161 		struct intel_gvt_gtt_entry *entry)
2162 {
2163 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2164 	unsigned long pfn;
2165 
2166 	pfn = pte_ops->get_pfn(entry);
2167 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2168 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2169 						pfn << PAGE_SHIFT);
2170 }
2171 
2172 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2173 	void *p_data, unsigned int bytes)
2174 {
2175 	struct intel_gvt *gvt = vgpu->gvt;
2176 	const struct intel_gvt_device_info *info = &gvt->device_info;
2177 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2178 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2179 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2180 	unsigned long gma, gfn;
2181 	struct intel_gvt_gtt_entry e, m;
2182 	dma_addr_t dma_addr;
2183 	int ret;
2184 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2185 	bool partial_update = false;
2186 
2187 	if (bytes != 4 && bytes != 8)
2188 		return -EINVAL;
2189 
2190 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2191 
2192 	/* the VM may configure the whole GM space when ballooning is used */
2193 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2194 		return 0;
2195 
2196 	e.type = GTT_TYPE_GGTT_PTE;
2197 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2198 			bytes);
2199 
2200 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2201 	 * write, save the first 4 bytes in a list and update virtual
2202 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2203 	 */
2204 	if (bytes < info->gtt_entry_size) {
2205 		bool found = false;
2206 
2207 		list_for_each_entry_safe(pos, n,
2208 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2209 			if (g_gtt_index == pos->offset >>
2210 					info->gtt_entry_size_shift) {
2211 				if (off != pos->offset) {
2212 					/* the second partial part*/
2213 					int last_off = pos->offset &
2214 						(info->gtt_entry_size - 1);
2215 
2216 					memcpy((void *)&e.val64 + last_off,
2217 						(void *)&pos->data + last_off,
2218 						bytes);
2219 
2220 					list_del(&pos->list);
2221 					kfree(pos);
2222 					found = true;
2223 					break;
2224 				}
2225 
2226 				/* update of the first partial part */
2227 				pos->data = e.val64;
2228 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2229 				return 0;
2230 			}
2231 		}
2232 
2233 		if (!found) {
2234 			/* the first partial part */
2235 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2236 			if (!partial_pte)
2237 				return -ENOMEM;
2238 			partial_pte->offset = off;
2239 			partial_pte->data = e.val64;
2240 			list_add_tail(&partial_pte->list,
2241 				&ggtt_mm->ggtt_mm.partial_pte_list);
2242 			partial_update = true;
2243 		}
2244 	}
2245 
2246 	if (!partial_update && (ops->test_present(&e))) {
2247 		gfn = ops->get_pfn(&e);
2248 		m = e;
2249 
2250 		/* one PTE update may be issued in multiple writes and the
2251 		 * first write may not construct a valid gfn
2252 		 */
2253 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2254 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2255 			goto out;
2256 		}
2257 
2258 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2259 							PAGE_SIZE, &dma_addr);
2260 		if (ret) {
2261 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2262 			/* guest driver may read/write the entry when partial
2263 			 * update the entry in this situation p2m will fail
2264 			 * settting the shadow entry to point to a scratch page
2265 			 */
2266 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2267 		} else
2268 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2269 	} else {
2270 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2271 		ops->clear_present(&m);
2272 	}
2273 
2274 out:
2275 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2276 
2277 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2278 	ggtt_invalidate_pte(vgpu, &e);
2279 
2280 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2281 	ggtt_invalidate(gvt->dev_priv);
2282 	return 0;
2283 }
2284 
2285 /*
2286  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2287  * @vgpu: a vGPU
2288  * @off: register offset
2289  * @p_data: data from guest write
2290  * @bytes: data length
2291  *
2292  * This function is used to emulate the GTT MMIO register write
2293  *
2294  * Returns:
2295  * Zero on success, error code if failed.
2296  */
2297 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2298 		unsigned int off, void *p_data, unsigned int bytes)
2299 {
2300 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2301 	int ret;
2302 
2303 	if (bytes != 4 && bytes != 8)
2304 		return -EINVAL;
2305 
2306 	off -= info->gtt_start_offset;
2307 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2308 	return ret;
2309 }
2310 
2311 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2312 		intel_gvt_gtt_type_t type)
2313 {
2314 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2315 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2316 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2317 				vgpu->gvt->device_info.gtt_entry_size_shift;
2318 	void *scratch_pt;
2319 	int i;
2320 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2321 	dma_addr_t daddr;
2322 
2323 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2324 		return -EINVAL;
2325 
2326 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2327 	if (!scratch_pt) {
2328 		gvt_vgpu_err("fail to allocate scratch page\n");
2329 		return -ENOMEM;
2330 	}
2331 
2332 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2333 			4096, PCI_DMA_BIDIRECTIONAL);
2334 	if (dma_mapping_error(dev, daddr)) {
2335 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2336 		__free_page(virt_to_page(scratch_pt));
2337 		return -ENOMEM;
2338 	}
2339 	gtt->scratch_pt[type].page_mfn =
2340 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2341 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2342 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2343 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2344 
2345 	/* Build the tree by full filled the scratch pt with the entries which
2346 	 * point to the next level scratch pt or scratch page. The
2347 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2348 	 * 'type' pt.
2349 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2350 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2351 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2352 	 */
2353 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2354 		struct intel_gvt_gtt_entry se;
2355 
2356 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2357 		se.type = get_entry_type(type - 1);
2358 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2359 
2360 		/* The entry parameters like present/writeable/cache type
2361 		 * set to the same as i915's scratch page tree.
2362 		 */
2363 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2364 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2365 			se.val64 |= PPAT_CACHED;
2366 
2367 		for (i = 0; i < page_entry_num; i++)
2368 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2375 {
2376 	int i;
2377 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2378 	dma_addr_t daddr;
2379 
2380 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2381 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2382 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2383 					I915_GTT_PAGE_SHIFT);
2384 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2385 			__free_page(vgpu->gtt.scratch_pt[i].page);
2386 			vgpu->gtt.scratch_pt[i].page = NULL;
2387 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2388 		}
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2395 {
2396 	int i, ret;
2397 
2398 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2399 		ret = alloc_scratch_pages(vgpu, i);
2400 		if (ret)
2401 			goto err;
2402 	}
2403 
2404 	return 0;
2405 
2406 err:
2407 	release_scratch_page_tree(vgpu);
2408 	return ret;
2409 }
2410 
2411 /**
2412  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2413  * @vgpu: a vGPU
2414  *
2415  * This function is used to initialize per-vGPU graphics memory virtualization
2416  * components.
2417  *
2418  * Returns:
2419  * Zero on success, error code if failed.
2420  */
2421 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2422 {
2423 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2424 
2425 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2426 
2427 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2428 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2429 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2430 
2431 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2432 	if (IS_ERR(gtt->ggtt_mm)) {
2433 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2434 		return PTR_ERR(gtt->ggtt_mm);
2435 	}
2436 
2437 	intel_vgpu_reset_ggtt(vgpu, false);
2438 
2439 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2440 
2441 	return create_scratch_page_tree(vgpu);
2442 }
2443 
2444 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2445 {
2446 	struct list_head *pos, *n;
2447 	struct intel_vgpu_mm *mm;
2448 
2449 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2450 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2451 		intel_vgpu_destroy_mm(mm);
2452 	}
2453 
2454 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2455 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2456 
2457 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2458 		gvt_err("Why we still has spt not freed?\n");
2459 		ppgtt_free_all_spt(vgpu);
2460 	}
2461 }
2462 
2463 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2464 {
2465 	struct intel_gvt_partial_pte *pos, *next;
2466 
2467 	list_for_each_entry_safe(pos, next,
2468 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2469 				 list) {
2470 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2471 			pos->offset, pos->data);
2472 		kfree(pos);
2473 	}
2474 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2475 	vgpu->gtt.ggtt_mm = NULL;
2476 }
2477 
2478 /**
2479  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2480  * @vgpu: a vGPU
2481  *
2482  * This function is used to clean up per-vGPU graphics memory virtualization
2483  * components.
2484  *
2485  * Returns:
2486  * Zero on success, error code if failed.
2487  */
2488 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2489 {
2490 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2491 	intel_vgpu_destroy_ggtt_mm(vgpu);
2492 	release_scratch_page_tree(vgpu);
2493 }
2494 
2495 static void clean_spt_oos(struct intel_gvt *gvt)
2496 {
2497 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2498 	struct list_head *pos, *n;
2499 	struct intel_vgpu_oos_page *oos_page;
2500 
2501 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2502 		"someone is still using oos page\n");
2503 
2504 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2505 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2506 		list_del(&oos_page->list);
2507 		kfree(oos_page);
2508 	}
2509 }
2510 
2511 static int setup_spt_oos(struct intel_gvt *gvt)
2512 {
2513 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2514 	struct intel_vgpu_oos_page *oos_page;
2515 	int i;
2516 	int ret;
2517 
2518 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2519 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2520 
2521 	for (i = 0; i < preallocated_oos_pages; i++) {
2522 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2523 		if (!oos_page) {
2524 			ret = -ENOMEM;
2525 			goto fail;
2526 		}
2527 
2528 		INIT_LIST_HEAD(&oos_page->list);
2529 		INIT_LIST_HEAD(&oos_page->vm_list);
2530 		oos_page->id = i;
2531 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2532 	}
2533 
2534 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2535 
2536 	return 0;
2537 fail:
2538 	clean_spt_oos(gvt);
2539 	return ret;
2540 }
2541 
2542 /**
2543  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2544  * @vgpu: a vGPU
2545  * @pdps: pdp root array
2546  *
2547  * This function is used to find a PPGTT mm object from mm object pool
2548  *
2549  * Returns:
2550  * pointer to mm object on success, NULL if failed.
2551  */
2552 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2553 		u64 pdps[])
2554 {
2555 	struct intel_vgpu_mm *mm;
2556 	struct list_head *pos;
2557 
2558 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2559 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2560 
2561 		switch (mm->ppgtt_mm.root_entry_type) {
2562 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2563 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2564 				return mm;
2565 			break;
2566 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2567 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2568 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2569 				return mm;
2570 			break;
2571 		default:
2572 			GEM_BUG_ON(1);
2573 		}
2574 	}
2575 	return NULL;
2576 }
2577 
2578 /**
2579  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2580  * @vgpu: a vGPU
2581  * @root_entry_type: ppgtt root entry type
2582  * @pdps: guest pdps
2583  *
2584  * This function is used to find or create a PPGTT mm object from a guest.
2585  *
2586  * Returns:
2587  * Zero on success, negative error code if failed.
2588  */
2589 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2590 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2591 {
2592 	struct intel_vgpu_mm *mm;
2593 
2594 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2595 	if (mm) {
2596 		intel_vgpu_mm_get(mm);
2597 	} else {
2598 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2599 		if (IS_ERR(mm))
2600 			gvt_vgpu_err("fail to create mm\n");
2601 	}
2602 	return mm;
2603 }
2604 
2605 /**
2606  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2607  * @vgpu: a vGPU
2608  * @pdps: guest pdps
2609  *
2610  * This function is used to find a PPGTT mm object from a guest and destroy it.
2611  *
2612  * Returns:
2613  * Zero on success, negative error code if failed.
2614  */
2615 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2616 {
2617 	struct intel_vgpu_mm *mm;
2618 
2619 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2620 	if (!mm) {
2621 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2622 		return -EINVAL;
2623 	}
2624 	intel_vgpu_mm_put(mm);
2625 	return 0;
2626 }
2627 
2628 /**
2629  * intel_gvt_init_gtt - initialize mm components of a GVT device
2630  * @gvt: GVT device
2631  *
2632  * This function is called at the initialization stage, to initialize
2633  * the mm components of a GVT device.
2634  *
2635  * Returns:
2636  * zero on success, negative error code if failed.
2637  */
2638 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2639 {
2640 	int ret;
2641 	void *page;
2642 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2643 	dma_addr_t daddr;
2644 
2645 	gvt_dbg_core("init gtt\n");
2646 
2647 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2648 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2649 
2650 	page = (void *)get_zeroed_page(GFP_KERNEL);
2651 	if (!page) {
2652 		gvt_err("fail to allocate scratch ggtt page\n");
2653 		return -ENOMEM;
2654 	}
2655 
2656 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2657 			4096, PCI_DMA_BIDIRECTIONAL);
2658 	if (dma_mapping_error(dev, daddr)) {
2659 		gvt_err("fail to dmamap scratch ggtt page\n");
2660 		__free_page(virt_to_page(page));
2661 		return -ENOMEM;
2662 	}
2663 
2664 	gvt->gtt.scratch_page = virt_to_page(page);
2665 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2666 
2667 	if (enable_out_of_sync) {
2668 		ret = setup_spt_oos(gvt);
2669 		if (ret) {
2670 			gvt_err("fail to initialize SPT oos\n");
2671 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2672 			__free_page(gvt->gtt.scratch_page);
2673 			return ret;
2674 		}
2675 	}
2676 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2677 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2678 	return 0;
2679 }
2680 
2681 /**
2682  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2683  * @gvt: GVT device
2684  *
2685  * This function is called at the driver unloading stage, to clean up the
2686  * the mm components of a GVT device.
2687  *
2688  */
2689 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2690 {
2691 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2692 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2693 					I915_GTT_PAGE_SHIFT);
2694 
2695 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2696 
2697 	__free_page(gvt->gtt.scratch_page);
2698 
2699 	if (enable_out_of_sync)
2700 		clean_spt_oos(gvt);
2701 }
2702 
2703 /**
2704  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2705  * @vgpu: a vGPU
2706  *
2707  * This function is called when invalidate all PPGTT instances of a vGPU.
2708  *
2709  */
2710 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2711 {
2712 	struct list_head *pos, *n;
2713 	struct intel_vgpu_mm *mm;
2714 
2715 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2716 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2717 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2718 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2719 			list_del_init(&mm->ppgtt_mm.lru_list);
2720 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2721 			if (mm->ppgtt_mm.shadowed)
2722 				invalidate_ppgtt_mm(mm);
2723 		}
2724 	}
2725 }
2726 
2727 /**
2728  * intel_vgpu_reset_ggtt - reset the GGTT entry
2729  * @vgpu: a vGPU
2730  * @invalidate_old: invalidate old entries
2731  *
2732  * This function is called at the vGPU create stage
2733  * to reset all the GGTT entries.
2734  *
2735  */
2736 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2737 {
2738 	struct intel_gvt *gvt = vgpu->gvt;
2739 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2740 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2741 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2742 	struct intel_gvt_gtt_entry old_entry;
2743 	u32 index;
2744 	u32 num_entries;
2745 
2746 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2747 	pte_ops->set_present(&entry);
2748 
2749 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2750 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2751 	while (num_entries--) {
2752 		if (invalidate_old) {
2753 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2754 			ggtt_invalidate_pte(vgpu, &old_entry);
2755 		}
2756 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2757 	}
2758 
2759 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2760 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2761 	while (num_entries--) {
2762 		if (invalidate_old) {
2763 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2764 			ggtt_invalidate_pte(vgpu, &old_entry);
2765 		}
2766 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2767 	}
2768 
2769 	ggtt_invalidate(dev_priv);
2770 }
2771 
2772 /**
2773  * intel_vgpu_reset_gtt - reset the all GTT related status
2774  * @vgpu: a vGPU
2775  *
2776  * This function is called from vfio core to reset reset all
2777  * GTT related status, including GGTT, PPGTT, scratch page.
2778  *
2779  */
2780 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2781 {
2782 	/* Shadow pages are only created when there is no page
2783 	 * table tracking data, so remove page tracking data after
2784 	 * removing the shadow pages.
2785 	 */
2786 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2787 	intel_vgpu_reset_ggtt(vgpu, true);
2788 }
2789