xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/execlist.c (revision 8730046c)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
25  *    Zhi Wang <zhi.a.wang@intel.com>
26  *
27  * Contributors:
28  *    Min He <min.he@intel.com>
29  *    Bing Niu <bing.niu@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *
33  */
34 
35 #include "i915_drv.h"
36 #include "gvt.h"
37 
38 #define _EL_OFFSET_STATUS       0x234
39 #define _EL_OFFSET_STATUS_BUF   0x370
40 #define _EL_OFFSET_STATUS_PTR   0x3A0
41 
42 #define execlist_ring_mmio(gvt, ring_id, offset) \
43 	(gvt->dev_priv->engine[ring_id]->mmio_base + (offset))
44 
45 #define valid_context(ctx) ((ctx)->valid)
46 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
47 		((a)->lrca == (b)->lrca))
48 
49 static int context_switch_events[] = {
50 	[RCS] = RCS_AS_CONTEXT_SWITCH,
51 	[BCS] = BCS_AS_CONTEXT_SWITCH,
52 	[VCS] = VCS_AS_CONTEXT_SWITCH,
53 	[VCS2] = VCS2_AS_CONTEXT_SWITCH,
54 	[VECS] = VECS_AS_CONTEXT_SWITCH,
55 };
56 
57 static int ring_id_to_context_switch_event(int ring_id)
58 {
59 	if (WARN_ON(ring_id < RCS && ring_id >
60 				ARRAY_SIZE(context_switch_events)))
61 		return -EINVAL;
62 
63 	return context_switch_events[ring_id];
64 }
65 
66 static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist)
67 {
68 	gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n",
69 			execlist->running_slot ?
70 			execlist->running_slot->index : -1,
71 			execlist->running_context ?
72 			execlist->running_context->context_id : 0,
73 			execlist->pending_slot ?
74 			execlist->pending_slot->index : -1);
75 
76 	execlist->running_slot = execlist->pending_slot;
77 	execlist->pending_slot = NULL;
78 	execlist->running_context = execlist->running_context ?
79 		&execlist->running_slot->ctx[0] : NULL;
80 
81 	gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n",
82 			execlist->running_slot ?
83 			execlist->running_slot->index : -1,
84 			execlist->running_context ?
85 			execlist->running_context->context_id : 0,
86 			execlist->pending_slot ?
87 			execlist->pending_slot->index : -1);
88 }
89 
90 static void emulate_execlist_status(struct intel_vgpu_execlist *execlist)
91 {
92 	struct intel_vgpu_execlist_slot *running = execlist->running_slot;
93 	struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
94 	struct execlist_ctx_descriptor_format *desc = execlist->running_context;
95 	struct intel_vgpu *vgpu = execlist->vgpu;
96 	struct execlist_status_format status;
97 	int ring_id = execlist->ring_id;
98 	u32 status_reg = execlist_ring_mmio(vgpu->gvt,
99 			ring_id, _EL_OFFSET_STATUS);
100 
101 	status.ldw = vgpu_vreg(vgpu, status_reg);
102 	status.udw = vgpu_vreg(vgpu, status_reg + 4);
103 
104 	if (running) {
105 		status.current_execlist_pointer = !!running->index;
106 		status.execlist_write_pointer = !!!running->index;
107 		status.execlist_0_active = status.execlist_0_valid =
108 			!!!(running->index);
109 		status.execlist_1_active = status.execlist_1_valid =
110 			!!(running->index);
111 	} else {
112 		status.context_id = 0;
113 		status.execlist_0_active = status.execlist_0_valid = 0;
114 		status.execlist_1_active = status.execlist_1_valid = 0;
115 	}
116 
117 	status.context_id = desc ? desc->context_id : 0;
118 	status.execlist_queue_full = !!(pending);
119 
120 	vgpu_vreg(vgpu, status_reg) = status.ldw;
121 	vgpu_vreg(vgpu, status_reg + 4) = status.udw;
122 
123 	gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n",
124 		vgpu->id, status_reg, status.ldw, status.udw);
125 }
126 
127 static void emulate_csb_update(struct intel_vgpu_execlist *execlist,
128 		struct execlist_context_status_format *status,
129 		bool trigger_interrupt_later)
130 {
131 	struct intel_vgpu *vgpu = execlist->vgpu;
132 	int ring_id = execlist->ring_id;
133 	struct execlist_context_status_pointer_format ctx_status_ptr;
134 	u32 write_pointer;
135 	u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset;
136 
137 	ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
138 			_EL_OFFSET_STATUS_PTR);
139 	ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
140 			_EL_OFFSET_STATUS_BUF);
141 
142 	ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
143 
144 	write_pointer = ctx_status_ptr.write_ptr;
145 
146 	if (write_pointer == 0x7)
147 		write_pointer = 0;
148 	else {
149 		++write_pointer;
150 		write_pointer %= 0x6;
151 	}
152 
153 	offset = ctx_status_buf_reg + write_pointer * 8;
154 
155 	vgpu_vreg(vgpu, offset) = status->ldw;
156 	vgpu_vreg(vgpu, offset + 4) = status->udw;
157 
158 	ctx_status_ptr.write_ptr = write_pointer;
159 	vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
160 
161 	gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n",
162 		vgpu->id, write_pointer, offset, status->ldw, status->udw);
163 
164 	if (trigger_interrupt_later)
165 		return;
166 
167 	intel_vgpu_trigger_virtual_event(vgpu,
168 			ring_id_to_context_switch_event(execlist->ring_id));
169 }
170 
171 static int emulate_execlist_ctx_schedule_out(
172 		struct intel_vgpu_execlist *execlist,
173 		struct execlist_ctx_descriptor_format *ctx)
174 {
175 	struct intel_vgpu_execlist_slot *running = execlist->running_slot;
176 	struct intel_vgpu_execlist_slot *pending = execlist->pending_slot;
177 	struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0];
178 	struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1];
179 	struct execlist_context_status_format status;
180 
181 	memset(&status, 0, sizeof(status));
182 
183 	gvt_dbg_el("schedule out context id %x\n", ctx->context_id);
184 
185 	if (WARN_ON(!same_context(ctx, execlist->running_context))) {
186 		gvt_err("schedule out context is not running context,"
187 				"ctx id %x running ctx id %x\n",
188 				ctx->context_id,
189 				execlist->running_context->context_id);
190 		return -EINVAL;
191 	}
192 
193 	/* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */
194 	if (valid_context(ctx1) && same_context(ctx0, ctx)) {
195 		gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n");
196 
197 		execlist->running_context = ctx1;
198 
199 		emulate_execlist_status(execlist);
200 
201 		status.context_complete = status.element_switch = 1;
202 		status.context_id = ctx->context_id;
203 
204 		emulate_csb_update(execlist, &status, false);
205 		/*
206 		 * ctx1 is not valid, ctx == ctx0
207 		 * ctx1 is valid, ctx1 == ctx
208 		 *	--> last element is finished
209 		 * emulate:
210 		 *	active-to-idle if there is *no* pending execlist
211 		 *	context-complete if there *is* pending execlist
212 		 */
213 	} else if ((!valid_context(ctx1) && same_context(ctx0, ctx))
214 			|| (valid_context(ctx1) && same_context(ctx1, ctx))) {
215 		gvt_dbg_el("need to switch virtual execlist slot\n");
216 
217 		switch_virtual_execlist_slot(execlist);
218 
219 		emulate_execlist_status(execlist);
220 
221 		status.context_complete = status.active_to_idle = 1;
222 		status.context_id = ctx->context_id;
223 
224 		if (!pending) {
225 			emulate_csb_update(execlist, &status, false);
226 		} else {
227 			emulate_csb_update(execlist, &status, true);
228 
229 			memset(&status, 0, sizeof(status));
230 
231 			status.idle_to_active = 1;
232 			status.context_id = 0;
233 
234 			emulate_csb_update(execlist, &status, false);
235 		}
236 	} else {
237 		WARN_ON(1);
238 		return -EINVAL;
239 	}
240 
241 	return 0;
242 }
243 
244 static struct intel_vgpu_execlist_slot *get_next_execlist_slot(
245 		struct intel_vgpu_execlist *execlist)
246 {
247 	struct intel_vgpu *vgpu = execlist->vgpu;
248 	int ring_id = execlist->ring_id;
249 	u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
250 			_EL_OFFSET_STATUS);
251 	struct execlist_status_format status;
252 
253 	status.ldw = vgpu_vreg(vgpu, status_reg);
254 	status.udw = vgpu_vreg(vgpu, status_reg + 4);
255 
256 	if (status.execlist_queue_full) {
257 		gvt_err("virtual execlist slots are full\n");
258 		return NULL;
259 	}
260 
261 	return &execlist->slot[status.execlist_write_pointer];
262 }
263 
264 static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist,
265 		struct execlist_ctx_descriptor_format ctx[2])
266 {
267 	struct intel_vgpu_execlist_slot *running = execlist->running_slot;
268 	struct intel_vgpu_execlist_slot *slot =
269 		get_next_execlist_slot(execlist);
270 
271 	struct execlist_ctx_descriptor_format *ctx0, *ctx1;
272 	struct execlist_context_status_format status;
273 
274 	gvt_dbg_el("emulate schedule-in\n");
275 
276 	if (!slot) {
277 		gvt_err("no available execlist slot\n");
278 		return -EINVAL;
279 	}
280 
281 	memset(&status, 0, sizeof(status));
282 	memset(slot->ctx, 0, sizeof(slot->ctx));
283 
284 	slot->ctx[0] = ctx[0];
285 	slot->ctx[1] = ctx[1];
286 
287 	gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n",
288 			slot->index, ctx[0].context_id,
289 			ctx[1].context_id);
290 
291 	/*
292 	 * no running execlist, make this write bundle as running execlist
293 	 * -> idle-to-active
294 	 */
295 	if (!running) {
296 		gvt_dbg_el("no current running execlist\n");
297 
298 		execlist->running_slot = slot;
299 		execlist->pending_slot = NULL;
300 		execlist->running_context = &slot->ctx[0];
301 
302 		gvt_dbg_el("running slot index %d running context %x\n",
303 				execlist->running_slot->index,
304 				execlist->running_context->context_id);
305 
306 		emulate_execlist_status(execlist);
307 
308 		status.idle_to_active = 1;
309 		status.context_id = 0;
310 
311 		emulate_csb_update(execlist, &status, false);
312 		return 0;
313 	}
314 
315 	ctx0 = &running->ctx[0];
316 	ctx1 = &running->ctx[1];
317 
318 	gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n",
319 		running->index, ctx0->context_id, ctx1->context_id);
320 
321 	/*
322 	 * already has an running execlist
323 	 *	a. running ctx1 is valid,
324 	 *	   ctx0 is finished, and running ctx1 == new execlist ctx[0]
325 	 *	b. running ctx1 is not valid,
326 	 *	   ctx0 == new execlist ctx[0]
327 	 * ----> lite-restore + preempted
328 	 */
329 	if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) &&
330 		/* condition a */
331 		(!same_context(ctx0, execlist->running_context))) ||
332 			(!valid_context(ctx1) &&
333 			 same_context(ctx0, &slot->ctx[0]))) { /* condition b */
334 		gvt_dbg_el("need to switch virtual execlist slot\n");
335 
336 		execlist->pending_slot = slot;
337 		switch_virtual_execlist_slot(execlist);
338 
339 		emulate_execlist_status(execlist);
340 
341 		status.lite_restore = status.preempted = 1;
342 		status.context_id = ctx[0].context_id;
343 
344 		emulate_csb_update(execlist, &status, false);
345 	} else {
346 		gvt_dbg_el("emulate as pending slot\n");
347 		/*
348 		 * otherwise
349 		 * --> emulate pending execlist exist + but no preemption case
350 		 */
351 		execlist->pending_slot = slot;
352 		emulate_execlist_status(execlist);
353 	}
354 	return 0;
355 }
356 
357 static void free_workload(struct intel_vgpu_workload *workload)
358 {
359 	intel_vgpu_unpin_mm(workload->shadow_mm);
360 	intel_gvt_mm_unreference(workload->shadow_mm);
361 	kmem_cache_free(workload->vgpu->workloads, workload);
362 }
363 
364 #define get_desc_from_elsp_dwords(ed, i) \
365 	((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2]))
366 
367 
368 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
369 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
370 static int set_gma_to_bb_cmd(struct intel_shadow_bb_entry *entry_obj,
371 			     unsigned long add, int gmadr_bytes)
372 {
373 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
374 		return -1;
375 
376 	*((u32 *)(entry_obj->bb_start_cmd_va + (1 << 2))) = add &
377 		BATCH_BUFFER_ADDR_MASK;
378 	if (gmadr_bytes == 8) {
379 		*((u32 *)(entry_obj->bb_start_cmd_va + (2 << 2))) =
380 			add & BATCH_BUFFER_ADDR_HIGH_MASK;
381 	}
382 
383 	return 0;
384 }
385 
386 static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
387 {
388 	int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
389 
390 	/* pin the gem object to ggtt */
391 	if (!list_empty(&workload->shadow_bb)) {
392 		struct intel_shadow_bb_entry *entry_obj =
393 			list_first_entry(&workload->shadow_bb,
394 					 struct intel_shadow_bb_entry,
395 					 list);
396 		struct intel_shadow_bb_entry *temp;
397 
398 		list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
399 				list) {
400 			struct i915_vma *vma;
401 
402 			vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0,
403 						       4, 0);
404 			if (IS_ERR(vma)) {
405 				gvt_err("Cannot pin\n");
406 				return;
407 			}
408 
409 			/* FIXME: we are not tracking our pinned VMA leaving it
410 			 * up to the core to fix up the stray pin_count upon
411 			 * free.
412 			 */
413 
414 			/* update the relocate gma with shadow batch buffer*/
415 			set_gma_to_bb_cmd(entry_obj,
416 					  i915_ggtt_offset(vma),
417 					  gmadr_bytes);
418 		}
419 	}
420 }
421 
422 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
423 {
424 	int ring_id = wa_ctx->workload->ring_id;
425 	struct i915_gem_context *shadow_ctx =
426 		wa_ctx->workload->vgpu->shadow_ctx;
427 	struct drm_i915_gem_object *ctx_obj =
428 		shadow_ctx->engine[ring_id].state->obj;
429 	struct execlist_ring_context *shadow_ring_context;
430 	struct page *page;
431 
432 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
433 	shadow_ring_context = kmap_atomic(page);
434 
435 	shadow_ring_context->bb_per_ctx_ptr.val =
436 		(shadow_ring_context->bb_per_ctx_ptr.val &
437 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
438 	shadow_ring_context->rcs_indirect_ctx.val =
439 		(shadow_ring_context->rcs_indirect_ctx.val &
440 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
441 
442 	kunmap_atomic(shadow_ring_context);
443 	return 0;
444 }
445 
446 static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
447 {
448 	struct i915_vma *vma;
449 	unsigned char *per_ctx_va =
450 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
451 		wa_ctx->indirect_ctx.size;
452 
453 	if (wa_ctx->indirect_ctx.size == 0)
454 		return;
455 
456 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
457 				       0, CACHELINE_BYTES, 0);
458 	if (IS_ERR(vma)) {
459 		gvt_err("Cannot pin indirect ctx obj\n");
460 		return;
461 	}
462 
463 	/* FIXME: we are not tracking our pinned VMA leaving it
464 	 * up to the core to fix up the stray pin_count upon
465 	 * free.
466 	 */
467 
468 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
469 
470 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
471 	memset(per_ctx_va, 0, CACHELINE_BYTES);
472 
473 	update_wa_ctx_2_shadow_ctx(wa_ctx);
474 }
475 
476 static int prepare_execlist_workload(struct intel_vgpu_workload *workload)
477 {
478 	struct intel_vgpu *vgpu = workload->vgpu;
479 	struct execlist_ctx_descriptor_format ctx[2];
480 	int ring_id = workload->ring_id;
481 
482 	intel_vgpu_pin_mm(workload->shadow_mm);
483 	intel_vgpu_sync_oos_pages(workload->vgpu);
484 	intel_vgpu_flush_post_shadow(workload->vgpu);
485 	prepare_shadow_batch_buffer(workload);
486 	prepare_shadow_wa_ctx(&workload->wa_ctx);
487 	if (!workload->emulate_schedule_in)
488 		return 0;
489 
490 	ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1);
491 	ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0);
492 
493 	return emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx);
494 }
495 
496 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
497 {
498 	/* release all the shadow batch buffer */
499 	if (!list_empty(&workload->shadow_bb)) {
500 		struct intel_shadow_bb_entry *entry_obj =
501 			list_first_entry(&workload->shadow_bb,
502 					 struct intel_shadow_bb_entry,
503 					 list);
504 		struct intel_shadow_bb_entry *temp;
505 
506 		list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb,
507 					 list) {
508 			i915_gem_object_unpin_map(entry_obj->obj);
509 			i915_gem_object_put(entry_obj->obj);
510 			list_del(&entry_obj->list);
511 			kfree(entry_obj);
512 		}
513 	}
514 }
515 
516 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
517 {
518 	if (wa_ctx->indirect_ctx.size == 0)
519 		return;
520 
521 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
522 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
523 }
524 
525 static int complete_execlist_workload(struct intel_vgpu_workload *workload)
526 {
527 	struct intel_vgpu *vgpu = workload->vgpu;
528 	struct intel_vgpu_execlist *execlist =
529 		&vgpu->execlist[workload->ring_id];
530 	struct intel_vgpu_workload *next_workload;
531 	struct list_head *next = workload_q_head(vgpu, workload->ring_id)->next;
532 	bool lite_restore = false;
533 	int ret;
534 
535 	gvt_dbg_el("complete workload %p status %d\n", workload,
536 			workload->status);
537 
538 	release_shadow_batch_buffer(workload);
539 	release_shadow_wa_ctx(&workload->wa_ctx);
540 
541 	if (workload->status || vgpu->resetting)
542 		goto out;
543 
544 	if (!list_empty(workload_q_head(vgpu, workload->ring_id))) {
545 		struct execlist_ctx_descriptor_format *this_desc, *next_desc;
546 
547 		next_workload = container_of(next,
548 				struct intel_vgpu_workload, list);
549 		this_desc = &workload->ctx_desc;
550 		next_desc = &next_workload->ctx_desc;
551 
552 		lite_restore = same_context(this_desc, next_desc);
553 	}
554 
555 	if (lite_restore) {
556 		gvt_dbg_el("next context == current - no schedule-out\n");
557 		free_workload(workload);
558 		return 0;
559 	}
560 
561 	ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc);
562 	if (ret)
563 		goto err;
564 out:
565 	free_workload(workload);
566 	return 0;
567 err:
568 	free_workload(workload);
569 	return ret;
570 }
571 
572 #define RING_CTX_OFF(x) \
573 	offsetof(struct execlist_ring_context, x)
574 
575 static void read_guest_pdps(struct intel_vgpu *vgpu,
576 		u64 ring_context_gpa, u32 pdp[8])
577 {
578 	u64 gpa;
579 	int i;
580 
581 	gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
582 
583 	for (i = 0; i < 8; i++)
584 		intel_gvt_hypervisor_read_gpa(vgpu,
585 				gpa + i * 8, &pdp[7 - i], 4);
586 }
587 
588 static int prepare_mm(struct intel_vgpu_workload *workload)
589 {
590 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
591 	struct intel_vgpu_mm *mm;
592 	int page_table_level;
593 	u32 pdp[8];
594 
595 	if (desc->addressing_mode == 1) { /* legacy 32-bit */
596 		page_table_level = 3;
597 	} else if (desc->addressing_mode == 3) { /* legacy 64 bit */
598 		page_table_level = 4;
599 	} else {
600 		gvt_err("Advanced Context mode(SVM) is not supported!\n");
601 		return -EINVAL;
602 	}
603 
604 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
605 
606 	mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
607 	if (mm) {
608 		intel_gvt_mm_reference(mm);
609 	} else {
610 
611 		mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
612 				pdp, page_table_level, 0);
613 		if (IS_ERR(mm)) {
614 			gvt_err("fail to create mm object.\n");
615 			return PTR_ERR(mm);
616 		}
617 	}
618 	workload->shadow_mm = mm;
619 	return 0;
620 }
621 
622 #define get_last_workload(q) \
623 	(list_empty(q) ? NULL : container_of(q->prev, \
624 	struct intel_vgpu_workload, list))
625 
626 static int submit_context(struct intel_vgpu *vgpu, int ring_id,
627 		struct execlist_ctx_descriptor_format *desc,
628 		bool emulate_schedule_in)
629 {
630 	struct list_head *q = workload_q_head(vgpu, ring_id);
631 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
632 	struct intel_vgpu_workload *workload = NULL;
633 	u64 ring_context_gpa;
634 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
635 	int ret;
636 
637 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
638 			(u32)((desc->lrca + 1) << GTT_PAGE_SHIFT));
639 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
640 		gvt_err("invalid guest context LRCA: %x\n", desc->lrca);
641 		return -EINVAL;
642 	}
643 
644 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
645 			RING_CTX_OFF(ring_header.val), &head, 4);
646 
647 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
648 			RING_CTX_OFF(ring_tail.val), &tail, 4);
649 
650 	head &= RB_HEAD_OFF_MASK;
651 	tail &= RB_TAIL_OFF_MASK;
652 
653 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
654 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
655 		gvt_dbg_el("ctx head %x real head %lx\n", head,
656 				last_workload->rb_tail);
657 		/*
658 		 * cannot use guest context head pointer here,
659 		 * as it might not be updated at this time
660 		 */
661 		head = last_workload->rb_tail;
662 	}
663 
664 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
665 
666 	workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL);
667 	if (!workload)
668 		return -ENOMEM;
669 
670 	/* record some ring buffer register values for scan and shadow */
671 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
672 			RING_CTX_OFF(rb_start.val), &start, 4);
673 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
674 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
675 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
676 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
677 
678 	INIT_LIST_HEAD(&workload->list);
679 	INIT_LIST_HEAD(&workload->shadow_bb);
680 
681 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
682 	atomic_set(&workload->shadow_ctx_active, 0);
683 
684 	workload->vgpu = vgpu;
685 	workload->ring_id = ring_id;
686 	workload->ctx_desc = *desc;
687 	workload->ring_context_gpa = ring_context_gpa;
688 	workload->rb_head = head;
689 	workload->rb_tail = tail;
690 	workload->rb_start = start;
691 	workload->rb_ctl = ctl;
692 	workload->prepare = prepare_execlist_workload;
693 	workload->complete = complete_execlist_workload;
694 	workload->status = -EINPROGRESS;
695 	workload->emulate_schedule_in = emulate_schedule_in;
696 
697 	if (ring_id == RCS) {
698 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
699 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
700 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
701 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
702 
703 		workload->wa_ctx.indirect_ctx.guest_gma =
704 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
705 		workload->wa_ctx.indirect_ctx.size =
706 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
707 			CACHELINE_BYTES;
708 		workload->wa_ctx.per_ctx.guest_gma =
709 			per_ctx & PER_CTX_ADDR_MASK;
710 		workload->wa_ctx.workload = workload;
711 
712 		WARN_ON(workload->wa_ctx.indirect_ctx.size && !(per_ctx & 0x1));
713 	}
714 
715 	if (emulate_schedule_in)
716 		memcpy(&workload->elsp_dwords,
717 				&vgpu->execlist[ring_id].elsp_dwords,
718 				sizeof(workload->elsp_dwords));
719 
720 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
721 			workload, ring_id, head, tail, start, ctl);
722 
723 	gvt_dbg_el("workload %p emulate schedule_in %d\n", workload,
724 			emulate_schedule_in);
725 
726 	ret = prepare_mm(workload);
727 	if (ret) {
728 		kmem_cache_free(vgpu->workloads, workload);
729 		return ret;
730 	}
731 
732 	queue_workload(workload);
733 	return 0;
734 }
735 
736 int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id)
737 {
738 	struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
739 	struct execlist_ctx_descriptor_format *desc[2], valid_desc[2];
740 	unsigned long valid_desc_bitmap = 0;
741 	bool emulate_schedule_in = true;
742 	int ret;
743 	int i;
744 
745 	memset(valid_desc, 0, sizeof(valid_desc));
746 
747 	desc[0] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1);
748 	desc[1] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0);
749 
750 	for (i = 0; i < 2; i++) {
751 		if (!desc[i]->valid)
752 			continue;
753 
754 		if (!desc[i]->privilege_access) {
755 			gvt_err("vgpu%d: unexpected GGTT elsp submission\n",
756 					vgpu->id);
757 			return -EINVAL;
758 		}
759 
760 		/* TODO: add another guest context checks here. */
761 		set_bit(i, &valid_desc_bitmap);
762 		valid_desc[i] = *desc[i];
763 	}
764 
765 	if (!valid_desc_bitmap) {
766 		gvt_err("vgpu%d: no valid desc in a elsp submission\n",
767 				vgpu->id);
768 		return -EINVAL;
769 	}
770 
771 	if (!test_bit(0, (void *)&valid_desc_bitmap) &&
772 			test_bit(1, (void *)&valid_desc_bitmap)) {
773 		gvt_err("vgpu%d: weird elsp submission, desc 0 is not valid\n",
774 				vgpu->id);
775 		return -EINVAL;
776 	}
777 
778 	/* submit workload */
779 	for_each_set_bit(i, (void *)&valid_desc_bitmap, 2) {
780 		ret = submit_context(vgpu, ring_id, &valid_desc[i],
781 				emulate_schedule_in);
782 		if (ret) {
783 			gvt_err("vgpu%d: fail to schedule workload\n",
784 					vgpu->id);
785 			return ret;
786 		}
787 		emulate_schedule_in = false;
788 	}
789 	return 0;
790 }
791 
792 static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id)
793 {
794 	struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id];
795 	struct execlist_context_status_pointer_format ctx_status_ptr;
796 	u32 ctx_status_ptr_reg;
797 
798 	memset(execlist, 0, sizeof(*execlist));
799 
800 	execlist->vgpu = vgpu;
801 	execlist->ring_id = ring_id;
802 	execlist->slot[0].index = 0;
803 	execlist->slot[1].index = 1;
804 
805 	ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id,
806 			_EL_OFFSET_STATUS_PTR);
807 
808 	ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg);
809 	ctx_status_ptr.read_ptr = ctx_status_ptr.write_ptr = 0x7;
810 	vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw;
811 }
812 
813 void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu)
814 {
815 	kmem_cache_destroy(vgpu->workloads);
816 }
817 
818 int intel_vgpu_init_execlist(struct intel_vgpu *vgpu)
819 {
820 	enum intel_engine_id i;
821 	struct intel_engine_cs *engine;
822 
823 	/* each ring has a virtual execlist engine */
824 	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
825 		init_vgpu_execlist(vgpu, i);
826 		INIT_LIST_HEAD(&vgpu->workload_q_head[i]);
827 	}
828 
829 	vgpu->workloads = kmem_cache_create("gvt-g vgpu workload",
830 			sizeof(struct intel_vgpu_workload), 0,
831 			SLAB_HWCACHE_ALIGN,
832 			NULL);
833 
834 	if (!vgpu->workloads)
835 		return -ENOMEM;
836 
837 	return 0;
838 }
839 
840 void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu,
841 		unsigned long engine_mask)
842 {
843 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
844 	struct intel_engine_cs *engine;
845 	struct intel_vgpu_workload *pos, *n;
846 	unsigned int tmp;
847 
848 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
849 		/* free the unsubmited workload in the queue */
850 		list_for_each_entry_safe(pos, n,
851 			&vgpu->workload_q_head[engine->id], list) {
852 			list_del_init(&pos->list);
853 			free_workload(pos);
854 		}
855 
856 		init_vgpu_execlist(vgpu, engine->id);
857 	}
858 }
859