1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhiyuan Lv <zhiyuan.lv@intel.com> 25 * Zhi Wang <zhi.a.wang@intel.com> 26 * 27 * Contributors: 28 * Min He <min.he@intel.com> 29 * Bing Niu <bing.niu@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * 33 */ 34 35 #include "i915_drv.h" 36 #include "gvt.h" 37 38 #define _EL_OFFSET_STATUS 0x234 39 #define _EL_OFFSET_STATUS_BUF 0x370 40 #define _EL_OFFSET_STATUS_PTR 0x3A0 41 42 #define execlist_ring_mmio(gvt, ring_id, offset) \ 43 (gvt->dev_priv->engine[ring_id]->mmio_base + (offset)) 44 45 #define valid_context(ctx) ((ctx)->valid) 46 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 47 ((a)->lrca == (b)->lrca)) 48 49 static int context_switch_events[] = { 50 [RCS] = RCS_AS_CONTEXT_SWITCH, 51 [BCS] = BCS_AS_CONTEXT_SWITCH, 52 [VCS] = VCS_AS_CONTEXT_SWITCH, 53 [VCS2] = VCS2_AS_CONTEXT_SWITCH, 54 [VECS] = VECS_AS_CONTEXT_SWITCH, 55 }; 56 57 static int ring_id_to_context_switch_event(int ring_id) 58 { 59 if (WARN_ON(ring_id < RCS && ring_id > 60 ARRAY_SIZE(context_switch_events))) 61 return -EINVAL; 62 63 return context_switch_events[ring_id]; 64 } 65 66 static void switch_virtual_execlist_slot(struct intel_vgpu_execlist *execlist) 67 { 68 gvt_dbg_el("[before] running slot %d/context %x pending slot %d\n", 69 execlist->running_slot ? 70 execlist->running_slot->index : -1, 71 execlist->running_context ? 72 execlist->running_context->context_id : 0, 73 execlist->pending_slot ? 74 execlist->pending_slot->index : -1); 75 76 execlist->running_slot = execlist->pending_slot; 77 execlist->pending_slot = NULL; 78 execlist->running_context = execlist->running_context ? 79 &execlist->running_slot->ctx[0] : NULL; 80 81 gvt_dbg_el("[after] running slot %d/context %x pending slot %d\n", 82 execlist->running_slot ? 83 execlist->running_slot->index : -1, 84 execlist->running_context ? 85 execlist->running_context->context_id : 0, 86 execlist->pending_slot ? 87 execlist->pending_slot->index : -1); 88 } 89 90 static void emulate_execlist_status(struct intel_vgpu_execlist *execlist) 91 { 92 struct intel_vgpu_execlist_slot *running = execlist->running_slot; 93 struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; 94 struct execlist_ctx_descriptor_format *desc = execlist->running_context; 95 struct intel_vgpu *vgpu = execlist->vgpu; 96 struct execlist_status_format status; 97 int ring_id = execlist->ring_id; 98 u32 status_reg = execlist_ring_mmio(vgpu->gvt, 99 ring_id, _EL_OFFSET_STATUS); 100 101 status.ldw = vgpu_vreg(vgpu, status_reg); 102 status.udw = vgpu_vreg(vgpu, status_reg + 4); 103 104 if (running) { 105 status.current_execlist_pointer = !!running->index; 106 status.execlist_write_pointer = !!!running->index; 107 status.execlist_0_active = status.execlist_0_valid = 108 !!!(running->index); 109 status.execlist_1_active = status.execlist_1_valid = 110 !!(running->index); 111 } else { 112 status.context_id = 0; 113 status.execlist_0_active = status.execlist_0_valid = 0; 114 status.execlist_1_active = status.execlist_1_valid = 0; 115 } 116 117 status.context_id = desc ? desc->context_id : 0; 118 status.execlist_queue_full = !!(pending); 119 120 vgpu_vreg(vgpu, status_reg) = status.ldw; 121 vgpu_vreg(vgpu, status_reg + 4) = status.udw; 122 123 gvt_dbg_el("vgpu%d: status reg offset %x ldw %x udw %x\n", 124 vgpu->id, status_reg, status.ldw, status.udw); 125 } 126 127 static void emulate_csb_update(struct intel_vgpu_execlist *execlist, 128 struct execlist_context_status_format *status, 129 bool trigger_interrupt_later) 130 { 131 struct intel_vgpu *vgpu = execlist->vgpu; 132 int ring_id = execlist->ring_id; 133 struct execlist_context_status_pointer_format ctx_status_ptr; 134 u32 write_pointer; 135 u32 ctx_status_ptr_reg, ctx_status_buf_reg, offset; 136 137 ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, 138 _EL_OFFSET_STATUS_PTR); 139 ctx_status_buf_reg = execlist_ring_mmio(vgpu->gvt, ring_id, 140 _EL_OFFSET_STATUS_BUF); 141 142 ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); 143 144 write_pointer = ctx_status_ptr.write_ptr; 145 146 if (write_pointer == 0x7) 147 write_pointer = 0; 148 else { 149 ++write_pointer; 150 write_pointer %= 0x6; 151 } 152 153 offset = ctx_status_buf_reg + write_pointer * 8; 154 155 vgpu_vreg(vgpu, offset) = status->ldw; 156 vgpu_vreg(vgpu, offset + 4) = status->udw; 157 158 ctx_status_ptr.write_ptr = write_pointer; 159 vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; 160 161 gvt_dbg_el("vgpu%d: w pointer %u reg %x csb l %x csb h %x\n", 162 vgpu->id, write_pointer, offset, status->ldw, status->udw); 163 164 if (trigger_interrupt_later) 165 return; 166 167 intel_vgpu_trigger_virtual_event(vgpu, 168 ring_id_to_context_switch_event(execlist->ring_id)); 169 } 170 171 static int emulate_execlist_ctx_schedule_out( 172 struct intel_vgpu_execlist *execlist, 173 struct execlist_ctx_descriptor_format *ctx) 174 { 175 struct intel_vgpu *vgpu = execlist->vgpu; 176 struct intel_vgpu_execlist_slot *running = execlist->running_slot; 177 struct intel_vgpu_execlist_slot *pending = execlist->pending_slot; 178 struct execlist_ctx_descriptor_format *ctx0 = &running->ctx[0]; 179 struct execlist_ctx_descriptor_format *ctx1 = &running->ctx[1]; 180 struct execlist_context_status_format status; 181 182 memset(&status, 0, sizeof(status)); 183 184 gvt_dbg_el("schedule out context id %x\n", ctx->context_id); 185 186 if (WARN_ON(!same_context(ctx, execlist->running_context))) { 187 gvt_vgpu_err("schedule out context is not running context," 188 "ctx id %x running ctx id %x\n", 189 ctx->context_id, 190 execlist->running_context->context_id); 191 return -EINVAL; 192 } 193 194 /* ctx1 is valid, ctx0/ctx is scheduled-out -> element switch */ 195 if (valid_context(ctx1) && same_context(ctx0, ctx)) { 196 gvt_dbg_el("ctx 1 valid, ctx/ctx 0 is scheduled-out\n"); 197 198 execlist->running_context = ctx1; 199 200 emulate_execlist_status(execlist); 201 202 status.context_complete = status.element_switch = 1; 203 status.context_id = ctx->context_id; 204 205 emulate_csb_update(execlist, &status, false); 206 /* 207 * ctx1 is not valid, ctx == ctx0 208 * ctx1 is valid, ctx1 == ctx 209 * --> last element is finished 210 * emulate: 211 * active-to-idle if there is *no* pending execlist 212 * context-complete if there *is* pending execlist 213 */ 214 } else if ((!valid_context(ctx1) && same_context(ctx0, ctx)) 215 || (valid_context(ctx1) && same_context(ctx1, ctx))) { 216 gvt_dbg_el("need to switch virtual execlist slot\n"); 217 218 switch_virtual_execlist_slot(execlist); 219 220 emulate_execlist_status(execlist); 221 222 status.context_complete = status.active_to_idle = 1; 223 status.context_id = ctx->context_id; 224 225 if (!pending) { 226 emulate_csb_update(execlist, &status, false); 227 } else { 228 emulate_csb_update(execlist, &status, true); 229 230 memset(&status, 0, sizeof(status)); 231 232 status.idle_to_active = 1; 233 status.context_id = 0; 234 235 emulate_csb_update(execlist, &status, false); 236 } 237 } else { 238 WARN_ON(1); 239 return -EINVAL; 240 } 241 242 return 0; 243 } 244 245 static struct intel_vgpu_execlist_slot *get_next_execlist_slot( 246 struct intel_vgpu_execlist *execlist) 247 { 248 struct intel_vgpu *vgpu = execlist->vgpu; 249 int ring_id = execlist->ring_id; 250 u32 status_reg = execlist_ring_mmio(vgpu->gvt, ring_id, 251 _EL_OFFSET_STATUS); 252 struct execlist_status_format status; 253 254 status.ldw = vgpu_vreg(vgpu, status_reg); 255 status.udw = vgpu_vreg(vgpu, status_reg + 4); 256 257 if (status.execlist_queue_full) { 258 gvt_vgpu_err("virtual execlist slots are full\n"); 259 return NULL; 260 } 261 262 return &execlist->slot[status.execlist_write_pointer]; 263 } 264 265 static int emulate_execlist_schedule_in(struct intel_vgpu_execlist *execlist, 266 struct execlist_ctx_descriptor_format ctx[2]) 267 { 268 struct intel_vgpu_execlist_slot *running = execlist->running_slot; 269 struct intel_vgpu_execlist_slot *slot = 270 get_next_execlist_slot(execlist); 271 272 struct execlist_ctx_descriptor_format *ctx0, *ctx1; 273 struct execlist_context_status_format status; 274 struct intel_vgpu *vgpu = execlist->vgpu; 275 276 gvt_dbg_el("emulate schedule-in\n"); 277 278 if (!slot) { 279 gvt_vgpu_err("no available execlist slot\n"); 280 return -EINVAL; 281 } 282 283 memset(&status, 0, sizeof(status)); 284 memset(slot->ctx, 0, sizeof(slot->ctx)); 285 286 slot->ctx[0] = ctx[0]; 287 slot->ctx[1] = ctx[1]; 288 289 gvt_dbg_el("alloc slot index %d ctx 0 %x ctx 1 %x\n", 290 slot->index, ctx[0].context_id, 291 ctx[1].context_id); 292 293 /* 294 * no running execlist, make this write bundle as running execlist 295 * -> idle-to-active 296 */ 297 if (!running) { 298 gvt_dbg_el("no current running execlist\n"); 299 300 execlist->running_slot = slot; 301 execlist->pending_slot = NULL; 302 execlist->running_context = &slot->ctx[0]; 303 304 gvt_dbg_el("running slot index %d running context %x\n", 305 execlist->running_slot->index, 306 execlist->running_context->context_id); 307 308 emulate_execlist_status(execlist); 309 310 status.idle_to_active = 1; 311 status.context_id = 0; 312 313 emulate_csb_update(execlist, &status, false); 314 return 0; 315 } 316 317 ctx0 = &running->ctx[0]; 318 ctx1 = &running->ctx[1]; 319 320 gvt_dbg_el("current running slot index %d ctx 0 %x ctx 1 %x\n", 321 running->index, ctx0->context_id, ctx1->context_id); 322 323 /* 324 * already has an running execlist 325 * a. running ctx1 is valid, 326 * ctx0 is finished, and running ctx1 == new execlist ctx[0] 327 * b. running ctx1 is not valid, 328 * ctx0 == new execlist ctx[0] 329 * ----> lite-restore + preempted 330 */ 331 if ((valid_context(ctx1) && same_context(ctx1, &slot->ctx[0]) && 332 /* condition a */ 333 (!same_context(ctx0, execlist->running_context))) || 334 (!valid_context(ctx1) && 335 same_context(ctx0, &slot->ctx[0]))) { /* condition b */ 336 gvt_dbg_el("need to switch virtual execlist slot\n"); 337 338 execlist->pending_slot = slot; 339 switch_virtual_execlist_slot(execlist); 340 341 emulate_execlist_status(execlist); 342 343 status.lite_restore = status.preempted = 1; 344 status.context_id = ctx[0].context_id; 345 346 emulate_csb_update(execlist, &status, false); 347 } else { 348 gvt_dbg_el("emulate as pending slot\n"); 349 /* 350 * otherwise 351 * --> emulate pending execlist exist + but no preemption case 352 */ 353 execlist->pending_slot = slot; 354 emulate_execlist_status(execlist); 355 } 356 return 0; 357 } 358 359 static void free_workload(struct intel_vgpu_workload *workload) 360 { 361 intel_vgpu_unpin_mm(workload->shadow_mm); 362 intel_gvt_mm_unreference(workload->shadow_mm); 363 kmem_cache_free(workload->vgpu->workloads, workload); 364 } 365 366 #define get_desc_from_elsp_dwords(ed, i) \ 367 ((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2])) 368 369 static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 370 { 371 const int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 372 struct intel_shadow_bb_entry *entry_obj; 373 374 /* pin the gem object to ggtt */ 375 list_for_each_entry(entry_obj, &workload->shadow_bb, list) { 376 struct i915_vma *vma; 377 378 vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0); 379 if (IS_ERR(vma)) { 380 return; 381 } 382 383 /* FIXME: we are not tracking our pinned VMA leaving it 384 * up to the core to fix up the stray pin_count upon 385 * free. 386 */ 387 388 /* update the relocate gma with shadow batch buffer*/ 389 entry_obj->bb_start_cmd_va[1] = i915_ggtt_offset(vma); 390 if (gmadr_bytes == 8) 391 entry_obj->bb_start_cmd_va[2] = 0; 392 } 393 } 394 395 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 396 { 397 int ring_id = wa_ctx->workload->ring_id; 398 struct i915_gem_context *shadow_ctx = 399 wa_ctx->workload->vgpu->shadow_ctx; 400 struct drm_i915_gem_object *ctx_obj = 401 shadow_ctx->engine[ring_id].state->obj; 402 struct execlist_ring_context *shadow_ring_context; 403 struct page *page; 404 405 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 406 shadow_ring_context = kmap_atomic(page); 407 408 shadow_ring_context->bb_per_ctx_ptr.val = 409 (shadow_ring_context->bb_per_ctx_ptr.val & 410 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 411 shadow_ring_context->rcs_indirect_ctx.val = 412 (shadow_ring_context->rcs_indirect_ctx.val & 413 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 414 415 kunmap_atomic(shadow_ring_context); 416 return 0; 417 } 418 419 static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 420 { 421 struct i915_vma *vma; 422 unsigned char *per_ctx_va = 423 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 424 wa_ctx->indirect_ctx.size; 425 426 if (wa_ctx->indirect_ctx.size == 0) 427 return; 428 429 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 430 0, CACHELINE_BYTES, 0); 431 if (IS_ERR(vma)) { 432 return; 433 } 434 435 /* FIXME: we are not tracking our pinned VMA leaving it 436 * up to the core to fix up the stray pin_count upon 437 * free. 438 */ 439 440 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 441 442 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 443 memset(per_ctx_va, 0, CACHELINE_BYTES); 444 445 update_wa_ctx_2_shadow_ctx(wa_ctx); 446 } 447 448 static int prepare_execlist_workload(struct intel_vgpu_workload *workload) 449 { 450 struct intel_vgpu *vgpu = workload->vgpu; 451 struct execlist_ctx_descriptor_format ctx[2]; 452 int ring_id = workload->ring_id; 453 454 intel_vgpu_pin_mm(workload->shadow_mm); 455 intel_vgpu_sync_oos_pages(workload->vgpu); 456 intel_vgpu_flush_post_shadow(workload->vgpu); 457 prepare_shadow_batch_buffer(workload); 458 prepare_shadow_wa_ctx(&workload->wa_ctx); 459 if (!workload->emulate_schedule_in) 460 return 0; 461 462 ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1); 463 ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0); 464 465 return emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx); 466 } 467 468 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 469 { 470 /* release all the shadow batch buffer */ 471 if (!list_empty(&workload->shadow_bb)) { 472 struct intel_shadow_bb_entry *entry_obj = 473 list_first_entry(&workload->shadow_bb, 474 struct intel_shadow_bb_entry, 475 list); 476 struct intel_shadow_bb_entry *temp; 477 478 list_for_each_entry_safe(entry_obj, temp, &workload->shadow_bb, 479 list) { 480 i915_gem_object_unpin_map(entry_obj->obj); 481 i915_gem_object_put(entry_obj->obj); 482 list_del(&entry_obj->list); 483 kfree(entry_obj); 484 } 485 } 486 } 487 488 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 489 { 490 if (!wa_ctx->indirect_ctx.obj) 491 return; 492 493 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 494 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 495 } 496 497 static int complete_execlist_workload(struct intel_vgpu_workload *workload) 498 { 499 struct intel_vgpu *vgpu = workload->vgpu; 500 struct intel_vgpu_execlist *execlist = 501 &vgpu->execlist[workload->ring_id]; 502 struct intel_vgpu_workload *next_workload; 503 struct list_head *next = workload_q_head(vgpu, workload->ring_id)->next; 504 bool lite_restore = false; 505 int ret; 506 507 gvt_dbg_el("complete workload %p status %d\n", workload, 508 workload->status); 509 510 release_shadow_batch_buffer(workload); 511 release_shadow_wa_ctx(&workload->wa_ctx); 512 513 if (workload->status || vgpu->resetting) 514 goto out; 515 516 if (!list_empty(workload_q_head(vgpu, workload->ring_id))) { 517 struct execlist_ctx_descriptor_format *this_desc, *next_desc; 518 519 next_workload = container_of(next, 520 struct intel_vgpu_workload, list); 521 this_desc = &workload->ctx_desc; 522 next_desc = &next_workload->ctx_desc; 523 524 lite_restore = same_context(this_desc, next_desc); 525 } 526 527 if (lite_restore) { 528 gvt_dbg_el("next context == current - no schedule-out\n"); 529 free_workload(workload); 530 return 0; 531 } 532 533 ret = emulate_execlist_ctx_schedule_out(execlist, &workload->ctx_desc); 534 if (ret) 535 goto err; 536 out: 537 free_workload(workload); 538 return 0; 539 err: 540 free_workload(workload); 541 return ret; 542 } 543 544 #define RING_CTX_OFF(x) \ 545 offsetof(struct execlist_ring_context, x) 546 547 static void read_guest_pdps(struct intel_vgpu *vgpu, 548 u64 ring_context_gpa, u32 pdp[8]) 549 { 550 u64 gpa; 551 int i; 552 553 gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val); 554 555 for (i = 0; i < 8; i++) 556 intel_gvt_hypervisor_read_gpa(vgpu, 557 gpa + i * 8, &pdp[7 - i], 4); 558 } 559 560 static int prepare_mm(struct intel_vgpu_workload *workload) 561 { 562 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 563 struct intel_vgpu_mm *mm; 564 struct intel_vgpu *vgpu = workload->vgpu; 565 int page_table_level; 566 u32 pdp[8]; 567 568 if (desc->addressing_mode == 1) { /* legacy 32-bit */ 569 page_table_level = 3; 570 } else if (desc->addressing_mode == 3) { /* legacy 64 bit */ 571 page_table_level = 4; 572 } else { 573 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 574 return -EINVAL; 575 } 576 577 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp); 578 579 mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp); 580 if (mm) { 581 intel_gvt_mm_reference(mm); 582 } else { 583 584 mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT, 585 pdp, page_table_level, 0); 586 if (IS_ERR(mm)) { 587 gvt_vgpu_err("fail to create mm object.\n"); 588 return PTR_ERR(mm); 589 } 590 } 591 workload->shadow_mm = mm; 592 return 0; 593 } 594 595 #define get_last_workload(q) \ 596 (list_empty(q) ? NULL : container_of(q->prev, \ 597 struct intel_vgpu_workload, list)) 598 599 static int submit_context(struct intel_vgpu *vgpu, int ring_id, 600 struct execlist_ctx_descriptor_format *desc, 601 bool emulate_schedule_in) 602 { 603 struct list_head *q = workload_q_head(vgpu, ring_id); 604 struct intel_vgpu_workload *last_workload = get_last_workload(q); 605 struct intel_vgpu_workload *workload = NULL; 606 u64 ring_context_gpa; 607 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 608 int ret; 609 610 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 611 (u32)((desc->lrca + 1) << GTT_PAGE_SHIFT)); 612 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 613 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 614 return -EINVAL; 615 } 616 617 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 618 RING_CTX_OFF(ring_header.val), &head, 4); 619 620 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 621 RING_CTX_OFF(ring_tail.val), &tail, 4); 622 623 head &= RB_HEAD_OFF_MASK; 624 tail &= RB_TAIL_OFF_MASK; 625 626 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 627 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 628 gvt_dbg_el("ctx head %x real head %lx\n", head, 629 last_workload->rb_tail); 630 /* 631 * cannot use guest context head pointer here, 632 * as it might not be updated at this time 633 */ 634 head = last_workload->rb_tail; 635 } 636 637 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 638 639 workload = kmem_cache_zalloc(vgpu->workloads, GFP_KERNEL); 640 if (!workload) 641 return -ENOMEM; 642 643 /* record some ring buffer register values for scan and shadow */ 644 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 645 RING_CTX_OFF(rb_start.val), &start, 4); 646 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 647 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 648 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 649 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 650 651 INIT_LIST_HEAD(&workload->list); 652 INIT_LIST_HEAD(&workload->shadow_bb); 653 654 init_waitqueue_head(&workload->shadow_ctx_status_wq); 655 atomic_set(&workload->shadow_ctx_active, 0); 656 657 workload->vgpu = vgpu; 658 workload->ring_id = ring_id; 659 workload->ctx_desc = *desc; 660 workload->ring_context_gpa = ring_context_gpa; 661 workload->rb_head = head; 662 workload->rb_tail = tail; 663 workload->rb_start = start; 664 workload->rb_ctl = ctl; 665 workload->prepare = prepare_execlist_workload; 666 workload->complete = complete_execlist_workload; 667 workload->status = -EINPROGRESS; 668 workload->emulate_schedule_in = emulate_schedule_in; 669 670 if (ring_id == RCS) { 671 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 672 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 673 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 674 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 675 676 workload->wa_ctx.indirect_ctx.guest_gma = 677 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 678 workload->wa_ctx.indirect_ctx.size = 679 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 680 CACHELINE_BYTES; 681 workload->wa_ctx.per_ctx.guest_gma = 682 per_ctx & PER_CTX_ADDR_MASK; 683 workload->wa_ctx.workload = workload; 684 685 WARN_ON(workload->wa_ctx.indirect_ctx.size && !(per_ctx & 0x1)); 686 } 687 688 if (emulate_schedule_in) 689 memcpy(&workload->elsp_dwords, 690 &vgpu->execlist[ring_id].elsp_dwords, 691 sizeof(workload->elsp_dwords)); 692 693 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 694 workload, ring_id, head, tail, start, ctl); 695 696 gvt_dbg_el("workload %p emulate schedule_in %d\n", workload, 697 emulate_schedule_in); 698 699 ret = prepare_mm(workload); 700 if (ret) { 701 kmem_cache_free(vgpu->workloads, workload); 702 return ret; 703 } 704 705 queue_workload(workload); 706 return 0; 707 } 708 709 int intel_vgpu_submit_execlist(struct intel_vgpu *vgpu, int ring_id) 710 { 711 struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; 712 struct execlist_ctx_descriptor_format *desc[2], valid_desc[2]; 713 unsigned long valid_desc_bitmap = 0; 714 bool emulate_schedule_in = true; 715 int ret; 716 int i; 717 718 memset(valid_desc, 0, sizeof(valid_desc)); 719 720 desc[0] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 1); 721 desc[1] = get_desc_from_elsp_dwords(&execlist->elsp_dwords, 0); 722 723 for (i = 0; i < 2; i++) { 724 if (!desc[i]->valid) 725 continue; 726 727 if (!desc[i]->privilege_access) { 728 gvt_vgpu_err("unexpected GGTT elsp submission\n"); 729 return -EINVAL; 730 } 731 732 /* TODO: add another guest context checks here. */ 733 set_bit(i, &valid_desc_bitmap); 734 valid_desc[i] = *desc[i]; 735 } 736 737 if (!valid_desc_bitmap) { 738 gvt_vgpu_err("no valid desc in a elsp submission\n"); 739 return -EINVAL; 740 } 741 742 if (!test_bit(0, (void *)&valid_desc_bitmap) && 743 test_bit(1, (void *)&valid_desc_bitmap)) { 744 gvt_vgpu_err("weird elsp submission, desc 0 is not valid\n"); 745 return -EINVAL; 746 } 747 748 /* submit workload */ 749 for_each_set_bit(i, (void *)&valid_desc_bitmap, 2) { 750 ret = submit_context(vgpu, ring_id, &valid_desc[i], 751 emulate_schedule_in); 752 if (ret) { 753 gvt_vgpu_err("fail to schedule workload\n"); 754 return ret; 755 } 756 emulate_schedule_in = false; 757 } 758 return 0; 759 } 760 761 static void init_vgpu_execlist(struct intel_vgpu *vgpu, int ring_id) 762 { 763 struct intel_vgpu_execlist *execlist = &vgpu->execlist[ring_id]; 764 struct execlist_context_status_pointer_format ctx_status_ptr; 765 u32 ctx_status_ptr_reg; 766 767 memset(execlist, 0, sizeof(*execlist)); 768 769 execlist->vgpu = vgpu; 770 execlist->ring_id = ring_id; 771 execlist->slot[0].index = 0; 772 execlist->slot[1].index = 1; 773 774 ctx_status_ptr_reg = execlist_ring_mmio(vgpu->gvt, ring_id, 775 _EL_OFFSET_STATUS_PTR); 776 777 ctx_status_ptr.dw = vgpu_vreg(vgpu, ctx_status_ptr_reg); 778 ctx_status_ptr.read_ptr = ctx_status_ptr.write_ptr = 0x7; 779 vgpu_vreg(vgpu, ctx_status_ptr_reg) = ctx_status_ptr.dw; 780 } 781 782 void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu) 783 { 784 kmem_cache_destroy(vgpu->workloads); 785 } 786 787 int intel_vgpu_init_execlist(struct intel_vgpu *vgpu) 788 { 789 enum intel_engine_id i; 790 struct intel_engine_cs *engine; 791 792 /* each ring has a virtual execlist engine */ 793 for_each_engine(engine, vgpu->gvt->dev_priv, i) { 794 init_vgpu_execlist(vgpu, i); 795 INIT_LIST_HEAD(&vgpu->workload_q_head[i]); 796 } 797 798 vgpu->workloads = kmem_cache_create("gvt-g_vgpu_workload", 799 sizeof(struct intel_vgpu_workload), 0, 800 SLAB_HWCACHE_ALIGN, 801 NULL); 802 803 if (!vgpu->workloads) 804 return -ENOMEM; 805 806 return 0; 807 } 808 809 void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu, 810 unsigned long engine_mask) 811 { 812 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 813 struct intel_engine_cs *engine; 814 struct intel_vgpu_workload *pos, *n; 815 unsigned int tmp; 816 817 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 818 /* free the unsubmited workload in the queue */ 819 list_for_each_entry_safe(pos, n, 820 &vgpu->workload_q_head[engine->id], list) { 821 list_del_init(&pos->list); 822 free_workload(pos); 823 } 824 825 init_vgpu_execlist(vgpu, engine->id); 826 } 827 } 828