1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "i915_reg.h" 41 #include "gt/intel_engine_regs.h" 42 #include "gt/intel_gpu_commands.h" 43 #include "gt/intel_gt_regs.h" 44 #include "gt/intel_lrc.h" 45 #include "gt/intel_ring.h" 46 #include "gt/intel_gt_requests.h" 47 #include "gt/shmem_utils.h" 48 #include "gvt.h" 49 #include "i915_pvinfo.h" 50 #include "trace.h" 51 52 #include "gem/i915_gem_context.h" 53 #include "gem/i915_gem_pm.h" 54 #include "gt/intel_context.h" 55 56 #define INVALID_OP (~0U) 57 58 #define OP_LEN_MI 9 59 #define OP_LEN_2D 10 60 #define OP_LEN_3D_MEDIA 16 61 #define OP_LEN_MFX_VC 16 62 #define OP_LEN_VEBOX 16 63 64 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 65 66 struct sub_op_bits { 67 int hi; 68 int low; 69 }; 70 struct decode_info { 71 const char *name; 72 int op_len; 73 int nr_sub_op; 74 const struct sub_op_bits *sub_op; 75 }; 76 77 #define MAX_CMD_BUDGET 0x7fffffff 78 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 79 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 80 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 81 82 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 83 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 84 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 85 86 /* Render Command Map */ 87 88 /* MI_* command Opcode (28:23) */ 89 #define OP_MI_NOOP 0x0 90 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 91 #define OP_MI_USER_INTERRUPT 0x2 92 #define OP_MI_WAIT_FOR_EVENT 0x3 93 #define OP_MI_FLUSH 0x4 94 #define OP_MI_ARB_CHECK 0x5 95 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 96 #define OP_MI_REPORT_HEAD 0x7 97 #define OP_MI_ARB_ON_OFF 0x8 98 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 99 #define OP_MI_BATCH_BUFFER_END 0xA 100 #define OP_MI_SUSPEND_FLUSH 0xB 101 #define OP_MI_PREDICATE 0xC /* IVB+ */ 102 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 103 #define OP_MI_SET_APPID 0xE /* IVB+ */ 104 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 105 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 106 #define OP_MI_DISPLAY_FLIP 0x14 107 #define OP_MI_SEMAPHORE_MBOX 0x16 108 #define OP_MI_SET_CONTEXT 0x18 109 #define OP_MI_MATH 0x1A 110 #define OP_MI_URB_CLEAR 0x19 111 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 112 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 113 114 #define OP_MI_STORE_DATA_IMM 0x20 115 #define OP_MI_STORE_DATA_INDEX 0x21 116 #define OP_MI_LOAD_REGISTER_IMM 0x22 117 #define OP_MI_UPDATE_GTT 0x23 118 #define OP_MI_STORE_REGISTER_MEM 0x24 119 #define OP_MI_FLUSH_DW 0x26 120 #define OP_MI_CLFLUSH 0x27 121 #define OP_MI_REPORT_PERF_COUNT 0x28 122 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 123 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 124 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 125 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 126 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 127 #define OP_MI_2E 0x2E /* BDW+ */ 128 #define OP_MI_2F 0x2F /* BDW+ */ 129 #define OP_MI_BATCH_BUFFER_START 0x31 130 131 /* Bit definition for dword 0 */ 132 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 133 134 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 135 136 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 137 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 138 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 139 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 140 141 /* 2D command: Opcode (28:22) */ 142 #define OP_2D(x) ((2<<7) | x) 143 144 #define OP_XY_SETUP_BLT OP_2D(0x1) 145 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 146 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 147 #define OP_XY_PIXEL_BLT OP_2D(0x24) 148 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 149 #define OP_XY_TEXT_BLT OP_2D(0x26) 150 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 151 #define OP_XY_COLOR_BLT OP_2D(0x50) 152 #define OP_XY_PAT_BLT OP_2D(0x51) 153 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 154 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 155 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 156 #define OP_XY_FULL_BLT OP_2D(0x55) 157 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 158 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 159 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 160 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 161 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 162 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 163 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 164 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 165 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 166 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 167 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 168 169 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 170 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 171 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 172 173 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 174 175 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 176 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 177 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 178 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 179 180 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 181 182 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 183 184 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 185 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 186 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 187 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 188 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 189 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 190 191 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 192 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 193 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 194 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 195 196 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 197 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 198 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 199 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 200 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 201 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 202 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 203 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 204 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 205 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 206 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 207 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 208 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 209 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 210 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 211 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 212 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 213 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 214 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 215 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 216 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 217 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 218 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 219 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 220 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 221 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 222 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 223 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 224 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 225 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 226 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 227 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 238 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 239 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 240 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 241 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 242 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 243 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 244 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 245 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 246 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 247 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 248 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 249 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 250 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 251 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 252 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 253 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 254 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 255 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 256 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 257 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 258 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 259 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 260 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 261 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 262 263 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 264 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 265 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 266 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 267 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 268 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 269 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 270 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 271 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 272 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 273 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 274 275 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 276 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 277 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 278 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 279 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 280 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 281 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 282 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 283 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 284 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 285 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 286 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 287 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 288 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 289 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 295 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 296 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 297 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 298 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 299 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 300 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 301 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 302 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 303 304 /* VCCP Command Parser */ 305 306 /* 307 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 308 * git://anongit.freedesktop.org/vaapi/intel-driver 309 * src/i965_defines.h 310 * 311 */ 312 313 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 314 (3 << 13 | \ 315 (pipeline) << 11 | \ 316 (op) << 8 | \ 317 (sub_opa) << 5 | \ 318 (sub_opb)) 319 320 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 321 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 322 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 323 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 324 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 325 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 326 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 327 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 328 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 329 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 330 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 331 332 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 333 334 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 335 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 336 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 337 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 338 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 339 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 340 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 341 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 342 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 343 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 344 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 345 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 346 347 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 348 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 349 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 350 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 351 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 352 353 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 354 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 355 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 356 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 357 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 358 359 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 360 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 361 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 362 363 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 364 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 365 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 366 367 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 368 (3 << 13 | \ 369 (pipeline) << 11 | \ 370 (op) << 8 | \ 371 (sub_opa) << 5 | \ 372 (sub_opb)) 373 374 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 375 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 376 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 377 378 struct parser_exec_state; 379 380 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 381 382 #define GVT_CMD_HASH_BITS 7 383 384 /* which DWords need address fix */ 385 #define ADDR_FIX_1(x1) (1 << (x1)) 386 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 387 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 388 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 389 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 390 391 #define DWORD_FIELD(dword, end, start) \ 392 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 393 394 #define OP_LENGTH_BIAS 2 395 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 396 397 static int gvt_check_valid_cmd_length(int len, int valid_len) 398 { 399 if (valid_len != len) { 400 gvt_err("len is not valid: len=%u valid_len=%u\n", 401 len, valid_len); 402 return -EFAULT; 403 } 404 return 0; 405 } 406 407 struct cmd_info { 408 const char *name; 409 u32 opcode; 410 411 #define F_LEN_MASK 3U 412 #define F_LEN_CONST 1U 413 #define F_LEN_VAR 0U 414 /* value is const although LEN maybe variable */ 415 #define F_LEN_VAR_FIXED (1<<1) 416 417 /* 418 * command has its own ip advance logic 419 * e.g. MI_BATCH_START, MI_BATCH_END 420 */ 421 #define F_IP_ADVANCE_CUSTOM (1<<2) 422 u32 flag; 423 424 #define R_RCS BIT(RCS0) 425 #define R_VCS1 BIT(VCS0) 426 #define R_VCS2 BIT(VCS1) 427 #define R_VCS (R_VCS1 | R_VCS2) 428 #define R_BCS BIT(BCS0) 429 #define R_VECS BIT(VECS0) 430 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 431 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 432 intel_engine_mask_t rings; 433 434 /* devices that support this cmd: SNB/IVB/HSW/... */ 435 u16 devices; 436 437 /* which DWords are address that need fix up. 438 * bit 0 means a 32-bit non address operand in command 439 * bit 1 means address operand, which could be 32-bit 440 * or 64-bit depending on different architectures.( 441 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 442 * No matter the address length, each address only takes 443 * one bit in the bitmap. 444 */ 445 u16 addr_bitmap; 446 447 /* flag == F_LEN_CONST : command length 448 * flag == F_LEN_VAR : length bias bits 449 * Note: length is in DWord 450 */ 451 u32 len; 452 453 parser_cmd_handler handler; 454 455 /* valid length in DWord */ 456 u32 valid_len; 457 }; 458 459 struct cmd_entry { 460 struct hlist_node hlist; 461 const struct cmd_info *info; 462 }; 463 464 enum { 465 RING_BUFFER_INSTRUCTION, 466 BATCH_BUFFER_INSTRUCTION, 467 BATCH_BUFFER_2ND_LEVEL, 468 RING_BUFFER_CTX, 469 }; 470 471 enum { 472 GTT_BUFFER, 473 PPGTT_BUFFER 474 }; 475 476 struct parser_exec_state { 477 struct intel_vgpu *vgpu; 478 const struct intel_engine_cs *engine; 479 480 int buf_type; 481 482 /* batch buffer address type */ 483 int buf_addr_type; 484 485 /* graphics memory address of ring buffer start */ 486 unsigned long ring_start; 487 unsigned long ring_size; 488 unsigned long ring_head; 489 unsigned long ring_tail; 490 491 /* instruction graphics memory address */ 492 unsigned long ip_gma; 493 494 /* mapped va of the instr_gma */ 495 void *ip_va; 496 void *rb_va; 497 498 void *ret_bb_va; 499 /* next instruction when return from batch buffer to ring buffer */ 500 unsigned long ret_ip_gma_ring; 501 502 /* next instruction when return from 2nd batch buffer to batch buffer */ 503 unsigned long ret_ip_gma_bb; 504 505 /* batch buffer address type (GTT or PPGTT) 506 * used when ret from 2nd level batch buffer 507 */ 508 int saved_buf_addr_type; 509 bool is_ctx_wa; 510 bool is_init_ctx; 511 512 const struct cmd_info *info; 513 514 struct intel_vgpu_workload *workload; 515 }; 516 517 #define gmadr_dw_number(s) \ 518 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 519 520 static unsigned long bypass_scan_mask = 0; 521 522 /* ring ALL, type = 0 */ 523 static const struct sub_op_bits sub_op_mi[] = { 524 {31, 29}, 525 {28, 23}, 526 }; 527 528 static const struct decode_info decode_info_mi = { 529 "MI", 530 OP_LEN_MI, 531 ARRAY_SIZE(sub_op_mi), 532 sub_op_mi, 533 }; 534 535 /* ring RCS, command type 2 */ 536 static const struct sub_op_bits sub_op_2d[] = { 537 {31, 29}, 538 {28, 22}, 539 }; 540 541 static const struct decode_info decode_info_2d = { 542 "2D", 543 OP_LEN_2D, 544 ARRAY_SIZE(sub_op_2d), 545 sub_op_2d, 546 }; 547 548 /* ring RCS, command type 3 */ 549 static const struct sub_op_bits sub_op_3d_media[] = { 550 {31, 29}, 551 {28, 27}, 552 {26, 24}, 553 {23, 16}, 554 }; 555 556 static const struct decode_info decode_info_3d_media = { 557 "3D_Media", 558 OP_LEN_3D_MEDIA, 559 ARRAY_SIZE(sub_op_3d_media), 560 sub_op_3d_media, 561 }; 562 563 /* ring VCS, command type 3 */ 564 static const struct sub_op_bits sub_op_mfx_vc[] = { 565 {31, 29}, 566 {28, 27}, 567 {26, 24}, 568 {23, 21}, 569 {20, 16}, 570 }; 571 572 static const struct decode_info decode_info_mfx_vc = { 573 "MFX_VC", 574 OP_LEN_MFX_VC, 575 ARRAY_SIZE(sub_op_mfx_vc), 576 sub_op_mfx_vc, 577 }; 578 579 /* ring VECS, command type 3 */ 580 static const struct sub_op_bits sub_op_vebox[] = { 581 {31, 29}, 582 {28, 27}, 583 {26, 24}, 584 {23, 21}, 585 {20, 16}, 586 }; 587 588 static const struct decode_info decode_info_vebox = { 589 "VEBOX", 590 OP_LEN_VEBOX, 591 ARRAY_SIZE(sub_op_vebox), 592 sub_op_vebox, 593 }; 594 595 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 596 [RCS0] = { 597 &decode_info_mi, 598 NULL, 599 NULL, 600 &decode_info_3d_media, 601 NULL, 602 NULL, 603 NULL, 604 NULL, 605 }, 606 607 [VCS0] = { 608 &decode_info_mi, 609 NULL, 610 NULL, 611 &decode_info_mfx_vc, 612 NULL, 613 NULL, 614 NULL, 615 NULL, 616 }, 617 618 [BCS0] = { 619 &decode_info_mi, 620 NULL, 621 &decode_info_2d, 622 NULL, 623 NULL, 624 NULL, 625 NULL, 626 NULL, 627 }, 628 629 [VECS0] = { 630 &decode_info_mi, 631 NULL, 632 NULL, 633 &decode_info_vebox, 634 NULL, 635 NULL, 636 NULL, 637 NULL, 638 }, 639 640 [VCS1] = { 641 &decode_info_mi, 642 NULL, 643 NULL, 644 &decode_info_mfx_vc, 645 NULL, 646 NULL, 647 NULL, 648 NULL, 649 }, 650 }; 651 652 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 653 { 654 const struct decode_info *d_info; 655 656 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 657 if (d_info == NULL) 658 return INVALID_OP; 659 660 return cmd >> (32 - d_info->op_len); 661 } 662 663 static inline const struct cmd_info * 664 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 665 const struct intel_engine_cs *engine) 666 { 667 struct cmd_entry *e; 668 669 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 670 if (opcode == e->info->opcode && 671 e->info->rings & engine->mask) 672 return e->info; 673 } 674 return NULL; 675 } 676 677 static inline const struct cmd_info * 678 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 679 const struct intel_engine_cs *engine) 680 { 681 u32 opcode; 682 683 opcode = get_opcode(cmd, engine); 684 if (opcode == INVALID_OP) 685 return NULL; 686 687 return find_cmd_entry(gvt, opcode, engine); 688 } 689 690 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 691 { 692 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 693 } 694 695 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 696 { 697 const struct decode_info *d_info; 698 int i; 699 700 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 701 if (d_info == NULL) 702 return; 703 704 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 705 cmd >> (32 - d_info->op_len), d_info->name); 706 707 for (i = 0; i < d_info->nr_sub_op; i++) 708 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 709 d_info->sub_op[i].low)); 710 711 pr_err("\n"); 712 } 713 714 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 715 { 716 return s->ip_va + (index << 2); 717 } 718 719 static inline u32 cmd_val(struct parser_exec_state *s, int index) 720 { 721 return *cmd_ptr(s, index); 722 } 723 724 static inline bool is_init_ctx(struct parser_exec_state *s) 725 { 726 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 727 } 728 729 static void parser_exec_state_dump(struct parser_exec_state *s) 730 { 731 int cnt = 0; 732 int i; 733 734 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 735 " ring_head(%08lx) ring_tail(%08lx)\n", 736 s->vgpu->id, s->engine->name, 737 s->ring_start, s->ring_start + s->ring_size, 738 s->ring_head, s->ring_tail); 739 740 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 741 s->buf_type == RING_BUFFER_INSTRUCTION ? 742 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 743 "CTX_BUFFER" : "BATCH_BUFFER"), 744 s->buf_addr_type == GTT_BUFFER ? 745 "GTT" : "PPGTT", s->ip_gma); 746 747 if (s->ip_va == NULL) { 748 gvt_dbg_cmd(" ip_va(NULL)"); 749 return; 750 } 751 752 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 753 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 754 cmd_val(s, 2), cmd_val(s, 3)); 755 756 print_opcode(cmd_val(s, 0), s->engine); 757 758 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 759 760 while (cnt < 1024) { 761 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 762 for (i = 0; i < 8; i++) 763 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 764 gvt_dbg_cmd("\n"); 765 766 s->ip_va += 8 * sizeof(u32); 767 cnt += 8; 768 } 769 } 770 771 static inline void update_ip_va(struct parser_exec_state *s) 772 { 773 unsigned long len = 0; 774 775 if (WARN_ON(s->ring_head == s->ring_tail)) 776 return; 777 778 if (s->buf_type == RING_BUFFER_INSTRUCTION || 779 s->buf_type == RING_BUFFER_CTX) { 780 unsigned long ring_top = s->ring_start + s->ring_size; 781 782 if (s->ring_head > s->ring_tail) { 783 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 784 len = (s->ip_gma - s->ring_head); 785 else if (s->ip_gma >= s->ring_start && 786 s->ip_gma <= s->ring_tail) 787 len = (ring_top - s->ring_head) + 788 (s->ip_gma - s->ring_start); 789 } else 790 len = (s->ip_gma - s->ring_head); 791 792 s->ip_va = s->rb_va + len; 793 } else {/* shadow batch buffer */ 794 s->ip_va = s->ret_bb_va; 795 } 796 } 797 798 static inline int ip_gma_set(struct parser_exec_state *s, 799 unsigned long ip_gma) 800 { 801 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 802 803 s->ip_gma = ip_gma; 804 update_ip_va(s); 805 return 0; 806 } 807 808 static inline int ip_gma_advance(struct parser_exec_state *s, 809 unsigned int dw_len) 810 { 811 s->ip_gma += (dw_len << 2); 812 813 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 814 if (s->ip_gma >= s->ring_start + s->ring_size) 815 s->ip_gma -= s->ring_size; 816 update_ip_va(s); 817 } else { 818 s->ip_va += (dw_len << 2); 819 } 820 821 return 0; 822 } 823 824 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 825 { 826 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 827 return info->len; 828 else 829 return (cmd & ((1U << info->len) - 1)) + 2; 830 return 0; 831 } 832 833 static inline int cmd_length(struct parser_exec_state *s) 834 { 835 return get_cmd_length(s->info, cmd_val(s, 0)); 836 } 837 838 /* do not remove this, some platform may need clflush here */ 839 #define patch_value(s, addr, val) do { \ 840 *addr = val; \ 841 } while (0) 842 843 static inline bool is_mocs_mmio(unsigned int offset) 844 { 845 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 846 ((offset >= 0xb020) && (offset <= 0xb0a0)); 847 } 848 849 static int is_cmd_update_pdps(unsigned int offset, 850 struct parser_exec_state *s) 851 { 852 u32 base = s->workload->engine->mmio_base; 853 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 854 } 855 856 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 857 unsigned int offset, unsigned int index) 858 { 859 struct intel_vgpu *vgpu = s->vgpu; 860 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 861 struct intel_vgpu_mm *mm; 862 u64 pdps[GEN8_3LVL_PDPES]; 863 864 if (shadow_mm->ppgtt_mm.root_entry_type == 865 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 866 pdps[0] = (u64)cmd_val(s, 2) << 32; 867 pdps[0] |= cmd_val(s, 4); 868 869 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 870 if (!mm) { 871 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 872 return -EINVAL; 873 } 874 intel_vgpu_mm_get(mm); 875 list_add_tail(&mm->ppgtt_mm.link, 876 &s->workload->lri_shadow_mm); 877 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 878 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 879 } else { 880 /* Currently all guests use PML4 table and now can't 881 * have a guest with 3-level table but uses LRI for 882 * PPGTT update. So this is simply un-testable. */ 883 GEM_BUG_ON(1); 884 gvt_vgpu_err("invalid shared shadow vm type\n"); 885 return -EINVAL; 886 } 887 return 0; 888 } 889 890 static int cmd_reg_handler(struct parser_exec_state *s, 891 unsigned int offset, unsigned int index, char *cmd) 892 { 893 struct intel_vgpu *vgpu = s->vgpu; 894 struct intel_gvt *gvt = vgpu->gvt; 895 u32 ctx_sr_ctl; 896 u32 *vreg, vreg_old; 897 898 if (offset + 4 > gvt->device_info.mmio_size) { 899 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 900 cmd, offset); 901 return -EFAULT; 902 } 903 904 if (is_init_ctx(s)) { 905 struct intel_gvt_mmio_info *mmio_info; 906 907 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 908 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 909 if (mmio_info && mmio_info->write) 910 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 911 return 0; 912 } 913 914 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 915 gvt_vgpu_err("%s access to non-render register (%x)\n", 916 cmd, offset); 917 return -EBADRQC; 918 } 919 920 if (!strncmp(cmd, "srm", 3) || 921 !strncmp(cmd, "lrm", 3)) { 922 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 923 offset == 0x21f0 || 924 (IS_BROADWELL(gvt->gt->i915) && 925 offset == i915_mmio_reg_offset(INSTPM))) 926 return 0; 927 else { 928 gvt_vgpu_err("%s access to register (%x)\n", 929 cmd, offset); 930 return -EPERM; 931 } 932 } 933 934 if (!strncmp(cmd, "lrr-src", 7) || 935 !strncmp(cmd, "lrr-dst", 7)) { 936 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 937 return 0; 938 else { 939 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 940 return -EPERM; 941 } 942 } 943 944 if (!strncmp(cmd, "pipe_ctrl", 9)) { 945 /* TODO: add LRI POST logic here */ 946 return 0; 947 } 948 949 if (strncmp(cmd, "lri", 3)) 950 return -EPERM; 951 952 /* below are all lri handlers */ 953 vreg = &vgpu_vreg(s->vgpu, offset); 954 955 if (is_cmd_update_pdps(offset, s) && 956 cmd_pdp_mmio_update_handler(s, offset, index)) 957 return -EINVAL; 958 959 if (offset == i915_mmio_reg_offset(DERRMR) || 960 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 961 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 962 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 963 } 964 965 if (is_mocs_mmio(offset)) 966 *vreg = cmd_val(s, index + 1); 967 968 vreg_old = *vreg; 969 970 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 971 u32 cmdval_new, cmdval; 972 struct intel_gvt_mmio_info *mmio_info; 973 974 cmdval = cmd_val(s, index + 1); 975 976 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 977 if (!mmio_info) { 978 cmdval_new = cmdval; 979 } else { 980 u64 ro_mask = mmio_info->ro_mask; 981 int ret; 982 983 if (likely(!ro_mask)) 984 ret = mmio_info->write(s->vgpu, offset, 985 &cmdval, 4); 986 else { 987 gvt_vgpu_err("try to write RO reg %x\n", 988 offset); 989 ret = -EBADRQC; 990 } 991 if (ret) 992 return ret; 993 cmdval_new = *vreg; 994 } 995 if (cmdval_new != cmdval) 996 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 997 } 998 999 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 1000 *vreg = vreg_old; 1001 1002 /* TODO 1003 * In order to let workload with inhibit context to generate 1004 * correct image data into memory, vregs values will be loaded to 1005 * hw via LRIs in the workload with inhibit context. But as 1006 * indirect context is loaded prior to LRIs in workload, we don't 1007 * want reg values specified in indirect context overwritten by 1008 * LRIs in workloads. So, when scanning an indirect context, we 1009 * update reg values in it into vregs, so LRIs in workload with 1010 * inhibit context will restore with correct values 1011 */ 1012 if (GRAPHICS_VER(s->engine->i915) == 9 && 1013 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1014 !strncmp(cmd, "lri", 3)) { 1015 intel_gvt_read_gpa(s->vgpu, 1016 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1017 /* check inhibit context */ 1018 if (ctx_sr_ctl & 1) { 1019 u32 data = cmd_val(s, index + 1); 1020 1021 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1022 intel_vgpu_mask_mmio_write(vgpu, 1023 offset, &data, 4); 1024 else 1025 vgpu_vreg(vgpu, offset) = data; 1026 } 1027 } 1028 1029 return 0; 1030 } 1031 1032 #define cmd_reg(s, i) \ 1033 (cmd_val(s, i) & GENMASK(22, 2)) 1034 1035 #define cmd_reg_inhibit(s, i) \ 1036 (cmd_val(s, i) & GENMASK(22, 18)) 1037 1038 #define cmd_gma(s, i) \ 1039 (cmd_val(s, i) & GENMASK(31, 2)) 1040 1041 #define cmd_gma_hi(s, i) \ 1042 (cmd_val(s, i) & GENMASK(15, 0)) 1043 1044 static int cmd_handler_lri(struct parser_exec_state *s) 1045 { 1046 int i, ret = 0; 1047 int cmd_len = cmd_length(s); 1048 1049 for (i = 1; i < cmd_len; i += 2) { 1050 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1051 if (s->engine->id == BCS0 && 1052 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1053 ret |= 0; 1054 else 1055 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1056 } 1057 if (ret) 1058 break; 1059 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1060 if (ret) 1061 break; 1062 } 1063 return ret; 1064 } 1065 1066 static int cmd_handler_lrr(struct parser_exec_state *s) 1067 { 1068 int i, ret = 0; 1069 int cmd_len = cmd_length(s); 1070 1071 for (i = 1; i < cmd_len; i += 2) { 1072 if (IS_BROADWELL(s->engine->i915)) 1073 ret |= ((cmd_reg_inhibit(s, i) || 1074 (cmd_reg_inhibit(s, i + 1)))) ? 1075 -EBADRQC : 0; 1076 if (ret) 1077 break; 1078 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1079 if (ret) 1080 break; 1081 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1082 if (ret) 1083 break; 1084 } 1085 return ret; 1086 } 1087 1088 static inline int cmd_address_audit(struct parser_exec_state *s, 1089 unsigned long guest_gma, int op_size, bool index_mode); 1090 1091 static int cmd_handler_lrm(struct parser_exec_state *s) 1092 { 1093 struct intel_gvt *gvt = s->vgpu->gvt; 1094 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1095 unsigned long gma; 1096 int i, ret = 0; 1097 int cmd_len = cmd_length(s); 1098 1099 for (i = 1; i < cmd_len;) { 1100 if (IS_BROADWELL(s->engine->i915)) 1101 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1102 if (ret) 1103 break; 1104 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1105 if (ret) 1106 break; 1107 if (cmd_val(s, 0) & (1 << 22)) { 1108 gma = cmd_gma(s, i + 1); 1109 if (gmadr_bytes == 8) 1110 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1111 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1112 if (ret) 1113 break; 1114 } 1115 i += gmadr_dw_number(s) + 1; 1116 } 1117 return ret; 1118 } 1119 1120 static int cmd_handler_srm(struct parser_exec_state *s) 1121 { 1122 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1123 unsigned long gma; 1124 int i, ret = 0; 1125 int cmd_len = cmd_length(s); 1126 1127 for (i = 1; i < cmd_len;) { 1128 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1129 if (ret) 1130 break; 1131 if (cmd_val(s, 0) & (1 << 22)) { 1132 gma = cmd_gma(s, i + 1); 1133 if (gmadr_bytes == 8) 1134 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1135 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1136 if (ret) 1137 break; 1138 } 1139 i += gmadr_dw_number(s) + 1; 1140 } 1141 return ret; 1142 } 1143 1144 struct cmd_interrupt_event { 1145 int pipe_control_notify; 1146 int mi_flush_dw; 1147 int mi_user_interrupt; 1148 }; 1149 1150 static const struct cmd_interrupt_event cmd_interrupt_events[] = { 1151 [RCS0] = { 1152 .pipe_control_notify = RCS_PIPE_CONTROL, 1153 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1154 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1155 }, 1156 [BCS0] = { 1157 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1158 .mi_flush_dw = BCS_MI_FLUSH_DW, 1159 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1160 }, 1161 [VCS0] = { 1162 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1163 .mi_flush_dw = VCS_MI_FLUSH_DW, 1164 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1165 }, 1166 [VCS1] = { 1167 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1168 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1169 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1170 }, 1171 [VECS0] = { 1172 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1173 .mi_flush_dw = VECS_MI_FLUSH_DW, 1174 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1175 }, 1176 }; 1177 1178 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1179 { 1180 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1181 unsigned long gma; 1182 bool index_mode = false; 1183 unsigned int post_sync; 1184 int ret = 0; 1185 u32 hws_pga, val; 1186 1187 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1188 1189 /* LRI post sync */ 1190 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1191 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1192 /* post sync */ 1193 else if (post_sync) { 1194 if (post_sync == 2) 1195 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1196 else if (post_sync == 3) 1197 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1198 else if (post_sync == 1) { 1199 /* check ggtt*/ 1200 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1201 gma = cmd_val(s, 2) & GENMASK(31, 3); 1202 if (gmadr_bytes == 8) 1203 gma |= (cmd_gma_hi(s, 3)) << 32; 1204 /* Store Data Index */ 1205 if (cmd_val(s, 1) & (1 << 21)) 1206 index_mode = true; 1207 ret |= cmd_address_audit(s, gma, sizeof(u64), 1208 index_mode); 1209 if (ret) 1210 return ret; 1211 if (index_mode) { 1212 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1213 gma = hws_pga + gma; 1214 patch_value(s, cmd_ptr(s, 2), gma); 1215 val = cmd_val(s, 1) & (~(1 << 21)); 1216 patch_value(s, cmd_ptr(s, 1), val); 1217 } 1218 } 1219 } 1220 } 1221 1222 if (ret) 1223 return ret; 1224 1225 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1226 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1227 s->workload->pending_events); 1228 return 0; 1229 } 1230 1231 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1232 { 1233 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1234 s->workload->pending_events); 1235 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1236 return 0; 1237 } 1238 1239 static int cmd_advance_default(struct parser_exec_state *s) 1240 { 1241 return ip_gma_advance(s, cmd_length(s)); 1242 } 1243 1244 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1245 { 1246 int ret; 1247 1248 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1249 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1250 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1251 s->buf_addr_type = s->saved_buf_addr_type; 1252 } else if (s->buf_type == RING_BUFFER_CTX) { 1253 ret = ip_gma_set(s, s->ring_tail); 1254 } else { 1255 s->buf_type = RING_BUFFER_INSTRUCTION; 1256 s->buf_addr_type = GTT_BUFFER; 1257 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1258 s->ret_ip_gma_ring -= s->ring_size; 1259 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1260 } 1261 return ret; 1262 } 1263 1264 struct mi_display_flip_command_info { 1265 int pipe; 1266 int plane; 1267 int event; 1268 i915_reg_t stride_reg; 1269 i915_reg_t ctrl_reg; 1270 i915_reg_t surf_reg; 1271 u64 stride_val; 1272 u64 tile_val; 1273 u64 surf_val; 1274 bool async_flip; 1275 }; 1276 1277 struct plane_code_mapping { 1278 int pipe; 1279 int plane; 1280 int event; 1281 }; 1282 1283 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1284 struct mi_display_flip_command_info *info) 1285 { 1286 struct drm_i915_private *dev_priv = s->engine->i915; 1287 struct plane_code_mapping gen8_plane_code[] = { 1288 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1289 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1290 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1291 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1292 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1293 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1294 }; 1295 u32 dword0, dword1, dword2; 1296 u32 v; 1297 1298 dword0 = cmd_val(s, 0); 1299 dword1 = cmd_val(s, 1); 1300 dword2 = cmd_val(s, 2); 1301 1302 v = (dword0 & GENMASK(21, 19)) >> 19; 1303 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1304 return -EBADRQC; 1305 1306 info->pipe = gen8_plane_code[v].pipe; 1307 info->plane = gen8_plane_code[v].plane; 1308 info->event = gen8_plane_code[v].event; 1309 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1310 info->tile_val = (dword1 & 0x1); 1311 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1312 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1313 1314 if (info->plane == PLANE_A) { 1315 info->ctrl_reg = DSPCNTR(info->pipe); 1316 info->stride_reg = DSPSTRIDE(info->pipe); 1317 info->surf_reg = DSPSURF(info->pipe); 1318 } else if (info->plane == PLANE_B) { 1319 info->ctrl_reg = SPRCTL(info->pipe); 1320 info->stride_reg = SPRSTRIDE(info->pipe); 1321 info->surf_reg = SPRSURF(info->pipe); 1322 } else { 1323 drm_WARN_ON(&dev_priv->drm, 1); 1324 return -EBADRQC; 1325 } 1326 return 0; 1327 } 1328 1329 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1330 struct mi_display_flip_command_info *info) 1331 { 1332 struct drm_i915_private *dev_priv = s->engine->i915; 1333 struct intel_vgpu *vgpu = s->vgpu; 1334 u32 dword0 = cmd_val(s, 0); 1335 u32 dword1 = cmd_val(s, 1); 1336 u32 dword2 = cmd_val(s, 2); 1337 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1338 1339 info->plane = PRIMARY_PLANE; 1340 1341 switch (plane) { 1342 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1343 info->pipe = PIPE_A; 1344 info->event = PRIMARY_A_FLIP_DONE; 1345 break; 1346 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1347 info->pipe = PIPE_B; 1348 info->event = PRIMARY_B_FLIP_DONE; 1349 break; 1350 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1351 info->pipe = PIPE_C; 1352 info->event = PRIMARY_C_FLIP_DONE; 1353 break; 1354 1355 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1356 info->pipe = PIPE_A; 1357 info->event = SPRITE_A_FLIP_DONE; 1358 info->plane = SPRITE_PLANE; 1359 break; 1360 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1361 info->pipe = PIPE_B; 1362 info->event = SPRITE_B_FLIP_DONE; 1363 info->plane = SPRITE_PLANE; 1364 break; 1365 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1366 info->pipe = PIPE_C; 1367 info->event = SPRITE_C_FLIP_DONE; 1368 info->plane = SPRITE_PLANE; 1369 break; 1370 1371 default: 1372 gvt_vgpu_err("unknown plane code %d\n", plane); 1373 return -EBADRQC; 1374 } 1375 1376 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1377 info->tile_val = (dword1 & GENMASK(2, 0)); 1378 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1379 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1380 1381 info->ctrl_reg = DSPCNTR(info->pipe); 1382 info->stride_reg = DSPSTRIDE(info->pipe); 1383 info->surf_reg = DSPSURF(info->pipe); 1384 1385 return 0; 1386 } 1387 1388 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1389 struct mi_display_flip_command_info *info) 1390 { 1391 u32 stride, tile; 1392 1393 if (!info->async_flip) 1394 return 0; 1395 1396 if (GRAPHICS_VER(s->engine->i915) >= 9) { 1397 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1398 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1399 GENMASK(12, 10)) >> 10; 1400 } else { 1401 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1402 GENMASK(15, 6)) >> 6; 1403 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1404 } 1405 1406 if (stride != info->stride_val) 1407 gvt_dbg_cmd("cannot change stride during async flip\n"); 1408 1409 if (tile != info->tile_val) 1410 gvt_dbg_cmd("cannot change tile during async flip\n"); 1411 1412 return 0; 1413 } 1414 1415 static int gen8_update_plane_mmio_from_mi_display_flip( 1416 struct parser_exec_state *s, 1417 struct mi_display_flip_command_info *info) 1418 { 1419 struct drm_i915_private *dev_priv = s->engine->i915; 1420 struct intel_vgpu *vgpu = s->vgpu; 1421 1422 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1423 info->surf_val << 12); 1424 if (GRAPHICS_VER(dev_priv) >= 9) { 1425 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1426 info->stride_val); 1427 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1428 info->tile_val << 10); 1429 } else { 1430 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1431 info->stride_val << 6); 1432 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1433 info->tile_val << 10); 1434 } 1435 1436 if (info->plane == PLANE_PRIMARY) 1437 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1438 1439 if (info->async_flip) 1440 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1441 else 1442 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1443 1444 return 0; 1445 } 1446 1447 static int decode_mi_display_flip(struct parser_exec_state *s, 1448 struct mi_display_flip_command_info *info) 1449 { 1450 if (IS_BROADWELL(s->engine->i915)) 1451 return gen8_decode_mi_display_flip(s, info); 1452 if (GRAPHICS_VER(s->engine->i915) >= 9) 1453 return skl_decode_mi_display_flip(s, info); 1454 1455 return -ENODEV; 1456 } 1457 1458 static int check_mi_display_flip(struct parser_exec_state *s, 1459 struct mi_display_flip_command_info *info) 1460 { 1461 return gen8_check_mi_display_flip(s, info); 1462 } 1463 1464 static int update_plane_mmio_from_mi_display_flip( 1465 struct parser_exec_state *s, 1466 struct mi_display_flip_command_info *info) 1467 { 1468 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1469 } 1470 1471 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1472 { 1473 struct mi_display_flip_command_info info; 1474 struct intel_vgpu *vgpu = s->vgpu; 1475 int ret; 1476 int i; 1477 int len = cmd_length(s); 1478 u32 valid_len = CMD_LEN(1); 1479 1480 /* Flip Type == Stereo 3D Flip */ 1481 if (DWORD_FIELD(2, 1, 0) == 2) 1482 valid_len++; 1483 ret = gvt_check_valid_cmd_length(cmd_length(s), 1484 valid_len); 1485 if (ret) 1486 return ret; 1487 1488 ret = decode_mi_display_flip(s, &info); 1489 if (ret) { 1490 gvt_vgpu_err("fail to decode MI display flip command\n"); 1491 return ret; 1492 } 1493 1494 ret = check_mi_display_flip(s, &info); 1495 if (ret) { 1496 gvt_vgpu_err("invalid MI display flip command\n"); 1497 return ret; 1498 } 1499 1500 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1501 if (ret) { 1502 gvt_vgpu_err("fail to update plane mmio\n"); 1503 return ret; 1504 } 1505 1506 for (i = 0; i < len; i++) 1507 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1508 return 0; 1509 } 1510 1511 static bool is_wait_for_flip_pending(u32 cmd) 1512 { 1513 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1514 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1515 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1516 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1517 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1518 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1519 } 1520 1521 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1522 { 1523 u32 cmd = cmd_val(s, 0); 1524 1525 if (!is_wait_for_flip_pending(cmd)) 1526 return 0; 1527 1528 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1529 return 0; 1530 } 1531 1532 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1533 { 1534 unsigned long addr; 1535 unsigned long gma_high, gma_low; 1536 struct intel_vgpu *vgpu = s->vgpu; 1537 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1538 1539 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1540 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1541 return INTEL_GVT_INVALID_ADDR; 1542 } 1543 1544 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1545 if (gmadr_bytes == 4) { 1546 addr = gma_low; 1547 } else { 1548 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1549 addr = (((unsigned long)gma_high) << 32) | gma_low; 1550 } 1551 return addr; 1552 } 1553 1554 static inline int cmd_address_audit(struct parser_exec_state *s, 1555 unsigned long guest_gma, int op_size, bool index_mode) 1556 { 1557 struct intel_vgpu *vgpu = s->vgpu; 1558 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1559 int i; 1560 int ret; 1561 1562 if (op_size > max_surface_size) { 1563 gvt_vgpu_err("command address audit fail name %s\n", 1564 s->info->name); 1565 return -EFAULT; 1566 } 1567 1568 if (index_mode) { 1569 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1570 ret = -EFAULT; 1571 goto err; 1572 } 1573 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1574 ret = -EFAULT; 1575 goto err; 1576 } 1577 1578 return 0; 1579 1580 err: 1581 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1582 s->info->name, guest_gma, op_size); 1583 1584 pr_err("cmd dump: "); 1585 for (i = 0; i < cmd_length(s); i++) { 1586 if (!(i % 4)) 1587 pr_err("\n%08x ", cmd_val(s, i)); 1588 else 1589 pr_err("%08x ", cmd_val(s, i)); 1590 } 1591 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1592 vgpu->id, 1593 vgpu_aperture_gmadr_base(vgpu), 1594 vgpu_aperture_gmadr_end(vgpu), 1595 vgpu_hidden_gmadr_base(vgpu), 1596 vgpu_hidden_gmadr_end(vgpu)); 1597 return ret; 1598 } 1599 1600 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1601 { 1602 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1603 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1604 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1605 unsigned long gma, gma_low, gma_high; 1606 u32 valid_len = CMD_LEN(2); 1607 int ret = 0; 1608 1609 /* check ppggt */ 1610 if (!(cmd_val(s, 0) & (1 << 22))) 1611 return 0; 1612 1613 /* check if QWORD */ 1614 if (DWORD_FIELD(0, 21, 21)) 1615 valid_len++; 1616 ret = gvt_check_valid_cmd_length(cmd_length(s), 1617 valid_len); 1618 if (ret) 1619 return ret; 1620 1621 gma = cmd_val(s, 2) & GENMASK(31, 2); 1622 1623 if (gmadr_bytes == 8) { 1624 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1625 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1626 gma = (gma_high << 32) | gma_low; 1627 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1628 } 1629 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1630 return ret; 1631 } 1632 1633 static inline int unexpected_cmd(struct parser_exec_state *s) 1634 { 1635 struct intel_vgpu *vgpu = s->vgpu; 1636 1637 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1638 1639 return -EBADRQC; 1640 } 1641 1642 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1643 { 1644 return unexpected_cmd(s); 1645 } 1646 1647 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1648 { 1649 return unexpected_cmd(s); 1650 } 1651 1652 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1653 { 1654 return unexpected_cmd(s); 1655 } 1656 1657 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1658 { 1659 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1660 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1661 sizeof(u32); 1662 unsigned long gma, gma_high; 1663 u32 valid_len = CMD_LEN(1); 1664 int ret = 0; 1665 1666 if (!(cmd_val(s, 0) & (1 << 22))) 1667 return ret; 1668 1669 /* check inline data */ 1670 if (cmd_val(s, 0) & BIT(18)) 1671 valid_len = CMD_LEN(9); 1672 ret = gvt_check_valid_cmd_length(cmd_length(s), 1673 valid_len); 1674 if (ret) 1675 return ret; 1676 1677 gma = cmd_val(s, 1) & GENMASK(31, 2); 1678 if (gmadr_bytes == 8) { 1679 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1680 gma = (gma_high << 32) | gma; 1681 } 1682 ret = cmd_address_audit(s, gma, op_size, false); 1683 return ret; 1684 } 1685 1686 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1687 { 1688 return unexpected_cmd(s); 1689 } 1690 1691 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1692 { 1693 return unexpected_cmd(s); 1694 } 1695 1696 static int cmd_handler_mi_conditional_batch_buffer_end( 1697 struct parser_exec_state *s) 1698 { 1699 return unexpected_cmd(s); 1700 } 1701 1702 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1703 { 1704 return unexpected_cmd(s); 1705 } 1706 1707 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1708 { 1709 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1710 unsigned long gma; 1711 bool index_mode = false; 1712 int ret = 0; 1713 u32 hws_pga, val; 1714 u32 valid_len = CMD_LEN(2); 1715 1716 ret = gvt_check_valid_cmd_length(cmd_length(s), 1717 valid_len); 1718 if (ret) { 1719 /* Check again for Qword */ 1720 ret = gvt_check_valid_cmd_length(cmd_length(s), 1721 ++valid_len); 1722 return ret; 1723 } 1724 1725 /* Check post-sync and ppgtt bit */ 1726 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1727 gma = cmd_val(s, 1) & GENMASK(31, 3); 1728 if (gmadr_bytes == 8) 1729 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1730 /* Store Data Index */ 1731 if (cmd_val(s, 0) & (1 << 21)) 1732 index_mode = true; 1733 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1734 if (ret) 1735 return ret; 1736 if (index_mode) { 1737 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1738 gma = hws_pga + gma; 1739 patch_value(s, cmd_ptr(s, 1), gma); 1740 val = cmd_val(s, 0) & (~(1 << 21)); 1741 patch_value(s, cmd_ptr(s, 0), val); 1742 } 1743 } 1744 /* Check notify bit */ 1745 if ((cmd_val(s, 0) & (1 << 8))) 1746 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1747 s->workload->pending_events); 1748 return ret; 1749 } 1750 1751 static void addr_type_update_snb(struct parser_exec_state *s) 1752 { 1753 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1754 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1755 s->buf_addr_type = PPGTT_BUFFER; 1756 } 1757 } 1758 1759 1760 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1761 unsigned long gma, unsigned long end_gma, void *va) 1762 { 1763 unsigned long copy_len, offset; 1764 unsigned long len = 0; 1765 unsigned long gpa; 1766 1767 while (gma != end_gma) { 1768 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1769 if (gpa == INTEL_GVT_INVALID_ADDR) { 1770 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1771 return -EFAULT; 1772 } 1773 1774 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1775 1776 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1777 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1778 1779 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); 1780 1781 len += copy_len; 1782 gma += copy_len; 1783 } 1784 return len; 1785 } 1786 1787 1788 /* 1789 * Check whether a batch buffer needs to be scanned. Currently 1790 * the only criteria is based on privilege. 1791 */ 1792 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1793 { 1794 /* Decide privilege based on address space */ 1795 if (cmd_val(s, 0) & BIT(8) && 1796 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1797 return 0; 1798 1799 return 1; 1800 } 1801 1802 static const char *repr_addr_type(unsigned int type) 1803 { 1804 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1805 } 1806 1807 static int find_bb_size(struct parser_exec_state *s, 1808 unsigned long *bb_size, 1809 unsigned long *bb_end_cmd_offset) 1810 { 1811 unsigned long gma = 0; 1812 const struct cmd_info *info; 1813 u32 cmd_len = 0; 1814 bool bb_end = false; 1815 struct intel_vgpu *vgpu = s->vgpu; 1816 u32 cmd; 1817 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1818 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1819 1820 *bb_size = 0; 1821 *bb_end_cmd_offset = 0; 1822 1823 /* get the start gm address of the batch buffer */ 1824 gma = get_gma_bb_from_cmd(s, 1); 1825 if (gma == INTEL_GVT_INVALID_ADDR) 1826 return -EFAULT; 1827 1828 cmd = cmd_val(s, 0); 1829 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1830 if (info == NULL) { 1831 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1832 cmd, get_opcode(cmd, s->engine), 1833 repr_addr_type(s->buf_addr_type), 1834 s->engine->name, s->workload); 1835 return -EBADRQC; 1836 } 1837 do { 1838 if (copy_gma_to_hva(s->vgpu, mm, 1839 gma, gma + 4, &cmd) < 0) 1840 return -EFAULT; 1841 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1842 if (info == NULL) { 1843 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1844 cmd, get_opcode(cmd, s->engine), 1845 repr_addr_type(s->buf_addr_type), 1846 s->engine->name, s->workload); 1847 return -EBADRQC; 1848 } 1849 1850 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1851 bb_end = true; 1852 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1853 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1854 /* chained batch buffer */ 1855 bb_end = true; 1856 } 1857 1858 if (bb_end) 1859 *bb_end_cmd_offset = *bb_size; 1860 1861 cmd_len = get_cmd_length(info, cmd) << 2; 1862 *bb_size += cmd_len; 1863 gma += cmd_len; 1864 } while (!bb_end); 1865 1866 return 0; 1867 } 1868 1869 static int audit_bb_end(struct parser_exec_state *s, void *va) 1870 { 1871 struct intel_vgpu *vgpu = s->vgpu; 1872 u32 cmd = *(u32 *)va; 1873 const struct cmd_info *info; 1874 1875 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1876 if (info == NULL) { 1877 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1878 cmd, get_opcode(cmd, s->engine), 1879 repr_addr_type(s->buf_addr_type), 1880 s->engine->name, s->workload); 1881 return -EBADRQC; 1882 } 1883 1884 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1885 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1886 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1887 return 0; 1888 1889 return -EBADRQC; 1890 } 1891 1892 static int perform_bb_shadow(struct parser_exec_state *s) 1893 { 1894 struct intel_vgpu *vgpu = s->vgpu; 1895 struct intel_vgpu_shadow_bb *bb; 1896 unsigned long gma = 0; 1897 unsigned long bb_size; 1898 unsigned long bb_end_cmd_offset; 1899 int ret = 0; 1900 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1901 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1902 unsigned long start_offset = 0; 1903 1904 /* get the start gm address of the batch buffer */ 1905 gma = get_gma_bb_from_cmd(s, 1); 1906 if (gma == INTEL_GVT_INVALID_ADDR) 1907 return -EFAULT; 1908 1909 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1910 if (ret) 1911 return ret; 1912 1913 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1914 if (!bb) 1915 return -ENOMEM; 1916 1917 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1918 1919 /* the start_offset stores the batch buffer's start gma's 1920 * offset relative to page boundary. so for non-privileged batch 1921 * buffer, the shadowed gem object holds exactly the same page 1922 * layout as original gem object. This is for the convience of 1923 * replacing the whole non-privilged batch buffer page to this 1924 * shadowed one in PPGTT at the same gma address. (this replacing 1925 * action is not implemented yet now, but may be necessary in 1926 * future). 1927 * for prileged batch buffer, we just change start gma address to 1928 * that of shadowed page. 1929 */ 1930 if (bb->ppgtt) 1931 start_offset = gma & ~I915_GTT_PAGE_MASK; 1932 1933 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1934 round_up(bb_size + start_offset, 1935 PAGE_SIZE)); 1936 if (IS_ERR(bb->obj)) { 1937 ret = PTR_ERR(bb->obj); 1938 goto err_free_bb; 1939 } 1940 1941 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1942 if (IS_ERR(bb->va)) { 1943 ret = PTR_ERR(bb->va); 1944 goto err_free_obj; 1945 } 1946 1947 ret = copy_gma_to_hva(s->vgpu, mm, 1948 gma, gma + bb_size, 1949 bb->va + start_offset); 1950 if (ret < 0) { 1951 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1952 ret = -EFAULT; 1953 goto err_unmap; 1954 } 1955 1956 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1957 if (ret) 1958 goto err_unmap; 1959 1960 i915_gem_object_unlock(bb->obj); 1961 INIT_LIST_HEAD(&bb->list); 1962 list_add(&bb->list, &s->workload->shadow_bb); 1963 1964 bb->bb_start_cmd_va = s->ip_va; 1965 1966 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1967 bb->bb_offset = s->ip_va - s->rb_va; 1968 else 1969 bb->bb_offset = 0; 1970 1971 /* 1972 * ip_va saves the virtual address of the shadow batch buffer, while 1973 * ip_gma saves the graphics address of the original batch buffer. 1974 * As the shadow batch buffer is just a copy from the originial one, 1975 * it should be right to use shadow batch buffer'va and original batch 1976 * buffer's gma in pair. After all, we don't want to pin the shadow 1977 * buffer here (too early). 1978 */ 1979 s->ip_va = bb->va + start_offset; 1980 s->ip_gma = gma; 1981 return 0; 1982 err_unmap: 1983 i915_gem_object_unpin_map(bb->obj); 1984 err_free_obj: 1985 i915_gem_object_put(bb->obj); 1986 err_free_bb: 1987 kfree(bb); 1988 return ret; 1989 } 1990 1991 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1992 { 1993 bool second_level; 1994 int ret = 0; 1995 struct intel_vgpu *vgpu = s->vgpu; 1996 1997 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1998 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1999 return -EFAULT; 2000 } 2001 2002 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2003 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2004 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2005 return -EFAULT; 2006 } 2007 2008 s->saved_buf_addr_type = s->buf_addr_type; 2009 addr_type_update_snb(s); 2010 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2011 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2012 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2013 } else if (second_level) { 2014 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2015 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2016 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2017 } 2018 2019 if (batch_buffer_needs_scan(s)) { 2020 ret = perform_bb_shadow(s); 2021 if (ret < 0) 2022 gvt_vgpu_err("invalid shadow batch buffer\n"); 2023 } else { 2024 /* emulate a batch buffer end to do return right */ 2025 ret = cmd_handler_mi_batch_buffer_end(s); 2026 if (ret < 0) 2027 return ret; 2028 } 2029 return ret; 2030 } 2031 2032 static int mi_noop_index; 2033 2034 static const struct cmd_info cmd_info[] = { 2035 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2036 2037 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2038 0, 1, NULL}, 2039 2040 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2041 0, 1, cmd_handler_mi_user_interrupt}, 2042 2043 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2044 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2045 2046 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2047 2048 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2049 NULL}, 2050 2051 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2052 NULL}, 2053 2054 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2055 NULL}, 2056 2057 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2058 NULL}, 2059 2060 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2061 D_ALL, 0, 1, NULL}, 2062 2063 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2064 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2065 cmd_handler_mi_batch_buffer_end}, 2066 2067 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2068 0, 1, NULL}, 2069 2070 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2071 NULL}, 2072 2073 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2074 D_ALL, 0, 1, NULL}, 2075 2076 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2077 NULL}, 2078 2079 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2080 NULL}, 2081 2082 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2083 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2084 2085 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2086 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2087 2088 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2089 2090 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2091 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2092 2093 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2094 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2095 NULL, CMD_LEN(0)}, 2096 2097 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2098 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2099 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2100 2101 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2102 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2103 2104 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2105 0, 8, cmd_handler_mi_store_data_index}, 2106 2107 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2108 D_ALL, 0, 8, cmd_handler_lri}, 2109 2110 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2111 cmd_handler_mi_update_gtt}, 2112 2113 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2114 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2115 cmd_handler_srm, CMD_LEN(2)}, 2116 2117 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2118 cmd_handler_mi_flush_dw}, 2119 2120 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2121 10, cmd_handler_mi_clflush}, 2122 2123 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2124 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2125 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2126 2127 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2128 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2129 cmd_handler_lrm, CMD_LEN(2)}, 2130 2131 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2132 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2133 cmd_handler_lrr, CMD_LEN(1)}, 2134 2135 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2136 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2137 8, NULL, CMD_LEN(2)}, 2138 2139 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2140 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2141 2142 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2143 ADDR_FIX_1(2), 8, NULL}, 2144 2145 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2146 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2147 2148 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2149 8, cmd_handler_mi_op_2f}, 2150 2151 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2152 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2153 cmd_handler_mi_batch_buffer_start}, 2154 2155 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2156 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2157 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2158 2159 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2160 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2161 2162 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2163 ADDR_FIX_2(4, 7), 8, NULL}, 2164 2165 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2166 0, 8, NULL}, 2167 2168 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2169 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2170 2171 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2172 2173 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2174 0, 8, NULL}, 2175 2176 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2177 ADDR_FIX_1(3), 8, NULL}, 2178 2179 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2180 D_ALL, 0, 8, NULL}, 2181 2182 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2183 ADDR_FIX_1(4), 8, NULL}, 2184 2185 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2186 ADDR_FIX_2(4, 5), 8, NULL}, 2187 2188 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2189 ADDR_FIX_1(4), 8, NULL}, 2190 2191 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2192 ADDR_FIX_2(4, 7), 8, NULL}, 2193 2194 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2195 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2196 2197 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2198 2199 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2200 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2201 2202 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2203 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2204 2205 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2206 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2207 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2208 2209 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2210 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2211 2212 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2213 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2214 2215 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2216 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2217 2218 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2219 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2220 2221 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2222 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2223 2224 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2225 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2226 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2227 2228 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2229 ADDR_FIX_2(4, 5), 8, NULL}, 2230 2231 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2232 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2233 2234 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2235 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2236 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2237 2238 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2239 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2240 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2241 2242 {"3DSTATE_BLEND_STATE_POINTERS", 2243 OP_3DSTATE_BLEND_STATE_POINTERS, 2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2247 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2248 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2249 2250 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2251 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2253 2254 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2255 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2256 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2257 2258 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2259 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2260 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2261 2262 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2263 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2264 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2265 2266 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2267 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2271 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2272 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2273 2274 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2275 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2277 2278 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2279 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2281 2282 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2283 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2284 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2285 2286 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2287 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2288 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2289 2290 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2291 0, 8, NULL}, 2292 2293 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2294 0, 8, NULL}, 2295 2296 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2297 0, 8, NULL}, 2298 2299 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2300 0, 8, NULL}, 2301 2302 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2304 2305 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2307 2308 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2310 2311 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2312 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2313 2314 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2315 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2316 2317 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2318 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2319 2320 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2321 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2322 2323 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2324 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2325 2326 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2327 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2328 2329 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2330 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2331 2332 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2333 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2334 2335 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2336 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2337 2338 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2339 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2340 2341 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2342 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2343 2344 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2345 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2346 2347 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2348 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2349 2350 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2351 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2352 2353 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2354 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2355 2356 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2357 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2358 2359 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2360 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2361 2362 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2363 D_BDW_PLUS, 0, 8, NULL}, 2364 2365 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2366 NULL}, 2367 2368 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2369 D_BDW_PLUS, 0, 8, NULL}, 2370 2371 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2372 D_BDW_PLUS, 0, 8, NULL}, 2373 2374 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2375 8, NULL}, 2376 2377 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2378 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2379 2380 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2381 8, NULL}, 2382 2383 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2384 NULL}, 2385 2386 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2387 NULL}, 2388 2389 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2390 NULL}, 2391 2392 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2393 D_BDW_PLUS, 0, 8, NULL}, 2394 2395 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2396 R_RCS, D_ALL, 0, 8, NULL}, 2397 2398 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2399 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2400 2401 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2402 R_RCS, D_ALL, 0, 1, NULL}, 2403 2404 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2405 2406 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2407 R_RCS, D_ALL, 0, 8, NULL}, 2408 2409 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2410 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2411 2412 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2413 2414 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2415 2416 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2417 2418 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2419 D_BDW_PLUS, 0, 8, NULL}, 2420 2421 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2422 D_BDW_PLUS, 0, 8, NULL}, 2423 2424 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2425 D_ALL, 0, 8, NULL}, 2426 2427 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2428 D_BDW_PLUS, 0, 8, NULL}, 2429 2430 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2431 D_BDW_PLUS, 0, 8, NULL}, 2432 2433 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2434 2435 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2436 2437 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2438 2439 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2440 D_ALL, 0, 8, NULL}, 2441 2442 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2443 2444 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2445 2446 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2447 R_RCS, D_ALL, 0, 8, NULL}, 2448 2449 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2450 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2451 2452 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2453 0, 8, NULL}, 2454 2455 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2456 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2457 2458 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2459 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2460 2461 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2462 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2463 2464 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2465 D_ALL, 0, 8, NULL}, 2466 2467 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2468 D_ALL, 0, 8, NULL}, 2469 2470 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2471 D_ALL, 0, 8, NULL}, 2472 2473 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2474 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2475 2476 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2477 D_BDW_PLUS, 0, 8, NULL}, 2478 2479 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2480 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2481 2482 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2483 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2484 2485 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2486 R_RCS, D_ALL, 0, 8, NULL}, 2487 2488 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2489 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2490 2491 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2492 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2493 2494 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2495 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2496 2497 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2498 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2499 2500 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2501 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2502 2503 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2504 R_RCS, D_ALL, 0, 8, NULL}, 2505 2506 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2507 D_ALL, 0, 9, NULL}, 2508 2509 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2510 ADDR_FIX_2(2, 4), 8, NULL}, 2511 2512 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2513 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2514 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2515 2516 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2517 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2518 2519 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2520 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2521 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2522 2523 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2524 D_BDW_PLUS, 0, 8, NULL}, 2525 2526 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2527 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2528 2529 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2530 2531 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2532 1, NULL}, 2533 2534 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2535 ADDR_FIX_1(1), 8, NULL}, 2536 2537 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2538 2539 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2540 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2541 2542 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2543 ADDR_FIX_1(1), 8, NULL}, 2544 2545 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2546 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2547 2548 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2549 2550 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2551 2552 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2553 0, 8, NULL}, 2554 2555 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2556 D_SKL_PLUS, 0, 8, NULL}, 2557 2558 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2559 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2560 2561 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2562 0, 16, NULL}, 2563 2564 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2565 0, 16, NULL}, 2566 2567 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2568 0, 16, NULL}, 2569 2570 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2571 2572 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2573 0, 16, NULL}, 2574 2575 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2576 0, 16, NULL}, 2577 2578 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2579 0, 16, NULL}, 2580 2581 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2582 0, 8, NULL}, 2583 2584 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2585 NULL}, 2586 2587 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2588 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2589 2590 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2591 R_VCS, D_ALL, 0, 12, NULL}, 2592 2593 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2594 R_VCS, D_ALL, 0, 12, NULL}, 2595 2596 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2597 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2598 2599 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2600 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2601 2602 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2603 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2604 2605 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2606 2607 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2608 R_VCS, D_ALL, 0, 12, NULL}, 2609 2610 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 2613 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2620 R_VCS, D_ALL, 0, 12, NULL}, 2621 2622 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 12, NULL}, 2624 2625 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2626 R_VCS, D_ALL, 0, 6, NULL}, 2627 2628 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2629 R_VCS, D_ALL, 0, 12, NULL}, 2630 2631 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2632 R_VCS, D_ALL, 0, 12, NULL}, 2633 2634 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2635 R_VCS, D_ALL, 0, 12, NULL}, 2636 2637 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 2643 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2644 R_VCS, D_ALL, 0, 12, NULL}, 2645 2646 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2647 R_VCS, D_ALL, 0, 12, NULL}, 2648 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2649 R_VCS, D_ALL, 0, 12, NULL}, 2650 2651 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2652 R_VCS, D_ALL, 0, 12, NULL}, 2653 2654 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2655 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2656 2657 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2658 R_VCS, D_ALL, 0, 12, NULL}, 2659 2660 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2661 R_VCS, D_ALL, 0, 12, NULL}, 2662 2663 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2664 R_VCS, D_ALL, 0, 12, NULL}, 2665 2666 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2667 R_VCS, D_ALL, 0, 12, NULL}, 2668 2669 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2670 R_VCS, D_ALL, 0, 12, NULL}, 2671 2672 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2673 R_VCS, D_ALL, 0, 12, NULL}, 2674 2675 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2676 R_VCS, D_ALL, 0, 12, NULL}, 2677 2678 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2679 R_VCS, D_ALL, 0, 12, NULL}, 2680 2681 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2682 R_VCS, D_ALL, 0, 12, NULL}, 2683 2684 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2685 R_VCS, D_ALL, 0, 12, NULL}, 2686 2687 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2688 R_VCS, D_ALL, 0, 12, NULL}, 2689 2690 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2691 0, 16, NULL}, 2692 2693 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2694 2695 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2696 2697 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2698 R_VCS, D_ALL, 0, 12, NULL}, 2699 2700 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2701 R_VCS, D_ALL, 0, 12, NULL}, 2702 2703 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2704 R_VCS, D_ALL, 0, 12, NULL}, 2705 2706 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2707 2708 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2709 0, 12, NULL}, 2710 2711 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2712 0, 12, NULL}, 2713 }; 2714 2715 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2716 { 2717 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2718 } 2719 2720 /* call the cmd handler, and advance ip */ 2721 static int cmd_parser_exec(struct parser_exec_state *s) 2722 { 2723 struct intel_vgpu *vgpu = s->vgpu; 2724 const struct cmd_info *info; 2725 u32 cmd; 2726 int ret = 0; 2727 2728 cmd = cmd_val(s, 0); 2729 2730 /* fastpath for MI_NOOP */ 2731 if (cmd == MI_NOOP) 2732 info = &cmd_info[mi_noop_index]; 2733 else 2734 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2735 2736 if (info == NULL) { 2737 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2738 cmd, get_opcode(cmd, s->engine), 2739 repr_addr_type(s->buf_addr_type), 2740 s->engine->name, s->workload); 2741 return -EBADRQC; 2742 } 2743 2744 s->info = info; 2745 2746 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2747 cmd_length(s), s->buf_type, s->buf_addr_type, 2748 s->workload, info->name); 2749 2750 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2751 ret = gvt_check_valid_cmd_length(cmd_length(s), 2752 info->valid_len); 2753 if (ret) 2754 return ret; 2755 } 2756 2757 if (info->handler) { 2758 ret = info->handler(s); 2759 if (ret < 0) { 2760 gvt_vgpu_err("%s handler error\n", info->name); 2761 return ret; 2762 } 2763 } 2764 2765 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2766 ret = cmd_advance_default(s); 2767 if (ret) { 2768 gvt_vgpu_err("%s IP advance error\n", info->name); 2769 return ret; 2770 } 2771 } 2772 return 0; 2773 } 2774 2775 static inline bool gma_out_of_range(unsigned long gma, 2776 unsigned long gma_head, unsigned int gma_tail) 2777 { 2778 if (gma_tail >= gma_head) 2779 return (gma < gma_head) || (gma > gma_tail); 2780 else 2781 return (gma > gma_tail) && (gma < gma_head); 2782 } 2783 2784 /* Keep the consistent return type, e.g EBADRQC for unknown 2785 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2786 * works as the input of VM healthy status. 2787 */ 2788 static int command_scan(struct parser_exec_state *s, 2789 unsigned long rb_head, unsigned long rb_tail, 2790 unsigned long rb_start, unsigned long rb_len) 2791 { 2792 2793 unsigned long gma_head, gma_tail, gma_bottom; 2794 int ret = 0; 2795 struct intel_vgpu *vgpu = s->vgpu; 2796 2797 gma_head = rb_start + rb_head; 2798 gma_tail = rb_start + rb_tail; 2799 gma_bottom = rb_start + rb_len; 2800 2801 while (s->ip_gma != gma_tail) { 2802 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2803 s->buf_type == RING_BUFFER_CTX) { 2804 if (!(s->ip_gma >= rb_start) || 2805 !(s->ip_gma < gma_bottom)) { 2806 gvt_vgpu_err("ip_gma %lx out of ring scope." 2807 "(base:0x%lx, bottom: 0x%lx)\n", 2808 s->ip_gma, rb_start, 2809 gma_bottom); 2810 parser_exec_state_dump(s); 2811 return -EFAULT; 2812 } 2813 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2814 gvt_vgpu_err("ip_gma %lx out of range." 2815 "base 0x%lx head 0x%lx tail 0x%lx\n", 2816 s->ip_gma, rb_start, 2817 rb_head, rb_tail); 2818 parser_exec_state_dump(s); 2819 break; 2820 } 2821 } 2822 ret = cmd_parser_exec(s); 2823 if (ret) { 2824 gvt_vgpu_err("cmd parser error\n"); 2825 parser_exec_state_dump(s); 2826 break; 2827 } 2828 } 2829 2830 return ret; 2831 } 2832 2833 static int scan_workload(struct intel_vgpu_workload *workload) 2834 { 2835 unsigned long gma_head, gma_tail, gma_bottom; 2836 struct parser_exec_state s; 2837 int ret = 0; 2838 2839 /* ring base is page aligned */ 2840 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2841 return -EINVAL; 2842 2843 gma_head = workload->rb_start + workload->rb_head; 2844 gma_tail = workload->rb_start + workload->rb_tail; 2845 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2846 2847 s.buf_type = RING_BUFFER_INSTRUCTION; 2848 s.buf_addr_type = GTT_BUFFER; 2849 s.vgpu = workload->vgpu; 2850 s.engine = workload->engine; 2851 s.ring_start = workload->rb_start; 2852 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2853 s.ring_head = gma_head; 2854 s.ring_tail = gma_tail; 2855 s.rb_va = workload->shadow_ring_buffer_va; 2856 s.workload = workload; 2857 s.is_ctx_wa = false; 2858 2859 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2860 return 0; 2861 2862 ret = ip_gma_set(&s, gma_head); 2863 if (ret) 2864 goto out; 2865 2866 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2867 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2868 2869 out: 2870 return ret; 2871 } 2872 2873 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2874 { 2875 2876 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2877 struct parser_exec_state s; 2878 int ret = 0; 2879 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2880 struct intel_vgpu_workload, 2881 wa_ctx); 2882 2883 /* ring base is page aligned */ 2884 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2885 I915_GTT_PAGE_SIZE))) 2886 return -EINVAL; 2887 2888 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2889 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2890 PAGE_SIZE); 2891 gma_head = wa_ctx->indirect_ctx.guest_gma; 2892 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2893 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2894 2895 s.buf_type = RING_BUFFER_INSTRUCTION; 2896 s.buf_addr_type = GTT_BUFFER; 2897 s.vgpu = workload->vgpu; 2898 s.engine = workload->engine; 2899 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2900 s.ring_size = ring_size; 2901 s.ring_head = gma_head; 2902 s.ring_tail = gma_tail; 2903 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2904 s.workload = workload; 2905 s.is_ctx_wa = true; 2906 2907 ret = ip_gma_set(&s, gma_head); 2908 if (ret) 2909 goto out; 2910 2911 ret = command_scan(&s, 0, ring_tail, 2912 wa_ctx->indirect_ctx.guest_gma, ring_size); 2913 out: 2914 return ret; 2915 } 2916 2917 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2918 { 2919 struct intel_vgpu *vgpu = workload->vgpu; 2920 struct intel_vgpu_submission *s = &vgpu->submission; 2921 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2922 void *shadow_ring_buffer_va; 2923 int ret; 2924 2925 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2926 2927 /* calculate workload ring buffer size */ 2928 workload->rb_len = (workload->rb_tail + guest_rb_size - 2929 workload->rb_head) % guest_rb_size; 2930 2931 gma_head = workload->rb_start + workload->rb_head; 2932 gma_tail = workload->rb_start + workload->rb_tail; 2933 gma_top = workload->rb_start + guest_rb_size; 2934 2935 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2936 void *p; 2937 2938 /* realloc the new ring buffer if needed */ 2939 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2940 workload->rb_len, GFP_KERNEL); 2941 if (!p) { 2942 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2943 return -ENOMEM; 2944 } 2945 s->ring_scan_buffer[workload->engine->id] = p; 2946 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2947 } 2948 2949 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2950 2951 /* get shadow ring buffer va */ 2952 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2953 2954 /* head > tail --> copy head <-> top */ 2955 if (gma_head > gma_tail) { 2956 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2957 gma_head, gma_top, shadow_ring_buffer_va); 2958 if (ret < 0) { 2959 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2960 return ret; 2961 } 2962 shadow_ring_buffer_va += ret; 2963 gma_head = workload->rb_start; 2964 } 2965 2966 /* copy head or start <-> tail */ 2967 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2968 shadow_ring_buffer_va); 2969 if (ret < 0) { 2970 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2971 return ret; 2972 } 2973 return 0; 2974 } 2975 2976 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2977 { 2978 int ret; 2979 struct intel_vgpu *vgpu = workload->vgpu; 2980 2981 ret = shadow_workload_ring_buffer(workload); 2982 if (ret) { 2983 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2984 return ret; 2985 } 2986 2987 ret = scan_workload(workload); 2988 if (ret) { 2989 gvt_vgpu_err("scan workload error\n"); 2990 return ret; 2991 } 2992 return 0; 2993 } 2994 2995 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2996 { 2997 int ctx_size = wa_ctx->indirect_ctx.size; 2998 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2999 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3000 struct intel_vgpu_workload, 3001 wa_ctx); 3002 struct intel_vgpu *vgpu = workload->vgpu; 3003 struct drm_i915_gem_object *obj; 3004 int ret = 0; 3005 void *map; 3006 3007 obj = i915_gem_object_create_shmem(workload->engine->i915, 3008 roundup(ctx_size + CACHELINE_BYTES, 3009 PAGE_SIZE)); 3010 if (IS_ERR(obj)) 3011 return PTR_ERR(obj); 3012 3013 /* get the va of the shadow batch buffer */ 3014 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3015 if (IS_ERR(map)) { 3016 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3017 ret = PTR_ERR(map); 3018 goto put_obj; 3019 } 3020 3021 i915_gem_object_lock(obj, NULL); 3022 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3023 i915_gem_object_unlock(obj); 3024 if (ret) { 3025 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3026 goto unmap_src; 3027 } 3028 3029 ret = copy_gma_to_hva(workload->vgpu, 3030 workload->vgpu->gtt.ggtt_mm, 3031 guest_gma, guest_gma + ctx_size, 3032 map); 3033 if (ret < 0) { 3034 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3035 goto unmap_src; 3036 } 3037 3038 wa_ctx->indirect_ctx.obj = obj; 3039 wa_ctx->indirect_ctx.shadow_va = map; 3040 return 0; 3041 3042 unmap_src: 3043 i915_gem_object_unpin_map(obj); 3044 put_obj: 3045 i915_gem_object_put(obj); 3046 return ret; 3047 } 3048 3049 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3050 { 3051 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3052 unsigned char *bb_start_sva; 3053 3054 if (!wa_ctx->per_ctx.valid) 3055 return 0; 3056 3057 per_ctx_start[0] = 0x18800001; 3058 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3059 3060 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3061 wa_ctx->indirect_ctx.size; 3062 3063 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3064 3065 return 0; 3066 } 3067 3068 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3069 { 3070 int ret; 3071 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3072 struct intel_vgpu_workload, 3073 wa_ctx); 3074 struct intel_vgpu *vgpu = workload->vgpu; 3075 3076 if (wa_ctx->indirect_ctx.size == 0) 3077 return 0; 3078 3079 ret = shadow_indirect_ctx(wa_ctx); 3080 if (ret) { 3081 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3082 return ret; 3083 } 3084 3085 combine_wa_ctx(wa_ctx); 3086 3087 ret = scan_wa_ctx(wa_ctx); 3088 if (ret) { 3089 gvt_vgpu_err("scan wa ctx error\n"); 3090 return ret; 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* generate dummy contexts by sending empty requests to HW, and let 3097 * the HW to fill Engine Contexts. This dummy contexts are used for 3098 * initialization purpose (update reg whitelist), so referred to as 3099 * init context here 3100 */ 3101 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3102 { 3103 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3104 struct intel_gvt *gvt = vgpu->gvt; 3105 struct intel_engine_cs *engine; 3106 enum intel_engine_id id; 3107 3108 if (gvt->is_reg_whitelist_updated) 3109 return; 3110 3111 /* scan init ctx to update cmd accessible list */ 3112 for_each_engine(engine, gvt->gt, id) { 3113 struct parser_exec_state s; 3114 void *vaddr; 3115 int ret; 3116 3117 if (!engine->default_state) 3118 continue; 3119 3120 vaddr = shmem_pin_map(engine->default_state); 3121 if (!vaddr) { 3122 gvt_err("failed to map %s->default state\n", 3123 engine->name); 3124 return; 3125 } 3126 3127 s.buf_type = RING_BUFFER_CTX; 3128 s.buf_addr_type = GTT_BUFFER; 3129 s.vgpu = vgpu; 3130 s.engine = engine; 3131 s.ring_start = 0; 3132 s.ring_size = engine->context_size - start; 3133 s.ring_head = 0; 3134 s.ring_tail = s.ring_size; 3135 s.rb_va = vaddr + start; 3136 s.workload = NULL; 3137 s.is_ctx_wa = false; 3138 s.is_init_ctx = true; 3139 3140 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3141 ret = ip_gma_set(&s, RING_CTX_SIZE); 3142 if (ret == 0) { 3143 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3144 if (ret) 3145 gvt_err("Scan init ctx error\n"); 3146 } 3147 3148 shmem_unpin_map(engine->default_state, vaddr); 3149 if (ret) 3150 return; 3151 } 3152 3153 gvt->is_reg_whitelist_updated = true; 3154 } 3155 3156 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3157 { 3158 struct intel_vgpu *vgpu = workload->vgpu; 3159 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3160 struct parser_exec_state s; 3161 int ring_id = workload->engine->id; 3162 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3163 int ret; 3164 3165 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3166 3167 ctx_size = workload->engine->context_size - PAGE_SIZE; 3168 3169 /* Only ring contxt is loaded to HW for inhibit context, no need to 3170 * scan engine context 3171 */ 3172 if (is_inhibit_context(ce)) 3173 return 0; 3174 3175 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3176 gma_head = 0; 3177 gma_tail = ctx_size; 3178 3179 s.buf_type = RING_BUFFER_CTX; 3180 s.buf_addr_type = GTT_BUFFER; 3181 s.vgpu = workload->vgpu; 3182 s.engine = workload->engine; 3183 s.ring_start = gma_start; 3184 s.ring_size = ctx_size; 3185 s.ring_head = gma_start + gma_head; 3186 s.ring_tail = gma_start + gma_tail; 3187 s.rb_va = ce->lrc_reg_state; 3188 s.workload = workload; 3189 s.is_ctx_wa = false; 3190 s.is_init_ctx = false; 3191 3192 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3193 * context 3194 */ 3195 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3196 if (ret) 3197 goto out; 3198 3199 ret = command_scan(&s, gma_head, gma_tail, 3200 gma_start, ctx_size); 3201 out: 3202 if (ret) 3203 gvt_vgpu_err("scan shadow ctx error\n"); 3204 3205 return ret; 3206 } 3207 3208 static int init_cmd_table(struct intel_gvt *gvt) 3209 { 3210 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3211 int i; 3212 3213 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3214 struct cmd_entry *e; 3215 3216 if (!(cmd_info[i].devices & gen_type)) 3217 continue; 3218 3219 e = kzalloc(sizeof(*e), GFP_KERNEL); 3220 if (!e) 3221 return -ENOMEM; 3222 3223 e->info = &cmd_info[i]; 3224 if (cmd_info[i].opcode == OP_MI_NOOP) 3225 mi_noop_index = i; 3226 3227 INIT_HLIST_NODE(&e->hlist); 3228 add_cmd_entry(gvt, e); 3229 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3230 e->info->name, e->info->opcode, e->info->flag, 3231 e->info->devices, e->info->rings); 3232 } 3233 3234 return 0; 3235 } 3236 3237 static void clean_cmd_table(struct intel_gvt *gvt) 3238 { 3239 struct hlist_node *tmp; 3240 struct cmd_entry *e; 3241 int i; 3242 3243 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3244 kfree(e); 3245 3246 hash_init(gvt->cmd_table); 3247 } 3248 3249 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3250 { 3251 clean_cmd_table(gvt); 3252 } 3253 3254 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3255 { 3256 int ret; 3257 3258 ret = init_cmd_table(gvt); 3259 if (ret) { 3260 intel_gvt_clean_cmd_parser(gvt); 3261 return ret; 3262 } 3263 return 0; 3264 } 3265