xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision ee21014b)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44 
45 #define INVALID_OP    (~0U)
46 
47 #define OP_LEN_MI           9
48 #define OP_LEN_2D           10
49 #define OP_LEN_3D_MEDIA     16
50 #define OP_LEN_MFX_VC       16
51 #define OP_LEN_VEBOX	    16
52 
53 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
54 
55 struct sub_op_bits {
56 	int hi;
57 	int low;
58 };
59 struct decode_info {
60 	const char *name;
61 	int op_len;
62 	int nr_sub_op;
63 	const struct sub_op_bits *sub_op;
64 };
65 
66 #define   MAX_CMD_BUDGET			0x7fffffff
67 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
68 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
69 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
70 
71 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
72 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
73 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
74 
75 /* Render Command Map */
76 
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP                          0x0
79 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
80 #define OP_MI_USER_INTERRUPT                0x2
81 #define OP_MI_WAIT_FOR_EVENT                0x3
82 #define OP_MI_FLUSH                         0x4
83 #define OP_MI_ARB_CHECK                     0x5
84 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
85 #define OP_MI_REPORT_HEAD                   0x7
86 #define OP_MI_ARB_ON_OFF                    0x8
87 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END              0xA
89 #define OP_MI_SUSPEND_FLUSH                 0xB
90 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
92 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
93 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP                  0x14
96 #define OP_MI_SEMAPHORE_MBOX                0x16
97 #define OP_MI_SET_CONTEXT                   0x18
98 #define OP_MI_MATH                          0x1A
99 #define OP_MI_URB_CLEAR                     0x19
100 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
102 
103 #define OP_MI_STORE_DATA_IMM                0x20
104 #define OP_MI_STORE_DATA_INDEX              0x21
105 #define OP_MI_LOAD_REGISTER_IMM             0x22
106 #define OP_MI_UPDATE_GTT                    0x23
107 #define OP_MI_STORE_REGISTER_MEM            0x24
108 #define OP_MI_FLUSH_DW                      0x26
109 #define OP_MI_CLFLUSH                       0x27
110 #define OP_MI_REPORT_PERF_COUNT             0x28
111 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
115 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
116 #define OP_MI_2E			    0x2E  /* BDW+ */
117 #define OP_MI_2F			    0x2F  /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START            0x31
119 
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
122 
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
124 
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
129 
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x)    ((2<<7) | x)
132 
133 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
138 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
140 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
141 #define OP_XY_PAT_BLT                               OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
145 #define OP_XY_FULL_BLT                              OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
157 
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161 
162 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
163 
164 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
167 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
168 
169 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
170 
171 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
172 
173 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
174 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
176 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
177 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
178 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
179 
180 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
181 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
182 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
183 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
184 
185 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
186 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
187 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
188 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
189 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
190 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
191 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
192 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
193 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
194 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
196 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
197 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
198 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
199 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
200 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
201 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
202 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
203 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
204 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
205 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
206 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
207 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
208 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
209 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
210 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
211 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
212 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
215 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
227 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
228 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
229 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
230 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
235 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
241 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
251 
252 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
253 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
254 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
255 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
256 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
257 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
258 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
259 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
260 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
261 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
262 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
263 
264 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
266 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
267 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
270 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
271 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
272 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
274 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
275 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
277 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
278 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
284 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
285 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
287 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
289 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
290 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
291 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
292 
293 /* VCCP Command Parser */
294 
295 /*
296  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
297  * git://anongit.freedesktop.org/vaapi/intel-driver
298  * src/i965_defines.h
299  *
300  */
301 
302 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
303 	(3 << 13 | \
304 	 (pipeline) << 11 | \
305 	 (op) << 8 | \
306 	 (sub_opa) << 5 | \
307 	 (sub_opb))
308 
309 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
310 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
311 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
314 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
315 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
316 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
317 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
318 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
319 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
320 
321 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
322 
323 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
324 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
325 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
326 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
327 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
328 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
330 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
331 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
332 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
333 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
334 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
335 
336 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
337 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
338 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
339 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
340 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
341 
342 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
343 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
344 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
345 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
346 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
347 
348 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
349 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
350 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
351 
352 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
353 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
354 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
355 
356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
357 	(3 << 13 | \
358 	 (pipeline) << 11 | \
359 	 (op) << 8 | \
360 	 (sub_opa) << 5 | \
361 	 (sub_opb))
362 
363 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
364 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
365 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
366 
367 struct parser_exec_state;
368 
369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
370 
371 #define GVT_CMD_HASH_BITS   7
372 
373 /* which DWords need address fix */
374 #define ADDR_FIX_1(x1)			(1 << (x1))
375 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
376 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
377 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
378 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
379 
380 #define DWORD_FIELD(dword, end, start) \
381 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
382 
383 #define OP_LENGTH_BIAS 2
384 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
385 
386 static int gvt_check_valid_cmd_length(int len, int valid_len)
387 {
388 	if (valid_len != len) {
389 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
390 			len, valid_len);
391 		return -EFAULT;
392 	}
393 	return 0;
394 }
395 
396 struct cmd_info {
397 	const char *name;
398 	u32 opcode;
399 
400 #define F_LEN_MASK	3U
401 #define F_LEN_CONST  1U
402 #define F_LEN_VAR    0U
403 /* value is const although LEN maybe variable */
404 #define F_LEN_VAR_FIXED    (1<<1)
405 
406 /*
407  * command has its own ip advance logic
408  * e.g. MI_BATCH_START, MI_BATCH_END
409  */
410 #define F_IP_ADVANCE_CUSTOM (1<<2)
411 	u32 flag;
412 
413 #define R_RCS	BIT(RCS0)
414 #define R_VCS1  BIT(VCS0)
415 #define R_VCS2  BIT(VCS1)
416 #define R_VCS	(R_VCS1 | R_VCS2)
417 #define R_BCS	BIT(BCS0)
418 #define R_VECS	BIT(VECS0)
419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
420 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
421 	u16 rings;
422 
423 	/* devices that support this cmd: SNB/IVB/HSW/... */
424 	u16 devices;
425 
426 	/* which DWords are address that need fix up.
427 	 * bit 0 means a 32-bit non address operand in command
428 	 * bit 1 means address operand, which could be 32-bit
429 	 * or 64-bit depending on different architectures.(
430 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
431 	 * No matter the address length, each address only takes
432 	 * one bit in the bitmap.
433 	 */
434 	u16 addr_bitmap;
435 
436 	/* flag == F_LEN_CONST : command length
437 	 * flag == F_LEN_VAR : length bias bits
438 	 * Note: length is in DWord
439 	 */
440 	u32 len;
441 
442 	parser_cmd_handler handler;
443 
444 	/* valid length in DWord */
445 	u32 valid_len;
446 };
447 
448 struct cmd_entry {
449 	struct hlist_node hlist;
450 	const struct cmd_info *info;
451 };
452 
453 enum {
454 	RING_BUFFER_INSTRUCTION,
455 	BATCH_BUFFER_INSTRUCTION,
456 	BATCH_BUFFER_2ND_LEVEL,
457 };
458 
459 enum {
460 	GTT_BUFFER,
461 	PPGTT_BUFFER
462 };
463 
464 struct parser_exec_state {
465 	struct intel_vgpu *vgpu;
466 	const struct intel_engine_cs *engine;
467 
468 	int buf_type;
469 
470 	/* batch buffer address type */
471 	int buf_addr_type;
472 
473 	/* graphics memory address of ring buffer start */
474 	unsigned long ring_start;
475 	unsigned long ring_size;
476 	unsigned long ring_head;
477 	unsigned long ring_tail;
478 
479 	/* instruction graphics memory address */
480 	unsigned long ip_gma;
481 
482 	/* mapped va of the instr_gma */
483 	void *ip_va;
484 	void *rb_va;
485 
486 	void *ret_bb_va;
487 	/* next instruction when return from  batch buffer to ring buffer */
488 	unsigned long ret_ip_gma_ring;
489 
490 	/* next instruction when return from 2nd batch buffer to batch buffer */
491 	unsigned long ret_ip_gma_bb;
492 
493 	/* batch buffer address type (GTT or PPGTT)
494 	 * used when ret from 2nd level batch buffer
495 	 */
496 	int saved_buf_addr_type;
497 	bool is_ctx_wa;
498 
499 	const struct cmd_info *info;
500 
501 	struct intel_vgpu_workload *workload;
502 };
503 
504 #define gmadr_dw_number(s)	\
505 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
506 
507 static unsigned long bypass_scan_mask = 0;
508 
509 /* ring ALL, type = 0 */
510 static const struct sub_op_bits sub_op_mi[] = {
511 	{31, 29},
512 	{28, 23},
513 };
514 
515 static const struct decode_info decode_info_mi = {
516 	"MI",
517 	OP_LEN_MI,
518 	ARRAY_SIZE(sub_op_mi),
519 	sub_op_mi,
520 };
521 
522 /* ring RCS, command type 2 */
523 static const struct sub_op_bits sub_op_2d[] = {
524 	{31, 29},
525 	{28, 22},
526 };
527 
528 static const struct decode_info decode_info_2d = {
529 	"2D",
530 	OP_LEN_2D,
531 	ARRAY_SIZE(sub_op_2d),
532 	sub_op_2d,
533 };
534 
535 /* ring RCS, command type 3 */
536 static const struct sub_op_bits sub_op_3d_media[] = {
537 	{31, 29},
538 	{28, 27},
539 	{26, 24},
540 	{23, 16},
541 };
542 
543 static const struct decode_info decode_info_3d_media = {
544 	"3D_Media",
545 	OP_LEN_3D_MEDIA,
546 	ARRAY_SIZE(sub_op_3d_media),
547 	sub_op_3d_media,
548 };
549 
550 /* ring VCS, command type 3 */
551 static const struct sub_op_bits sub_op_mfx_vc[] = {
552 	{31, 29},
553 	{28, 27},
554 	{26, 24},
555 	{23, 21},
556 	{20, 16},
557 };
558 
559 static const struct decode_info decode_info_mfx_vc = {
560 	"MFX_VC",
561 	OP_LEN_MFX_VC,
562 	ARRAY_SIZE(sub_op_mfx_vc),
563 	sub_op_mfx_vc,
564 };
565 
566 /* ring VECS, command type 3 */
567 static const struct sub_op_bits sub_op_vebox[] = {
568 	{31, 29},
569 	{28, 27},
570 	{26, 24},
571 	{23, 21},
572 	{20, 16},
573 };
574 
575 static const struct decode_info decode_info_vebox = {
576 	"VEBOX",
577 	OP_LEN_VEBOX,
578 	ARRAY_SIZE(sub_op_vebox),
579 	sub_op_vebox,
580 };
581 
582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
583 	[RCS0] = {
584 		&decode_info_mi,
585 		NULL,
586 		NULL,
587 		&decode_info_3d_media,
588 		NULL,
589 		NULL,
590 		NULL,
591 		NULL,
592 	},
593 
594 	[VCS0] = {
595 		&decode_info_mi,
596 		NULL,
597 		NULL,
598 		&decode_info_mfx_vc,
599 		NULL,
600 		NULL,
601 		NULL,
602 		NULL,
603 	},
604 
605 	[BCS0] = {
606 		&decode_info_mi,
607 		NULL,
608 		&decode_info_2d,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 		NULL,
614 	},
615 
616 	[VECS0] = {
617 		&decode_info_mi,
618 		NULL,
619 		NULL,
620 		&decode_info_vebox,
621 		NULL,
622 		NULL,
623 		NULL,
624 		NULL,
625 	},
626 
627 	[VCS1] = {
628 		&decode_info_mi,
629 		NULL,
630 		NULL,
631 		&decode_info_mfx_vc,
632 		NULL,
633 		NULL,
634 		NULL,
635 		NULL,
636 	},
637 };
638 
639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
640 {
641 	const struct decode_info *d_info;
642 
643 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
644 	if (d_info == NULL)
645 		return INVALID_OP;
646 
647 	return cmd >> (32 - d_info->op_len);
648 }
649 
650 static inline const struct cmd_info *
651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
652 	       const struct intel_engine_cs *engine)
653 {
654 	struct cmd_entry *e;
655 
656 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
657 		if (opcode == e->info->opcode &&
658 		    e->info->rings & engine->mask)
659 			return e->info;
660 	}
661 	return NULL;
662 }
663 
664 static inline const struct cmd_info *
665 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
666 	     const struct intel_engine_cs *engine)
667 {
668 	u32 opcode;
669 
670 	opcode = get_opcode(cmd, engine);
671 	if (opcode == INVALID_OP)
672 		return NULL;
673 
674 	return find_cmd_entry(gvt, opcode, engine);
675 }
676 
677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
678 {
679 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
680 }
681 
682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
683 {
684 	const struct decode_info *d_info;
685 	int i;
686 
687 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
688 	if (d_info == NULL)
689 		return;
690 
691 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
692 			cmd >> (32 - d_info->op_len), d_info->name);
693 
694 	for (i = 0; i < d_info->nr_sub_op; i++)
695 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
696 					d_info->sub_op[i].low));
697 
698 	pr_err("\n");
699 }
700 
701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
702 {
703 	return s->ip_va + (index << 2);
704 }
705 
706 static inline u32 cmd_val(struct parser_exec_state *s, int index)
707 {
708 	return *cmd_ptr(s, index);
709 }
710 
711 static void parser_exec_state_dump(struct parser_exec_state *s)
712 {
713 	int cnt = 0;
714 	int i;
715 
716 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
717 		    " ring_head(%08lx) ring_tail(%08lx)\n",
718 		    s->vgpu->id, s->engine->name,
719 		    s->ring_start, s->ring_start + s->ring_size,
720 		    s->ring_head, s->ring_tail);
721 
722 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
723 			s->buf_type == RING_BUFFER_INSTRUCTION ?
724 			"RING_BUFFER" : "BATCH_BUFFER",
725 			s->buf_addr_type == GTT_BUFFER ?
726 			"GTT" : "PPGTT", s->ip_gma);
727 
728 	if (s->ip_va == NULL) {
729 		gvt_dbg_cmd(" ip_va(NULL)");
730 		return;
731 	}
732 
733 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
734 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
735 			cmd_val(s, 2), cmd_val(s, 3));
736 
737 	print_opcode(cmd_val(s, 0), s->engine);
738 
739 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
740 
741 	while (cnt < 1024) {
742 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
743 		for (i = 0; i < 8; i++)
744 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
745 		gvt_dbg_cmd("\n");
746 
747 		s->ip_va += 8 * sizeof(u32);
748 		cnt += 8;
749 	}
750 }
751 
752 static inline void update_ip_va(struct parser_exec_state *s)
753 {
754 	unsigned long len = 0;
755 
756 	if (WARN_ON(s->ring_head == s->ring_tail))
757 		return;
758 
759 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
760 		unsigned long ring_top = s->ring_start + s->ring_size;
761 
762 		if (s->ring_head > s->ring_tail) {
763 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
764 				len = (s->ip_gma - s->ring_head);
765 			else if (s->ip_gma >= s->ring_start &&
766 					s->ip_gma <= s->ring_tail)
767 				len = (ring_top - s->ring_head) +
768 					(s->ip_gma - s->ring_start);
769 		} else
770 			len = (s->ip_gma - s->ring_head);
771 
772 		s->ip_va = s->rb_va + len;
773 	} else {/* shadow batch buffer */
774 		s->ip_va = s->ret_bb_va;
775 	}
776 }
777 
778 static inline int ip_gma_set(struct parser_exec_state *s,
779 		unsigned long ip_gma)
780 {
781 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
782 
783 	s->ip_gma = ip_gma;
784 	update_ip_va(s);
785 	return 0;
786 }
787 
788 static inline int ip_gma_advance(struct parser_exec_state *s,
789 		unsigned int dw_len)
790 {
791 	s->ip_gma += (dw_len << 2);
792 
793 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
794 		if (s->ip_gma >= s->ring_start + s->ring_size)
795 			s->ip_gma -= s->ring_size;
796 		update_ip_va(s);
797 	} else {
798 		s->ip_va += (dw_len << 2);
799 	}
800 
801 	return 0;
802 }
803 
804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
805 {
806 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
807 		return info->len;
808 	else
809 		return (cmd & ((1U << info->len) - 1)) + 2;
810 	return 0;
811 }
812 
813 static inline int cmd_length(struct parser_exec_state *s)
814 {
815 	return get_cmd_length(s->info, cmd_val(s, 0));
816 }
817 
818 /* do not remove this, some platform may need clflush here */
819 #define patch_value(s, addr, val) do { \
820 	*addr = val; \
821 } while (0)
822 
823 static bool is_shadowed_mmio(unsigned int offset)
824 {
825 	bool ret = false;
826 
827 	if ((offset == 0x2168) || /*BB current head register UDW */
828 	    (offset == 0x2140) || /*BB current header register */
829 	    (offset == 0x211c) || /*second BB header register UDW */
830 	    (offset == 0x2114)) { /*second BB header register UDW */
831 		ret = true;
832 	}
833 	return ret;
834 }
835 
836 static inline bool is_force_nonpriv_mmio(unsigned int offset)
837 {
838 	return (offset >= 0x24d0 && offset < 0x2500);
839 }
840 
841 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
842 		unsigned int offset, unsigned int index, char *cmd)
843 {
844 	struct intel_gvt *gvt = s->vgpu->gvt;
845 	unsigned int data;
846 	u32 ring_base;
847 	u32 nopid;
848 
849 	if (!strcmp(cmd, "lri"))
850 		data = cmd_val(s, index + 1);
851 	else {
852 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
853 			offset, cmd);
854 		return -EINVAL;
855 	}
856 
857 	ring_base = s->engine->mmio_base;
858 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
859 
860 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
861 			data != nopid) {
862 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
863 			offset, data);
864 		patch_value(s, cmd_ptr(s, index), nopid);
865 		return 0;
866 	}
867 	return 0;
868 }
869 
870 static inline bool is_mocs_mmio(unsigned int offset)
871 {
872 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
873 		((offset >= 0xb020) && (offset <= 0xb0a0));
874 }
875 
876 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
877 				unsigned int offset, unsigned int index)
878 {
879 	if (!is_mocs_mmio(offset))
880 		return -EINVAL;
881 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
882 	return 0;
883 }
884 
885 static int is_cmd_update_pdps(unsigned int offset,
886 			      struct parser_exec_state *s)
887 {
888 	u32 base = s->workload->engine->mmio_base;
889 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
890 }
891 
892 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
893 				       unsigned int offset, unsigned int index)
894 {
895 	struct intel_vgpu *vgpu = s->vgpu;
896 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
897 	struct intel_vgpu_mm *mm;
898 	u64 pdps[GEN8_3LVL_PDPES];
899 
900 	if (shadow_mm->ppgtt_mm.root_entry_type ==
901 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
902 		pdps[0] = (u64)cmd_val(s, 2) << 32;
903 		pdps[0] |= cmd_val(s, 4);
904 
905 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
906 		if (!mm) {
907 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
908 			return -EINVAL;
909 		}
910 		intel_vgpu_mm_get(mm);
911 		list_add_tail(&mm->ppgtt_mm.link,
912 			      &s->workload->lri_shadow_mm);
913 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
914 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
915 	} else {
916 		/* Currently all guests use PML4 table and now can't
917 		 * have a guest with 3-level table but uses LRI for
918 		 * PPGTT update. So this is simply un-testable. */
919 		GEM_BUG_ON(1);
920 		gvt_vgpu_err("invalid shared shadow vm type\n");
921 		return -EINVAL;
922 	}
923 	return 0;
924 }
925 
926 static int cmd_reg_handler(struct parser_exec_state *s,
927 	unsigned int offset, unsigned int index, char *cmd)
928 {
929 	struct intel_vgpu *vgpu = s->vgpu;
930 	struct intel_gvt *gvt = vgpu->gvt;
931 	u32 ctx_sr_ctl;
932 
933 	if (offset + 4 > gvt->device_info.mmio_size) {
934 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
935 				cmd, offset);
936 		return -EFAULT;
937 	}
938 
939 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
940 		gvt_vgpu_err("%s access to non-render register (%x)\n",
941 				cmd, offset);
942 		return -EBADRQC;
943 	}
944 
945 	if (is_shadowed_mmio(offset)) {
946 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
947 		return 0;
948 	}
949 
950 	if (is_mocs_mmio(offset) &&
951 	    mocs_cmd_reg_handler(s, offset, index))
952 		return -EINVAL;
953 
954 	if (is_force_nonpriv_mmio(offset) &&
955 		force_nonpriv_reg_handler(s, offset, index, cmd))
956 		return -EPERM;
957 
958 	if (offset == i915_mmio_reg_offset(DERRMR) ||
959 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
960 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
961 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
962 	}
963 
964 	if (is_cmd_update_pdps(offset, s) &&
965 	    cmd_pdp_mmio_update_handler(s, offset, index))
966 		return -EINVAL;
967 
968 	/* TODO
969 	 * In order to let workload with inhibit context to generate
970 	 * correct image data into memory, vregs values will be loaded to
971 	 * hw via LRIs in the workload with inhibit context. But as
972 	 * indirect context is loaded prior to LRIs in workload, we don't
973 	 * want reg values specified in indirect context overwritten by
974 	 * LRIs in workloads. So, when scanning an indirect context, we
975 	 * update reg values in it into vregs, so LRIs in workload with
976 	 * inhibit context will restore with correct values
977 	 */
978 	if (IS_GEN(s->engine->i915, 9) &&
979 	    intel_gvt_mmio_is_in_ctx(gvt, offset) &&
980 	    !strncmp(cmd, "lri", 3)) {
981 		intel_gvt_hypervisor_read_gpa(s->vgpu,
982 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
983 		/* check inhibit context */
984 		if (ctx_sr_ctl & 1) {
985 			u32 data = cmd_val(s, index + 1);
986 
987 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
988 				intel_vgpu_mask_mmio_write(vgpu,
989 							offset, &data, 4);
990 			else
991 				vgpu_vreg(vgpu, offset) = data;
992 		}
993 	}
994 
995 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
996 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
997 	return 0;
998 }
999 
1000 #define cmd_reg(s, i) \
1001 	(cmd_val(s, i) & GENMASK(22, 2))
1002 
1003 #define cmd_reg_inhibit(s, i) \
1004 	(cmd_val(s, i) & GENMASK(22, 18))
1005 
1006 #define cmd_gma(s, i) \
1007 	(cmd_val(s, i) & GENMASK(31, 2))
1008 
1009 #define cmd_gma_hi(s, i) \
1010 	(cmd_val(s, i) & GENMASK(15, 0))
1011 
1012 static int cmd_handler_lri(struct parser_exec_state *s)
1013 {
1014 	int i, ret = 0;
1015 	int cmd_len = cmd_length(s);
1016 
1017 	for (i = 1; i < cmd_len; i += 2) {
1018 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1019 			if (s->engine->id == BCS0 &&
1020 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1021 				ret |= 0;
1022 			else
1023 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1024 		}
1025 		if (ret)
1026 			break;
1027 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1028 		if (ret)
1029 			break;
1030 	}
1031 	return ret;
1032 }
1033 
1034 static int cmd_handler_lrr(struct parser_exec_state *s)
1035 {
1036 	int i, ret = 0;
1037 	int cmd_len = cmd_length(s);
1038 
1039 	for (i = 1; i < cmd_len; i += 2) {
1040 		if (IS_BROADWELL(s->engine->i915))
1041 			ret |= ((cmd_reg_inhibit(s, i) ||
1042 				 (cmd_reg_inhibit(s, i + 1)))) ?
1043 				-EBADRQC : 0;
1044 		if (ret)
1045 			break;
1046 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1047 		if (ret)
1048 			break;
1049 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1050 		if (ret)
1051 			break;
1052 	}
1053 	return ret;
1054 }
1055 
1056 static inline int cmd_address_audit(struct parser_exec_state *s,
1057 		unsigned long guest_gma, int op_size, bool index_mode);
1058 
1059 static int cmd_handler_lrm(struct parser_exec_state *s)
1060 {
1061 	struct intel_gvt *gvt = s->vgpu->gvt;
1062 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1063 	unsigned long gma;
1064 	int i, ret = 0;
1065 	int cmd_len = cmd_length(s);
1066 
1067 	for (i = 1; i < cmd_len;) {
1068 		if (IS_BROADWELL(s->engine->i915))
1069 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1070 		if (ret)
1071 			break;
1072 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1073 		if (ret)
1074 			break;
1075 		if (cmd_val(s, 0) & (1 << 22)) {
1076 			gma = cmd_gma(s, i + 1);
1077 			if (gmadr_bytes == 8)
1078 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1079 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1080 			if (ret)
1081 				break;
1082 		}
1083 		i += gmadr_dw_number(s) + 1;
1084 	}
1085 	return ret;
1086 }
1087 
1088 static int cmd_handler_srm(struct parser_exec_state *s)
1089 {
1090 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1091 	unsigned long gma;
1092 	int i, ret = 0;
1093 	int cmd_len = cmd_length(s);
1094 
1095 	for (i = 1; i < cmd_len;) {
1096 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1097 		if (ret)
1098 			break;
1099 		if (cmd_val(s, 0) & (1 << 22)) {
1100 			gma = cmd_gma(s, i + 1);
1101 			if (gmadr_bytes == 8)
1102 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1103 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1104 			if (ret)
1105 				break;
1106 		}
1107 		i += gmadr_dw_number(s) + 1;
1108 	}
1109 	return ret;
1110 }
1111 
1112 struct cmd_interrupt_event {
1113 	int pipe_control_notify;
1114 	int mi_flush_dw;
1115 	int mi_user_interrupt;
1116 };
1117 
1118 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1119 	[RCS0] = {
1120 		.pipe_control_notify = RCS_PIPE_CONTROL,
1121 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1122 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1123 	},
1124 	[BCS0] = {
1125 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1126 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1127 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1128 	},
1129 	[VCS0] = {
1130 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1131 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1132 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1133 	},
1134 	[VCS1] = {
1135 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1136 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1137 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1138 	},
1139 	[VECS0] = {
1140 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1141 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1142 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1143 	},
1144 };
1145 
1146 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1147 {
1148 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1149 	unsigned long gma;
1150 	bool index_mode = false;
1151 	unsigned int post_sync;
1152 	int ret = 0;
1153 	u32 hws_pga, val;
1154 
1155 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1156 
1157 	/* LRI post sync */
1158 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1159 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1160 	/* post sync */
1161 	else if (post_sync) {
1162 		if (post_sync == 2)
1163 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1164 		else if (post_sync == 3)
1165 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1166 		else if (post_sync == 1) {
1167 			/* check ggtt*/
1168 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1169 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1170 				if (gmadr_bytes == 8)
1171 					gma |= (cmd_gma_hi(s, 3)) << 32;
1172 				/* Store Data Index */
1173 				if (cmd_val(s, 1) & (1 << 21))
1174 					index_mode = true;
1175 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1176 						index_mode);
1177 				if (ret)
1178 					return ret;
1179 				if (index_mode) {
1180 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1181 					gma = hws_pga + gma;
1182 					patch_value(s, cmd_ptr(s, 2), gma);
1183 					val = cmd_val(s, 1) & (~(1 << 21));
1184 					patch_value(s, cmd_ptr(s, 1), val);
1185 				}
1186 			}
1187 		}
1188 	}
1189 
1190 	if (ret)
1191 		return ret;
1192 
1193 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1194 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1195 			s->workload->pending_events);
1196 	return 0;
1197 }
1198 
1199 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1200 {
1201 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1202 		s->workload->pending_events);
1203 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1204 	return 0;
1205 }
1206 
1207 static int cmd_advance_default(struct parser_exec_state *s)
1208 {
1209 	return ip_gma_advance(s, cmd_length(s));
1210 }
1211 
1212 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1213 {
1214 	int ret;
1215 
1216 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1217 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1218 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1219 		s->buf_addr_type = s->saved_buf_addr_type;
1220 	} else {
1221 		s->buf_type = RING_BUFFER_INSTRUCTION;
1222 		s->buf_addr_type = GTT_BUFFER;
1223 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1224 			s->ret_ip_gma_ring -= s->ring_size;
1225 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1226 	}
1227 	return ret;
1228 }
1229 
1230 struct mi_display_flip_command_info {
1231 	int pipe;
1232 	int plane;
1233 	int event;
1234 	i915_reg_t stride_reg;
1235 	i915_reg_t ctrl_reg;
1236 	i915_reg_t surf_reg;
1237 	u64 stride_val;
1238 	u64 tile_val;
1239 	u64 surf_val;
1240 	bool async_flip;
1241 };
1242 
1243 struct plane_code_mapping {
1244 	int pipe;
1245 	int plane;
1246 	int event;
1247 };
1248 
1249 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1250 		struct mi_display_flip_command_info *info)
1251 {
1252 	struct drm_i915_private *dev_priv = s->engine->i915;
1253 	struct plane_code_mapping gen8_plane_code[] = {
1254 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1255 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1256 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1257 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1258 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1259 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1260 	};
1261 	u32 dword0, dword1, dword2;
1262 	u32 v;
1263 
1264 	dword0 = cmd_val(s, 0);
1265 	dword1 = cmd_val(s, 1);
1266 	dword2 = cmd_val(s, 2);
1267 
1268 	v = (dword0 & GENMASK(21, 19)) >> 19;
1269 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1270 		return -EBADRQC;
1271 
1272 	info->pipe = gen8_plane_code[v].pipe;
1273 	info->plane = gen8_plane_code[v].plane;
1274 	info->event = gen8_plane_code[v].event;
1275 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1276 	info->tile_val = (dword1 & 0x1);
1277 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1278 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1279 
1280 	if (info->plane == PLANE_A) {
1281 		info->ctrl_reg = DSPCNTR(info->pipe);
1282 		info->stride_reg = DSPSTRIDE(info->pipe);
1283 		info->surf_reg = DSPSURF(info->pipe);
1284 	} else if (info->plane == PLANE_B) {
1285 		info->ctrl_reg = SPRCTL(info->pipe);
1286 		info->stride_reg = SPRSTRIDE(info->pipe);
1287 		info->surf_reg = SPRSURF(info->pipe);
1288 	} else {
1289 		drm_WARN_ON(&dev_priv->drm, 1);
1290 		return -EBADRQC;
1291 	}
1292 	return 0;
1293 }
1294 
1295 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1296 		struct mi_display_flip_command_info *info)
1297 {
1298 	struct drm_i915_private *dev_priv = s->engine->i915;
1299 	struct intel_vgpu *vgpu = s->vgpu;
1300 	u32 dword0 = cmd_val(s, 0);
1301 	u32 dword1 = cmd_val(s, 1);
1302 	u32 dword2 = cmd_val(s, 2);
1303 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1304 
1305 	info->plane = PRIMARY_PLANE;
1306 
1307 	switch (plane) {
1308 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1309 		info->pipe = PIPE_A;
1310 		info->event = PRIMARY_A_FLIP_DONE;
1311 		break;
1312 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1313 		info->pipe = PIPE_B;
1314 		info->event = PRIMARY_B_FLIP_DONE;
1315 		break;
1316 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1317 		info->pipe = PIPE_C;
1318 		info->event = PRIMARY_C_FLIP_DONE;
1319 		break;
1320 
1321 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1322 		info->pipe = PIPE_A;
1323 		info->event = SPRITE_A_FLIP_DONE;
1324 		info->plane = SPRITE_PLANE;
1325 		break;
1326 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1327 		info->pipe = PIPE_B;
1328 		info->event = SPRITE_B_FLIP_DONE;
1329 		info->plane = SPRITE_PLANE;
1330 		break;
1331 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1332 		info->pipe = PIPE_C;
1333 		info->event = SPRITE_C_FLIP_DONE;
1334 		info->plane = SPRITE_PLANE;
1335 		break;
1336 
1337 	default:
1338 		gvt_vgpu_err("unknown plane code %d\n", plane);
1339 		return -EBADRQC;
1340 	}
1341 
1342 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1343 	info->tile_val = (dword1 & GENMASK(2, 0));
1344 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1345 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1346 
1347 	info->ctrl_reg = DSPCNTR(info->pipe);
1348 	info->stride_reg = DSPSTRIDE(info->pipe);
1349 	info->surf_reg = DSPSURF(info->pipe);
1350 
1351 	return 0;
1352 }
1353 
1354 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1355 		struct mi_display_flip_command_info *info)
1356 {
1357 	u32 stride, tile;
1358 
1359 	if (!info->async_flip)
1360 		return 0;
1361 
1362 	if (INTEL_GEN(s->engine->i915) >= 9) {
1363 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1364 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1365 				GENMASK(12, 10)) >> 10;
1366 	} else {
1367 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1368 				GENMASK(15, 6)) >> 6;
1369 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1370 	}
1371 
1372 	if (stride != info->stride_val)
1373 		gvt_dbg_cmd("cannot change stride during async flip\n");
1374 
1375 	if (tile != info->tile_val)
1376 		gvt_dbg_cmd("cannot change tile during async flip\n");
1377 
1378 	return 0;
1379 }
1380 
1381 static int gen8_update_plane_mmio_from_mi_display_flip(
1382 		struct parser_exec_state *s,
1383 		struct mi_display_flip_command_info *info)
1384 {
1385 	struct drm_i915_private *dev_priv = s->engine->i915;
1386 	struct intel_vgpu *vgpu = s->vgpu;
1387 
1388 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1389 		      info->surf_val << 12);
1390 	if (INTEL_GEN(dev_priv) >= 9) {
1391 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1392 			      info->stride_val);
1393 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1394 			      info->tile_val << 10);
1395 	} else {
1396 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1397 			      info->stride_val << 6);
1398 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1399 			      info->tile_val << 10);
1400 	}
1401 
1402 	if (info->plane == PLANE_PRIMARY)
1403 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1404 
1405 	if (info->async_flip)
1406 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1407 	else
1408 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1409 
1410 	return 0;
1411 }
1412 
1413 static int decode_mi_display_flip(struct parser_exec_state *s,
1414 		struct mi_display_flip_command_info *info)
1415 {
1416 	if (IS_BROADWELL(s->engine->i915))
1417 		return gen8_decode_mi_display_flip(s, info);
1418 	if (INTEL_GEN(s->engine->i915) >= 9)
1419 		return skl_decode_mi_display_flip(s, info);
1420 
1421 	return -ENODEV;
1422 }
1423 
1424 static int check_mi_display_flip(struct parser_exec_state *s,
1425 		struct mi_display_flip_command_info *info)
1426 {
1427 	return gen8_check_mi_display_flip(s, info);
1428 }
1429 
1430 static int update_plane_mmio_from_mi_display_flip(
1431 		struct parser_exec_state *s,
1432 		struct mi_display_flip_command_info *info)
1433 {
1434 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1435 }
1436 
1437 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1438 {
1439 	struct mi_display_flip_command_info info;
1440 	struct intel_vgpu *vgpu = s->vgpu;
1441 	int ret;
1442 	int i;
1443 	int len = cmd_length(s);
1444 	u32 valid_len = CMD_LEN(1);
1445 
1446 	/* Flip Type == Stereo 3D Flip */
1447 	if (DWORD_FIELD(2, 1, 0) == 2)
1448 		valid_len++;
1449 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1450 			valid_len);
1451 	if (ret)
1452 		return ret;
1453 
1454 	ret = decode_mi_display_flip(s, &info);
1455 	if (ret) {
1456 		gvt_vgpu_err("fail to decode MI display flip command\n");
1457 		return ret;
1458 	}
1459 
1460 	ret = check_mi_display_flip(s, &info);
1461 	if (ret) {
1462 		gvt_vgpu_err("invalid MI display flip command\n");
1463 		return ret;
1464 	}
1465 
1466 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1467 	if (ret) {
1468 		gvt_vgpu_err("fail to update plane mmio\n");
1469 		return ret;
1470 	}
1471 
1472 	for (i = 0; i < len; i++)
1473 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1474 	return 0;
1475 }
1476 
1477 static bool is_wait_for_flip_pending(u32 cmd)
1478 {
1479 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1480 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1481 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1482 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1483 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1484 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1485 }
1486 
1487 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1488 {
1489 	u32 cmd = cmd_val(s, 0);
1490 
1491 	if (!is_wait_for_flip_pending(cmd))
1492 		return 0;
1493 
1494 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1495 	return 0;
1496 }
1497 
1498 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1499 {
1500 	unsigned long addr;
1501 	unsigned long gma_high, gma_low;
1502 	struct intel_vgpu *vgpu = s->vgpu;
1503 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1504 
1505 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1506 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1507 		return INTEL_GVT_INVALID_ADDR;
1508 	}
1509 
1510 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1511 	if (gmadr_bytes == 4) {
1512 		addr = gma_low;
1513 	} else {
1514 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1515 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1516 	}
1517 	return addr;
1518 }
1519 
1520 static inline int cmd_address_audit(struct parser_exec_state *s,
1521 		unsigned long guest_gma, int op_size, bool index_mode)
1522 {
1523 	struct intel_vgpu *vgpu = s->vgpu;
1524 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1525 	int i;
1526 	int ret;
1527 
1528 	if (op_size > max_surface_size) {
1529 		gvt_vgpu_err("command address audit fail name %s\n",
1530 			s->info->name);
1531 		return -EFAULT;
1532 	}
1533 
1534 	if (index_mode)	{
1535 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1536 			ret = -EFAULT;
1537 			goto err;
1538 		}
1539 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1540 		ret = -EFAULT;
1541 		goto err;
1542 	}
1543 
1544 	return 0;
1545 
1546 err:
1547 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1548 			s->info->name, guest_gma, op_size);
1549 
1550 	pr_err("cmd dump: ");
1551 	for (i = 0; i < cmd_length(s); i++) {
1552 		if (!(i % 4))
1553 			pr_err("\n%08x ", cmd_val(s, i));
1554 		else
1555 			pr_err("%08x ", cmd_val(s, i));
1556 	}
1557 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1558 			vgpu->id,
1559 			vgpu_aperture_gmadr_base(vgpu),
1560 			vgpu_aperture_gmadr_end(vgpu),
1561 			vgpu_hidden_gmadr_base(vgpu),
1562 			vgpu_hidden_gmadr_end(vgpu));
1563 	return ret;
1564 }
1565 
1566 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1567 {
1568 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1569 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1570 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1571 	unsigned long gma, gma_low, gma_high;
1572 	u32 valid_len = CMD_LEN(2);
1573 	int ret = 0;
1574 
1575 	/* check ppggt */
1576 	if (!(cmd_val(s, 0) & (1 << 22)))
1577 		return 0;
1578 
1579 	/* check if QWORD */
1580 	if (DWORD_FIELD(0, 21, 21))
1581 		valid_len++;
1582 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1583 			valid_len);
1584 	if (ret)
1585 		return ret;
1586 
1587 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1588 
1589 	if (gmadr_bytes == 8) {
1590 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1591 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1592 		gma = (gma_high << 32) | gma_low;
1593 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1594 	}
1595 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1596 	return ret;
1597 }
1598 
1599 static inline int unexpected_cmd(struct parser_exec_state *s)
1600 {
1601 	struct intel_vgpu *vgpu = s->vgpu;
1602 
1603 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1604 
1605 	return -EBADRQC;
1606 }
1607 
1608 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1609 {
1610 	return unexpected_cmd(s);
1611 }
1612 
1613 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1614 {
1615 	return unexpected_cmd(s);
1616 }
1617 
1618 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1619 {
1620 	return unexpected_cmd(s);
1621 }
1622 
1623 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1624 {
1625 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1626 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1627 			sizeof(u32);
1628 	unsigned long gma, gma_high;
1629 	u32 valid_len = CMD_LEN(1);
1630 	int ret = 0;
1631 
1632 	if (!(cmd_val(s, 0) & (1 << 22)))
1633 		return ret;
1634 
1635 	/* check inline data */
1636 	if (cmd_val(s, 0) & BIT(18))
1637 		valid_len = CMD_LEN(9);
1638 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1639 			valid_len);
1640 	if (ret)
1641 		return ret;
1642 
1643 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1644 	if (gmadr_bytes == 8) {
1645 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1646 		gma = (gma_high << 32) | gma;
1647 	}
1648 	ret = cmd_address_audit(s, gma, op_size, false);
1649 	return ret;
1650 }
1651 
1652 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1653 {
1654 	return unexpected_cmd(s);
1655 }
1656 
1657 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1658 {
1659 	return unexpected_cmd(s);
1660 }
1661 
1662 static int cmd_handler_mi_conditional_batch_buffer_end(
1663 		struct parser_exec_state *s)
1664 {
1665 	return unexpected_cmd(s);
1666 }
1667 
1668 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1669 {
1670 	return unexpected_cmd(s);
1671 }
1672 
1673 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1674 {
1675 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1676 	unsigned long gma;
1677 	bool index_mode = false;
1678 	int ret = 0;
1679 	u32 hws_pga, val;
1680 	u32 valid_len = CMD_LEN(2);
1681 
1682 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1683 			valid_len);
1684 	if (ret) {
1685 		/* Check again for Qword */
1686 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1687 			++valid_len);
1688 		return ret;
1689 	}
1690 
1691 	/* Check post-sync and ppgtt bit */
1692 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1693 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1694 		if (gmadr_bytes == 8)
1695 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1696 		/* Store Data Index */
1697 		if (cmd_val(s, 0) & (1 << 21))
1698 			index_mode = true;
1699 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1700 		if (ret)
1701 			return ret;
1702 		if (index_mode) {
1703 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1704 			gma = hws_pga + gma;
1705 			patch_value(s, cmd_ptr(s, 1), gma);
1706 			val = cmd_val(s, 0) & (~(1 << 21));
1707 			patch_value(s, cmd_ptr(s, 0), val);
1708 		}
1709 	}
1710 	/* Check notify bit */
1711 	if ((cmd_val(s, 0) & (1 << 8)))
1712 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1713 			s->workload->pending_events);
1714 	return ret;
1715 }
1716 
1717 static void addr_type_update_snb(struct parser_exec_state *s)
1718 {
1719 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1720 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1721 		s->buf_addr_type = PPGTT_BUFFER;
1722 	}
1723 }
1724 
1725 
1726 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1727 		unsigned long gma, unsigned long end_gma, void *va)
1728 {
1729 	unsigned long copy_len, offset;
1730 	unsigned long len = 0;
1731 	unsigned long gpa;
1732 
1733 	while (gma != end_gma) {
1734 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1735 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1736 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1737 			return -EFAULT;
1738 		}
1739 
1740 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1741 
1742 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1743 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1744 
1745 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1746 
1747 		len += copy_len;
1748 		gma += copy_len;
1749 	}
1750 	return len;
1751 }
1752 
1753 
1754 /*
1755  * Check whether a batch buffer needs to be scanned. Currently
1756  * the only criteria is based on privilege.
1757  */
1758 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1759 {
1760 	/* Decide privilege based on address space */
1761 	if (cmd_val(s, 0) & BIT(8) &&
1762 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1763 		return 0;
1764 
1765 	return 1;
1766 }
1767 
1768 static const char *repr_addr_type(unsigned int type)
1769 {
1770 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1771 }
1772 
1773 static int find_bb_size(struct parser_exec_state *s,
1774 			unsigned long *bb_size,
1775 			unsigned long *bb_end_cmd_offset)
1776 {
1777 	unsigned long gma = 0;
1778 	const struct cmd_info *info;
1779 	u32 cmd_len = 0;
1780 	bool bb_end = false;
1781 	struct intel_vgpu *vgpu = s->vgpu;
1782 	u32 cmd;
1783 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1784 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1785 
1786 	*bb_size = 0;
1787 	*bb_end_cmd_offset = 0;
1788 
1789 	/* get the start gm address of the batch buffer */
1790 	gma = get_gma_bb_from_cmd(s, 1);
1791 	if (gma == INTEL_GVT_INVALID_ADDR)
1792 		return -EFAULT;
1793 
1794 	cmd = cmd_val(s, 0);
1795 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1796 	if (info == NULL) {
1797 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1798 			     cmd, get_opcode(cmd, s->engine),
1799 			     repr_addr_type(s->buf_addr_type),
1800 			     s->engine->name, s->workload);
1801 		return -EBADRQC;
1802 	}
1803 	do {
1804 		if (copy_gma_to_hva(s->vgpu, mm,
1805 				    gma, gma + 4, &cmd) < 0)
1806 			return -EFAULT;
1807 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1808 		if (info == NULL) {
1809 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1810 				     cmd, get_opcode(cmd, s->engine),
1811 				     repr_addr_type(s->buf_addr_type),
1812 				     s->engine->name, s->workload);
1813 			return -EBADRQC;
1814 		}
1815 
1816 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1817 			bb_end = true;
1818 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1819 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1820 				/* chained batch buffer */
1821 				bb_end = true;
1822 		}
1823 
1824 		if (bb_end)
1825 			*bb_end_cmd_offset = *bb_size;
1826 
1827 		cmd_len = get_cmd_length(info, cmd) << 2;
1828 		*bb_size += cmd_len;
1829 		gma += cmd_len;
1830 	} while (!bb_end);
1831 
1832 	return 0;
1833 }
1834 
1835 static int audit_bb_end(struct parser_exec_state *s, void *va)
1836 {
1837 	struct intel_vgpu *vgpu = s->vgpu;
1838 	u32 cmd = *(u32 *)va;
1839 	const struct cmd_info *info;
1840 
1841 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1842 	if (info == NULL) {
1843 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1844 			     cmd, get_opcode(cmd, s->engine),
1845 			     repr_addr_type(s->buf_addr_type),
1846 			     s->engine->name, s->workload);
1847 		return -EBADRQC;
1848 	}
1849 
1850 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1851 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1852 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1853 		return 0;
1854 
1855 	return -EBADRQC;
1856 }
1857 
1858 static int perform_bb_shadow(struct parser_exec_state *s)
1859 {
1860 	struct intel_vgpu *vgpu = s->vgpu;
1861 	struct intel_vgpu_shadow_bb *bb;
1862 	unsigned long gma = 0;
1863 	unsigned long bb_size;
1864 	unsigned long bb_end_cmd_offset;
1865 	int ret = 0;
1866 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1867 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1868 	unsigned long start_offset = 0;
1869 
1870 	/* get the start gm address of the batch buffer */
1871 	gma = get_gma_bb_from_cmd(s, 1);
1872 	if (gma == INTEL_GVT_INVALID_ADDR)
1873 		return -EFAULT;
1874 
1875 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1876 	if (ret)
1877 		return ret;
1878 
1879 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1880 	if (!bb)
1881 		return -ENOMEM;
1882 
1883 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1884 
1885 	/* the start_offset stores the batch buffer's start gma's
1886 	 * offset relative to page boundary. so for non-privileged batch
1887 	 * buffer, the shadowed gem object holds exactly the same page
1888 	 * layout as original gem object. This is for the convience of
1889 	 * replacing the whole non-privilged batch buffer page to this
1890 	 * shadowed one in PPGTT at the same gma address. (this replacing
1891 	 * action is not implemented yet now, but may be necessary in
1892 	 * future).
1893 	 * for prileged batch buffer, we just change start gma address to
1894 	 * that of shadowed page.
1895 	 */
1896 	if (bb->ppgtt)
1897 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1898 
1899 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1900 					       round_up(bb_size + start_offset,
1901 							PAGE_SIZE));
1902 	if (IS_ERR(bb->obj)) {
1903 		ret = PTR_ERR(bb->obj);
1904 		goto err_free_bb;
1905 	}
1906 
1907 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1908 	if (IS_ERR(bb->va)) {
1909 		ret = PTR_ERR(bb->va);
1910 		goto err_free_obj;
1911 	}
1912 
1913 	ret = copy_gma_to_hva(s->vgpu, mm,
1914 			      gma, gma + bb_size,
1915 			      bb->va + start_offset);
1916 	if (ret < 0) {
1917 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1918 		ret = -EFAULT;
1919 		goto err_unmap;
1920 	}
1921 
1922 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1923 	if (ret)
1924 		goto err_unmap;
1925 
1926 	INIT_LIST_HEAD(&bb->list);
1927 	list_add(&bb->list, &s->workload->shadow_bb);
1928 
1929 	bb->bb_start_cmd_va = s->ip_va;
1930 
1931 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1932 		bb->bb_offset = s->ip_va - s->rb_va;
1933 	else
1934 		bb->bb_offset = 0;
1935 
1936 	/*
1937 	 * ip_va saves the virtual address of the shadow batch buffer, while
1938 	 * ip_gma saves the graphics address of the original batch buffer.
1939 	 * As the shadow batch buffer is just a copy from the originial one,
1940 	 * it should be right to use shadow batch buffer'va and original batch
1941 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1942 	 * buffer here (too early).
1943 	 */
1944 	s->ip_va = bb->va + start_offset;
1945 	s->ip_gma = gma;
1946 	return 0;
1947 err_unmap:
1948 	i915_gem_object_unpin_map(bb->obj);
1949 err_free_obj:
1950 	i915_gem_object_put(bb->obj);
1951 err_free_bb:
1952 	kfree(bb);
1953 	return ret;
1954 }
1955 
1956 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1957 {
1958 	bool second_level;
1959 	int ret = 0;
1960 	struct intel_vgpu *vgpu = s->vgpu;
1961 
1962 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1963 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1964 		return -EFAULT;
1965 	}
1966 
1967 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1968 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1969 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1970 		return -EFAULT;
1971 	}
1972 
1973 	s->saved_buf_addr_type = s->buf_addr_type;
1974 	addr_type_update_snb(s);
1975 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1976 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1977 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1978 	} else if (second_level) {
1979 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1980 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1981 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1982 	}
1983 
1984 	if (batch_buffer_needs_scan(s)) {
1985 		ret = perform_bb_shadow(s);
1986 		if (ret < 0)
1987 			gvt_vgpu_err("invalid shadow batch buffer\n");
1988 	} else {
1989 		/* emulate a batch buffer end to do return right */
1990 		ret = cmd_handler_mi_batch_buffer_end(s);
1991 		if (ret < 0)
1992 			return ret;
1993 	}
1994 	return ret;
1995 }
1996 
1997 static int mi_noop_index;
1998 
1999 static const struct cmd_info cmd_info[] = {
2000 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2001 
2002 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2003 		0, 1, NULL},
2004 
2005 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2006 		0, 1, cmd_handler_mi_user_interrupt},
2007 
2008 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2009 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2010 
2011 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2012 
2013 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2014 		NULL},
2015 
2016 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2017 		NULL},
2018 
2019 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2020 		NULL},
2021 
2022 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2023 		NULL},
2024 
2025 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2026 		D_ALL, 0, 1, NULL},
2027 
2028 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2029 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2030 		cmd_handler_mi_batch_buffer_end},
2031 
2032 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2033 		0, 1, NULL},
2034 
2035 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2036 		NULL},
2037 
2038 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2039 		D_ALL, 0, 1, NULL},
2040 
2041 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2042 		NULL},
2043 
2044 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2045 		NULL},
2046 
2047 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2048 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2049 
2050 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2051 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2052 
2053 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2054 
2055 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2056 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2057 
2058 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2059 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2060 		NULL, CMD_LEN(0)},
2061 
2062 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2063 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2064 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2065 
2066 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2067 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2068 
2069 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2070 		0, 8, cmd_handler_mi_store_data_index},
2071 
2072 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2073 		D_ALL, 0, 8, cmd_handler_lri},
2074 
2075 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2076 		cmd_handler_mi_update_gtt},
2077 
2078 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2079 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2080 		cmd_handler_srm, CMD_LEN(2)},
2081 
2082 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2083 		cmd_handler_mi_flush_dw},
2084 
2085 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2086 		10, cmd_handler_mi_clflush},
2087 
2088 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2089 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2090 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2091 
2092 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2093 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2094 		cmd_handler_lrm, CMD_LEN(2)},
2095 
2096 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2097 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2098 		cmd_handler_lrr, CMD_LEN(1)},
2099 
2100 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2101 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2102 		8, NULL, CMD_LEN(2)},
2103 
2104 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2105 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2106 
2107 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2108 		ADDR_FIX_1(2), 8, NULL},
2109 
2110 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2111 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2112 
2113 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2114 		8, cmd_handler_mi_op_2f},
2115 
2116 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2117 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2118 		cmd_handler_mi_batch_buffer_start},
2119 
2120 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2121 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2122 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2123 
2124 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2125 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2126 
2127 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2128 		ADDR_FIX_2(4, 7), 8, NULL},
2129 
2130 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2131 		0, 8, NULL},
2132 
2133 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2134 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2135 
2136 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2137 
2138 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2139 		0, 8, NULL},
2140 
2141 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2142 		ADDR_FIX_1(3), 8, NULL},
2143 
2144 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2145 		D_ALL, 0, 8, NULL},
2146 
2147 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2148 		ADDR_FIX_1(4), 8, NULL},
2149 
2150 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2151 		ADDR_FIX_2(4, 5), 8, NULL},
2152 
2153 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2154 		ADDR_FIX_1(4), 8, NULL},
2155 
2156 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2157 		ADDR_FIX_2(4, 7), 8, NULL},
2158 
2159 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2160 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2161 
2162 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2163 
2164 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2165 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2166 
2167 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2168 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2169 
2170 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2171 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2172 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2173 
2174 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2175 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2176 
2177 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2178 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2179 
2180 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2181 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2182 
2183 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2184 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2185 
2186 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2187 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2188 
2189 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2190 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2191 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2192 
2193 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2194 		ADDR_FIX_2(4, 5), 8, NULL},
2195 
2196 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2197 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2198 
2199 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2200 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2201 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2202 
2203 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2204 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2205 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2206 
2207 	{"3DSTATE_BLEND_STATE_POINTERS",
2208 		OP_3DSTATE_BLEND_STATE_POINTERS,
2209 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2210 
2211 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2212 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2213 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2214 
2215 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2216 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2217 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2218 
2219 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2220 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2221 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2222 
2223 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2224 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2225 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2226 
2227 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2228 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2229 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2230 
2231 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2232 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2233 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234 
2235 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2236 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2237 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238 
2239 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2240 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2241 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242 
2243 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2244 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2245 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246 
2247 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2248 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2249 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2252 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2253 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254 
2255 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2256 		0, 8, NULL},
2257 
2258 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2259 		0, 8, NULL},
2260 
2261 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2262 		0, 8, NULL},
2263 
2264 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2265 		0, 8, NULL},
2266 
2267 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2268 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2271 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272 
2273 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2274 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2277 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278 
2279 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2280 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 
2282 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2283 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2284 
2285 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2286 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2287 
2288 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2289 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290 
2291 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2292 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2293 
2294 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2295 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2296 
2297 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2298 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2299 
2300 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2301 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2302 
2303 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2304 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305 
2306 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2307 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308 
2309 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2310 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2311 
2312 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2313 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2314 
2315 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2316 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2317 
2318 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2319 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2320 
2321 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2322 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2323 
2324 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2325 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2326 
2327 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2328 		D_BDW_PLUS, 0, 8, NULL},
2329 
2330 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2331 		NULL},
2332 
2333 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2334 		D_BDW_PLUS, 0, 8, NULL},
2335 
2336 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2337 		D_BDW_PLUS, 0, 8, NULL},
2338 
2339 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2340 		8, NULL},
2341 
2342 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2343 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2344 
2345 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2346 		8, NULL},
2347 
2348 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2349 		NULL},
2350 
2351 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2352 		NULL},
2353 
2354 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2355 		NULL},
2356 
2357 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2358 		D_BDW_PLUS, 0, 8, NULL},
2359 
2360 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2361 		R_RCS, D_ALL, 0, 8, NULL},
2362 
2363 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2364 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2365 
2366 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2367 		R_RCS, D_ALL, 0, 1, NULL},
2368 
2369 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2370 
2371 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2372 		R_RCS, D_ALL, 0, 8, NULL},
2373 
2374 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2375 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2376 
2377 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2378 
2379 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2380 
2381 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2382 
2383 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2384 		D_BDW_PLUS, 0, 8, NULL},
2385 
2386 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2387 		D_BDW_PLUS, 0, 8, NULL},
2388 
2389 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2390 		D_ALL, 0, 8, NULL},
2391 
2392 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2393 		D_BDW_PLUS, 0, 8, NULL},
2394 
2395 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2396 		D_BDW_PLUS, 0, 8, NULL},
2397 
2398 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2399 
2400 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2401 
2402 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2403 
2404 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2405 		D_ALL, 0, 8, NULL},
2406 
2407 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2408 
2409 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410 
2411 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2412 		R_RCS, D_ALL, 0, 8, NULL},
2413 
2414 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2415 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416 
2417 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2418 		0, 8, NULL},
2419 
2420 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2421 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2422 
2423 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2424 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2425 
2426 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2427 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2428 
2429 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2430 		D_ALL, 0, 8, NULL},
2431 
2432 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2433 		D_ALL, 0, 8, NULL},
2434 
2435 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2436 		D_ALL, 0, 8, NULL},
2437 
2438 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2439 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440 
2441 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2442 		D_BDW_PLUS, 0, 8, NULL},
2443 
2444 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2445 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2446 
2447 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2448 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2449 
2450 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2451 		R_RCS, D_ALL, 0, 8, NULL},
2452 
2453 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2454 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2455 
2456 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2457 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2458 
2459 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2460 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2461 
2462 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2463 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2464 
2465 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2466 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2467 
2468 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2469 		R_RCS, D_ALL, 0, 8, NULL},
2470 
2471 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2472 		D_ALL, 0, 9, NULL},
2473 
2474 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2475 		ADDR_FIX_2(2, 4), 8, NULL},
2476 
2477 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2478 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2479 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2480 
2481 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2482 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2483 
2484 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2485 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2486 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2487 
2488 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2489 		D_BDW_PLUS, 0, 8, NULL},
2490 
2491 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2492 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2493 
2494 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2495 
2496 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2497 		1, NULL},
2498 
2499 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2500 		ADDR_FIX_1(1), 8, NULL},
2501 
2502 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2503 
2504 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2505 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2506 
2507 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2508 		ADDR_FIX_1(1), 8, NULL},
2509 
2510 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2511 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2512 
2513 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2514 
2515 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2516 
2517 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2518 		0, 8, NULL},
2519 
2520 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2521 		D_SKL_PLUS, 0, 8, NULL},
2522 
2523 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2524 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2525 
2526 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2527 		0, 16, NULL},
2528 
2529 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2530 		0, 16, NULL},
2531 
2532 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2533 		0, 16, NULL},
2534 
2535 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2536 
2537 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2538 		0, 16, NULL},
2539 
2540 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2541 		0, 16, NULL},
2542 
2543 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2544 		0, 16, NULL},
2545 
2546 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2547 		0, 8, NULL},
2548 
2549 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2550 		NULL},
2551 
2552 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2553 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2554 
2555 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2556 		R_VCS, D_ALL, 0, 12, NULL},
2557 
2558 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2559 		R_VCS, D_ALL, 0, 12, NULL},
2560 
2561 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2562 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2563 
2564 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2565 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2566 
2567 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2568 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2569 
2570 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2571 
2572 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2573 		R_VCS, D_ALL, 0, 12, NULL},
2574 
2575 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2576 		R_VCS, D_ALL, 0, 12, NULL},
2577 
2578 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2579 		R_VCS, D_ALL, 0, 12, NULL},
2580 
2581 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2582 		R_VCS, D_ALL, 0, 12, NULL},
2583 
2584 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2585 		R_VCS, D_ALL, 0, 12, NULL},
2586 
2587 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2588 		R_VCS, D_ALL, 0, 12, NULL},
2589 
2590 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2591 		R_VCS, D_ALL, 0, 6, NULL},
2592 
2593 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2594 		R_VCS, D_ALL, 0, 12, NULL},
2595 
2596 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2597 		R_VCS, D_ALL, 0, 12, NULL},
2598 
2599 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2600 		R_VCS, D_ALL, 0, 12, NULL},
2601 
2602 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2603 		R_VCS, D_ALL, 0, 12, NULL},
2604 
2605 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2606 		R_VCS, D_ALL, 0, 12, NULL},
2607 
2608 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2609 		R_VCS, D_ALL, 0, 12, NULL},
2610 
2611 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2612 		R_VCS, D_ALL, 0, 12, NULL},
2613 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2614 		R_VCS, D_ALL, 0, 12, NULL},
2615 
2616 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2617 		R_VCS, D_ALL, 0, 12, NULL},
2618 
2619 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2620 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2621 
2622 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2623 		R_VCS, D_ALL, 0, 12, NULL},
2624 
2625 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2626 		R_VCS, D_ALL, 0, 12, NULL},
2627 
2628 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2629 		R_VCS, D_ALL, 0, 12, NULL},
2630 
2631 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2632 		R_VCS, D_ALL, 0, 12, NULL},
2633 
2634 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2635 		R_VCS, D_ALL, 0, 12, NULL},
2636 
2637 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2638 		R_VCS, D_ALL, 0, 12, NULL},
2639 
2640 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2641 		R_VCS, D_ALL, 0, 12, NULL},
2642 
2643 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2644 		R_VCS, D_ALL, 0, 12, NULL},
2645 
2646 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2647 		R_VCS, D_ALL, 0, 12, NULL},
2648 
2649 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2650 		R_VCS, D_ALL, 0, 12, NULL},
2651 
2652 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2653 		R_VCS, D_ALL, 0, 12, NULL},
2654 
2655 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2656 		0, 16, NULL},
2657 
2658 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2659 
2660 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2661 
2662 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2663 		R_VCS, D_ALL, 0, 12, NULL},
2664 
2665 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2666 		R_VCS, D_ALL, 0, 12, NULL},
2667 
2668 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2669 		R_VCS, D_ALL, 0, 12, NULL},
2670 
2671 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2672 
2673 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2674 		0, 12, NULL},
2675 
2676 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2677 		0, 12, NULL},
2678 };
2679 
2680 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2681 {
2682 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2683 }
2684 
2685 /* call the cmd handler, and advance ip */
2686 static int cmd_parser_exec(struct parser_exec_state *s)
2687 {
2688 	struct intel_vgpu *vgpu = s->vgpu;
2689 	const struct cmd_info *info;
2690 	u32 cmd;
2691 	int ret = 0;
2692 
2693 	cmd = cmd_val(s, 0);
2694 
2695 	/* fastpath for MI_NOOP */
2696 	if (cmd == MI_NOOP)
2697 		info = &cmd_info[mi_noop_index];
2698 	else
2699 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2700 
2701 	if (info == NULL) {
2702 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2703 			     cmd, get_opcode(cmd, s->engine),
2704 			     repr_addr_type(s->buf_addr_type),
2705 			     s->engine->name, s->workload);
2706 		return -EBADRQC;
2707 	}
2708 
2709 	s->info = info;
2710 
2711 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2712 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2713 			  s->workload, info->name);
2714 
2715 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2716 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2717 						 info->valid_len);
2718 		if (ret)
2719 			return ret;
2720 	}
2721 
2722 	if (info->handler) {
2723 		ret = info->handler(s);
2724 		if (ret < 0) {
2725 			gvt_vgpu_err("%s handler error\n", info->name);
2726 			return ret;
2727 		}
2728 	}
2729 
2730 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2731 		ret = cmd_advance_default(s);
2732 		if (ret) {
2733 			gvt_vgpu_err("%s IP advance error\n", info->name);
2734 			return ret;
2735 		}
2736 	}
2737 	return 0;
2738 }
2739 
2740 static inline bool gma_out_of_range(unsigned long gma,
2741 		unsigned long gma_head, unsigned int gma_tail)
2742 {
2743 	if (gma_tail >= gma_head)
2744 		return (gma < gma_head) || (gma > gma_tail);
2745 	else
2746 		return (gma > gma_tail) && (gma < gma_head);
2747 }
2748 
2749 /* Keep the consistent return type, e.g EBADRQC for unknown
2750  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2751  * works as the input of VM healthy status.
2752  */
2753 static int command_scan(struct parser_exec_state *s,
2754 		unsigned long rb_head, unsigned long rb_tail,
2755 		unsigned long rb_start, unsigned long rb_len)
2756 {
2757 
2758 	unsigned long gma_head, gma_tail, gma_bottom;
2759 	int ret = 0;
2760 	struct intel_vgpu *vgpu = s->vgpu;
2761 
2762 	gma_head = rb_start + rb_head;
2763 	gma_tail = rb_start + rb_tail;
2764 	gma_bottom = rb_start +  rb_len;
2765 
2766 	while (s->ip_gma != gma_tail) {
2767 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2768 			if (!(s->ip_gma >= rb_start) ||
2769 				!(s->ip_gma < gma_bottom)) {
2770 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2771 					"(base:0x%lx, bottom: 0x%lx)\n",
2772 					s->ip_gma, rb_start,
2773 					gma_bottom);
2774 				parser_exec_state_dump(s);
2775 				return -EFAULT;
2776 			}
2777 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2778 				gvt_vgpu_err("ip_gma %lx out of range."
2779 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2780 					s->ip_gma, rb_start,
2781 					rb_head, rb_tail);
2782 				parser_exec_state_dump(s);
2783 				break;
2784 			}
2785 		}
2786 		ret = cmd_parser_exec(s);
2787 		if (ret) {
2788 			gvt_vgpu_err("cmd parser error\n");
2789 			parser_exec_state_dump(s);
2790 			break;
2791 		}
2792 	}
2793 
2794 	return ret;
2795 }
2796 
2797 static int scan_workload(struct intel_vgpu_workload *workload)
2798 {
2799 	unsigned long gma_head, gma_tail, gma_bottom;
2800 	struct parser_exec_state s;
2801 	int ret = 0;
2802 
2803 	/* ring base is page aligned */
2804 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2805 		return -EINVAL;
2806 
2807 	gma_head = workload->rb_start + workload->rb_head;
2808 	gma_tail = workload->rb_start + workload->rb_tail;
2809 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2810 
2811 	s.buf_type = RING_BUFFER_INSTRUCTION;
2812 	s.buf_addr_type = GTT_BUFFER;
2813 	s.vgpu = workload->vgpu;
2814 	s.engine = workload->engine;
2815 	s.ring_start = workload->rb_start;
2816 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2817 	s.ring_head = gma_head;
2818 	s.ring_tail = gma_tail;
2819 	s.rb_va = workload->shadow_ring_buffer_va;
2820 	s.workload = workload;
2821 	s.is_ctx_wa = false;
2822 
2823 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2824 		return 0;
2825 
2826 	ret = ip_gma_set(&s, gma_head);
2827 	if (ret)
2828 		goto out;
2829 
2830 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2831 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2832 
2833 out:
2834 	return ret;
2835 }
2836 
2837 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2838 {
2839 
2840 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2841 	struct parser_exec_state s;
2842 	int ret = 0;
2843 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2844 				struct intel_vgpu_workload,
2845 				wa_ctx);
2846 
2847 	/* ring base is page aligned */
2848 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2849 					I915_GTT_PAGE_SIZE)))
2850 		return -EINVAL;
2851 
2852 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2853 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2854 			PAGE_SIZE);
2855 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2856 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2857 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2858 
2859 	s.buf_type = RING_BUFFER_INSTRUCTION;
2860 	s.buf_addr_type = GTT_BUFFER;
2861 	s.vgpu = workload->vgpu;
2862 	s.engine = workload->engine;
2863 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2864 	s.ring_size = ring_size;
2865 	s.ring_head = gma_head;
2866 	s.ring_tail = gma_tail;
2867 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2868 	s.workload = workload;
2869 	s.is_ctx_wa = true;
2870 
2871 	ret = ip_gma_set(&s, gma_head);
2872 	if (ret)
2873 		goto out;
2874 
2875 	ret = command_scan(&s, 0, ring_tail,
2876 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2877 out:
2878 	return ret;
2879 }
2880 
2881 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2882 {
2883 	struct intel_vgpu *vgpu = workload->vgpu;
2884 	struct intel_vgpu_submission *s = &vgpu->submission;
2885 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2886 	void *shadow_ring_buffer_va;
2887 	int ret;
2888 
2889 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2890 
2891 	/* calculate workload ring buffer size */
2892 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2893 			workload->rb_head) % guest_rb_size;
2894 
2895 	gma_head = workload->rb_start + workload->rb_head;
2896 	gma_tail = workload->rb_start + workload->rb_tail;
2897 	gma_top = workload->rb_start + guest_rb_size;
2898 
2899 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2900 		void *p;
2901 
2902 		/* realloc the new ring buffer if needed */
2903 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2904 			     workload->rb_len, GFP_KERNEL);
2905 		if (!p) {
2906 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2907 			return -ENOMEM;
2908 		}
2909 		s->ring_scan_buffer[workload->engine->id] = p;
2910 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2911 	}
2912 
2913 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2914 
2915 	/* get shadow ring buffer va */
2916 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2917 
2918 	/* head > tail --> copy head <-> top */
2919 	if (gma_head > gma_tail) {
2920 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2921 				      gma_head, gma_top, shadow_ring_buffer_va);
2922 		if (ret < 0) {
2923 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2924 			return ret;
2925 		}
2926 		shadow_ring_buffer_va += ret;
2927 		gma_head = workload->rb_start;
2928 	}
2929 
2930 	/* copy head or start <-> tail */
2931 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2932 				shadow_ring_buffer_va);
2933 	if (ret < 0) {
2934 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2935 		return ret;
2936 	}
2937 	return 0;
2938 }
2939 
2940 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2941 {
2942 	int ret;
2943 	struct intel_vgpu *vgpu = workload->vgpu;
2944 
2945 	ret = shadow_workload_ring_buffer(workload);
2946 	if (ret) {
2947 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2948 		return ret;
2949 	}
2950 
2951 	ret = scan_workload(workload);
2952 	if (ret) {
2953 		gvt_vgpu_err("scan workload error\n");
2954 		return ret;
2955 	}
2956 	return 0;
2957 }
2958 
2959 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2960 {
2961 	int ctx_size = wa_ctx->indirect_ctx.size;
2962 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2963 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2964 					struct intel_vgpu_workload,
2965 					wa_ctx);
2966 	struct intel_vgpu *vgpu = workload->vgpu;
2967 	struct drm_i915_gem_object *obj;
2968 	int ret = 0;
2969 	void *map;
2970 
2971 	obj = i915_gem_object_create_shmem(workload->engine->i915,
2972 					   roundup(ctx_size + CACHELINE_BYTES,
2973 						   PAGE_SIZE));
2974 	if (IS_ERR(obj))
2975 		return PTR_ERR(obj);
2976 
2977 	/* get the va of the shadow batch buffer */
2978 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2979 	if (IS_ERR(map)) {
2980 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2981 		ret = PTR_ERR(map);
2982 		goto put_obj;
2983 	}
2984 
2985 	i915_gem_object_lock(obj);
2986 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2987 	i915_gem_object_unlock(obj);
2988 	if (ret) {
2989 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2990 		goto unmap_src;
2991 	}
2992 
2993 	ret = copy_gma_to_hva(workload->vgpu,
2994 				workload->vgpu->gtt.ggtt_mm,
2995 				guest_gma, guest_gma + ctx_size,
2996 				map);
2997 	if (ret < 0) {
2998 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2999 		goto unmap_src;
3000 	}
3001 
3002 	wa_ctx->indirect_ctx.obj = obj;
3003 	wa_ctx->indirect_ctx.shadow_va = map;
3004 	return 0;
3005 
3006 unmap_src:
3007 	i915_gem_object_unpin_map(obj);
3008 put_obj:
3009 	i915_gem_object_put(obj);
3010 	return ret;
3011 }
3012 
3013 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3014 {
3015 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3016 	unsigned char *bb_start_sva;
3017 
3018 	if (!wa_ctx->per_ctx.valid)
3019 		return 0;
3020 
3021 	per_ctx_start[0] = 0x18800001;
3022 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3023 
3024 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3025 				wa_ctx->indirect_ctx.size;
3026 
3027 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3028 
3029 	return 0;
3030 }
3031 
3032 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3033 {
3034 	int ret;
3035 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3036 					struct intel_vgpu_workload,
3037 					wa_ctx);
3038 	struct intel_vgpu *vgpu = workload->vgpu;
3039 
3040 	if (wa_ctx->indirect_ctx.size == 0)
3041 		return 0;
3042 
3043 	ret = shadow_indirect_ctx(wa_ctx);
3044 	if (ret) {
3045 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3046 		return ret;
3047 	}
3048 
3049 	combine_wa_ctx(wa_ctx);
3050 
3051 	ret = scan_wa_ctx(wa_ctx);
3052 	if (ret) {
3053 		gvt_vgpu_err("scan wa ctx error\n");
3054 		return ret;
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 static int init_cmd_table(struct intel_gvt *gvt)
3061 {
3062 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3063 	int i;
3064 
3065 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3066 		struct cmd_entry *e;
3067 
3068 		if (!(cmd_info[i].devices & gen_type))
3069 			continue;
3070 
3071 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3072 		if (!e)
3073 			return -ENOMEM;
3074 
3075 		e->info = &cmd_info[i];
3076 		if (cmd_info[i].opcode == OP_MI_NOOP)
3077 			mi_noop_index = i;
3078 
3079 		INIT_HLIST_NODE(&e->hlist);
3080 		add_cmd_entry(gvt, e);
3081 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3082 			    e->info->name, e->info->opcode, e->info->flag,
3083 			    e->info->devices, e->info->rings);
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 static void clean_cmd_table(struct intel_gvt *gvt)
3090 {
3091 	struct hlist_node *tmp;
3092 	struct cmd_entry *e;
3093 	int i;
3094 
3095 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3096 		kfree(e);
3097 
3098 	hash_init(gvt->cmd_table);
3099 }
3100 
3101 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3102 {
3103 	clean_cmd_table(gvt);
3104 }
3105 
3106 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3107 {
3108 	int ret;
3109 
3110 	ret = init_cmd_table(gvt);
3111 	if (ret) {
3112 		intel_gvt_clean_cmd_parser(gvt);
3113 		return ret;
3114 	}
3115 	return 0;
3116 }
3117