xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision ecfb9f40)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gt/intel_engine_regs.h"
42 #include "gt/intel_gpu_commands.h"
43 #include "gt/intel_gt_regs.h"
44 #include "gt/intel_lrc.h"
45 #include "gt/intel_ring.h"
46 #include "gt/intel_gt_requests.h"
47 #include "gt/shmem_utils.h"
48 #include "gvt.h"
49 #include "i915_pvinfo.h"
50 #include "trace.h"
51 
52 #include "gem/i915_gem_context.h"
53 #include "gem/i915_gem_pm.h"
54 #include "gt/intel_context.h"
55 
56 #define INVALID_OP    (~0U)
57 
58 #define OP_LEN_MI           9
59 #define OP_LEN_2D           10
60 #define OP_LEN_3D_MEDIA     16
61 #define OP_LEN_MFX_VC       16
62 #define OP_LEN_VEBOX	    16
63 
64 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
65 
66 struct sub_op_bits {
67 	int hi;
68 	int low;
69 };
70 struct decode_info {
71 	const char *name;
72 	int op_len;
73 	int nr_sub_op;
74 	const struct sub_op_bits *sub_op;
75 };
76 
77 #define   MAX_CMD_BUDGET			0x7fffffff
78 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
79 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
80 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
81 
82 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
83 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
84 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
85 
86 /* Render Command Map */
87 
88 /* MI_* command Opcode (28:23) */
89 #define OP_MI_NOOP                          0x0
90 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
91 #define OP_MI_USER_INTERRUPT                0x2
92 #define OP_MI_WAIT_FOR_EVENT                0x3
93 #define OP_MI_FLUSH                         0x4
94 #define OP_MI_ARB_CHECK                     0x5
95 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
96 #define OP_MI_REPORT_HEAD                   0x7
97 #define OP_MI_ARB_ON_OFF                    0x8
98 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
99 #define OP_MI_BATCH_BUFFER_END              0xA
100 #define OP_MI_SUSPEND_FLUSH                 0xB
101 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
102 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
103 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
104 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
105 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
106 #define OP_MI_DISPLAY_FLIP                  0x14
107 #define OP_MI_SEMAPHORE_MBOX                0x16
108 #define OP_MI_SET_CONTEXT                   0x18
109 #define OP_MI_MATH                          0x1A
110 #define OP_MI_URB_CLEAR                     0x19
111 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
112 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
113 
114 #define OP_MI_STORE_DATA_IMM                0x20
115 #define OP_MI_STORE_DATA_INDEX              0x21
116 #define OP_MI_LOAD_REGISTER_IMM             0x22
117 #define OP_MI_UPDATE_GTT                    0x23
118 #define OP_MI_STORE_REGISTER_MEM            0x24
119 #define OP_MI_FLUSH_DW                      0x26
120 #define OP_MI_CLFLUSH                       0x27
121 #define OP_MI_REPORT_PERF_COUNT             0x28
122 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
123 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
124 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
125 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
126 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
127 #define OP_MI_2E			    0x2E  /* BDW+ */
128 #define OP_MI_2F			    0x2F  /* BDW+ */
129 #define OP_MI_BATCH_BUFFER_START            0x31
130 
131 /* Bit definition for dword 0 */
132 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
133 
134 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
135 
136 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
137 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
138 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
139 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
140 
141 /* 2D command: Opcode (28:22) */
142 #define OP_2D(x)    ((2<<7) | x)
143 
144 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
145 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
146 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
147 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
148 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
149 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
150 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
151 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
152 #define OP_XY_PAT_BLT                               OP_2D(0x51)
153 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
154 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
155 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
156 #define OP_XY_FULL_BLT                              OP_2D(0x55)
157 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
158 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
159 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
160 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
161 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
162 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
163 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
164 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
165 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
166 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
167 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
168 
169 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
170 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
171 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
172 
173 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
174 
175 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
176 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
177 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
178 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
179 
180 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
181 
182 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
183 
184 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
185 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
186 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
187 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
188 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
189 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
190 
191 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
192 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
193 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
194 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
195 
196 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
197 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
198 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
199 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
200 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
201 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
202 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
203 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
204 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
205 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
206 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
207 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
208 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
209 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
210 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
211 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
212 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
213 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
214 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
215 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
216 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
217 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
218 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
219 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
220 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
221 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
222 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
223 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
224 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
225 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
226 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
227 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
238 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
239 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
240 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
241 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
246 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
252 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
253 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
254 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
255 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
256 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
261 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
262 
263 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
264 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
265 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
266 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
267 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
268 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
269 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
270 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
271 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
272 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
273 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
274 
275 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
276 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
277 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
278 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
279 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
280 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
281 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
282 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
283 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
284 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
285 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
286 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
287 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
288 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
289 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
295 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
296 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
297 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
298 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
299 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
300 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
301 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
302 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
303 
304 /* VCCP Command Parser */
305 
306 /*
307  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
308  * git://anongit.freedesktop.org/vaapi/intel-driver
309  * src/i965_defines.h
310  *
311  */
312 
313 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
314 	(3 << 13 | \
315 	 (pipeline) << 11 | \
316 	 (op) << 8 | \
317 	 (sub_opa) << 5 | \
318 	 (sub_opb))
319 
320 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
321 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
322 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
323 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
324 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
325 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
326 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
327 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
328 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
329 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
330 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
331 
332 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
333 
334 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
335 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
336 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
337 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
338 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
339 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
340 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
341 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
342 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
343 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
344 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
345 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
346 
347 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
348 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
349 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
350 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
351 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
352 
353 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
354 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
355 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
356 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
357 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
358 
359 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
360 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
361 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
362 
363 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
364 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
365 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
366 
367 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
368 	(3 << 13 | \
369 	 (pipeline) << 11 | \
370 	 (op) << 8 | \
371 	 (sub_opa) << 5 | \
372 	 (sub_opb))
373 
374 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
375 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
376 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
377 
378 struct parser_exec_state;
379 
380 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
381 
382 #define GVT_CMD_HASH_BITS   7
383 
384 /* which DWords need address fix */
385 #define ADDR_FIX_1(x1)			(1 << (x1))
386 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
387 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
388 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
389 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
390 
391 #define DWORD_FIELD(dword, end, start) \
392 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
393 
394 #define OP_LENGTH_BIAS 2
395 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
396 
397 static int gvt_check_valid_cmd_length(int len, int valid_len)
398 {
399 	if (valid_len != len) {
400 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
401 			len, valid_len);
402 		return -EFAULT;
403 	}
404 	return 0;
405 }
406 
407 struct cmd_info {
408 	const char *name;
409 	u32 opcode;
410 
411 #define F_LEN_MASK	3U
412 #define F_LEN_CONST  1U
413 #define F_LEN_VAR    0U
414 /* value is const although LEN maybe variable */
415 #define F_LEN_VAR_FIXED    (1<<1)
416 
417 /*
418  * command has its own ip advance logic
419  * e.g. MI_BATCH_START, MI_BATCH_END
420  */
421 #define F_IP_ADVANCE_CUSTOM (1<<2)
422 	u32 flag;
423 
424 #define R_RCS	BIT(RCS0)
425 #define R_VCS1  BIT(VCS0)
426 #define R_VCS2  BIT(VCS1)
427 #define R_VCS	(R_VCS1 | R_VCS2)
428 #define R_BCS	BIT(BCS0)
429 #define R_VECS	BIT(VECS0)
430 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
431 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
432 	intel_engine_mask_t rings;
433 
434 	/* devices that support this cmd: SNB/IVB/HSW/... */
435 	u16 devices;
436 
437 	/* which DWords are address that need fix up.
438 	 * bit 0 means a 32-bit non address operand in command
439 	 * bit 1 means address operand, which could be 32-bit
440 	 * or 64-bit depending on different architectures.(
441 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
442 	 * No matter the address length, each address only takes
443 	 * one bit in the bitmap.
444 	 */
445 	u16 addr_bitmap;
446 
447 	/* flag == F_LEN_CONST : command length
448 	 * flag == F_LEN_VAR : length bias bits
449 	 * Note: length is in DWord
450 	 */
451 	u32 len;
452 
453 	parser_cmd_handler handler;
454 
455 	/* valid length in DWord */
456 	u32 valid_len;
457 };
458 
459 struct cmd_entry {
460 	struct hlist_node hlist;
461 	const struct cmd_info *info;
462 };
463 
464 enum {
465 	RING_BUFFER_INSTRUCTION,
466 	BATCH_BUFFER_INSTRUCTION,
467 	BATCH_BUFFER_2ND_LEVEL,
468 	RING_BUFFER_CTX,
469 };
470 
471 enum {
472 	GTT_BUFFER,
473 	PPGTT_BUFFER
474 };
475 
476 struct parser_exec_state {
477 	struct intel_vgpu *vgpu;
478 	const struct intel_engine_cs *engine;
479 
480 	int buf_type;
481 
482 	/* batch buffer address type */
483 	int buf_addr_type;
484 
485 	/* graphics memory address of ring buffer start */
486 	unsigned long ring_start;
487 	unsigned long ring_size;
488 	unsigned long ring_head;
489 	unsigned long ring_tail;
490 
491 	/* instruction graphics memory address */
492 	unsigned long ip_gma;
493 
494 	/* mapped va of the instr_gma */
495 	void *ip_va;
496 	void *rb_va;
497 
498 	void *ret_bb_va;
499 	/* next instruction when return from  batch buffer to ring buffer */
500 	unsigned long ret_ip_gma_ring;
501 
502 	/* next instruction when return from 2nd batch buffer to batch buffer */
503 	unsigned long ret_ip_gma_bb;
504 
505 	/* batch buffer address type (GTT or PPGTT)
506 	 * used when ret from 2nd level batch buffer
507 	 */
508 	int saved_buf_addr_type;
509 	bool is_ctx_wa;
510 	bool is_init_ctx;
511 
512 	const struct cmd_info *info;
513 
514 	struct intel_vgpu_workload *workload;
515 };
516 
517 #define gmadr_dw_number(s)	\
518 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
519 
520 static unsigned long bypass_scan_mask = 0;
521 
522 /* ring ALL, type = 0 */
523 static const struct sub_op_bits sub_op_mi[] = {
524 	{31, 29},
525 	{28, 23},
526 };
527 
528 static const struct decode_info decode_info_mi = {
529 	"MI",
530 	OP_LEN_MI,
531 	ARRAY_SIZE(sub_op_mi),
532 	sub_op_mi,
533 };
534 
535 /* ring RCS, command type 2 */
536 static const struct sub_op_bits sub_op_2d[] = {
537 	{31, 29},
538 	{28, 22},
539 };
540 
541 static const struct decode_info decode_info_2d = {
542 	"2D",
543 	OP_LEN_2D,
544 	ARRAY_SIZE(sub_op_2d),
545 	sub_op_2d,
546 };
547 
548 /* ring RCS, command type 3 */
549 static const struct sub_op_bits sub_op_3d_media[] = {
550 	{31, 29},
551 	{28, 27},
552 	{26, 24},
553 	{23, 16},
554 };
555 
556 static const struct decode_info decode_info_3d_media = {
557 	"3D_Media",
558 	OP_LEN_3D_MEDIA,
559 	ARRAY_SIZE(sub_op_3d_media),
560 	sub_op_3d_media,
561 };
562 
563 /* ring VCS, command type 3 */
564 static const struct sub_op_bits sub_op_mfx_vc[] = {
565 	{31, 29},
566 	{28, 27},
567 	{26, 24},
568 	{23, 21},
569 	{20, 16},
570 };
571 
572 static const struct decode_info decode_info_mfx_vc = {
573 	"MFX_VC",
574 	OP_LEN_MFX_VC,
575 	ARRAY_SIZE(sub_op_mfx_vc),
576 	sub_op_mfx_vc,
577 };
578 
579 /* ring VECS, command type 3 */
580 static const struct sub_op_bits sub_op_vebox[] = {
581 	{31, 29},
582 	{28, 27},
583 	{26, 24},
584 	{23, 21},
585 	{20, 16},
586 };
587 
588 static const struct decode_info decode_info_vebox = {
589 	"VEBOX",
590 	OP_LEN_VEBOX,
591 	ARRAY_SIZE(sub_op_vebox),
592 	sub_op_vebox,
593 };
594 
595 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
596 	[RCS0] = {
597 		&decode_info_mi,
598 		NULL,
599 		NULL,
600 		&decode_info_3d_media,
601 		NULL,
602 		NULL,
603 		NULL,
604 		NULL,
605 	},
606 
607 	[VCS0] = {
608 		&decode_info_mi,
609 		NULL,
610 		NULL,
611 		&decode_info_mfx_vc,
612 		NULL,
613 		NULL,
614 		NULL,
615 		NULL,
616 	},
617 
618 	[BCS0] = {
619 		&decode_info_mi,
620 		NULL,
621 		&decode_info_2d,
622 		NULL,
623 		NULL,
624 		NULL,
625 		NULL,
626 		NULL,
627 	},
628 
629 	[VECS0] = {
630 		&decode_info_mi,
631 		NULL,
632 		NULL,
633 		&decode_info_vebox,
634 		NULL,
635 		NULL,
636 		NULL,
637 		NULL,
638 	},
639 
640 	[VCS1] = {
641 		&decode_info_mi,
642 		NULL,
643 		NULL,
644 		&decode_info_mfx_vc,
645 		NULL,
646 		NULL,
647 		NULL,
648 		NULL,
649 	},
650 };
651 
652 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
653 {
654 	const struct decode_info *d_info;
655 
656 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
657 	if (d_info == NULL)
658 		return INVALID_OP;
659 
660 	return cmd >> (32 - d_info->op_len);
661 }
662 
663 static inline const struct cmd_info *
664 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
665 	       const struct intel_engine_cs *engine)
666 {
667 	struct cmd_entry *e;
668 
669 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
670 		if (opcode == e->info->opcode &&
671 		    e->info->rings & engine->mask)
672 			return e->info;
673 	}
674 	return NULL;
675 }
676 
677 static inline const struct cmd_info *
678 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
679 	     const struct intel_engine_cs *engine)
680 {
681 	u32 opcode;
682 
683 	opcode = get_opcode(cmd, engine);
684 	if (opcode == INVALID_OP)
685 		return NULL;
686 
687 	return find_cmd_entry(gvt, opcode, engine);
688 }
689 
690 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
691 {
692 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
693 }
694 
695 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
696 {
697 	const struct decode_info *d_info;
698 	int i;
699 
700 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
701 	if (d_info == NULL)
702 		return;
703 
704 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
705 			cmd >> (32 - d_info->op_len), d_info->name);
706 
707 	for (i = 0; i < d_info->nr_sub_op; i++)
708 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
709 					d_info->sub_op[i].low));
710 
711 	pr_err("\n");
712 }
713 
714 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
715 {
716 	return s->ip_va + (index << 2);
717 }
718 
719 static inline u32 cmd_val(struct parser_exec_state *s, int index)
720 {
721 	return *cmd_ptr(s, index);
722 }
723 
724 static inline bool is_init_ctx(struct parser_exec_state *s)
725 {
726 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
727 }
728 
729 static void parser_exec_state_dump(struct parser_exec_state *s)
730 {
731 	int cnt = 0;
732 	int i;
733 
734 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
735 		    " ring_head(%08lx) ring_tail(%08lx)\n",
736 		    s->vgpu->id, s->engine->name,
737 		    s->ring_start, s->ring_start + s->ring_size,
738 		    s->ring_head, s->ring_tail);
739 
740 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
741 			s->buf_type == RING_BUFFER_INSTRUCTION ?
742 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
743 				"CTX_BUFFER" : "BATCH_BUFFER"),
744 			s->buf_addr_type == GTT_BUFFER ?
745 			"GTT" : "PPGTT", s->ip_gma);
746 
747 	if (s->ip_va == NULL) {
748 		gvt_dbg_cmd(" ip_va(NULL)");
749 		return;
750 	}
751 
752 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
753 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
754 			cmd_val(s, 2), cmd_val(s, 3));
755 
756 	print_opcode(cmd_val(s, 0), s->engine);
757 
758 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
759 
760 	while (cnt < 1024) {
761 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
762 		for (i = 0; i < 8; i++)
763 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
764 		gvt_dbg_cmd("\n");
765 
766 		s->ip_va += 8 * sizeof(u32);
767 		cnt += 8;
768 	}
769 }
770 
771 static inline void update_ip_va(struct parser_exec_state *s)
772 {
773 	unsigned long len = 0;
774 
775 	if (WARN_ON(s->ring_head == s->ring_tail))
776 		return;
777 
778 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
779 			s->buf_type == RING_BUFFER_CTX) {
780 		unsigned long ring_top = s->ring_start + s->ring_size;
781 
782 		if (s->ring_head > s->ring_tail) {
783 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
784 				len = (s->ip_gma - s->ring_head);
785 			else if (s->ip_gma >= s->ring_start &&
786 					s->ip_gma <= s->ring_tail)
787 				len = (ring_top - s->ring_head) +
788 					(s->ip_gma - s->ring_start);
789 		} else
790 			len = (s->ip_gma - s->ring_head);
791 
792 		s->ip_va = s->rb_va + len;
793 	} else {/* shadow batch buffer */
794 		s->ip_va = s->ret_bb_va;
795 	}
796 }
797 
798 static inline int ip_gma_set(struct parser_exec_state *s,
799 		unsigned long ip_gma)
800 {
801 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
802 
803 	s->ip_gma = ip_gma;
804 	update_ip_va(s);
805 	return 0;
806 }
807 
808 static inline int ip_gma_advance(struct parser_exec_state *s,
809 		unsigned int dw_len)
810 {
811 	s->ip_gma += (dw_len << 2);
812 
813 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
814 		if (s->ip_gma >= s->ring_start + s->ring_size)
815 			s->ip_gma -= s->ring_size;
816 		update_ip_va(s);
817 	} else {
818 		s->ip_va += (dw_len << 2);
819 	}
820 
821 	return 0;
822 }
823 
824 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
825 {
826 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
827 		return info->len;
828 	else
829 		return (cmd & ((1U << info->len) - 1)) + 2;
830 	return 0;
831 }
832 
833 static inline int cmd_length(struct parser_exec_state *s)
834 {
835 	return get_cmd_length(s->info, cmd_val(s, 0));
836 }
837 
838 /* do not remove this, some platform may need clflush here */
839 #define patch_value(s, addr, val) do { \
840 	*addr = val; \
841 } while (0)
842 
843 static inline bool is_mocs_mmio(unsigned int offset)
844 {
845 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
846 		((offset >= 0xb020) && (offset <= 0xb0a0));
847 }
848 
849 static int is_cmd_update_pdps(unsigned int offset,
850 			      struct parser_exec_state *s)
851 {
852 	u32 base = s->workload->engine->mmio_base;
853 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
854 }
855 
856 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
857 				       unsigned int offset, unsigned int index)
858 {
859 	struct intel_vgpu *vgpu = s->vgpu;
860 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
861 	struct intel_vgpu_mm *mm;
862 	u64 pdps[GEN8_3LVL_PDPES];
863 
864 	if (shadow_mm->ppgtt_mm.root_entry_type ==
865 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
866 		pdps[0] = (u64)cmd_val(s, 2) << 32;
867 		pdps[0] |= cmd_val(s, 4);
868 
869 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
870 		if (!mm) {
871 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
872 			return -EINVAL;
873 		}
874 		intel_vgpu_mm_get(mm);
875 		list_add_tail(&mm->ppgtt_mm.link,
876 			      &s->workload->lri_shadow_mm);
877 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
878 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
879 	} else {
880 		/* Currently all guests use PML4 table and now can't
881 		 * have a guest with 3-level table but uses LRI for
882 		 * PPGTT update. So this is simply un-testable. */
883 		GEM_BUG_ON(1);
884 		gvt_vgpu_err("invalid shared shadow vm type\n");
885 		return -EINVAL;
886 	}
887 	return 0;
888 }
889 
890 static int cmd_reg_handler(struct parser_exec_state *s,
891 	unsigned int offset, unsigned int index, char *cmd)
892 {
893 	struct intel_vgpu *vgpu = s->vgpu;
894 	struct intel_gvt *gvt = vgpu->gvt;
895 	u32 ctx_sr_ctl;
896 	u32 *vreg, vreg_old;
897 
898 	if (offset + 4 > gvt->device_info.mmio_size) {
899 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
900 				cmd, offset);
901 		return -EFAULT;
902 	}
903 
904 	if (is_init_ctx(s)) {
905 		struct intel_gvt_mmio_info *mmio_info;
906 
907 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
908 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
909 		if (mmio_info && mmio_info->write)
910 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
911 		return 0;
912 	}
913 
914 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
915 		gvt_vgpu_err("%s access to non-render register (%x)\n",
916 				cmd, offset);
917 		return -EBADRQC;
918 	}
919 
920 	if (!strncmp(cmd, "srm", 3) ||
921 			!strncmp(cmd, "lrm", 3)) {
922 		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
923 		    offset == 0x21f0 ||
924 		    (IS_BROADWELL(gvt->gt->i915) &&
925 		     offset == i915_mmio_reg_offset(INSTPM)))
926 			return 0;
927 		else {
928 			gvt_vgpu_err("%s access to register (%x)\n",
929 					cmd, offset);
930 			return -EPERM;
931 		}
932 	}
933 
934 	if (!strncmp(cmd, "lrr-src", 7) ||
935 			!strncmp(cmd, "lrr-dst", 7)) {
936 		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
937 			return 0;
938 		else {
939 			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
940 			return -EPERM;
941 		}
942 	}
943 
944 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
945 		/* TODO: add LRI POST logic here */
946 		return 0;
947 	}
948 
949 	if (strncmp(cmd, "lri", 3))
950 		return -EPERM;
951 
952 	/* below are all lri handlers */
953 	vreg = &vgpu_vreg(s->vgpu, offset);
954 
955 	if (is_cmd_update_pdps(offset, s) &&
956 	    cmd_pdp_mmio_update_handler(s, offset, index))
957 		return -EINVAL;
958 
959 	if (offset == i915_mmio_reg_offset(DERRMR) ||
960 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
961 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
962 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
963 	}
964 
965 	if (is_mocs_mmio(offset))
966 		*vreg = cmd_val(s, index + 1);
967 
968 	vreg_old = *vreg;
969 
970 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
971 		u32 cmdval_new, cmdval;
972 		struct intel_gvt_mmio_info *mmio_info;
973 
974 		cmdval = cmd_val(s, index + 1);
975 
976 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
977 		if (!mmio_info) {
978 			cmdval_new = cmdval;
979 		} else {
980 			u64 ro_mask = mmio_info->ro_mask;
981 			int ret;
982 
983 			if (likely(!ro_mask))
984 				ret = mmio_info->write(s->vgpu, offset,
985 						&cmdval, 4);
986 			else {
987 				gvt_vgpu_err("try to write RO reg %x\n",
988 						offset);
989 				ret = -EBADRQC;
990 			}
991 			if (ret)
992 				return ret;
993 			cmdval_new = *vreg;
994 		}
995 		if (cmdval_new != cmdval)
996 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
997 	}
998 
999 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
1000 	*vreg = vreg_old;
1001 
1002 	/* TODO
1003 	 * In order to let workload with inhibit context to generate
1004 	 * correct image data into memory, vregs values will be loaded to
1005 	 * hw via LRIs in the workload with inhibit context. But as
1006 	 * indirect context is loaded prior to LRIs in workload, we don't
1007 	 * want reg values specified in indirect context overwritten by
1008 	 * LRIs in workloads. So, when scanning an indirect context, we
1009 	 * update reg values in it into vregs, so LRIs in workload with
1010 	 * inhibit context will restore with correct values
1011 	 */
1012 	if (GRAPHICS_VER(s->engine->i915) == 9 &&
1013 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1014 	    !strncmp(cmd, "lri", 3)) {
1015 		intel_gvt_read_gpa(s->vgpu,
1016 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1017 		/* check inhibit context */
1018 		if (ctx_sr_ctl & 1) {
1019 			u32 data = cmd_val(s, index + 1);
1020 
1021 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1022 				intel_vgpu_mask_mmio_write(vgpu,
1023 							offset, &data, 4);
1024 			else
1025 				vgpu_vreg(vgpu, offset) = data;
1026 		}
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 #define cmd_reg(s, i) \
1033 	(cmd_val(s, i) & GENMASK(22, 2))
1034 
1035 #define cmd_reg_inhibit(s, i) \
1036 	(cmd_val(s, i) & GENMASK(22, 18))
1037 
1038 #define cmd_gma(s, i) \
1039 	(cmd_val(s, i) & GENMASK(31, 2))
1040 
1041 #define cmd_gma_hi(s, i) \
1042 	(cmd_val(s, i) & GENMASK(15, 0))
1043 
1044 static int cmd_handler_lri(struct parser_exec_state *s)
1045 {
1046 	int i, ret = 0;
1047 	int cmd_len = cmd_length(s);
1048 
1049 	for (i = 1; i < cmd_len; i += 2) {
1050 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1051 			if (s->engine->id == BCS0 &&
1052 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1053 				ret |= 0;
1054 			else
1055 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1056 		}
1057 		if (ret)
1058 			break;
1059 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1060 		if (ret)
1061 			break;
1062 	}
1063 	return ret;
1064 }
1065 
1066 static int cmd_handler_lrr(struct parser_exec_state *s)
1067 {
1068 	int i, ret = 0;
1069 	int cmd_len = cmd_length(s);
1070 
1071 	for (i = 1; i < cmd_len; i += 2) {
1072 		if (IS_BROADWELL(s->engine->i915))
1073 			ret |= ((cmd_reg_inhibit(s, i) ||
1074 				 (cmd_reg_inhibit(s, i + 1)))) ?
1075 				-EBADRQC : 0;
1076 		if (ret)
1077 			break;
1078 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1079 		if (ret)
1080 			break;
1081 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1082 		if (ret)
1083 			break;
1084 	}
1085 	return ret;
1086 }
1087 
1088 static inline int cmd_address_audit(struct parser_exec_state *s,
1089 		unsigned long guest_gma, int op_size, bool index_mode);
1090 
1091 static int cmd_handler_lrm(struct parser_exec_state *s)
1092 {
1093 	struct intel_gvt *gvt = s->vgpu->gvt;
1094 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1095 	unsigned long gma;
1096 	int i, ret = 0;
1097 	int cmd_len = cmd_length(s);
1098 
1099 	for (i = 1; i < cmd_len;) {
1100 		if (IS_BROADWELL(s->engine->i915))
1101 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1102 		if (ret)
1103 			break;
1104 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1105 		if (ret)
1106 			break;
1107 		if (cmd_val(s, 0) & (1 << 22)) {
1108 			gma = cmd_gma(s, i + 1);
1109 			if (gmadr_bytes == 8)
1110 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1111 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1112 			if (ret)
1113 				break;
1114 		}
1115 		i += gmadr_dw_number(s) + 1;
1116 	}
1117 	return ret;
1118 }
1119 
1120 static int cmd_handler_srm(struct parser_exec_state *s)
1121 {
1122 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1123 	unsigned long gma;
1124 	int i, ret = 0;
1125 	int cmd_len = cmd_length(s);
1126 
1127 	for (i = 1; i < cmd_len;) {
1128 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1129 		if (ret)
1130 			break;
1131 		if (cmd_val(s, 0) & (1 << 22)) {
1132 			gma = cmd_gma(s, i + 1);
1133 			if (gmadr_bytes == 8)
1134 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1135 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1136 			if (ret)
1137 				break;
1138 		}
1139 		i += gmadr_dw_number(s) + 1;
1140 	}
1141 	return ret;
1142 }
1143 
1144 struct cmd_interrupt_event {
1145 	int pipe_control_notify;
1146 	int mi_flush_dw;
1147 	int mi_user_interrupt;
1148 };
1149 
1150 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1151 	[RCS0] = {
1152 		.pipe_control_notify = RCS_PIPE_CONTROL,
1153 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1154 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1155 	},
1156 	[BCS0] = {
1157 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1158 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1159 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1160 	},
1161 	[VCS0] = {
1162 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1163 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1164 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1165 	},
1166 	[VCS1] = {
1167 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1168 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1169 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1170 	},
1171 	[VECS0] = {
1172 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1173 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1174 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1175 	},
1176 };
1177 
1178 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1179 {
1180 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1181 	unsigned long gma;
1182 	bool index_mode = false;
1183 	unsigned int post_sync;
1184 	int ret = 0;
1185 	u32 hws_pga, val;
1186 
1187 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1188 
1189 	/* LRI post sync */
1190 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1191 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1192 	/* post sync */
1193 	else if (post_sync) {
1194 		if (post_sync == 2)
1195 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1196 		else if (post_sync == 3)
1197 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1198 		else if (post_sync == 1) {
1199 			/* check ggtt*/
1200 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1201 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1202 				if (gmadr_bytes == 8)
1203 					gma |= (cmd_gma_hi(s, 3)) << 32;
1204 				/* Store Data Index */
1205 				if (cmd_val(s, 1) & (1 << 21))
1206 					index_mode = true;
1207 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1208 						index_mode);
1209 				if (ret)
1210 					return ret;
1211 				if (index_mode) {
1212 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1213 					gma = hws_pga + gma;
1214 					patch_value(s, cmd_ptr(s, 2), gma);
1215 					val = cmd_val(s, 1) & (~(1 << 21));
1216 					patch_value(s, cmd_ptr(s, 1), val);
1217 				}
1218 			}
1219 		}
1220 	}
1221 
1222 	if (ret)
1223 		return ret;
1224 
1225 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1226 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1227 			s->workload->pending_events);
1228 	return 0;
1229 }
1230 
1231 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1232 {
1233 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1234 		s->workload->pending_events);
1235 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1236 	return 0;
1237 }
1238 
1239 static int cmd_advance_default(struct parser_exec_state *s)
1240 {
1241 	return ip_gma_advance(s, cmd_length(s));
1242 }
1243 
1244 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1245 {
1246 	int ret;
1247 
1248 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1249 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1250 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1251 		s->buf_addr_type = s->saved_buf_addr_type;
1252 	} else if (s->buf_type == RING_BUFFER_CTX) {
1253 		ret = ip_gma_set(s, s->ring_tail);
1254 	} else {
1255 		s->buf_type = RING_BUFFER_INSTRUCTION;
1256 		s->buf_addr_type = GTT_BUFFER;
1257 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1258 			s->ret_ip_gma_ring -= s->ring_size;
1259 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1260 	}
1261 	return ret;
1262 }
1263 
1264 struct mi_display_flip_command_info {
1265 	int pipe;
1266 	int plane;
1267 	int event;
1268 	i915_reg_t stride_reg;
1269 	i915_reg_t ctrl_reg;
1270 	i915_reg_t surf_reg;
1271 	u64 stride_val;
1272 	u64 tile_val;
1273 	u64 surf_val;
1274 	bool async_flip;
1275 };
1276 
1277 struct plane_code_mapping {
1278 	int pipe;
1279 	int plane;
1280 	int event;
1281 };
1282 
1283 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1284 		struct mi_display_flip_command_info *info)
1285 {
1286 	struct drm_i915_private *dev_priv = s->engine->i915;
1287 	struct plane_code_mapping gen8_plane_code[] = {
1288 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1289 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1290 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1291 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1292 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1293 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1294 	};
1295 	u32 dword0, dword1, dword2;
1296 	u32 v;
1297 
1298 	dword0 = cmd_val(s, 0);
1299 	dword1 = cmd_val(s, 1);
1300 	dword2 = cmd_val(s, 2);
1301 
1302 	v = (dword0 & GENMASK(21, 19)) >> 19;
1303 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1304 		return -EBADRQC;
1305 
1306 	info->pipe = gen8_plane_code[v].pipe;
1307 	info->plane = gen8_plane_code[v].plane;
1308 	info->event = gen8_plane_code[v].event;
1309 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1310 	info->tile_val = (dword1 & 0x1);
1311 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1312 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1313 
1314 	if (info->plane == PLANE_A) {
1315 		info->ctrl_reg = DSPCNTR(info->pipe);
1316 		info->stride_reg = DSPSTRIDE(info->pipe);
1317 		info->surf_reg = DSPSURF(info->pipe);
1318 	} else if (info->plane == PLANE_B) {
1319 		info->ctrl_reg = SPRCTL(info->pipe);
1320 		info->stride_reg = SPRSTRIDE(info->pipe);
1321 		info->surf_reg = SPRSURF(info->pipe);
1322 	} else {
1323 		drm_WARN_ON(&dev_priv->drm, 1);
1324 		return -EBADRQC;
1325 	}
1326 	return 0;
1327 }
1328 
1329 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1330 		struct mi_display_flip_command_info *info)
1331 {
1332 	struct drm_i915_private *dev_priv = s->engine->i915;
1333 	struct intel_vgpu *vgpu = s->vgpu;
1334 	u32 dword0 = cmd_val(s, 0);
1335 	u32 dword1 = cmd_val(s, 1);
1336 	u32 dword2 = cmd_val(s, 2);
1337 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1338 
1339 	info->plane = PRIMARY_PLANE;
1340 
1341 	switch (plane) {
1342 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1343 		info->pipe = PIPE_A;
1344 		info->event = PRIMARY_A_FLIP_DONE;
1345 		break;
1346 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1347 		info->pipe = PIPE_B;
1348 		info->event = PRIMARY_B_FLIP_DONE;
1349 		break;
1350 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1351 		info->pipe = PIPE_C;
1352 		info->event = PRIMARY_C_FLIP_DONE;
1353 		break;
1354 
1355 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1356 		info->pipe = PIPE_A;
1357 		info->event = SPRITE_A_FLIP_DONE;
1358 		info->plane = SPRITE_PLANE;
1359 		break;
1360 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1361 		info->pipe = PIPE_B;
1362 		info->event = SPRITE_B_FLIP_DONE;
1363 		info->plane = SPRITE_PLANE;
1364 		break;
1365 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1366 		info->pipe = PIPE_C;
1367 		info->event = SPRITE_C_FLIP_DONE;
1368 		info->plane = SPRITE_PLANE;
1369 		break;
1370 
1371 	default:
1372 		gvt_vgpu_err("unknown plane code %d\n", plane);
1373 		return -EBADRQC;
1374 	}
1375 
1376 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1377 	info->tile_val = (dword1 & GENMASK(2, 0));
1378 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1379 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1380 
1381 	info->ctrl_reg = DSPCNTR(info->pipe);
1382 	info->stride_reg = DSPSTRIDE(info->pipe);
1383 	info->surf_reg = DSPSURF(info->pipe);
1384 
1385 	return 0;
1386 }
1387 
1388 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1389 		struct mi_display_flip_command_info *info)
1390 {
1391 	u32 stride, tile;
1392 
1393 	if (!info->async_flip)
1394 		return 0;
1395 
1396 	if (GRAPHICS_VER(s->engine->i915) >= 9) {
1397 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1398 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1399 				GENMASK(12, 10)) >> 10;
1400 	} else {
1401 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1402 				GENMASK(15, 6)) >> 6;
1403 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1404 	}
1405 
1406 	if (stride != info->stride_val)
1407 		gvt_dbg_cmd("cannot change stride during async flip\n");
1408 
1409 	if (tile != info->tile_val)
1410 		gvt_dbg_cmd("cannot change tile during async flip\n");
1411 
1412 	return 0;
1413 }
1414 
1415 static int gen8_update_plane_mmio_from_mi_display_flip(
1416 		struct parser_exec_state *s,
1417 		struct mi_display_flip_command_info *info)
1418 {
1419 	struct drm_i915_private *dev_priv = s->engine->i915;
1420 	struct intel_vgpu *vgpu = s->vgpu;
1421 
1422 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1423 		      info->surf_val << 12);
1424 	if (GRAPHICS_VER(dev_priv) >= 9) {
1425 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1426 			      info->stride_val);
1427 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1428 			      info->tile_val << 10);
1429 	} else {
1430 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1431 			      info->stride_val << 6);
1432 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1433 			      info->tile_val << 10);
1434 	}
1435 
1436 	if (info->plane == PLANE_PRIMARY)
1437 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1438 
1439 	if (info->async_flip)
1440 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1441 	else
1442 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1443 
1444 	return 0;
1445 }
1446 
1447 static int decode_mi_display_flip(struct parser_exec_state *s,
1448 		struct mi_display_flip_command_info *info)
1449 {
1450 	if (IS_BROADWELL(s->engine->i915))
1451 		return gen8_decode_mi_display_flip(s, info);
1452 	if (GRAPHICS_VER(s->engine->i915) >= 9)
1453 		return skl_decode_mi_display_flip(s, info);
1454 
1455 	return -ENODEV;
1456 }
1457 
1458 static int check_mi_display_flip(struct parser_exec_state *s,
1459 		struct mi_display_flip_command_info *info)
1460 {
1461 	return gen8_check_mi_display_flip(s, info);
1462 }
1463 
1464 static int update_plane_mmio_from_mi_display_flip(
1465 		struct parser_exec_state *s,
1466 		struct mi_display_flip_command_info *info)
1467 {
1468 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1469 }
1470 
1471 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1472 {
1473 	struct mi_display_flip_command_info info;
1474 	struct intel_vgpu *vgpu = s->vgpu;
1475 	int ret;
1476 	int i;
1477 	int len = cmd_length(s);
1478 	u32 valid_len = CMD_LEN(1);
1479 
1480 	/* Flip Type == Stereo 3D Flip */
1481 	if (DWORD_FIELD(2, 1, 0) == 2)
1482 		valid_len++;
1483 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1484 			valid_len);
1485 	if (ret)
1486 		return ret;
1487 
1488 	ret = decode_mi_display_flip(s, &info);
1489 	if (ret) {
1490 		gvt_vgpu_err("fail to decode MI display flip command\n");
1491 		return ret;
1492 	}
1493 
1494 	ret = check_mi_display_flip(s, &info);
1495 	if (ret) {
1496 		gvt_vgpu_err("invalid MI display flip command\n");
1497 		return ret;
1498 	}
1499 
1500 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1501 	if (ret) {
1502 		gvt_vgpu_err("fail to update plane mmio\n");
1503 		return ret;
1504 	}
1505 
1506 	for (i = 0; i < len; i++)
1507 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1508 	return 0;
1509 }
1510 
1511 static bool is_wait_for_flip_pending(u32 cmd)
1512 {
1513 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1514 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1515 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1516 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1517 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1518 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1519 }
1520 
1521 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1522 {
1523 	u32 cmd = cmd_val(s, 0);
1524 
1525 	if (!is_wait_for_flip_pending(cmd))
1526 		return 0;
1527 
1528 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1529 	return 0;
1530 }
1531 
1532 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1533 {
1534 	unsigned long addr;
1535 	unsigned long gma_high, gma_low;
1536 	struct intel_vgpu *vgpu = s->vgpu;
1537 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1538 
1539 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1540 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1541 		return INTEL_GVT_INVALID_ADDR;
1542 	}
1543 
1544 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1545 	if (gmadr_bytes == 4) {
1546 		addr = gma_low;
1547 	} else {
1548 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1549 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1550 	}
1551 	return addr;
1552 }
1553 
1554 static inline int cmd_address_audit(struct parser_exec_state *s,
1555 		unsigned long guest_gma, int op_size, bool index_mode)
1556 {
1557 	struct intel_vgpu *vgpu = s->vgpu;
1558 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1559 	int i;
1560 	int ret;
1561 
1562 	if (op_size > max_surface_size) {
1563 		gvt_vgpu_err("command address audit fail name %s\n",
1564 			s->info->name);
1565 		return -EFAULT;
1566 	}
1567 
1568 	if (index_mode)	{
1569 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1570 			ret = -EFAULT;
1571 			goto err;
1572 		}
1573 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1574 		ret = -EFAULT;
1575 		goto err;
1576 	}
1577 
1578 	return 0;
1579 
1580 err:
1581 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1582 			s->info->name, guest_gma, op_size);
1583 
1584 	pr_err("cmd dump: ");
1585 	for (i = 0; i < cmd_length(s); i++) {
1586 		if (!(i % 4))
1587 			pr_err("\n%08x ", cmd_val(s, i));
1588 		else
1589 			pr_err("%08x ", cmd_val(s, i));
1590 	}
1591 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1592 			vgpu->id,
1593 			vgpu_aperture_gmadr_base(vgpu),
1594 			vgpu_aperture_gmadr_end(vgpu),
1595 			vgpu_hidden_gmadr_base(vgpu),
1596 			vgpu_hidden_gmadr_end(vgpu));
1597 	return ret;
1598 }
1599 
1600 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1601 {
1602 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1603 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1604 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1605 	unsigned long gma, gma_low, gma_high;
1606 	u32 valid_len = CMD_LEN(2);
1607 	int ret = 0;
1608 
1609 	/* check ppggt */
1610 	if (!(cmd_val(s, 0) & (1 << 22)))
1611 		return 0;
1612 
1613 	/* check if QWORD */
1614 	if (DWORD_FIELD(0, 21, 21))
1615 		valid_len++;
1616 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1617 			valid_len);
1618 	if (ret)
1619 		return ret;
1620 
1621 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1622 
1623 	if (gmadr_bytes == 8) {
1624 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1625 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1626 		gma = (gma_high << 32) | gma_low;
1627 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1628 	}
1629 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1630 	return ret;
1631 }
1632 
1633 static inline int unexpected_cmd(struct parser_exec_state *s)
1634 {
1635 	struct intel_vgpu *vgpu = s->vgpu;
1636 
1637 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1638 
1639 	return -EBADRQC;
1640 }
1641 
1642 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1643 {
1644 	return unexpected_cmd(s);
1645 }
1646 
1647 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1648 {
1649 	return unexpected_cmd(s);
1650 }
1651 
1652 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1653 {
1654 	return unexpected_cmd(s);
1655 }
1656 
1657 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1658 {
1659 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1660 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1661 			sizeof(u32);
1662 	unsigned long gma, gma_high;
1663 	u32 valid_len = CMD_LEN(1);
1664 	int ret = 0;
1665 
1666 	if (!(cmd_val(s, 0) & (1 << 22)))
1667 		return ret;
1668 
1669 	/* check inline data */
1670 	if (cmd_val(s, 0) & BIT(18))
1671 		valid_len = CMD_LEN(9);
1672 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1673 			valid_len);
1674 	if (ret)
1675 		return ret;
1676 
1677 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1678 	if (gmadr_bytes == 8) {
1679 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1680 		gma = (gma_high << 32) | gma;
1681 	}
1682 	ret = cmd_address_audit(s, gma, op_size, false);
1683 	return ret;
1684 }
1685 
1686 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1687 {
1688 	return unexpected_cmd(s);
1689 }
1690 
1691 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1692 {
1693 	return unexpected_cmd(s);
1694 }
1695 
1696 static int cmd_handler_mi_conditional_batch_buffer_end(
1697 		struct parser_exec_state *s)
1698 {
1699 	return unexpected_cmd(s);
1700 }
1701 
1702 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1703 {
1704 	return unexpected_cmd(s);
1705 }
1706 
1707 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1708 {
1709 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1710 	unsigned long gma;
1711 	bool index_mode = false;
1712 	int ret = 0;
1713 	u32 hws_pga, val;
1714 	u32 valid_len = CMD_LEN(2);
1715 
1716 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1717 			valid_len);
1718 	if (ret) {
1719 		/* Check again for Qword */
1720 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1721 			++valid_len);
1722 		return ret;
1723 	}
1724 
1725 	/* Check post-sync and ppgtt bit */
1726 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1727 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1728 		if (gmadr_bytes == 8)
1729 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1730 		/* Store Data Index */
1731 		if (cmd_val(s, 0) & (1 << 21))
1732 			index_mode = true;
1733 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1734 		if (ret)
1735 			return ret;
1736 		if (index_mode) {
1737 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1738 			gma = hws_pga + gma;
1739 			patch_value(s, cmd_ptr(s, 1), gma);
1740 			val = cmd_val(s, 0) & (~(1 << 21));
1741 			patch_value(s, cmd_ptr(s, 0), val);
1742 		}
1743 	}
1744 	/* Check notify bit */
1745 	if ((cmd_val(s, 0) & (1 << 8)))
1746 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1747 			s->workload->pending_events);
1748 	return ret;
1749 }
1750 
1751 static void addr_type_update_snb(struct parser_exec_state *s)
1752 {
1753 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1754 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1755 		s->buf_addr_type = PPGTT_BUFFER;
1756 	}
1757 }
1758 
1759 
1760 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1761 		unsigned long gma, unsigned long end_gma, void *va)
1762 {
1763 	unsigned long copy_len, offset;
1764 	unsigned long len = 0;
1765 	unsigned long gpa;
1766 
1767 	while (gma != end_gma) {
1768 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1769 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1770 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1771 			return -EFAULT;
1772 		}
1773 
1774 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1775 
1776 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1777 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1778 
1779 		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1780 
1781 		len += copy_len;
1782 		gma += copy_len;
1783 	}
1784 	return len;
1785 }
1786 
1787 
1788 /*
1789  * Check whether a batch buffer needs to be scanned. Currently
1790  * the only criteria is based on privilege.
1791  */
1792 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1793 {
1794 	/* Decide privilege based on address space */
1795 	if (cmd_val(s, 0) & BIT(8) &&
1796 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1797 		return 0;
1798 
1799 	return 1;
1800 }
1801 
1802 static const char *repr_addr_type(unsigned int type)
1803 {
1804 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1805 }
1806 
1807 static int find_bb_size(struct parser_exec_state *s,
1808 			unsigned long *bb_size,
1809 			unsigned long *bb_end_cmd_offset)
1810 {
1811 	unsigned long gma = 0;
1812 	const struct cmd_info *info;
1813 	u32 cmd_len = 0;
1814 	bool bb_end = false;
1815 	struct intel_vgpu *vgpu = s->vgpu;
1816 	u32 cmd;
1817 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1818 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1819 
1820 	*bb_size = 0;
1821 	*bb_end_cmd_offset = 0;
1822 
1823 	/* get the start gm address of the batch buffer */
1824 	gma = get_gma_bb_from_cmd(s, 1);
1825 	if (gma == INTEL_GVT_INVALID_ADDR)
1826 		return -EFAULT;
1827 
1828 	cmd = cmd_val(s, 0);
1829 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1830 	if (info == NULL) {
1831 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1832 			     cmd, get_opcode(cmd, s->engine),
1833 			     repr_addr_type(s->buf_addr_type),
1834 			     s->engine->name, s->workload);
1835 		return -EBADRQC;
1836 	}
1837 	do {
1838 		if (copy_gma_to_hva(s->vgpu, mm,
1839 				    gma, gma + 4, &cmd) < 0)
1840 			return -EFAULT;
1841 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1842 		if (info == NULL) {
1843 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1844 				     cmd, get_opcode(cmd, s->engine),
1845 				     repr_addr_type(s->buf_addr_type),
1846 				     s->engine->name, s->workload);
1847 			return -EBADRQC;
1848 		}
1849 
1850 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1851 			bb_end = true;
1852 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1853 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1854 				/* chained batch buffer */
1855 				bb_end = true;
1856 		}
1857 
1858 		if (bb_end)
1859 			*bb_end_cmd_offset = *bb_size;
1860 
1861 		cmd_len = get_cmd_length(info, cmd) << 2;
1862 		*bb_size += cmd_len;
1863 		gma += cmd_len;
1864 	} while (!bb_end);
1865 
1866 	return 0;
1867 }
1868 
1869 static int audit_bb_end(struct parser_exec_state *s, void *va)
1870 {
1871 	struct intel_vgpu *vgpu = s->vgpu;
1872 	u32 cmd = *(u32 *)va;
1873 	const struct cmd_info *info;
1874 
1875 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1876 	if (info == NULL) {
1877 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1878 			     cmd, get_opcode(cmd, s->engine),
1879 			     repr_addr_type(s->buf_addr_type),
1880 			     s->engine->name, s->workload);
1881 		return -EBADRQC;
1882 	}
1883 
1884 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1885 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1886 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1887 		return 0;
1888 
1889 	return -EBADRQC;
1890 }
1891 
1892 static int perform_bb_shadow(struct parser_exec_state *s)
1893 {
1894 	struct intel_vgpu *vgpu = s->vgpu;
1895 	struct intel_vgpu_shadow_bb *bb;
1896 	unsigned long gma = 0;
1897 	unsigned long bb_size;
1898 	unsigned long bb_end_cmd_offset;
1899 	int ret = 0;
1900 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1901 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1902 	unsigned long start_offset = 0;
1903 
1904 	/* get the start gm address of the batch buffer */
1905 	gma = get_gma_bb_from_cmd(s, 1);
1906 	if (gma == INTEL_GVT_INVALID_ADDR)
1907 		return -EFAULT;
1908 
1909 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1910 	if (ret)
1911 		return ret;
1912 
1913 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1914 	if (!bb)
1915 		return -ENOMEM;
1916 
1917 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1918 
1919 	/* the start_offset stores the batch buffer's start gma's
1920 	 * offset relative to page boundary. so for non-privileged batch
1921 	 * buffer, the shadowed gem object holds exactly the same page
1922 	 * layout as original gem object. This is for the convience of
1923 	 * replacing the whole non-privilged batch buffer page to this
1924 	 * shadowed one in PPGTT at the same gma address. (this replacing
1925 	 * action is not implemented yet now, but may be necessary in
1926 	 * future).
1927 	 * for prileged batch buffer, we just change start gma address to
1928 	 * that of shadowed page.
1929 	 */
1930 	if (bb->ppgtt)
1931 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1932 
1933 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1934 					       round_up(bb_size + start_offset,
1935 							PAGE_SIZE));
1936 	if (IS_ERR(bb->obj)) {
1937 		ret = PTR_ERR(bb->obj);
1938 		goto err_free_bb;
1939 	}
1940 
1941 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1942 	if (IS_ERR(bb->va)) {
1943 		ret = PTR_ERR(bb->va);
1944 		goto err_free_obj;
1945 	}
1946 
1947 	ret = copy_gma_to_hva(s->vgpu, mm,
1948 			      gma, gma + bb_size,
1949 			      bb->va + start_offset);
1950 	if (ret < 0) {
1951 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1952 		ret = -EFAULT;
1953 		goto err_unmap;
1954 	}
1955 
1956 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1957 	if (ret)
1958 		goto err_unmap;
1959 
1960 	i915_gem_object_unlock(bb->obj);
1961 	INIT_LIST_HEAD(&bb->list);
1962 	list_add(&bb->list, &s->workload->shadow_bb);
1963 
1964 	bb->bb_start_cmd_va = s->ip_va;
1965 
1966 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1967 		bb->bb_offset = s->ip_va - s->rb_va;
1968 	else
1969 		bb->bb_offset = 0;
1970 
1971 	/*
1972 	 * ip_va saves the virtual address of the shadow batch buffer, while
1973 	 * ip_gma saves the graphics address of the original batch buffer.
1974 	 * As the shadow batch buffer is just a copy from the originial one,
1975 	 * it should be right to use shadow batch buffer'va and original batch
1976 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1977 	 * buffer here (too early).
1978 	 */
1979 	s->ip_va = bb->va + start_offset;
1980 	s->ip_gma = gma;
1981 	return 0;
1982 err_unmap:
1983 	i915_gem_object_unpin_map(bb->obj);
1984 err_free_obj:
1985 	i915_gem_object_put(bb->obj);
1986 err_free_bb:
1987 	kfree(bb);
1988 	return ret;
1989 }
1990 
1991 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1992 {
1993 	bool second_level;
1994 	int ret = 0;
1995 	struct intel_vgpu *vgpu = s->vgpu;
1996 
1997 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1998 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1999 		return -EFAULT;
2000 	}
2001 
2002 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2003 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2004 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2005 		return -EFAULT;
2006 	}
2007 
2008 	s->saved_buf_addr_type = s->buf_addr_type;
2009 	addr_type_update_snb(s);
2010 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2011 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2012 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2013 	} else if (second_level) {
2014 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2015 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2016 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2017 	}
2018 
2019 	if (batch_buffer_needs_scan(s)) {
2020 		ret = perform_bb_shadow(s);
2021 		if (ret < 0)
2022 			gvt_vgpu_err("invalid shadow batch buffer\n");
2023 	} else {
2024 		/* emulate a batch buffer end to do return right */
2025 		ret = cmd_handler_mi_batch_buffer_end(s);
2026 		if (ret < 0)
2027 			return ret;
2028 	}
2029 	return ret;
2030 }
2031 
2032 static int mi_noop_index;
2033 
2034 static const struct cmd_info cmd_info[] = {
2035 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2036 
2037 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2038 		0, 1, NULL},
2039 
2040 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2041 		0, 1, cmd_handler_mi_user_interrupt},
2042 
2043 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2044 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2045 
2046 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2047 
2048 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2049 		NULL},
2050 
2051 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2052 		NULL},
2053 
2054 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2055 		NULL},
2056 
2057 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2058 		NULL},
2059 
2060 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2061 		D_ALL, 0, 1, NULL},
2062 
2063 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2064 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2065 		cmd_handler_mi_batch_buffer_end},
2066 
2067 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2068 		0, 1, NULL},
2069 
2070 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2071 		NULL},
2072 
2073 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2074 		D_ALL, 0, 1, NULL},
2075 
2076 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2077 		NULL},
2078 
2079 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2080 		NULL},
2081 
2082 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2083 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2084 
2085 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2086 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2087 
2088 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2089 
2090 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2091 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2092 
2093 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2094 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2095 		NULL, CMD_LEN(0)},
2096 
2097 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2098 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2099 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2100 
2101 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2102 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2103 
2104 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2105 		0, 8, cmd_handler_mi_store_data_index},
2106 
2107 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2108 		D_ALL, 0, 8, cmd_handler_lri},
2109 
2110 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2111 		cmd_handler_mi_update_gtt},
2112 
2113 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2114 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2115 		cmd_handler_srm, CMD_LEN(2)},
2116 
2117 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2118 		cmd_handler_mi_flush_dw},
2119 
2120 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2121 		10, cmd_handler_mi_clflush},
2122 
2123 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2124 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2125 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2126 
2127 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2128 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2129 		cmd_handler_lrm, CMD_LEN(2)},
2130 
2131 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2132 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2133 		cmd_handler_lrr, CMD_LEN(1)},
2134 
2135 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2136 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2137 		8, NULL, CMD_LEN(2)},
2138 
2139 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2140 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2141 
2142 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2143 		ADDR_FIX_1(2), 8, NULL},
2144 
2145 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2146 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2147 
2148 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2149 		8, cmd_handler_mi_op_2f},
2150 
2151 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2152 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2153 		cmd_handler_mi_batch_buffer_start},
2154 
2155 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2156 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2157 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2158 
2159 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2160 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2161 
2162 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2163 		ADDR_FIX_2(4, 7), 8, NULL},
2164 
2165 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2166 		0, 8, NULL},
2167 
2168 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2169 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2170 
2171 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2172 
2173 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2174 		0, 8, NULL},
2175 
2176 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2177 		ADDR_FIX_1(3), 8, NULL},
2178 
2179 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2180 		D_ALL, 0, 8, NULL},
2181 
2182 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2183 		ADDR_FIX_1(4), 8, NULL},
2184 
2185 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2186 		ADDR_FIX_2(4, 5), 8, NULL},
2187 
2188 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2189 		ADDR_FIX_1(4), 8, NULL},
2190 
2191 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2192 		ADDR_FIX_2(4, 7), 8, NULL},
2193 
2194 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2195 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2196 
2197 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2198 
2199 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2200 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2201 
2202 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2203 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2204 
2205 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2206 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2207 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2208 
2209 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2210 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2211 
2212 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2213 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2214 
2215 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2216 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2217 
2218 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2219 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2220 
2221 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2222 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2223 
2224 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2225 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2226 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2227 
2228 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2229 		ADDR_FIX_2(4, 5), 8, NULL},
2230 
2231 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2232 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2233 
2234 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2235 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2236 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237 
2238 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2239 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2240 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 
2242 	{"3DSTATE_BLEND_STATE_POINTERS",
2243 		OP_3DSTATE_BLEND_STATE_POINTERS,
2244 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245 
2246 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2247 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2248 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 
2250 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2251 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2255 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2256 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2257 
2258 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2259 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2260 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261 
2262 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2263 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2264 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265 
2266 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2267 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2268 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2271 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2272 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273 
2274 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2275 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2279 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2280 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 
2282 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2283 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2284 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285 
2286 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2287 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2288 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289 
2290 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2291 		0, 8, NULL},
2292 
2293 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2294 		0, 8, NULL},
2295 
2296 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2297 		0, 8, NULL},
2298 
2299 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2300 		0, 8, NULL},
2301 
2302 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2303 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304 
2305 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2306 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307 
2308 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2309 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310 
2311 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2312 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313 
2314 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2315 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316 
2317 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2318 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2319 
2320 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2321 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2322 
2323 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2324 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325 
2326 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2327 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328 
2329 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2330 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331 
2332 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2333 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334 
2335 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2336 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337 
2338 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2339 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340 
2341 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2342 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343 
2344 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2345 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2346 
2347 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2348 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2349 
2350 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2351 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2352 
2353 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2354 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2355 
2356 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2357 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2358 
2359 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2360 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2361 
2362 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2363 		D_BDW_PLUS, 0, 8, NULL},
2364 
2365 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2366 		NULL},
2367 
2368 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2369 		D_BDW_PLUS, 0, 8, NULL},
2370 
2371 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2372 		D_BDW_PLUS, 0, 8, NULL},
2373 
2374 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2375 		8, NULL},
2376 
2377 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2378 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2379 
2380 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2381 		8, NULL},
2382 
2383 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2384 		NULL},
2385 
2386 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2387 		NULL},
2388 
2389 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2390 		NULL},
2391 
2392 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2393 		D_BDW_PLUS, 0, 8, NULL},
2394 
2395 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2396 		R_RCS, D_ALL, 0, 8, NULL},
2397 
2398 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2399 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2400 
2401 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2402 		R_RCS, D_ALL, 0, 1, NULL},
2403 
2404 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2405 
2406 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2407 		R_RCS, D_ALL, 0, 8, NULL},
2408 
2409 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2410 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2411 
2412 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2413 
2414 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2415 
2416 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2417 
2418 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2419 		D_BDW_PLUS, 0, 8, NULL},
2420 
2421 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2422 		D_BDW_PLUS, 0, 8, NULL},
2423 
2424 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2425 		D_ALL, 0, 8, NULL},
2426 
2427 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2428 		D_BDW_PLUS, 0, 8, NULL},
2429 
2430 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2431 		D_BDW_PLUS, 0, 8, NULL},
2432 
2433 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2434 
2435 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2436 
2437 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2438 
2439 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2440 		D_ALL, 0, 8, NULL},
2441 
2442 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2443 
2444 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2445 
2446 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2447 		R_RCS, D_ALL, 0, 8, NULL},
2448 
2449 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2450 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2451 
2452 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2453 		0, 8, NULL},
2454 
2455 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2456 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2457 
2458 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2459 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460 
2461 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2462 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463 
2464 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2465 		D_ALL, 0, 8, NULL},
2466 
2467 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2468 		D_ALL, 0, 8, NULL},
2469 
2470 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2471 		D_ALL, 0, 8, NULL},
2472 
2473 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2474 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2475 
2476 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2477 		D_BDW_PLUS, 0, 8, NULL},
2478 
2479 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2480 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2481 
2482 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2483 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2484 
2485 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2486 		R_RCS, D_ALL, 0, 8, NULL},
2487 
2488 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2489 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2490 
2491 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2492 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2493 
2494 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2495 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2496 
2497 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2498 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2499 
2500 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2501 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502 
2503 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2504 		R_RCS, D_ALL, 0, 8, NULL},
2505 
2506 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2507 		D_ALL, 0, 9, NULL},
2508 
2509 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2510 		ADDR_FIX_2(2, 4), 8, NULL},
2511 
2512 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2513 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2514 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2515 
2516 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2517 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2518 
2519 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2520 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2521 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2522 
2523 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2524 		D_BDW_PLUS, 0, 8, NULL},
2525 
2526 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2527 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2528 
2529 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2530 
2531 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2532 		1, NULL},
2533 
2534 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2535 		ADDR_FIX_1(1), 8, NULL},
2536 
2537 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2538 
2539 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2540 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2541 
2542 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2543 		ADDR_FIX_1(1), 8, NULL},
2544 
2545 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2546 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2547 
2548 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2549 
2550 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2551 
2552 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2553 		0, 8, NULL},
2554 
2555 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2556 		D_SKL_PLUS, 0, 8, NULL},
2557 
2558 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2559 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2560 
2561 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2562 		0, 16, NULL},
2563 
2564 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2565 		0, 16, NULL},
2566 
2567 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2568 		0, 16, NULL},
2569 
2570 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2571 
2572 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2573 		0, 16, NULL},
2574 
2575 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2576 		0, 16, NULL},
2577 
2578 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2579 		0, 16, NULL},
2580 
2581 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2582 		0, 8, NULL},
2583 
2584 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2585 		NULL},
2586 
2587 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2588 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2589 
2590 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2591 		R_VCS, D_ALL, 0, 12, NULL},
2592 
2593 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2594 		R_VCS, D_ALL, 0, 12, NULL},
2595 
2596 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2597 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2598 
2599 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2600 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2601 
2602 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2603 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2604 
2605 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2606 
2607 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2608 		R_VCS, D_ALL, 0, 12, NULL},
2609 
2610 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2611 		R_VCS, D_ALL, 0, 12, NULL},
2612 
2613 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2614 		R_VCS, D_ALL, 0, 12, NULL},
2615 
2616 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2617 		R_VCS, D_ALL, 0, 12, NULL},
2618 
2619 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2620 		R_VCS, D_ALL, 0, 12, NULL},
2621 
2622 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2623 		R_VCS, D_ALL, 0, 12, NULL},
2624 
2625 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2626 		R_VCS, D_ALL, 0, 6, NULL},
2627 
2628 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2629 		R_VCS, D_ALL, 0, 12, NULL},
2630 
2631 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2632 		R_VCS, D_ALL, 0, 12, NULL},
2633 
2634 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2635 		R_VCS, D_ALL, 0, 12, NULL},
2636 
2637 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2638 		R_VCS, D_ALL, 0, 12, NULL},
2639 
2640 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2641 		R_VCS, D_ALL, 0, 12, NULL},
2642 
2643 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2644 		R_VCS, D_ALL, 0, 12, NULL},
2645 
2646 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2647 		R_VCS, D_ALL, 0, 12, NULL},
2648 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2649 		R_VCS, D_ALL, 0, 12, NULL},
2650 
2651 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2652 		R_VCS, D_ALL, 0, 12, NULL},
2653 
2654 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2655 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2656 
2657 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2658 		R_VCS, D_ALL, 0, 12, NULL},
2659 
2660 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2661 		R_VCS, D_ALL, 0, 12, NULL},
2662 
2663 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2664 		R_VCS, D_ALL, 0, 12, NULL},
2665 
2666 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2667 		R_VCS, D_ALL, 0, 12, NULL},
2668 
2669 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2670 		R_VCS, D_ALL, 0, 12, NULL},
2671 
2672 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2673 		R_VCS, D_ALL, 0, 12, NULL},
2674 
2675 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2676 		R_VCS, D_ALL, 0, 12, NULL},
2677 
2678 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2679 		R_VCS, D_ALL, 0, 12, NULL},
2680 
2681 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2682 		R_VCS, D_ALL, 0, 12, NULL},
2683 
2684 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2685 		R_VCS, D_ALL, 0, 12, NULL},
2686 
2687 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2688 		R_VCS, D_ALL, 0, 12, NULL},
2689 
2690 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2691 		0, 16, NULL},
2692 
2693 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2694 
2695 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2696 
2697 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2698 		R_VCS, D_ALL, 0, 12, NULL},
2699 
2700 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2701 		R_VCS, D_ALL, 0, 12, NULL},
2702 
2703 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2704 		R_VCS, D_ALL, 0, 12, NULL},
2705 
2706 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2707 
2708 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2709 		0, 12, NULL},
2710 
2711 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2712 		0, 12, NULL},
2713 };
2714 
2715 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2716 {
2717 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2718 }
2719 
2720 /* call the cmd handler, and advance ip */
2721 static int cmd_parser_exec(struct parser_exec_state *s)
2722 {
2723 	struct intel_vgpu *vgpu = s->vgpu;
2724 	const struct cmd_info *info;
2725 	u32 cmd;
2726 	int ret = 0;
2727 
2728 	cmd = cmd_val(s, 0);
2729 
2730 	/* fastpath for MI_NOOP */
2731 	if (cmd == MI_NOOP)
2732 		info = &cmd_info[mi_noop_index];
2733 	else
2734 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2735 
2736 	if (info == NULL) {
2737 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2738 			     cmd, get_opcode(cmd, s->engine),
2739 			     repr_addr_type(s->buf_addr_type),
2740 			     s->engine->name, s->workload);
2741 		return -EBADRQC;
2742 	}
2743 
2744 	s->info = info;
2745 
2746 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2747 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2748 			  s->workload, info->name);
2749 
2750 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2751 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2752 						 info->valid_len);
2753 		if (ret)
2754 			return ret;
2755 	}
2756 
2757 	if (info->handler) {
2758 		ret = info->handler(s);
2759 		if (ret < 0) {
2760 			gvt_vgpu_err("%s handler error\n", info->name);
2761 			return ret;
2762 		}
2763 	}
2764 
2765 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2766 		ret = cmd_advance_default(s);
2767 		if (ret) {
2768 			gvt_vgpu_err("%s IP advance error\n", info->name);
2769 			return ret;
2770 		}
2771 	}
2772 	return 0;
2773 }
2774 
2775 static inline bool gma_out_of_range(unsigned long gma,
2776 		unsigned long gma_head, unsigned int gma_tail)
2777 {
2778 	if (gma_tail >= gma_head)
2779 		return (gma < gma_head) || (gma > gma_tail);
2780 	else
2781 		return (gma > gma_tail) && (gma < gma_head);
2782 }
2783 
2784 /* Keep the consistent return type, e.g EBADRQC for unknown
2785  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2786  * works as the input of VM healthy status.
2787  */
2788 static int command_scan(struct parser_exec_state *s,
2789 		unsigned long rb_head, unsigned long rb_tail,
2790 		unsigned long rb_start, unsigned long rb_len)
2791 {
2792 
2793 	unsigned long gma_head, gma_tail, gma_bottom;
2794 	int ret = 0;
2795 	struct intel_vgpu *vgpu = s->vgpu;
2796 
2797 	gma_head = rb_start + rb_head;
2798 	gma_tail = rb_start + rb_tail;
2799 	gma_bottom = rb_start +  rb_len;
2800 
2801 	while (s->ip_gma != gma_tail) {
2802 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2803 				s->buf_type == RING_BUFFER_CTX) {
2804 			if (!(s->ip_gma >= rb_start) ||
2805 				!(s->ip_gma < gma_bottom)) {
2806 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2807 					"(base:0x%lx, bottom: 0x%lx)\n",
2808 					s->ip_gma, rb_start,
2809 					gma_bottom);
2810 				parser_exec_state_dump(s);
2811 				return -EFAULT;
2812 			}
2813 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2814 				gvt_vgpu_err("ip_gma %lx out of range."
2815 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2816 					s->ip_gma, rb_start,
2817 					rb_head, rb_tail);
2818 				parser_exec_state_dump(s);
2819 				break;
2820 			}
2821 		}
2822 		ret = cmd_parser_exec(s);
2823 		if (ret) {
2824 			gvt_vgpu_err("cmd parser error\n");
2825 			parser_exec_state_dump(s);
2826 			break;
2827 		}
2828 	}
2829 
2830 	return ret;
2831 }
2832 
2833 static int scan_workload(struct intel_vgpu_workload *workload)
2834 {
2835 	unsigned long gma_head, gma_tail, gma_bottom;
2836 	struct parser_exec_state s;
2837 	int ret = 0;
2838 
2839 	/* ring base is page aligned */
2840 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2841 		return -EINVAL;
2842 
2843 	gma_head = workload->rb_start + workload->rb_head;
2844 	gma_tail = workload->rb_start + workload->rb_tail;
2845 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2846 
2847 	s.buf_type = RING_BUFFER_INSTRUCTION;
2848 	s.buf_addr_type = GTT_BUFFER;
2849 	s.vgpu = workload->vgpu;
2850 	s.engine = workload->engine;
2851 	s.ring_start = workload->rb_start;
2852 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2853 	s.ring_head = gma_head;
2854 	s.ring_tail = gma_tail;
2855 	s.rb_va = workload->shadow_ring_buffer_va;
2856 	s.workload = workload;
2857 	s.is_ctx_wa = false;
2858 
2859 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2860 		return 0;
2861 
2862 	ret = ip_gma_set(&s, gma_head);
2863 	if (ret)
2864 		goto out;
2865 
2866 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2867 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2868 
2869 out:
2870 	return ret;
2871 }
2872 
2873 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2874 {
2875 
2876 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2877 	struct parser_exec_state s;
2878 	int ret = 0;
2879 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2880 				struct intel_vgpu_workload,
2881 				wa_ctx);
2882 
2883 	/* ring base is page aligned */
2884 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2885 					I915_GTT_PAGE_SIZE)))
2886 		return -EINVAL;
2887 
2888 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2889 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2890 			PAGE_SIZE);
2891 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2892 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2893 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2894 
2895 	s.buf_type = RING_BUFFER_INSTRUCTION;
2896 	s.buf_addr_type = GTT_BUFFER;
2897 	s.vgpu = workload->vgpu;
2898 	s.engine = workload->engine;
2899 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2900 	s.ring_size = ring_size;
2901 	s.ring_head = gma_head;
2902 	s.ring_tail = gma_tail;
2903 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2904 	s.workload = workload;
2905 	s.is_ctx_wa = true;
2906 
2907 	ret = ip_gma_set(&s, gma_head);
2908 	if (ret)
2909 		goto out;
2910 
2911 	ret = command_scan(&s, 0, ring_tail,
2912 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2913 out:
2914 	return ret;
2915 }
2916 
2917 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2918 {
2919 	struct intel_vgpu *vgpu = workload->vgpu;
2920 	struct intel_vgpu_submission *s = &vgpu->submission;
2921 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2922 	void *shadow_ring_buffer_va;
2923 	int ret;
2924 
2925 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2926 
2927 	/* calculate workload ring buffer size */
2928 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2929 			workload->rb_head) % guest_rb_size;
2930 
2931 	gma_head = workload->rb_start + workload->rb_head;
2932 	gma_tail = workload->rb_start + workload->rb_tail;
2933 	gma_top = workload->rb_start + guest_rb_size;
2934 
2935 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2936 		void *p;
2937 
2938 		/* realloc the new ring buffer if needed */
2939 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2940 			     workload->rb_len, GFP_KERNEL);
2941 		if (!p) {
2942 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2943 			return -ENOMEM;
2944 		}
2945 		s->ring_scan_buffer[workload->engine->id] = p;
2946 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2947 	}
2948 
2949 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2950 
2951 	/* get shadow ring buffer va */
2952 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2953 
2954 	/* head > tail --> copy head <-> top */
2955 	if (gma_head > gma_tail) {
2956 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2957 				      gma_head, gma_top, shadow_ring_buffer_va);
2958 		if (ret < 0) {
2959 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2960 			return ret;
2961 		}
2962 		shadow_ring_buffer_va += ret;
2963 		gma_head = workload->rb_start;
2964 	}
2965 
2966 	/* copy head or start <-> tail */
2967 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2968 				shadow_ring_buffer_va);
2969 	if (ret < 0) {
2970 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2971 		return ret;
2972 	}
2973 	return 0;
2974 }
2975 
2976 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2977 {
2978 	int ret;
2979 	struct intel_vgpu *vgpu = workload->vgpu;
2980 
2981 	ret = shadow_workload_ring_buffer(workload);
2982 	if (ret) {
2983 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2984 		return ret;
2985 	}
2986 
2987 	ret = scan_workload(workload);
2988 	if (ret) {
2989 		gvt_vgpu_err("scan workload error\n");
2990 		return ret;
2991 	}
2992 	return 0;
2993 }
2994 
2995 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2996 {
2997 	int ctx_size = wa_ctx->indirect_ctx.size;
2998 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2999 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3000 					struct intel_vgpu_workload,
3001 					wa_ctx);
3002 	struct intel_vgpu *vgpu = workload->vgpu;
3003 	struct drm_i915_gem_object *obj;
3004 	int ret = 0;
3005 	void *map;
3006 
3007 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3008 					   roundup(ctx_size + CACHELINE_BYTES,
3009 						   PAGE_SIZE));
3010 	if (IS_ERR(obj))
3011 		return PTR_ERR(obj);
3012 
3013 	/* get the va of the shadow batch buffer */
3014 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3015 	if (IS_ERR(map)) {
3016 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3017 		ret = PTR_ERR(map);
3018 		goto put_obj;
3019 	}
3020 
3021 	i915_gem_object_lock(obj, NULL);
3022 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3023 	i915_gem_object_unlock(obj);
3024 	if (ret) {
3025 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3026 		goto unmap_src;
3027 	}
3028 
3029 	ret = copy_gma_to_hva(workload->vgpu,
3030 				workload->vgpu->gtt.ggtt_mm,
3031 				guest_gma, guest_gma + ctx_size,
3032 				map);
3033 	if (ret < 0) {
3034 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3035 		goto unmap_src;
3036 	}
3037 
3038 	wa_ctx->indirect_ctx.obj = obj;
3039 	wa_ctx->indirect_ctx.shadow_va = map;
3040 	return 0;
3041 
3042 unmap_src:
3043 	i915_gem_object_unpin_map(obj);
3044 put_obj:
3045 	i915_gem_object_put(obj);
3046 	return ret;
3047 }
3048 
3049 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3050 {
3051 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3052 	unsigned char *bb_start_sva;
3053 
3054 	if (!wa_ctx->per_ctx.valid)
3055 		return 0;
3056 
3057 	per_ctx_start[0] = 0x18800001;
3058 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3059 
3060 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3061 				wa_ctx->indirect_ctx.size;
3062 
3063 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3064 
3065 	return 0;
3066 }
3067 
3068 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3069 {
3070 	int ret;
3071 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3072 					struct intel_vgpu_workload,
3073 					wa_ctx);
3074 	struct intel_vgpu *vgpu = workload->vgpu;
3075 
3076 	if (wa_ctx->indirect_ctx.size == 0)
3077 		return 0;
3078 
3079 	ret = shadow_indirect_ctx(wa_ctx);
3080 	if (ret) {
3081 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3082 		return ret;
3083 	}
3084 
3085 	combine_wa_ctx(wa_ctx);
3086 
3087 	ret = scan_wa_ctx(wa_ctx);
3088 	if (ret) {
3089 		gvt_vgpu_err("scan wa ctx error\n");
3090 		return ret;
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 /* generate dummy contexts by sending empty requests to HW, and let
3097  * the HW to fill Engine Contexts. This dummy contexts are used for
3098  * initialization purpose (update reg whitelist), so referred to as
3099  * init context here
3100  */
3101 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3102 {
3103 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3104 	struct intel_gvt *gvt = vgpu->gvt;
3105 	struct intel_engine_cs *engine;
3106 	enum intel_engine_id id;
3107 
3108 	if (gvt->is_reg_whitelist_updated)
3109 		return;
3110 
3111 	/* scan init ctx to update cmd accessible list */
3112 	for_each_engine(engine, gvt->gt, id) {
3113 		struct parser_exec_state s;
3114 		void *vaddr;
3115 		int ret;
3116 
3117 		if (!engine->default_state)
3118 			continue;
3119 
3120 		vaddr = shmem_pin_map(engine->default_state);
3121 		if (!vaddr) {
3122 			gvt_err("failed to map %s->default state\n",
3123 				engine->name);
3124 			return;
3125 		}
3126 
3127 		s.buf_type = RING_BUFFER_CTX;
3128 		s.buf_addr_type = GTT_BUFFER;
3129 		s.vgpu = vgpu;
3130 		s.engine = engine;
3131 		s.ring_start = 0;
3132 		s.ring_size = engine->context_size - start;
3133 		s.ring_head = 0;
3134 		s.ring_tail = s.ring_size;
3135 		s.rb_va = vaddr + start;
3136 		s.workload = NULL;
3137 		s.is_ctx_wa = false;
3138 		s.is_init_ctx = true;
3139 
3140 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3141 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3142 		if (ret == 0) {
3143 			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3144 			if (ret)
3145 				gvt_err("Scan init ctx error\n");
3146 		}
3147 
3148 		shmem_unpin_map(engine->default_state, vaddr);
3149 		if (ret)
3150 			return;
3151 	}
3152 
3153 	gvt->is_reg_whitelist_updated = true;
3154 }
3155 
3156 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3157 {
3158 	struct intel_vgpu *vgpu = workload->vgpu;
3159 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3160 	struct parser_exec_state s;
3161 	int ring_id = workload->engine->id;
3162 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3163 	int ret;
3164 
3165 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3166 
3167 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3168 
3169 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3170 	 * scan engine context
3171 	 */
3172 	if (is_inhibit_context(ce))
3173 		return 0;
3174 
3175 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3176 	gma_head = 0;
3177 	gma_tail = ctx_size;
3178 
3179 	s.buf_type = RING_BUFFER_CTX;
3180 	s.buf_addr_type = GTT_BUFFER;
3181 	s.vgpu = workload->vgpu;
3182 	s.engine = workload->engine;
3183 	s.ring_start = gma_start;
3184 	s.ring_size = ctx_size;
3185 	s.ring_head = gma_start + gma_head;
3186 	s.ring_tail = gma_start + gma_tail;
3187 	s.rb_va = ce->lrc_reg_state;
3188 	s.workload = workload;
3189 	s.is_ctx_wa = false;
3190 	s.is_init_ctx = false;
3191 
3192 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3193 	 * context
3194 	 */
3195 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3196 	if (ret)
3197 		goto out;
3198 
3199 	ret = command_scan(&s, gma_head, gma_tail,
3200 		gma_start, ctx_size);
3201 out:
3202 	if (ret)
3203 		gvt_vgpu_err("scan shadow ctx error\n");
3204 
3205 	return ret;
3206 }
3207 
3208 static int init_cmd_table(struct intel_gvt *gvt)
3209 {
3210 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3211 	int i;
3212 
3213 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3214 		struct cmd_entry *e;
3215 
3216 		if (!(cmd_info[i].devices & gen_type))
3217 			continue;
3218 
3219 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3220 		if (!e)
3221 			return -ENOMEM;
3222 
3223 		e->info = &cmd_info[i];
3224 		if (cmd_info[i].opcode == OP_MI_NOOP)
3225 			mi_noop_index = i;
3226 
3227 		INIT_HLIST_NODE(&e->hlist);
3228 		add_cmd_entry(gvt, e);
3229 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3230 			    e->info->name, e->info->opcode, e->info->flag,
3231 			    e->info->devices, e->info->rings);
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static void clean_cmd_table(struct intel_gvt *gvt)
3238 {
3239 	struct hlist_node *tmp;
3240 	struct cmd_entry *e;
3241 	int i;
3242 
3243 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3244 		kfree(e);
3245 
3246 	hash_init(gvt->cmd_table);
3247 }
3248 
3249 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3250 {
3251 	clean_cmd_table(gvt);
3252 }
3253 
3254 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3255 {
3256 	int ret;
3257 
3258 	ret = init_cmd_table(gvt);
3259 	if (ret) {
3260 		intel_gvt_clean_cmd_parser(gvt);
3261 		return ret;
3262 	}
3263 	return 0;
3264 }
3265