xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision e3d786a3)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176 
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181 
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248 
249 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260 
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289 
290 /* VCCP Command Parser */
291 
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298 
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300 	(3 << 13 | \
301 	 (pipeline) << 11 | \
302 	 (op) << 8 | \
303 	 (sub_opa) << 5 | \
304 	 (sub_opb))
305 
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317 
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319 
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332 
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338 
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344 
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348 
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352 
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354 	(3 << 13 | \
355 	 (pipeline) << 11 | \
356 	 (op) << 8 | \
357 	 (sub_opa) << 5 | \
358 	 (sub_opb))
359 
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363 
364 struct parser_exec_state;
365 
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367 
368 #define GVT_CMD_HASH_BITS   7
369 
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)			(1 << (x1))
372 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376 
377 struct cmd_info {
378 	char *name;
379 	u32 opcode;
380 
381 #define F_LEN_MASK	(1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384 
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390 
391 #define F_POST_HANDLE	(1<<2)
392 	u32 flag;
393 
394 #define R_RCS	(1 << RCS)
395 #define R_VCS1  (1 << VCS)
396 #define R_VCS2  (1 << VCS2)
397 #define R_VCS	(R_VCS1 | R_VCS2)
398 #define R_BCS	(1 << BCS)
399 #define R_VECS	(1 << VECS)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
402 	uint16_t rings;
403 
404 	/* devices that support this cmd: SNB/IVB/HSW/... */
405 	uint16_t devices;
406 
407 	/* which DWords are address that need fix up.
408 	 * bit 0 means a 32-bit non address operand in command
409 	 * bit 1 means address operand, which could be 32-bit
410 	 * or 64-bit depending on different architectures.(
411 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412 	 * No matter the address length, each address only takes
413 	 * one bit in the bitmap.
414 	 */
415 	uint16_t addr_bitmap;
416 
417 	/* flag == F_LEN_CONST : command length
418 	 * flag == F_LEN_VAR : length bias bits
419 	 * Note: length is in DWord
420 	 */
421 	uint8_t	len;
422 
423 	parser_cmd_handler handler;
424 };
425 
426 struct cmd_entry {
427 	struct hlist_node hlist;
428 	struct cmd_info *info;
429 };
430 
431 enum {
432 	RING_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_INSTRUCTION,
434 	BATCH_BUFFER_2ND_LEVEL,
435 };
436 
437 enum {
438 	GTT_BUFFER,
439 	PPGTT_BUFFER
440 };
441 
442 struct parser_exec_state {
443 	struct intel_vgpu *vgpu;
444 	int ring_id;
445 
446 	int buf_type;
447 
448 	/* batch buffer address type */
449 	int buf_addr_type;
450 
451 	/* graphics memory address of ring buffer start */
452 	unsigned long ring_start;
453 	unsigned long ring_size;
454 	unsigned long ring_head;
455 	unsigned long ring_tail;
456 
457 	/* instruction graphics memory address */
458 	unsigned long ip_gma;
459 
460 	/* mapped va of the instr_gma */
461 	void *ip_va;
462 	void *rb_va;
463 
464 	void *ret_bb_va;
465 	/* next instruction when return from  batch buffer to ring buffer */
466 	unsigned long ret_ip_gma_ring;
467 
468 	/* next instruction when return from 2nd batch buffer to batch buffer */
469 	unsigned long ret_ip_gma_bb;
470 
471 	/* batch buffer address type (GTT or PPGTT)
472 	 * used when ret from 2nd level batch buffer
473 	 */
474 	int saved_buf_addr_type;
475 	bool is_ctx_wa;
476 
477 	struct cmd_info *info;
478 
479 	struct intel_vgpu_workload *workload;
480 };
481 
482 #define gmadr_dw_number(s)	\
483 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484 
485 static unsigned long bypass_scan_mask = 0;
486 
487 /* ring ALL, type = 0 */
488 static struct sub_op_bits sub_op_mi[] = {
489 	{31, 29},
490 	{28, 23},
491 };
492 
493 static struct decode_info decode_info_mi = {
494 	"MI",
495 	OP_LEN_MI,
496 	ARRAY_SIZE(sub_op_mi),
497 	sub_op_mi,
498 };
499 
500 /* ring RCS, command type 2 */
501 static struct sub_op_bits sub_op_2d[] = {
502 	{31, 29},
503 	{28, 22},
504 };
505 
506 static struct decode_info decode_info_2d = {
507 	"2D",
508 	OP_LEN_2D,
509 	ARRAY_SIZE(sub_op_2d),
510 	sub_op_2d,
511 };
512 
513 /* ring RCS, command type 3 */
514 static struct sub_op_bits sub_op_3d_media[] = {
515 	{31, 29},
516 	{28, 27},
517 	{26, 24},
518 	{23, 16},
519 };
520 
521 static struct decode_info decode_info_3d_media = {
522 	"3D_Media",
523 	OP_LEN_3D_MEDIA,
524 	ARRAY_SIZE(sub_op_3d_media),
525 	sub_op_3d_media,
526 };
527 
528 /* ring VCS, command type 3 */
529 static struct sub_op_bits sub_op_mfx_vc[] = {
530 	{31, 29},
531 	{28, 27},
532 	{26, 24},
533 	{23, 21},
534 	{20, 16},
535 };
536 
537 static struct decode_info decode_info_mfx_vc = {
538 	"MFX_VC",
539 	OP_LEN_MFX_VC,
540 	ARRAY_SIZE(sub_op_mfx_vc),
541 	sub_op_mfx_vc,
542 };
543 
544 /* ring VECS, command type 3 */
545 static struct sub_op_bits sub_op_vebox[] = {
546 	{31, 29},
547 	{28, 27},
548 	{26, 24},
549 	{23, 21},
550 	{20, 16},
551 };
552 
553 static struct decode_info decode_info_vebox = {
554 	"VEBOX",
555 	OP_LEN_VEBOX,
556 	ARRAY_SIZE(sub_op_vebox),
557 	sub_op_vebox,
558 };
559 
560 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561 	[RCS] = {
562 		&decode_info_mi,
563 		NULL,
564 		NULL,
565 		&decode_info_3d_media,
566 		NULL,
567 		NULL,
568 		NULL,
569 		NULL,
570 	},
571 
572 	[VCS] = {
573 		&decode_info_mi,
574 		NULL,
575 		NULL,
576 		&decode_info_mfx_vc,
577 		NULL,
578 		NULL,
579 		NULL,
580 		NULL,
581 	},
582 
583 	[BCS] = {
584 		&decode_info_mi,
585 		NULL,
586 		&decode_info_2d,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 		NULL,
592 	},
593 
594 	[VECS] = {
595 		&decode_info_mi,
596 		NULL,
597 		NULL,
598 		&decode_info_vebox,
599 		NULL,
600 		NULL,
601 		NULL,
602 		NULL,
603 	},
604 
605 	[VCS2] = {
606 		&decode_info_mi,
607 		NULL,
608 		NULL,
609 		&decode_info_mfx_vc,
610 		NULL,
611 		NULL,
612 		NULL,
613 		NULL,
614 	},
615 };
616 
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619 	struct decode_info *d_info;
620 
621 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622 	if (d_info == NULL)
623 		return INVALID_OP;
624 
625 	return cmd >> (32 - d_info->op_len);
626 }
627 
628 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629 		unsigned int opcode, int ring_id)
630 {
631 	struct cmd_entry *e;
632 
633 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634 		if ((opcode == e->info->opcode) &&
635 				(e->info->rings & (1 << ring_id)))
636 			return e->info;
637 	}
638 	return NULL;
639 }
640 
641 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
642 		u32 cmd, int ring_id)
643 {
644 	u32 opcode;
645 
646 	opcode = get_opcode(cmd, ring_id);
647 	if (opcode == INVALID_OP)
648 		return NULL;
649 
650 	return find_cmd_entry(gvt, opcode, ring_id);
651 }
652 
653 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
654 {
655 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
656 }
657 
658 static inline void print_opcode(u32 cmd, int ring_id)
659 {
660 	struct decode_info *d_info;
661 	int i;
662 
663 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
664 	if (d_info == NULL)
665 		return;
666 
667 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
668 			cmd >> (32 - d_info->op_len), d_info->name);
669 
670 	for (i = 0; i < d_info->nr_sub_op; i++)
671 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
672 					d_info->sub_op[i].low));
673 
674 	pr_err("\n");
675 }
676 
677 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
678 {
679 	return s->ip_va + (index << 2);
680 }
681 
682 static inline u32 cmd_val(struct parser_exec_state *s, int index)
683 {
684 	return *cmd_ptr(s, index);
685 }
686 
687 static void parser_exec_state_dump(struct parser_exec_state *s)
688 {
689 	int cnt = 0;
690 	int i;
691 
692 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
693 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
694 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
695 			s->ring_head, s->ring_tail);
696 
697 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
698 			s->buf_type == RING_BUFFER_INSTRUCTION ?
699 			"RING_BUFFER" : "BATCH_BUFFER",
700 			s->buf_addr_type == GTT_BUFFER ?
701 			"GTT" : "PPGTT", s->ip_gma);
702 
703 	if (s->ip_va == NULL) {
704 		gvt_dbg_cmd(" ip_va(NULL)");
705 		return;
706 	}
707 
708 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
709 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
710 			cmd_val(s, 2), cmd_val(s, 3));
711 
712 	print_opcode(cmd_val(s, 0), s->ring_id);
713 
714 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
715 
716 	while (cnt < 1024) {
717 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
718 		for (i = 0; i < 8; i++)
719 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
720 		gvt_dbg_cmd("\n");
721 
722 		s->ip_va += 8 * sizeof(u32);
723 		cnt += 8;
724 	}
725 }
726 
727 static inline void update_ip_va(struct parser_exec_state *s)
728 {
729 	unsigned long len = 0;
730 
731 	if (WARN_ON(s->ring_head == s->ring_tail))
732 		return;
733 
734 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
735 		unsigned long ring_top = s->ring_start + s->ring_size;
736 
737 		if (s->ring_head > s->ring_tail) {
738 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
739 				len = (s->ip_gma - s->ring_head);
740 			else if (s->ip_gma >= s->ring_start &&
741 					s->ip_gma <= s->ring_tail)
742 				len = (ring_top - s->ring_head) +
743 					(s->ip_gma - s->ring_start);
744 		} else
745 			len = (s->ip_gma - s->ring_head);
746 
747 		s->ip_va = s->rb_va + len;
748 	} else {/* shadow batch buffer */
749 		s->ip_va = s->ret_bb_va;
750 	}
751 }
752 
753 static inline int ip_gma_set(struct parser_exec_state *s,
754 		unsigned long ip_gma)
755 {
756 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
757 
758 	s->ip_gma = ip_gma;
759 	update_ip_va(s);
760 	return 0;
761 }
762 
763 static inline int ip_gma_advance(struct parser_exec_state *s,
764 		unsigned int dw_len)
765 {
766 	s->ip_gma += (dw_len << 2);
767 
768 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
769 		if (s->ip_gma >= s->ring_start + s->ring_size)
770 			s->ip_gma -= s->ring_size;
771 		update_ip_va(s);
772 	} else {
773 		s->ip_va += (dw_len << 2);
774 	}
775 
776 	return 0;
777 }
778 
779 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
780 {
781 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
782 		return info->len;
783 	else
784 		return (cmd & ((1U << info->len) - 1)) + 2;
785 	return 0;
786 }
787 
788 static inline int cmd_length(struct parser_exec_state *s)
789 {
790 	return get_cmd_length(s->info, cmd_val(s, 0));
791 }
792 
793 /* do not remove this, some platform may need clflush here */
794 #define patch_value(s, addr, val) do { \
795 	*addr = val; \
796 } while (0)
797 
798 static bool is_shadowed_mmio(unsigned int offset)
799 {
800 	bool ret = false;
801 
802 	if ((offset == 0x2168) || /*BB current head register UDW */
803 	    (offset == 0x2140) || /*BB current header register */
804 	    (offset == 0x211c) || /*second BB header register UDW */
805 	    (offset == 0x2114)) { /*second BB header register UDW */
806 		ret = true;
807 	}
808 	return ret;
809 }
810 
811 static inline bool is_force_nonpriv_mmio(unsigned int offset)
812 {
813 	return (offset >= 0x24d0 && offset < 0x2500);
814 }
815 
816 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
817 		unsigned int offset, unsigned int index, char *cmd)
818 {
819 	struct intel_gvt *gvt = s->vgpu->gvt;
820 	unsigned int data;
821 	u32 ring_base;
822 	u32 nopid;
823 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
824 
825 	if (!strcmp(cmd, "lri"))
826 		data = cmd_val(s, index + 1);
827 	else {
828 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
829 			offset, cmd);
830 		return -EINVAL;
831 	}
832 
833 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
834 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
835 
836 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
837 			data != nopid) {
838 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
839 			offset, data);
840 		patch_value(s, cmd_ptr(s, index), nopid);
841 		return 0;
842 	}
843 	return 0;
844 }
845 
846 static inline bool is_mocs_mmio(unsigned int offset)
847 {
848 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
849 		((offset >= 0xb020) && (offset <= 0xb0a0));
850 }
851 
852 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
853 				unsigned int offset, unsigned int index)
854 {
855 	if (!is_mocs_mmio(offset))
856 		return -EINVAL;
857 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
858 	return 0;
859 }
860 
861 static int cmd_reg_handler(struct parser_exec_state *s,
862 	unsigned int offset, unsigned int index, char *cmd)
863 {
864 	struct intel_vgpu *vgpu = s->vgpu;
865 	struct intel_gvt *gvt = vgpu->gvt;
866 	u32 ctx_sr_ctl;
867 
868 	if (offset + 4 > gvt->device_info.mmio_size) {
869 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
870 				cmd, offset);
871 		return -EFAULT;
872 	}
873 
874 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
875 		gvt_vgpu_err("%s access to non-render register (%x)\n",
876 				cmd, offset);
877 		return -EBADRQC;
878 	}
879 
880 	if (is_shadowed_mmio(offset)) {
881 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
882 		return 0;
883 	}
884 
885 	if (is_mocs_mmio(offset) &&
886 	    mocs_cmd_reg_handler(s, offset, index))
887 		return -EINVAL;
888 
889 	if (is_force_nonpriv_mmio(offset) &&
890 		force_nonpriv_reg_handler(s, offset, index, cmd))
891 		return -EPERM;
892 
893 	if (offset == i915_mmio_reg_offset(DERRMR) ||
894 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
895 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
896 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
897 	}
898 
899 	/* TODO
900 	 * Right now only scan LRI command on KBL and in inhibit context.
901 	 * It's good enough to support initializing mmio by lri command in
902 	 * vgpu inhibit context on KBL.
903 	 */
904 	if (IS_KABYLAKE(s->vgpu->gvt->dev_priv) &&
905 			intel_gvt_mmio_is_in_ctx(gvt, offset) &&
906 			!strncmp(cmd, "lri", 3)) {
907 		intel_gvt_hypervisor_read_gpa(s->vgpu,
908 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
909 		/* check inhibit context */
910 		if (ctx_sr_ctl & 1) {
911 			u32 data = cmd_val(s, index + 1);
912 
913 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
914 				intel_vgpu_mask_mmio_write(vgpu,
915 							offset, &data, 4);
916 			else
917 				vgpu_vreg(vgpu, offset) = data;
918 		}
919 	}
920 
921 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
922 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
923 	return 0;
924 }
925 
926 #define cmd_reg(s, i) \
927 	(cmd_val(s, i) & GENMASK(22, 2))
928 
929 #define cmd_reg_inhibit(s, i) \
930 	(cmd_val(s, i) & GENMASK(22, 18))
931 
932 #define cmd_gma(s, i) \
933 	(cmd_val(s, i) & GENMASK(31, 2))
934 
935 #define cmd_gma_hi(s, i) \
936 	(cmd_val(s, i) & GENMASK(15, 0))
937 
938 static int cmd_handler_lri(struct parser_exec_state *s)
939 {
940 	int i, ret = 0;
941 	int cmd_len = cmd_length(s);
942 	struct intel_gvt *gvt = s->vgpu->gvt;
943 
944 	for (i = 1; i < cmd_len; i += 2) {
945 		if (IS_BROADWELL(gvt->dev_priv) &&
946 				(s->ring_id != RCS)) {
947 			if (s->ring_id == BCS &&
948 					cmd_reg(s, i) ==
949 					i915_mmio_reg_offset(DERRMR))
950 				ret |= 0;
951 			else
952 				ret |= (cmd_reg_inhibit(s, i)) ?
953 					-EBADRQC : 0;
954 		}
955 		if (ret)
956 			break;
957 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
958 		if (ret)
959 			break;
960 	}
961 	return ret;
962 }
963 
964 static int cmd_handler_lrr(struct parser_exec_state *s)
965 {
966 	int i, ret = 0;
967 	int cmd_len = cmd_length(s);
968 
969 	for (i = 1; i < cmd_len; i += 2) {
970 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
971 			ret |= ((cmd_reg_inhibit(s, i) ||
972 					(cmd_reg_inhibit(s, i + 1)))) ?
973 				-EBADRQC : 0;
974 		if (ret)
975 			break;
976 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
977 		if (ret)
978 			break;
979 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
980 		if (ret)
981 			break;
982 	}
983 	return ret;
984 }
985 
986 static inline int cmd_address_audit(struct parser_exec_state *s,
987 		unsigned long guest_gma, int op_size, bool index_mode);
988 
989 static int cmd_handler_lrm(struct parser_exec_state *s)
990 {
991 	struct intel_gvt *gvt = s->vgpu->gvt;
992 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
993 	unsigned long gma;
994 	int i, ret = 0;
995 	int cmd_len = cmd_length(s);
996 
997 	for (i = 1; i < cmd_len;) {
998 		if (IS_BROADWELL(gvt->dev_priv))
999 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1000 		if (ret)
1001 			break;
1002 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1003 		if (ret)
1004 			break;
1005 		if (cmd_val(s, 0) & (1 << 22)) {
1006 			gma = cmd_gma(s, i + 1);
1007 			if (gmadr_bytes == 8)
1008 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1009 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1010 			if (ret)
1011 				break;
1012 		}
1013 		i += gmadr_dw_number(s) + 1;
1014 	}
1015 	return ret;
1016 }
1017 
1018 static int cmd_handler_srm(struct parser_exec_state *s)
1019 {
1020 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1021 	unsigned long gma;
1022 	int i, ret = 0;
1023 	int cmd_len = cmd_length(s);
1024 
1025 	for (i = 1; i < cmd_len;) {
1026 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1027 		if (ret)
1028 			break;
1029 		if (cmd_val(s, 0) & (1 << 22)) {
1030 			gma = cmd_gma(s, i + 1);
1031 			if (gmadr_bytes == 8)
1032 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1033 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1034 			if (ret)
1035 				break;
1036 		}
1037 		i += gmadr_dw_number(s) + 1;
1038 	}
1039 	return ret;
1040 }
1041 
1042 struct cmd_interrupt_event {
1043 	int pipe_control_notify;
1044 	int mi_flush_dw;
1045 	int mi_user_interrupt;
1046 };
1047 
1048 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1049 	[RCS] = {
1050 		.pipe_control_notify = RCS_PIPE_CONTROL,
1051 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1052 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1053 	},
1054 	[BCS] = {
1055 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1056 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1057 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1058 	},
1059 	[VCS] = {
1060 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1061 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1062 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1063 	},
1064 	[VCS2] = {
1065 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1066 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1067 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1068 	},
1069 	[VECS] = {
1070 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1071 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1072 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1073 	},
1074 };
1075 
1076 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1077 {
1078 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1079 	unsigned long gma;
1080 	bool index_mode = false;
1081 	unsigned int post_sync;
1082 	int ret = 0;
1083 
1084 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1085 
1086 	/* LRI post sync */
1087 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1088 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1089 	/* post sync */
1090 	else if (post_sync) {
1091 		if (post_sync == 2)
1092 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1093 		else if (post_sync == 3)
1094 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1095 		else if (post_sync == 1) {
1096 			/* check ggtt*/
1097 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1098 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1099 				if (gmadr_bytes == 8)
1100 					gma |= (cmd_gma_hi(s, 3)) << 32;
1101 				/* Store Data Index */
1102 				if (cmd_val(s, 1) & (1 << 21))
1103 					index_mode = true;
1104 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1105 						index_mode);
1106 			}
1107 		}
1108 	}
1109 
1110 	if (ret)
1111 		return ret;
1112 
1113 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1114 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1115 				s->workload->pending_events);
1116 	return 0;
1117 }
1118 
1119 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1120 {
1121 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1122 			s->workload->pending_events);
1123 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1124 	return 0;
1125 }
1126 
1127 static int cmd_advance_default(struct parser_exec_state *s)
1128 {
1129 	return ip_gma_advance(s, cmd_length(s));
1130 }
1131 
1132 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1133 {
1134 	int ret;
1135 
1136 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1137 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1138 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1139 		s->buf_addr_type = s->saved_buf_addr_type;
1140 	} else {
1141 		s->buf_type = RING_BUFFER_INSTRUCTION;
1142 		s->buf_addr_type = GTT_BUFFER;
1143 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1144 			s->ret_ip_gma_ring -= s->ring_size;
1145 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1146 	}
1147 	return ret;
1148 }
1149 
1150 struct mi_display_flip_command_info {
1151 	int pipe;
1152 	int plane;
1153 	int event;
1154 	i915_reg_t stride_reg;
1155 	i915_reg_t ctrl_reg;
1156 	i915_reg_t surf_reg;
1157 	u64 stride_val;
1158 	u64 tile_val;
1159 	u64 surf_val;
1160 	bool async_flip;
1161 };
1162 
1163 struct plane_code_mapping {
1164 	int pipe;
1165 	int plane;
1166 	int event;
1167 };
1168 
1169 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1170 		struct mi_display_flip_command_info *info)
1171 {
1172 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1173 	struct plane_code_mapping gen8_plane_code[] = {
1174 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1175 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1176 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1177 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1178 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1179 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1180 	};
1181 	u32 dword0, dword1, dword2;
1182 	u32 v;
1183 
1184 	dword0 = cmd_val(s, 0);
1185 	dword1 = cmd_val(s, 1);
1186 	dword2 = cmd_val(s, 2);
1187 
1188 	v = (dword0 & GENMASK(21, 19)) >> 19;
1189 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1190 		return -EBADRQC;
1191 
1192 	info->pipe = gen8_plane_code[v].pipe;
1193 	info->plane = gen8_plane_code[v].plane;
1194 	info->event = gen8_plane_code[v].event;
1195 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1196 	info->tile_val = (dword1 & 0x1);
1197 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1198 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1199 
1200 	if (info->plane == PLANE_A) {
1201 		info->ctrl_reg = DSPCNTR(info->pipe);
1202 		info->stride_reg = DSPSTRIDE(info->pipe);
1203 		info->surf_reg = DSPSURF(info->pipe);
1204 	} else if (info->plane == PLANE_B) {
1205 		info->ctrl_reg = SPRCTL(info->pipe);
1206 		info->stride_reg = SPRSTRIDE(info->pipe);
1207 		info->surf_reg = SPRSURF(info->pipe);
1208 	} else {
1209 		WARN_ON(1);
1210 		return -EBADRQC;
1211 	}
1212 	return 0;
1213 }
1214 
1215 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1216 		struct mi_display_flip_command_info *info)
1217 {
1218 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1219 	struct intel_vgpu *vgpu = s->vgpu;
1220 	u32 dword0 = cmd_val(s, 0);
1221 	u32 dword1 = cmd_val(s, 1);
1222 	u32 dword2 = cmd_val(s, 2);
1223 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1224 
1225 	info->plane = PRIMARY_PLANE;
1226 
1227 	switch (plane) {
1228 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1229 		info->pipe = PIPE_A;
1230 		info->event = PRIMARY_A_FLIP_DONE;
1231 		break;
1232 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1233 		info->pipe = PIPE_B;
1234 		info->event = PRIMARY_B_FLIP_DONE;
1235 		break;
1236 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1237 		info->pipe = PIPE_C;
1238 		info->event = PRIMARY_C_FLIP_DONE;
1239 		break;
1240 
1241 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1242 		info->pipe = PIPE_A;
1243 		info->event = SPRITE_A_FLIP_DONE;
1244 		info->plane = SPRITE_PLANE;
1245 		break;
1246 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1247 		info->pipe = PIPE_B;
1248 		info->event = SPRITE_B_FLIP_DONE;
1249 		info->plane = SPRITE_PLANE;
1250 		break;
1251 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1252 		info->pipe = PIPE_C;
1253 		info->event = SPRITE_C_FLIP_DONE;
1254 		info->plane = SPRITE_PLANE;
1255 		break;
1256 
1257 	default:
1258 		gvt_vgpu_err("unknown plane code %d\n", plane);
1259 		return -EBADRQC;
1260 	}
1261 
1262 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1263 	info->tile_val = (dword1 & GENMASK(2, 0));
1264 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1265 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1266 
1267 	info->ctrl_reg = DSPCNTR(info->pipe);
1268 	info->stride_reg = DSPSTRIDE(info->pipe);
1269 	info->surf_reg = DSPSURF(info->pipe);
1270 
1271 	return 0;
1272 }
1273 
1274 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1275 		struct mi_display_flip_command_info *info)
1276 {
1277 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1278 	u32 stride, tile;
1279 
1280 	if (!info->async_flip)
1281 		return 0;
1282 
1283 	if (IS_SKYLAKE(dev_priv)
1284 		|| IS_KABYLAKE(dev_priv)
1285 		|| IS_BROXTON(dev_priv)) {
1286 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1287 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1288 				GENMASK(12, 10)) >> 10;
1289 	} else {
1290 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1291 				GENMASK(15, 6)) >> 6;
1292 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1293 	}
1294 
1295 	if (stride != info->stride_val)
1296 		gvt_dbg_cmd("cannot change stride during async flip\n");
1297 
1298 	if (tile != info->tile_val)
1299 		gvt_dbg_cmd("cannot change tile during async flip\n");
1300 
1301 	return 0;
1302 }
1303 
1304 static int gen8_update_plane_mmio_from_mi_display_flip(
1305 		struct parser_exec_state *s,
1306 		struct mi_display_flip_command_info *info)
1307 {
1308 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1309 	struct intel_vgpu *vgpu = s->vgpu;
1310 
1311 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1312 		      info->surf_val << 12);
1313 	if (IS_SKYLAKE(dev_priv)
1314 		|| IS_KABYLAKE(dev_priv)
1315 		|| IS_BROXTON(dev_priv)) {
1316 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1317 			      info->stride_val);
1318 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1319 			      info->tile_val << 10);
1320 	} else {
1321 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1322 			      info->stride_val << 6);
1323 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1324 			      info->tile_val << 10);
1325 	}
1326 
1327 	vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1328 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1329 	return 0;
1330 }
1331 
1332 static int decode_mi_display_flip(struct parser_exec_state *s,
1333 		struct mi_display_flip_command_info *info)
1334 {
1335 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1336 
1337 	if (IS_BROADWELL(dev_priv))
1338 		return gen8_decode_mi_display_flip(s, info);
1339 	if (IS_SKYLAKE(dev_priv)
1340 		|| IS_KABYLAKE(dev_priv)
1341 		|| IS_BROXTON(dev_priv))
1342 		return skl_decode_mi_display_flip(s, info);
1343 
1344 	return -ENODEV;
1345 }
1346 
1347 static int check_mi_display_flip(struct parser_exec_state *s,
1348 		struct mi_display_flip_command_info *info)
1349 {
1350 	return gen8_check_mi_display_flip(s, info);
1351 }
1352 
1353 static int update_plane_mmio_from_mi_display_flip(
1354 		struct parser_exec_state *s,
1355 		struct mi_display_flip_command_info *info)
1356 {
1357 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1358 }
1359 
1360 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1361 {
1362 	struct mi_display_flip_command_info info;
1363 	struct intel_vgpu *vgpu = s->vgpu;
1364 	int ret;
1365 	int i;
1366 	int len = cmd_length(s);
1367 
1368 	ret = decode_mi_display_flip(s, &info);
1369 	if (ret) {
1370 		gvt_vgpu_err("fail to decode MI display flip command\n");
1371 		return ret;
1372 	}
1373 
1374 	ret = check_mi_display_flip(s, &info);
1375 	if (ret) {
1376 		gvt_vgpu_err("invalid MI display flip command\n");
1377 		return ret;
1378 	}
1379 
1380 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1381 	if (ret) {
1382 		gvt_vgpu_err("fail to update plane mmio\n");
1383 		return ret;
1384 	}
1385 
1386 	for (i = 0; i < len; i++)
1387 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1388 	return 0;
1389 }
1390 
1391 static bool is_wait_for_flip_pending(u32 cmd)
1392 {
1393 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1394 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1395 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1396 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1397 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1398 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1399 }
1400 
1401 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1402 {
1403 	u32 cmd = cmd_val(s, 0);
1404 
1405 	if (!is_wait_for_flip_pending(cmd))
1406 		return 0;
1407 
1408 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1409 	return 0;
1410 }
1411 
1412 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1413 {
1414 	unsigned long addr;
1415 	unsigned long gma_high, gma_low;
1416 	struct intel_vgpu *vgpu = s->vgpu;
1417 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1418 
1419 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1420 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1421 		return INTEL_GVT_INVALID_ADDR;
1422 	}
1423 
1424 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1425 	if (gmadr_bytes == 4) {
1426 		addr = gma_low;
1427 	} else {
1428 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1429 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1430 	}
1431 	return addr;
1432 }
1433 
1434 static inline int cmd_address_audit(struct parser_exec_state *s,
1435 		unsigned long guest_gma, int op_size, bool index_mode)
1436 {
1437 	struct intel_vgpu *vgpu = s->vgpu;
1438 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1439 	int i;
1440 	int ret;
1441 
1442 	if (op_size > max_surface_size) {
1443 		gvt_vgpu_err("command address audit fail name %s\n",
1444 			s->info->name);
1445 		return -EFAULT;
1446 	}
1447 
1448 	if (index_mode)	{
1449 		if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
1450 			ret = -EFAULT;
1451 			goto err;
1452 		}
1453 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1454 		ret = -EFAULT;
1455 		goto err;
1456 	}
1457 
1458 	return 0;
1459 
1460 err:
1461 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1462 			s->info->name, guest_gma, op_size);
1463 
1464 	pr_err("cmd dump: ");
1465 	for (i = 0; i < cmd_length(s); i++) {
1466 		if (!(i % 4))
1467 			pr_err("\n%08x ", cmd_val(s, i));
1468 		else
1469 			pr_err("%08x ", cmd_val(s, i));
1470 	}
1471 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1472 			vgpu->id,
1473 			vgpu_aperture_gmadr_base(vgpu),
1474 			vgpu_aperture_gmadr_end(vgpu),
1475 			vgpu_hidden_gmadr_base(vgpu),
1476 			vgpu_hidden_gmadr_end(vgpu));
1477 	return ret;
1478 }
1479 
1480 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1481 {
1482 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1483 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1484 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1485 	unsigned long gma, gma_low, gma_high;
1486 	int ret = 0;
1487 
1488 	/* check ppggt */
1489 	if (!(cmd_val(s, 0) & (1 << 22)))
1490 		return 0;
1491 
1492 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1493 
1494 	if (gmadr_bytes == 8) {
1495 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1496 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1497 		gma = (gma_high << 32) | gma_low;
1498 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1499 	}
1500 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1501 	return ret;
1502 }
1503 
1504 static inline int unexpected_cmd(struct parser_exec_state *s)
1505 {
1506 	struct intel_vgpu *vgpu = s->vgpu;
1507 
1508 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1509 
1510 	return -EBADRQC;
1511 }
1512 
1513 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1514 {
1515 	return unexpected_cmd(s);
1516 }
1517 
1518 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1519 {
1520 	return unexpected_cmd(s);
1521 }
1522 
1523 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1524 {
1525 	return unexpected_cmd(s);
1526 }
1527 
1528 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1529 {
1530 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1531 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1532 			sizeof(u32);
1533 	unsigned long gma, gma_high;
1534 	int ret = 0;
1535 
1536 	if (!(cmd_val(s, 0) & (1 << 22)))
1537 		return ret;
1538 
1539 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1540 	if (gmadr_bytes == 8) {
1541 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1542 		gma = (gma_high << 32) | gma;
1543 	}
1544 	ret = cmd_address_audit(s, gma, op_size, false);
1545 	return ret;
1546 }
1547 
1548 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1549 {
1550 	return unexpected_cmd(s);
1551 }
1552 
1553 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1554 {
1555 	return unexpected_cmd(s);
1556 }
1557 
1558 static int cmd_handler_mi_conditional_batch_buffer_end(
1559 		struct parser_exec_state *s)
1560 {
1561 	return unexpected_cmd(s);
1562 }
1563 
1564 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1565 {
1566 	return unexpected_cmd(s);
1567 }
1568 
1569 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1570 {
1571 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1572 	unsigned long gma;
1573 	bool index_mode = false;
1574 	int ret = 0;
1575 
1576 	/* Check post-sync and ppgtt bit */
1577 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1578 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1579 		if (gmadr_bytes == 8)
1580 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1581 		/* Store Data Index */
1582 		if (cmd_val(s, 0) & (1 << 21))
1583 			index_mode = true;
1584 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1585 	}
1586 	/* Check notify bit */
1587 	if ((cmd_val(s, 0) & (1 << 8)))
1588 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1589 				s->workload->pending_events);
1590 	return ret;
1591 }
1592 
1593 static void addr_type_update_snb(struct parser_exec_state *s)
1594 {
1595 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1596 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1597 		s->buf_addr_type = PPGTT_BUFFER;
1598 	}
1599 }
1600 
1601 
1602 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1603 		unsigned long gma, unsigned long end_gma, void *va)
1604 {
1605 	unsigned long copy_len, offset;
1606 	unsigned long len = 0;
1607 	unsigned long gpa;
1608 
1609 	while (gma != end_gma) {
1610 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1611 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1612 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1613 			return -EFAULT;
1614 		}
1615 
1616 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1617 
1618 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1619 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1620 
1621 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1622 
1623 		len += copy_len;
1624 		gma += copy_len;
1625 	}
1626 	return len;
1627 }
1628 
1629 
1630 /*
1631  * Check whether a batch buffer needs to be scanned. Currently
1632  * the only criteria is based on privilege.
1633  */
1634 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1635 {
1636 	/* Decide privilege based on address space */
1637 	if (cmd_val(s, 0) & (1 << 8) &&
1638 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1639 		return 0;
1640 	return 1;
1641 }
1642 
1643 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1644 {
1645 	unsigned long gma = 0;
1646 	struct cmd_info *info;
1647 	uint32_t cmd_len = 0;
1648 	bool bb_end = false;
1649 	struct intel_vgpu *vgpu = s->vgpu;
1650 	u32 cmd;
1651 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1652 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1653 
1654 	*bb_size = 0;
1655 
1656 	/* get the start gm address of the batch buffer */
1657 	gma = get_gma_bb_from_cmd(s, 1);
1658 	if (gma == INTEL_GVT_INVALID_ADDR)
1659 		return -EFAULT;
1660 
1661 	cmd = cmd_val(s, 0);
1662 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1663 	if (info == NULL) {
1664 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1665 				cmd, get_opcode(cmd, s->ring_id),
1666 				(s->buf_addr_type == PPGTT_BUFFER) ?
1667 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1668 		return -EBADRQC;
1669 	}
1670 	do {
1671 		if (copy_gma_to_hva(s->vgpu, mm,
1672 				gma, gma + 4, &cmd) < 0)
1673 			return -EFAULT;
1674 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1675 		if (info == NULL) {
1676 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1677 				cmd, get_opcode(cmd, s->ring_id),
1678 				(s->buf_addr_type == PPGTT_BUFFER) ?
1679 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1680 			return -EBADRQC;
1681 		}
1682 
1683 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1684 			bb_end = true;
1685 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1686 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1687 				/* chained batch buffer */
1688 				bb_end = true;
1689 		}
1690 		cmd_len = get_cmd_length(info, cmd) << 2;
1691 		*bb_size += cmd_len;
1692 		gma += cmd_len;
1693 	} while (!bb_end);
1694 
1695 	return 0;
1696 }
1697 
1698 static int perform_bb_shadow(struct parser_exec_state *s)
1699 {
1700 	struct intel_vgpu *vgpu = s->vgpu;
1701 	struct intel_vgpu_shadow_bb *bb;
1702 	unsigned long gma = 0;
1703 	unsigned long bb_size;
1704 	int ret = 0;
1705 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1706 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1707 	unsigned long gma_start_offset = 0;
1708 
1709 	/* get the start gm address of the batch buffer */
1710 	gma = get_gma_bb_from_cmd(s, 1);
1711 	if (gma == INTEL_GVT_INVALID_ADDR)
1712 		return -EFAULT;
1713 
1714 	ret = find_bb_size(s, &bb_size);
1715 	if (ret)
1716 		return ret;
1717 
1718 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1719 	if (!bb)
1720 		return -ENOMEM;
1721 
1722 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1723 
1724 	/* the gma_start_offset stores the batch buffer's start gma's
1725 	 * offset relative to page boundary. so for non-privileged batch
1726 	 * buffer, the shadowed gem object holds exactly the same page
1727 	 * layout as original gem object. This is for the convience of
1728 	 * replacing the whole non-privilged batch buffer page to this
1729 	 * shadowed one in PPGTT at the same gma address. (this replacing
1730 	 * action is not implemented yet now, but may be necessary in
1731 	 * future).
1732 	 * for prileged batch buffer, we just change start gma address to
1733 	 * that of shadowed page.
1734 	 */
1735 	if (bb->ppgtt)
1736 		gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1737 
1738 	bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1739 			 roundup(bb_size + gma_start_offset, PAGE_SIZE));
1740 	if (IS_ERR(bb->obj)) {
1741 		ret = PTR_ERR(bb->obj);
1742 		goto err_free_bb;
1743 	}
1744 
1745 	ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1746 	if (ret)
1747 		goto err_free_obj;
1748 
1749 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1750 	if (IS_ERR(bb->va)) {
1751 		ret = PTR_ERR(bb->va);
1752 		goto err_finish_shmem_access;
1753 	}
1754 
1755 	if (bb->clflush & CLFLUSH_BEFORE) {
1756 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1757 		bb->clflush &= ~CLFLUSH_BEFORE;
1758 	}
1759 
1760 	ret = copy_gma_to_hva(s->vgpu, mm,
1761 			      gma, gma + bb_size,
1762 			      bb->va + gma_start_offset);
1763 	if (ret < 0) {
1764 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1765 		ret = -EFAULT;
1766 		goto err_unmap;
1767 	}
1768 
1769 	INIT_LIST_HEAD(&bb->list);
1770 	list_add(&bb->list, &s->workload->shadow_bb);
1771 
1772 	bb->accessing = true;
1773 	bb->bb_start_cmd_va = s->ip_va;
1774 
1775 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1776 		bb->bb_offset = s->ip_va - s->rb_va;
1777 	else
1778 		bb->bb_offset = 0;
1779 
1780 	/*
1781 	 * ip_va saves the virtual address of the shadow batch buffer, while
1782 	 * ip_gma saves the graphics address of the original batch buffer.
1783 	 * As the shadow batch buffer is just a copy from the originial one,
1784 	 * it should be right to use shadow batch buffer'va and original batch
1785 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1786 	 * buffer here (too early).
1787 	 */
1788 	s->ip_va = bb->va + gma_start_offset;
1789 	s->ip_gma = gma;
1790 	return 0;
1791 err_unmap:
1792 	i915_gem_object_unpin_map(bb->obj);
1793 err_finish_shmem_access:
1794 	i915_gem_obj_finish_shmem_access(bb->obj);
1795 err_free_obj:
1796 	i915_gem_object_put(bb->obj);
1797 err_free_bb:
1798 	kfree(bb);
1799 	return ret;
1800 }
1801 
1802 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1803 {
1804 	bool second_level;
1805 	int ret = 0;
1806 	struct intel_vgpu *vgpu = s->vgpu;
1807 
1808 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1809 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1810 		return -EFAULT;
1811 	}
1812 
1813 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1814 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1815 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1816 		return -EFAULT;
1817 	}
1818 
1819 	s->saved_buf_addr_type = s->buf_addr_type;
1820 	addr_type_update_snb(s);
1821 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1822 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1823 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1824 	} else if (second_level) {
1825 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1826 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1827 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1828 	}
1829 
1830 	if (batch_buffer_needs_scan(s)) {
1831 		ret = perform_bb_shadow(s);
1832 		if (ret < 0)
1833 			gvt_vgpu_err("invalid shadow batch buffer\n");
1834 	} else {
1835 		/* emulate a batch buffer end to do return right */
1836 		ret = cmd_handler_mi_batch_buffer_end(s);
1837 		if (ret < 0)
1838 			return ret;
1839 	}
1840 	return ret;
1841 }
1842 
1843 static int mi_noop_index;
1844 
1845 static struct cmd_info cmd_info[] = {
1846 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1847 
1848 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1849 		0, 1, NULL},
1850 
1851 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1852 		0, 1, cmd_handler_mi_user_interrupt},
1853 
1854 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1855 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1856 
1857 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1858 
1859 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1860 		NULL},
1861 
1862 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1863 		NULL},
1864 
1865 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1866 		NULL},
1867 
1868 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1869 		NULL},
1870 
1871 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1872 		D_ALL, 0, 1, NULL},
1873 
1874 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1875 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1876 		cmd_handler_mi_batch_buffer_end},
1877 
1878 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1879 		0, 1, NULL},
1880 
1881 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1882 		NULL},
1883 
1884 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1885 		D_ALL, 0, 1, NULL},
1886 
1887 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1888 		NULL},
1889 
1890 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1891 		NULL},
1892 
1893 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1894 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1895 
1896 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1897 		0, 8, NULL},
1898 
1899 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1900 
1901 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1902 
1903 	{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1904 		D_BDW_PLUS, 0, 8, NULL},
1905 
1906 	{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1907 		ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1908 
1909 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1910 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1911 
1912 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1913 		0, 8, cmd_handler_mi_store_data_index},
1914 
1915 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1916 		D_ALL, 0, 8, cmd_handler_lri},
1917 
1918 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1919 		cmd_handler_mi_update_gtt},
1920 
1921 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1922 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1923 
1924 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1925 		cmd_handler_mi_flush_dw},
1926 
1927 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1928 		10, cmd_handler_mi_clflush},
1929 
1930 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1931 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1932 
1933 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1934 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1935 
1936 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1937 		D_ALL, 0, 8, cmd_handler_lrr},
1938 
1939 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1940 		D_ALL, 0, 8, NULL},
1941 
1942 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1943 		ADDR_FIX_1(2), 8, NULL},
1944 
1945 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1946 		ADDR_FIX_1(2), 8, NULL},
1947 
1948 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1949 		8, cmd_handler_mi_op_2e},
1950 
1951 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1952 		8, cmd_handler_mi_op_2f},
1953 
1954 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1955 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1956 		cmd_handler_mi_batch_buffer_start},
1957 
1958 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1959 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1960 		cmd_handler_mi_conditional_batch_buffer_end},
1961 
1962 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1963 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1964 
1965 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1966 		ADDR_FIX_2(4, 7), 8, NULL},
1967 
1968 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1969 		0, 8, NULL},
1970 
1971 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1972 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1973 
1974 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1975 
1976 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1977 		0, 8, NULL},
1978 
1979 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1980 		ADDR_FIX_1(3), 8, NULL},
1981 
1982 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1983 		D_ALL, 0, 8, NULL},
1984 
1985 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1986 		ADDR_FIX_1(4), 8, NULL},
1987 
1988 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1989 		ADDR_FIX_2(4, 5), 8, NULL},
1990 
1991 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1992 		ADDR_FIX_1(4), 8, NULL},
1993 
1994 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1995 		ADDR_FIX_2(4, 7), 8, NULL},
1996 
1997 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1998 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1999 
2000 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2001 
2002 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2003 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2004 
2005 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2006 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2007 
2008 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2009 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2010 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2011 
2012 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2013 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2014 
2015 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2016 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2017 
2018 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2019 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2020 
2021 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2022 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2023 
2024 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2025 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2026 
2027 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2028 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2029 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2030 
2031 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2032 		ADDR_FIX_2(4, 5), 8, NULL},
2033 
2034 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2035 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2036 
2037 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2038 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2039 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2040 
2041 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2042 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2043 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2044 
2045 	{"3DSTATE_BLEND_STATE_POINTERS",
2046 		OP_3DSTATE_BLEND_STATE_POINTERS,
2047 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2048 
2049 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2050 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2051 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2052 
2053 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2054 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2055 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2056 
2057 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2058 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2059 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2060 
2061 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2062 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2063 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2064 
2065 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2066 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2067 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2068 
2069 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2070 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2071 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2072 
2073 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2074 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2075 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2076 
2077 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2078 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2079 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2080 
2081 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2082 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2083 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2084 
2085 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2086 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2087 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2088 
2089 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2090 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2091 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2092 
2093 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2094 		0, 8, NULL},
2095 
2096 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2097 		0, 8, NULL},
2098 
2099 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2100 		0, 8, NULL},
2101 
2102 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2103 		0, 8, NULL},
2104 
2105 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2106 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2107 
2108 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2109 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2110 
2111 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2112 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2113 
2114 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2115 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2116 
2117 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2118 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2119 
2120 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2121 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2122 
2123 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2124 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2125 
2126 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2127 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2128 
2129 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2130 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2131 
2132 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2133 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2134 
2135 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2136 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2137 
2138 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2139 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2140 
2141 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2142 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2143 
2144 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2145 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2146 
2147 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2148 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2149 
2150 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2151 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2152 
2153 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2154 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2155 
2156 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2157 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2158 
2159 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2160 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2161 
2162 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2163 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2164 
2165 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2166 		D_BDW_PLUS, 0, 8, NULL},
2167 
2168 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2169 		NULL},
2170 
2171 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2172 		D_BDW_PLUS, 0, 8, NULL},
2173 
2174 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2175 		D_BDW_PLUS, 0, 8, NULL},
2176 
2177 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2178 		8, NULL},
2179 
2180 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2181 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2182 
2183 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2184 		8, NULL},
2185 
2186 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2187 		NULL},
2188 
2189 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2190 		NULL},
2191 
2192 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2193 		NULL},
2194 
2195 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2196 		D_BDW_PLUS, 0, 8, NULL},
2197 
2198 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2199 		R_RCS, D_ALL, 0, 8, NULL},
2200 
2201 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2202 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2203 
2204 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2205 		R_RCS, D_ALL, 0, 1, NULL},
2206 
2207 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2208 
2209 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2210 		R_RCS, D_ALL, 0, 8, NULL},
2211 
2212 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2213 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2214 
2215 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2216 
2217 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2218 
2219 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2220 
2221 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2222 		D_BDW_PLUS, 0, 8, NULL},
2223 
2224 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2225 		D_BDW_PLUS, 0, 8, NULL},
2226 
2227 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2228 		D_ALL, 0, 8, NULL},
2229 
2230 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2231 		D_BDW_PLUS, 0, 8, NULL},
2232 
2233 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2234 		D_BDW_PLUS, 0, 8, NULL},
2235 
2236 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237 
2238 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2239 
2240 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 
2242 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2243 		D_ALL, 0, 8, NULL},
2244 
2245 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246 
2247 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248 
2249 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2250 		R_RCS, D_ALL, 0, 8, NULL},
2251 
2252 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2253 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254 
2255 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2256 		0, 8, NULL},
2257 
2258 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2259 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2260 
2261 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2262 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263 
2264 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2265 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266 
2267 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2268 		D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2271 		D_ALL, 0, 8, NULL},
2272 
2273 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2274 		D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2277 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278 
2279 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2280 		D_BDW_PLUS, 0, 8, NULL},
2281 
2282 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2283 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2284 
2285 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2286 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2287 
2288 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2289 		R_RCS, D_ALL, 0, 8, NULL},
2290 
2291 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2292 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2293 
2294 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2295 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2296 
2297 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2298 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2299 
2300 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2301 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2302 
2303 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2304 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305 
2306 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2307 		R_RCS, D_ALL, 0, 8, NULL},
2308 
2309 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2310 		D_ALL, 0, 9, NULL},
2311 
2312 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2313 		ADDR_FIX_2(2, 4), 8, NULL},
2314 
2315 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2316 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2317 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2318 
2319 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2320 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2321 
2322 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2323 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2324 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2325 
2326 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2327 		D_BDW_PLUS, 0, 8, NULL},
2328 
2329 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2330 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2331 
2332 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333 
2334 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2335 		1, NULL},
2336 
2337 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2338 		ADDR_FIX_1(1), 8, NULL},
2339 
2340 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341 
2342 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2343 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2344 
2345 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2346 		ADDR_FIX_1(1), 8, NULL},
2347 
2348 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2349 
2350 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2351 
2352 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2353 		0, 8, NULL},
2354 
2355 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2356 		D_SKL_PLUS, 0, 8, NULL},
2357 
2358 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2359 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2360 
2361 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2362 		0, 16, NULL},
2363 
2364 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2365 		0, 16, NULL},
2366 
2367 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2368 		0, 16, NULL},
2369 
2370 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2371 
2372 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2373 		0, 16, NULL},
2374 
2375 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2376 		0, 16, NULL},
2377 
2378 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2379 		0, 16, NULL},
2380 
2381 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2382 		0, 8, NULL},
2383 
2384 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2385 		NULL},
2386 
2387 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2388 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2389 
2390 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2391 		R_VCS, D_ALL, 0, 12, NULL},
2392 
2393 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2394 		R_VCS, D_ALL, 0, 12, NULL},
2395 
2396 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2397 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2398 
2399 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2400 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2401 
2402 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2403 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2404 
2405 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2406 
2407 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2408 		R_VCS, D_ALL, 0, 12, NULL},
2409 
2410 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2411 		R_VCS, D_ALL, 0, 12, NULL},
2412 
2413 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2414 		R_VCS, D_ALL, 0, 12, NULL},
2415 
2416 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2417 		R_VCS, D_ALL, 0, 12, NULL},
2418 
2419 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2420 		R_VCS, D_ALL, 0, 12, NULL},
2421 
2422 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2423 		R_VCS, D_ALL, 0, 12, NULL},
2424 
2425 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2426 		R_VCS, D_ALL, 0, 6, NULL},
2427 
2428 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2429 		R_VCS, D_ALL, 0, 12, NULL},
2430 
2431 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2432 		R_VCS, D_ALL, 0, 12, NULL},
2433 
2434 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2435 		R_VCS, D_ALL, 0, 12, NULL},
2436 
2437 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2438 		R_VCS, D_ALL, 0, 12, NULL},
2439 
2440 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2441 		R_VCS, D_ALL, 0, 12, NULL},
2442 
2443 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2444 		R_VCS, D_ALL, 0, 12, NULL},
2445 
2446 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2447 		R_VCS, D_ALL, 0, 12, NULL},
2448 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2449 		R_VCS, D_ALL, 0, 12, NULL},
2450 
2451 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2452 		R_VCS, D_ALL, 0, 12, NULL},
2453 
2454 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2455 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2456 
2457 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2458 		R_VCS, D_ALL, 0, 12, NULL},
2459 
2460 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2461 		R_VCS, D_ALL, 0, 12, NULL},
2462 
2463 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2464 		R_VCS, D_ALL, 0, 12, NULL},
2465 
2466 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2467 		R_VCS, D_ALL, 0, 12, NULL},
2468 
2469 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2470 		R_VCS, D_ALL, 0, 12, NULL},
2471 
2472 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2473 		R_VCS, D_ALL, 0, 12, NULL},
2474 
2475 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2476 		R_VCS, D_ALL, 0, 12, NULL},
2477 
2478 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2479 		R_VCS, D_ALL, 0, 12, NULL},
2480 
2481 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2482 		R_VCS, D_ALL, 0, 12, NULL},
2483 
2484 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2485 		R_VCS, D_ALL, 0, 12, NULL},
2486 
2487 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2488 		R_VCS, D_ALL, 0, 12, NULL},
2489 
2490 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2491 		0, 16, NULL},
2492 
2493 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2494 
2495 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2496 
2497 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2498 		R_VCS, D_ALL, 0, 12, NULL},
2499 
2500 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2501 		R_VCS, D_ALL, 0, 12, NULL},
2502 
2503 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2504 		R_VCS, D_ALL, 0, 12, NULL},
2505 
2506 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2507 
2508 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2509 		0, 12, NULL},
2510 
2511 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2512 		0, 20, NULL},
2513 };
2514 
2515 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2516 {
2517 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2518 }
2519 
2520 /* call the cmd handler, and advance ip */
2521 static int cmd_parser_exec(struct parser_exec_state *s)
2522 {
2523 	struct intel_vgpu *vgpu = s->vgpu;
2524 	struct cmd_info *info;
2525 	u32 cmd;
2526 	int ret = 0;
2527 
2528 	cmd = cmd_val(s, 0);
2529 
2530 	/* fastpath for MI_NOOP */
2531 	if (cmd == MI_NOOP)
2532 		info = &cmd_info[mi_noop_index];
2533 	else
2534 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2535 
2536 	if (info == NULL) {
2537 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2538 				cmd, get_opcode(cmd, s->ring_id),
2539 				(s->buf_addr_type == PPGTT_BUFFER) ?
2540 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2541 		return -EBADRQC;
2542 	}
2543 
2544 	s->info = info;
2545 
2546 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2547 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2548 			  s->workload, info->name);
2549 
2550 	if (info->handler) {
2551 		ret = info->handler(s);
2552 		if (ret < 0) {
2553 			gvt_vgpu_err("%s handler error\n", info->name);
2554 			return ret;
2555 		}
2556 	}
2557 
2558 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2559 		ret = cmd_advance_default(s);
2560 		if (ret) {
2561 			gvt_vgpu_err("%s IP advance error\n", info->name);
2562 			return ret;
2563 		}
2564 	}
2565 	return 0;
2566 }
2567 
2568 static inline bool gma_out_of_range(unsigned long gma,
2569 		unsigned long gma_head, unsigned int gma_tail)
2570 {
2571 	if (gma_tail >= gma_head)
2572 		return (gma < gma_head) || (gma > gma_tail);
2573 	else
2574 		return (gma > gma_tail) && (gma < gma_head);
2575 }
2576 
2577 /* Keep the consistent return type, e.g EBADRQC for unknown
2578  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2579  * works as the input of VM healthy status.
2580  */
2581 static int command_scan(struct parser_exec_state *s,
2582 		unsigned long rb_head, unsigned long rb_tail,
2583 		unsigned long rb_start, unsigned long rb_len)
2584 {
2585 
2586 	unsigned long gma_head, gma_tail, gma_bottom;
2587 	int ret = 0;
2588 	struct intel_vgpu *vgpu = s->vgpu;
2589 
2590 	gma_head = rb_start + rb_head;
2591 	gma_tail = rb_start + rb_tail;
2592 	gma_bottom = rb_start +  rb_len;
2593 
2594 	while (s->ip_gma != gma_tail) {
2595 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2596 			if (!(s->ip_gma >= rb_start) ||
2597 				!(s->ip_gma < gma_bottom)) {
2598 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2599 					"(base:0x%lx, bottom: 0x%lx)\n",
2600 					s->ip_gma, rb_start,
2601 					gma_bottom);
2602 				parser_exec_state_dump(s);
2603 				return -EFAULT;
2604 			}
2605 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2606 				gvt_vgpu_err("ip_gma %lx out of range."
2607 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2608 					s->ip_gma, rb_start,
2609 					rb_head, rb_tail);
2610 				parser_exec_state_dump(s);
2611 				break;
2612 			}
2613 		}
2614 		ret = cmd_parser_exec(s);
2615 		if (ret) {
2616 			gvt_vgpu_err("cmd parser error\n");
2617 			parser_exec_state_dump(s);
2618 			break;
2619 		}
2620 	}
2621 
2622 	return ret;
2623 }
2624 
2625 static int scan_workload(struct intel_vgpu_workload *workload)
2626 {
2627 	unsigned long gma_head, gma_tail, gma_bottom;
2628 	struct parser_exec_state s;
2629 	int ret = 0;
2630 
2631 	/* ring base is page aligned */
2632 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2633 		return -EINVAL;
2634 
2635 	gma_head = workload->rb_start + workload->rb_head;
2636 	gma_tail = workload->rb_start + workload->rb_tail;
2637 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2638 
2639 	s.buf_type = RING_BUFFER_INSTRUCTION;
2640 	s.buf_addr_type = GTT_BUFFER;
2641 	s.vgpu = workload->vgpu;
2642 	s.ring_id = workload->ring_id;
2643 	s.ring_start = workload->rb_start;
2644 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2645 	s.ring_head = gma_head;
2646 	s.ring_tail = gma_tail;
2647 	s.rb_va = workload->shadow_ring_buffer_va;
2648 	s.workload = workload;
2649 	s.is_ctx_wa = false;
2650 
2651 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2652 		gma_head == gma_tail)
2653 		return 0;
2654 
2655 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2656 		ret = -EINVAL;
2657 		goto out;
2658 	}
2659 
2660 	ret = ip_gma_set(&s, gma_head);
2661 	if (ret)
2662 		goto out;
2663 
2664 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2665 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2666 
2667 out:
2668 	return ret;
2669 }
2670 
2671 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2672 {
2673 
2674 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2675 	struct parser_exec_state s;
2676 	int ret = 0;
2677 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2678 				struct intel_vgpu_workload,
2679 				wa_ctx);
2680 
2681 	/* ring base is page aligned */
2682 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2683 					I915_GTT_PAGE_SIZE)))
2684 		return -EINVAL;
2685 
2686 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2687 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2688 			PAGE_SIZE);
2689 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2690 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2691 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2692 
2693 	s.buf_type = RING_BUFFER_INSTRUCTION;
2694 	s.buf_addr_type = GTT_BUFFER;
2695 	s.vgpu = workload->vgpu;
2696 	s.ring_id = workload->ring_id;
2697 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2698 	s.ring_size = ring_size;
2699 	s.ring_head = gma_head;
2700 	s.ring_tail = gma_tail;
2701 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2702 	s.workload = workload;
2703 	s.is_ctx_wa = true;
2704 
2705 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2706 		ret = -EINVAL;
2707 		goto out;
2708 	}
2709 
2710 	ret = ip_gma_set(&s, gma_head);
2711 	if (ret)
2712 		goto out;
2713 
2714 	ret = command_scan(&s, 0, ring_tail,
2715 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2716 out:
2717 	return ret;
2718 }
2719 
2720 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2721 {
2722 	struct intel_vgpu *vgpu = workload->vgpu;
2723 	struct intel_vgpu_submission *s = &vgpu->submission;
2724 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2725 	void *shadow_ring_buffer_va;
2726 	int ring_id = workload->ring_id;
2727 	int ret;
2728 
2729 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2730 
2731 	/* calculate workload ring buffer size */
2732 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2733 			workload->rb_head) % guest_rb_size;
2734 
2735 	gma_head = workload->rb_start + workload->rb_head;
2736 	gma_tail = workload->rb_start + workload->rb_tail;
2737 	gma_top = workload->rb_start + guest_rb_size;
2738 
2739 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2740 		void *p;
2741 
2742 		/* realloc the new ring buffer if needed */
2743 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2744 				GFP_KERNEL);
2745 		if (!p) {
2746 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2747 			return -ENOMEM;
2748 		}
2749 		s->ring_scan_buffer[ring_id] = p;
2750 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2751 	}
2752 
2753 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2754 
2755 	/* get shadow ring buffer va */
2756 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2757 
2758 	/* head > tail --> copy head <-> top */
2759 	if (gma_head > gma_tail) {
2760 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2761 				      gma_head, gma_top, shadow_ring_buffer_va);
2762 		if (ret < 0) {
2763 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2764 			return ret;
2765 		}
2766 		shadow_ring_buffer_va += ret;
2767 		gma_head = workload->rb_start;
2768 	}
2769 
2770 	/* copy head or start <-> tail */
2771 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2772 				shadow_ring_buffer_va);
2773 	if (ret < 0) {
2774 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2775 		return ret;
2776 	}
2777 	return 0;
2778 }
2779 
2780 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2781 {
2782 	int ret;
2783 	struct intel_vgpu *vgpu = workload->vgpu;
2784 
2785 	ret = shadow_workload_ring_buffer(workload);
2786 	if (ret) {
2787 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2788 		return ret;
2789 	}
2790 
2791 	ret = scan_workload(workload);
2792 	if (ret) {
2793 		gvt_vgpu_err("scan workload error\n");
2794 		return ret;
2795 	}
2796 	return 0;
2797 }
2798 
2799 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2800 {
2801 	int ctx_size = wa_ctx->indirect_ctx.size;
2802 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2803 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2804 					struct intel_vgpu_workload,
2805 					wa_ctx);
2806 	struct intel_vgpu *vgpu = workload->vgpu;
2807 	struct drm_i915_gem_object *obj;
2808 	int ret = 0;
2809 	void *map;
2810 
2811 	obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2812 				     roundup(ctx_size + CACHELINE_BYTES,
2813 					     PAGE_SIZE));
2814 	if (IS_ERR(obj))
2815 		return PTR_ERR(obj);
2816 
2817 	/* get the va of the shadow batch buffer */
2818 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2819 	if (IS_ERR(map)) {
2820 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2821 		ret = PTR_ERR(map);
2822 		goto put_obj;
2823 	}
2824 
2825 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2826 	if (ret) {
2827 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2828 		goto unmap_src;
2829 	}
2830 
2831 	ret = copy_gma_to_hva(workload->vgpu,
2832 				workload->vgpu->gtt.ggtt_mm,
2833 				guest_gma, guest_gma + ctx_size,
2834 				map);
2835 	if (ret < 0) {
2836 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2837 		goto unmap_src;
2838 	}
2839 
2840 	wa_ctx->indirect_ctx.obj = obj;
2841 	wa_ctx->indirect_ctx.shadow_va = map;
2842 	return 0;
2843 
2844 unmap_src:
2845 	i915_gem_object_unpin_map(obj);
2846 put_obj:
2847 	i915_gem_object_put(obj);
2848 	return ret;
2849 }
2850 
2851 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2852 {
2853 	uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2854 	unsigned char *bb_start_sva;
2855 
2856 	if (!wa_ctx->per_ctx.valid)
2857 		return 0;
2858 
2859 	per_ctx_start[0] = 0x18800001;
2860 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2861 
2862 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2863 				wa_ctx->indirect_ctx.size;
2864 
2865 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2866 
2867 	return 0;
2868 }
2869 
2870 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2871 {
2872 	int ret;
2873 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2874 					struct intel_vgpu_workload,
2875 					wa_ctx);
2876 	struct intel_vgpu *vgpu = workload->vgpu;
2877 
2878 	if (wa_ctx->indirect_ctx.size == 0)
2879 		return 0;
2880 
2881 	ret = shadow_indirect_ctx(wa_ctx);
2882 	if (ret) {
2883 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2884 		return ret;
2885 	}
2886 
2887 	combine_wa_ctx(wa_ctx);
2888 
2889 	ret = scan_wa_ctx(wa_ctx);
2890 	if (ret) {
2891 		gvt_vgpu_err("scan wa ctx error\n");
2892 		return ret;
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2899 		unsigned int opcode, unsigned long rings)
2900 {
2901 	struct cmd_info *info = NULL;
2902 	unsigned int ring;
2903 
2904 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2905 		info = find_cmd_entry(gvt, opcode, ring);
2906 		if (info)
2907 			break;
2908 	}
2909 	return info;
2910 }
2911 
2912 static int init_cmd_table(struct intel_gvt *gvt)
2913 {
2914 	int i;
2915 	struct cmd_entry *e;
2916 	struct cmd_info	*info;
2917 	unsigned int gen_type;
2918 
2919 	gen_type = intel_gvt_get_device_type(gvt);
2920 
2921 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2922 		if (!(cmd_info[i].devices & gen_type))
2923 			continue;
2924 
2925 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2926 		if (!e)
2927 			return -ENOMEM;
2928 
2929 		e->info = &cmd_info[i];
2930 		info = find_cmd_entry_any_ring(gvt,
2931 				e->info->opcode, e->info->rings);
2932 		if (info) {
2933 			gvt_err("%s %s duplicated\n", e->info->name,
2934 					info->name);
2935 			kfree(e);
2936 			return -EEXIST;
2937 		}
2938 		if (cmd_info[i].opcode == OP_MI_NOOP)
2939 			mi_noop_index = i;
2940 
2941 		INIT_HLIST_NODE(&e->hlist);
2942 		add_cmd_entry(gvt, e);
2943 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2944 				e->info->name, e->info->opcode, e->info->flag,
2945 				e->info->devices, e->info->rings);
2946 	}
2947 	return 0;
2948 }
2949 
2950 static void clean_cmd_table(struct intel_gvt *gvt)
2951 {
2952 	struct hlist_node *tmp;
2953 	struct cmd_entry *e;
2954 	int i;
2955 
2956 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2957 		kfree(e);
2958 
2959 	hash_init(gvt->cmd_table);
2960 }
2961 
2962 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2963 {
2964 	clean_cmd_table(gvt);
2965 }
2966 
2967 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2968 {
2969 	int ret;
2970 
2971 	ret = init_cmd_table(gvt);
2972 	if (ret) {
2973 		intel_gvt_clean_cmd_parser(gvt);
2974 		return ret;
2975 	}
2976 	return 0;
2977 }
2978