1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 180 181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 247 248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 259 260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 288 289 /* VCCP Command Parser */ 290 291 /* 292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 293 * git://anongit.freedesktop.org/vaapi/intel-driver 294 * src/i965_defines.h 295 * 296 */ 297 298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 299 (3 << 13 | \ 300 (pipeline) << 11 | \ 301 (op) << 8 | \ 302 (sub_opa) << 5 | \ 303 (sub_opb)) 304 305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 316 317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 318 319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 331 332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 337 338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 343 344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 347 348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 351 352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 353 (3 << 13 | \ 354 (pipeline) << 11 | \ 355 (op) << 8 | \ 356 (sub_opa) << 5 | \ 357 (sub_opb)) 358 359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 362 363 struct parser_exec_state; 364 365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 366 367 #define GVT_CMD_HASH_BITS 7 368 369 /* which DWords need address fix */ 370 #define ADDR_FIX_1(x1) (1 << (x1)) 371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 375 376 struct cmd_info { 377 char *name; 378 u32 opcode; 379 380 #define F_LEN_MASK (1U<<0) 381 #define F_LEN_CONST 1U 382 #define F_LEN_VAR 0U 383 384 /* 385 * command has its own ip advance logic 386 * e.g. MI_BATCH_START, MI_BATCH_END 387 */ 388 #define F_IP_ADVANCE_CUSTOM (1<<1) 389 390 #define F_POST_HANDLE (1<<2) 391 u32 flag; 392 393 #define R_RCS (1 << RCS) 394 #define R_VCS1 (1 << VCS) 395 #define R_VCS2 (1 << VCS2) 396 #define R_VCS (R_VCS1 | R_VCS2) 397 #define R_BCS (1 << BCS) 398 #define R_VECS (1 << VECS) 399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 400 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 401 uint16_t rings; 402 403 /* devices that support this cmd: SNB/IVB/HSW/... */ 404 uint16_t devices; 405 406 /* which DWords are address that need fix up. 407 * bit 0 means a 32-bit non address operand in command 408 * bit 1 means address operand, which could be 32-bit 409 * or 64-bit depending on different architectures.( 410 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 411 * No matter the address length, each address only takes 412 * one bit in the bitmap. 413 */ 414 uint16_t addr_bitmap; 415 416 /* flag == F_LEN_CONST : command length 417 * flag == F_LEN_VAR : length bias bits 418 * Note: length is in DWord 419 */ 420 uint8_t len; 421 422 parser_cmd_handler handler; 423 }; 424 425 struct cmd_entry { 426 struct hlist_node hlist; 427 struct cmd_info *info; 428 }; 429 430 enum { 431 RING_BUFFER_INSTRUCTION, 432 BATCH_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_2ND_LEVEL, 434 }; 435 436 enum { 437 GTT_BUFFER, 438 PPGTT_BUFFER 439 }; 440 441 struct parser_exec_state { 442 struct intel_vgpu *vgpu; 443 int ring_id; 444 445 int buf_type; 446 447 /* batch buffer address type */ 448 int buf_addr_type; 449 450 /* graphics memory address of ring buffer start */ 451 unsigned long ring_start; 452 unsigned long ring_size; 453 unsigned long ring_head; 454 unsigned long ring_tail; 455 456 /* instruction graphics memory address */ 457 unsigned long ip_gma; 458 459 /* mapped va of the instr_gma */ 460 void *ip_va; 461 void *rb_va; 462 463 void *ret_bb_va; 464 /* next instruction when return from batch buffer to ring buffer */ 465 unsigned long ret_ip_gma_ring; 466 467 /* next instruction when return from 2nd batch buffer to batch buffer */ 468 unsigned long ret_ip_gma_bb; 469 470 /* batch buffer address type (GTT or PPGTT) 471 * used when ret from 2nd level batch buffer 472 */ 473 int saved_buf_addr_type; 474 475 struct cmd_info *info; 476 477 struct intel_vgpu_workload *workload; 478 }; 479 480 #define gmadr_dw_number(s) \ 481 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 482 483 static unsigned long bypass_scan_mask = 0; 484 485 /* ring ALL, type = 0 */ 486 static struct sub_op_bits sub_op_mi[] = { 487 {31, 29}, 488 {28, 23}, 489 }; 490 491 static struct decode_info decode_info_mi = { 492 "MI", 493 OP_LEN_MI, 494 ARRAY_SIZE(sub_op_mi), 495 sub_op_mi, 496 }; 497 498 /* ring RCS, command type 2 */ 499 static struct sub_op_bits sub_op_2d[] = { 500 {31, 29}, 501 {28, 22}, 502 }; 503 504 static struct decode_info decode_info_2d = { 505 "2D", 506 OP_LEN_2D, 507 ARRAY_SIZE(sub_op_2d), 508 sub_op_2d, 509 }; 510 511 /* ring RCS, command type 3 */ 512 static struct sub_op_bits sub_op_3d_media[] = { 513 {31, 29}, 514 {28, 27}, 515 {26, 24}, 516 {23, 16}, 517 }; 518 519 static struct decode_info decode_info_3d_media = { 520 "3D_Media", 521 OP_LEN_3D_MEDIA, 522 ARRAY_SIZE(sub_op_3d_media), 523 sub_op_3d_media, 524 }; 525 526 /* ring VCS, command type 3 */ 527 static struct sub_op_bits sub_op_mfx_vc[] = { 528 {31, 29}, 529 {28, 27}, 530 {26, 24}, 531 {23, 21}, 532 {20, 16}, 533 }; 534 535 static struct decode_info decode_info_mfx_vc = { 536 "MFX_VC", 537 OP_LEN_MFX_VC, 538 ARRAY_SIZE(sub_op_mfx_vc), 539 sub_op_mfx_vc, 540 }; 541 542 /* ring VECS, command type 3 */ 543 static struct sub_op_bits sub_op_vebox[] = { 544 {31, 29}, 545 {28, 27}, 546 {26, 24}, 547 {23, 21}, 548 {20, 16}, 549 }; 550 551 static struct decode_info decode_info_vebox = { 552 "VEBOX", 553 OP_LEN_VEBOX, 554 ARRAY_SIZE(sub_op_vebox), 555 sub_op_vebox, 556 }; 557 558 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 559 [RCS] = { 560 &decode_info_mi, 561 NULL, 562 NULL, 563 &decode_info_3d_media, 564 NULL, 565 NULL, 566 NULL, 567 NULL, 568 }, 569 570 [VCS] = { 571 &decode_info_mi, 572 NULL, 573 NULL, 574 &decode_info_mfx_vc, 575 NULL, 576 NULL, 577 NULL, 578 NULL, 579 }, 580 581 [BCS] = { 582 &decode_info_mi, 583 NULL, 584 &decode_info_2d, 585 NULL, 586 NULL, 587 NULL, 588 NULL, 589 NULL, 590 }, 591 592 [VECS] = { 593 &decode_info_mi, 594 NULL, 595 NULL, 596 &decode_info_vebox, 597 NULL, 598 NULL, 599 NULL, 600 NULL, 601 }, 602 603 [VCS2] = { 604 &decode_info_mi, 605 NULL, 606 NULL, 607 &decode_info_mfx_vc, 608 NULL, 609 NULL, 610 NULL, 611 NULL, 612 }, 613 }; 614 615 static inline u32 get_opcode(u32 cmd, int ring_id) 616 { 617 struct decode_info *d_info; 618 619 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 620 if (d_info == NULL) 621 return INVALID_OP; 622 623 return cmd >> (32 - d_info->op_len); 624 } 625 626 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 627 unsigned int opcode, int ring_id) 628 { 629 struct cmd_entry *e; 630 631 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 632 if ((opcode == e->info->opcode) && 633 (e->info->rings & (1 << ring_id))) 634 return e->info; 635 } 636 return NULL; 637 } 638 639 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 640 u32 cmd, int ring_id) 641 { 642 u32 opcode; 643 644 opcode = get_opcode(cmd, ring_id); 645 if (opcode == INVALID_OP) 646 return NULL; 647 648 return find_cmd_entry(gvt, opcode, ring_id); 649 } 650 651 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 652 { 653 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 654 } 655 656 static inline void print_opcode(u32 cmd, int ring_id) 657 { 658 struct decode_info *d_info; 659 int i; 660 661 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 662 if (d_info == NULL) 663 return; 664 665 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 666 cmd >> (32 - d_info->op_len), d_info->name); 667 668 for (i = 0; i < d_info->nr_sub_op; i++) 669 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 670 d_info->sub_op[i].low)); 671 672 pr_err("\n"); 673 } 674 675 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 676 { 677 return s->ip_va + (index << 2); 678 } 679 680 static inline u32 cmd_val(struct parser_exec_state *s, int index) 681 { 682 return *cmd_ptr(s, index); 683 } 684 685 static void parser_exec_state_dump(struct parser_exec_state *s) 686 { 687 int cnt = 0; 688 int i; 689 690 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 691 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 692 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 693 s->ring_head, s->ring_tail); 694 695 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 696 s->buf_type == RING_BUFFER_INSTRUCTION ? 697 "RING_BUFFER" : "BATCH_BUFFER", 698 s->buf_addr_type == GTT_BUFFER ? 699 "GTT" : "PPGTT", s->ip_gma); 700 701 if (s->ip_va == NULL) { 702 gvt_dbg_cmd(" ip_va(NULL)"); 703 return; 704 } 705 706 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 707 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 708 cmd_val(s, 2), cmd_val(s, 3)); 709 710 print_opcode(cmd_val(s, 0), s->ring_id); 711 712 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 713 714 while (cnt < 1024) { 715 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 716 for (i = 0; i < 8; i++) 717 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 718 gvt_dbg_cmd("\n"); 719 720 s->ip_va += 8 * sizeof(u32); 721 cnt += 8; 722 } 723 } 724 725 static inline void update_ip_va(struct parser_exec_state *s) 726 { 727 unsigned long len = 0; 728 729 if (WARN_ON(s->ring_head == s->ring_tail)) 730 return; 731 732 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 733 unsigned long ring_top = s->ring_start + s->ring_size; 734 735 if (s->ring_head > s->ring_tail) { 736 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 737 len = (s->ip_gma - s->ring_head); 738 else if (s->ip_gma >= s->ring_start && 739 s->ip_gma <= s->ring_tail) 740 len = (ring_top - s->ring_head) + 741 (s->ip_gma - s->ring_start); 742 } else 743 len = (s->ip_gma - s->ring_head); 744 745 s->ip_va = s->rb_va + len; 746 } else {/* shadow batch buffer */ 747 s->ip_va = s->ret_bb_va; 748 } 749 } 750 751 static inline int ip_gma_set(struct parser_exec_state *s, 752 unsigned long ip_gma) 753 { 754 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 755 756 s->ip_gma = ip_gma; 757 update_ip_va(s); 758 return 0; 759 } 760 761 static inline int ip_gma_advance(struct parser_exec_state *s, 762 unsigned int dw_len) 763 { 764 s->ip_gma += (dw_len << 2); 765 766 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 767 if (s->ip_gma >= s->ring_start + s->ring_size) 768 s->ip_gma -= s->ring_size; 769 update_ip_va(s); 770 } else { 771 s->ip_va += (dw_len << 2); 772 } 773 774 return 0; 775 } 776 777 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 778 { 779 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 780 return info->len; 781 else 782 return (cmd & ((1U << info->len) - 1)) + 2; 783 return 0; 784 } 785 786 static inline int cmd_length(struct parser_exec_state *s) 787 { 788 return get_cmd_length(s->info, cmd_val(s, 0)); 789 } 790 791 /* do not remove this, some platform may need clflush here */ 792 #define patch_value(s, addr, val) do { \ 793 *addr = val; \ 794 } while (0) 795 796 static bool is_shadowed_mmio(unsigned int offset) 797 { 798 bool ret = false; 799 800 if ((offset == 0x2168) || /*BB current head register UDW */ 801 (offset == 0x2140) || /*BB current header register */ 802 (offset == 0x211c) || /*second BB header register UDW */ 803 (offset == 0x2114)) { /*second BB header register UDW */ 804 ret = true; 805 } 806 return ret; 807 } 808 809 static inline bool is_force_nonpriv_mmio(unsigned int offset) 810 { 811 return (offset >= 0x24d0 && offset < 0x2500); 812 } 813 814 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 815 unsigned int offset, unsigned int index) 816 { 817 struct intel_gvt *gvt = s->vgpu->gvt; 818 unsigned int data = cmd_val(s, index + 1); 819 820 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data)) { 821 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 822 offset, data); 823 return -EPERM; 824 } 825 return 0; 826 } 827 828 static inline bool is_mocs_mmio(unsigned int offset) 829 { 830 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 831 ((offset >= 0xb020) && (offset <= 0xb0a0)); 832 } 833 834 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 835 unsigned int offset, unsigned int index) 836 { 837 if (!is_mocs_mmio(offset)) 838 return -EINVAL; 839 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 840 return 0; 841 } 842 843 static int cmd_reg_handler(struct parser_exec_state *s, 844 unsigned int offset, unsigned int index, char *cmd) 845 { 846 struct intel_vgpu *vgpu = s->vgpu; 847 struct intel_gvt *gvt = vgpu->gvt; 848 849 if (offset + 4 > gvt->device_info.mmio_size) { 850 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 851 cmd, offset); 852 return -EFAULT; 853 } 854 855 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 856 gvt_vgpu_err("%s access to non-render register (%x)\n", 857 cmd, offset); 858 return 0; 859 } 860 861 if (is_shadowed_mmio(offset)) { 862 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 863 return 0; 864 } 865 866 if (is_mocs_mmio(offset) && 867 mocs_cmd_reg_handler(s, offset, index)) 868 return -EINVAL; 869 870 if (is_force_nonpriv_mmio(offset) && 871 force_nonpriv_reg_handler(s, offset, index)) 872 return -EPERM; 873 874 if (offset == i915_mmio_reg_offset(DERRMR) || 875 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 876 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 877 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 878 } 879 880 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 881 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 882 return 0; 883 } 884 885 #define cmd_reg(s, i) \ 886 (cmd_val(s, i) & GENMASK(22, 2)) 887 888 #define cmd_reg_inhibit(s, i) \ 889 (cmd_val(s, i) & GENMASK(22, 18)) 890 891 #define cmd_gma(s, i) \ 892 (cmd_val(s, i) & GENMASK(31, 2)) 893 894 #define cmd_gma_hi(s, i) \ 895 (cmd_val(s, i) & GENMASK(15, 0)) 896 897 static int cmd_handler_lri(struct parser_exec_state *s) 898 { 899 int i, ret = 0; 900 int cmd_len = cmd_length(s); 901 struct intel_gvt *gvt = s->vgpu->gvt; 902 903 for (i = 1; i < cmd_len; i += 2) { 904 if (IS_BROADWELL(gvt->dev_priv) && 905 (s->ring_id != RCS)) { 906 if (s->ring_id == BCS && 907 cmd_reg(s, i) == 908 i915_mmio_reg_offset(DERRMR)) 909 ret |= 0; 910 else 911 ret |= (cmd_reg_inhibit(s, i)) ? 912 -EBADRQC : 0; 913 } 914 if (ret) 915 break; 916 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 917 if (ret) 918 break; 919 } 920 return ret; 921 } 922 923 static int cmd_handler_lrr(struct parser_exec_state *s) 924 { 925 int i, ret = 0; 926 int cmd_len = cmd_length(s); 927 928 for (i = 1; i < cmd_len; i += 2) { 929 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 930 ret |= ((cmd_reg_inhibit(s, i) || 931 (cmd_reg_inhibit(s, i + 1)))) ? 932 -EBADRQC : 0; 933 if (ret) 934 break; 935 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 936 if (ret) 937 break; 938 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 939 if (ret) 940 break; 941 } 942 return ret; 943 } 944 945 static inline int cmd_address_audit(struct parser_exec_state *s, 946 unsigned long guest_gma, int op_size, bool index_mode); 947 948 static int cmd_handler_lrm(struct parser_exec_state *s) 949 { 950 struct intel_gvt *gvt = s->vgpu->gvt; 951 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 952 unsigned long gma; 953 int i, ret = 0; 954 int cmd_len = cmd_length(s); 955 956 for (i = 1; i < cmd_len;) { 957 if (IS_BROADWELL(gvt->dev_priv)) 958 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 959 if (ret) 960 break; 961 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 962 if (ret) 963 break; 964 if (cmd_val(s, 0) & (1 << 22)) { 965 gma = cmd_gma(s, i + 1); 966 if (gmadr_bytes == 8) 967 gma |= (cmd_gma_hi(s, i + 2)) << 32; 968 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 969 if (ret) 970 break; 971 } 972 i += gmadr_dw_number(s) + 1; 973 } 974 return ret; 975 } 976 977 static int cmd_handler_srm(struct parser_exec_state *s) 978 { 979 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 980 unsigned long gma; 981 int i, ret = 0; 982 int cmd_len = cmd_length(s); 983 984 for (i = 1; i < cmd_len;) { 985 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 986 if (ret) 987 break; 988 if (cmd_val(s, 0) & (1 << 22)) { 989 gma = cmd_gma(s, i + 1); 990 if (gmadr_bytes == 8) 991 gma |= (cmd_gma_hi(s, i + 2)) << 32; 992 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 993 if (ret) 994 break; 995 } 996 i += gmadr_dw_number(s) + 1; 997 } 998 return ret; 999 } 1000 1001 struct cmd_interrupt_event { 1002 int pipe_control_notify; 1003 int mi_flush_dw; 1004 int mi_user_interrupt; 1005 }; 1006 1007 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1008 [RCS] = { 1009 .pipe_control_notify = RCS_PIPE_CONTROL, 1010 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1011 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1012 }, 1013 [BCS] = { 1014 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1015 .mi_flush_dw = BCS_MI_FLUSH_DW, 1016 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1017 }, 1018 [VCS] = { 1019 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1020 .mi_flush_dw = VCS_MI_FLUSH_DW, 1021 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1022 }, 1023 [VCS2] = { 1024 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1025 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1026 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1027 }, 1028 [VECS] = { 1029 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1030 .mi_flush_dw = VECS_MI_FLUSH_DW, 1031 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1032 }, 1033 }; 1034 1035 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1036 { 1037 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1038 unsigned long gma; 1039 bool index_mode = false; 1040 unsigned int post_sync; 1041 int ret = 0; 1042 1043 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1044 1045 /* LRI post sync */ 1046 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1047 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1048 /* post sync */ 1049 else if (post_sync) { 1050 if (post_sync == 2) 1051 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1052 else if (post_sync == 3) 1053 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1054 else if (post_sync == 1) { 1055 /* check ggtt*/ 1056 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1057 gma = cmd_val(s, 2) & GENMASK(31, 3); 1058 if (gmadr_bytes == 8) 1059 gma |= (cmd_gma_hi(s, 3)) << 32; 1060 /* Store Data Index */ 1061 if (cmd_val(s, 1) & (1 << 21)) 1062 index_mode = true; 1063 ret |= cmd_address_audit(s, gma, sizeof(u64), 1064 index_mode); 1065 } 1066 } 1067 } 1068 1069 if (ret) 1070 return ret; 1071 1072 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1073 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1074 s->workload->pending_events); 1075 return 0; 1076 } 1077 1078 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1079 { 1080 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1081 s->workload->pending_events); 1082 return 0; 1083 } 1084 1085 static int cmd_advance_default(struct parser_exec_state *s) 1086 { 1087 return ip_gma_advance(s, cmd_length(s)); 1088 } 1089 1090 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1091 { 1092 int ret; 1093 1094 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1095 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1096 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1097 s->buf_addr_type = s->saved_buf_addr_type; 1098 } else { 1099 s->buf_type = RING_BUFFER_INSTRUCTION; 1100 s->buf_addr_type = GTT_BUFFER; 1101 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1102 s->ret_ip_gma_ring -= s->ring_size; 1103 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1104 } 1105 return ret; 1106 } 1107 1108 struct mi_display_flip_command_info { 1109 int pipe; 1110 int plane; 1111 int event; 1112 i915_reg_t stride_reg; 1113 i915_reg_t ctrl_reg; 1114 i915_reg_t surf_reg; 1115 u64 stride_val; 1116 u64 tile_val; 1117 u64 surf_val; 1118 bool async_flip; 1119 }; 1120 1121 struct plane_code_mapping { 1122 int pipe; 1123 int plane; 1124 int event; 1125 }; 1126 1127 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1128 struct mi_display_flip_command_info *info) 1129 { 1130 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1131 struct plane_code_mapping gen8_plane_code[] = { 1132 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1133 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1134 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1135 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1136 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1137 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1138 }; 1139 u32 dword0, dword1, dword2; 1140 u32 v; 1141 1142 dword0 = cmd_val(s, 0); 1143 dword1 = cmd_val(s, 1); 1144 dword2 = cmd_val(s, 2); 1145 1146 v = (dword0 & GENMASK(21, 19)) >> 19; 1147 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1148 return -EBADRQC; 1149 1150 info->pipe = gen8_plane_code[v].pipe; 1151 info->plane = gen8_plane_code[v].plane; 1152 info->event = gen8_plane_code[v].event; 1153 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1154 info->tile_val = (dword1 & 0x1); 1155 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1156 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1157 1158 if (info->plane == PLANE_A) { 1159 info->ctrl_reg = DSPCNTR(info->pipe); 1160 info->stride_reg = DSPSTRIDE(info->pipe); 1161 info->surf_reg = DSPSURF(info->pipe); 1162 } else if (info->plane == PLANE_B) { 1163 info->ctrl_reg = SPRCTL(info->pipe); 1164 info->stride_reg = SPRSTRIDE(info->pipe); 1165 info->surf_reg = SPRSURF(info->pipe); 1166 } else { 1167 WARN_ON(1); 1168 return -EBADRQC; 1169 } 1170 return 0; 1171 } 1172 1173 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1174 struct mi_display_flip_command_info *info) 1175 { 1176 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1177 struct intel_vgpu *vgpu = s->vgpu; 1178 u32 dword0 = cmd_val(s, 0); 1179 u32 dword1 = cmd_val(s, 1); 1180 u32 dword2 = cmd_val(s, 2); 1181 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1182 1183 info->plane = PRIMARY_PLANE; 1184 1185 switch (plane) { 1186 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1187 info->pipe = PIPE_A; 1188 info->event = PRIMARY_A_FLIP_DONE; 1189 break; 1190 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1191 info->pipe = PIPE_B; 1192 info->event = PRIMARY_B_FLIP_DONE; 1193 break; 1194 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1195 info->pipe = PIPE_C; 1196 info->event = PRIMARY_C_FLIP_DONE; 1197 break; 1198 1199 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1200 info->pipe = PIPE_A; 1201 info->event = SPRITE_A_FLIP_DONE; 1202 info->plane = SPRITE_PLANE; 1203 break; 1204 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1205 info->pipe = PIPE_B; 1206 info->event = SPRITE_B_FLIP_DONE; 1207 info->plane = SPRITE_PLANE; 1208 break; 1209 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1210 info->pipe = PIPE_C; 1211 info->event = SPRITE_C_FLIP_DONE; 1212 info->plane = SPRITE_PLANE; 1213 break; 1214 1215 default: 1216 gvt_vgpu_err("unknown plane code %d\n", plane); 1217 return -EBADRQC; 1218 } 1219 1220 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1221 info->tile_val = (dword1 & GENMASK(2, 0)); 1222 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1223 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1224 1225 info->ctrl_reg = DSPCNTR(info->pipe); 1226 info->stride_reg = DSPSTRIDE(info->pipe); 1227 info->surf_reg = DSPSURF(info->pipe); 1228 1229 return 0; 1230 } 1231 1232 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1233 struct mi_display_flip_command_info *info) 1234 { 1235 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1236 u32 stride, tile; 1237 1238 if (!info->async_flip) 1239 return 0; 1240 1241 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1242 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1243 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1244 GENMASK(12, 10)) >> 10; 1245 } else { 1246 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1247 GENMASK(15, 6)) >> 6; 1248 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1249 } 1250 1251 if (stride != info->stride_val) 1252 gvt_dbg_cmd("cannot change stride during async flip\n"); 1253 1254 if (tile != info->tile_val) 1255 gvt_dbg_cmd("cannot change tile during async flip\n"); 1256 1257 return 0; 1258 } 1259 1260 static int gen8_update_plane_mmio_from_mi_display_flip( 1261 struct parser_exec_state *s, 1262 struct mi_display_flip_command_info *info) 1263 { 1264 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1265 struct intel_vgpu *vgpu = s->vgpu; 1266 1267 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1268 info->surf_val << 12); 1269 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1270 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1271 info->stride_val); 1272 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1273 info->tile_val << 10); 1274 } else { 1275 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1276 info->stride_val << 6); 1277 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1278 info->tile_val << 10); 1279 } 1280 1281 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1282 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1283 return 0; 1284 } 1285 1286 static int decode_mi_display_flip(struct parser_exec_state *s, 1287 struct mi_display_flip_command_info *info) 1288 { 1289 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1290 1291 if (IS_BROADWELL(dev_priv)) 1292 return gen8_decode_mi_display_flip(s, info); 1293 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) 1294 return skl_decode_mi_display_flip(s, info); 1295 1296 return -ENODEV; 1297 } 1298 1299 static int check_mi_display_flip(struct parser_exec_state *s, 1300 struct mi_display_flip_command_info *info) 1301 { 1302 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1303 1304 if (IS_BROADWELL(dev_priv) 1305 || IS_SKYLAKE(dev_priv) 1306 || IS_KABYLAKE(dev_priv)) 1307 return gen8_check_mi_display_flip(s, info); 1308 return -ENODEV; 1309 } 1310 1311 static int update_plane_mmio_from_mi_display_flip( 1312 struct parser_exec_state *s, 1313 struct mi_display_flip_command_info *info) 1314 { 1315 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1316 1317 if (IS_BROADWELL(dev_priv) 1318 || IS_SKYLAKE(dev_priv) 1319 || IS_KABYLAKE(dev_priv)) 1320 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1321 return -ENODEV; 1322 } 1323 1324 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1325 { 1326 struct mi_display_flip_command_info info; 1327 struct intel_vgpu *vgpu = s->vgpu; 1328 int ret; 1329 int i; 1330 int len = cmd_length(s); 1331 1332 ret = decode_mi_display_flip(s, &info); 1333 if (ret) { 1334 gvt_vgpu_err("fail to decode MI display flip command\n"); 1335 return ret; 1336 } 1337 1338 ret = check_mi_display_flip(s, &info); 1339 if (ret) { 1340 gvt_vgpu_err("invalid MI display flip command\n"); 1341 return ret; 1342 } 1343 1344 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1345 if (ret) { 1346 gvt_vgpu_err("fail to update plane mmio\n"); 1347 return ret; 1348 } 1349 1350 for (i = 0; i < len; i++) 1351 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1352 return 0; 1353 } 1354 1355 static bool is_wait_for_flip_pending(u32 cmd) 1356 { 1357 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1358 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1359 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1360 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1361 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1362 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1363 } 1364 1365 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1366 { 1367 u32 cmd = cmd_val(s, 0); 1368 1369 if (!is_wait_for_flip_pending(cmd)) 1370 return 0; 1371 1372 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1373 return 0; 1374 } 1375 1376 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1377 { 1378 unsigned long addr; 1379 unsigned long gma_high, gma_low; 1380 struct intel_vgpu *vgpu = s->vgpu; 1381 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1382 1383 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1384 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1385 return INTEL_GVT_INVALID_ADDR; 1386 } 1387 1388 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1389 if (gmadr_bytes == 4) { 1390 addr = gma_low; 1391 } else { 1392 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1393 addr = (((unsigned long)gma_high) << 32) | gma_low; 1394 } 1395 return addr; 1396 } 1397 1398 static inline int cmd_address_audit(struct parser_exec_state *s, 1399 unsigned long guest_gma, int op_size, bool index_mode) 1400 { 1401 struct intel_vgpu *vgpu = s->vgpu; 1402 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1403 int i; 1404 int ret; 1405 1406 if (op_size > max_surface_size) { 1407 gvt_vgpu_err("command address audit fail name %s\n", 1408 s->info->name); 1409 return -EFAULT; 1410 } 1411 1412 if (index_mode) { 1413 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) { 1414 ret = -EFAULT; 1415 goto err; 1416 } 1417 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1418 ret = -EFAULT; 1419 goto err; 1420 } 1421 1422 return 0; 1423 1424 err: 1425 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1426 s->info->name, guest_gma, op_size); 1427 1428 pr_err("cmd dump: "); 1429 for (i = 0; i < cmd_length(s); i++) { 1430 if (!(i % 4)) 1431 pr_err("\n%08x ", cmd_val(s, i)); 1432 else 1433 pr_err("%08x ", cmd_val(s, i)); 1434 } 1435 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1436 vgpu->id, 1437 vgpu_aperture_gmadr_base(vgpu), 1438 vgpu_aperture_gmadr_end(vgpu), 1439 vgpu_hidden_gmadr_base(vgpu), 1440 vgpu_hidden_gmadr_end(vgpu)); 1441 return ret; 1442 } 1443 1444 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1445 { 1446 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1447 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1448 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1449 unsigned long gma, gma_low, gma_high; 1450 int ret = 0; 1451 1452 /* check ppggt */ 1453 if (!(cmd_val(s, 0) & (1 << 22))) 1454 return 0; 1455 1456 gma = cmd_val(s, 2) & GENMASK(31, 2); 1457 1458 if (gmadr_bytes == 8) { 1459 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1460 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1461 gma = (gma_high << 32) | gma_low; 1462 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1463 } 1464 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1465 return ret; 1466 } 1467 1468 static inline int unexpected_cmd(struct parser_exec_state *s) 1469 { 1470 struct intel_vgpu *vgpu = s->vgpu; 1471 1472 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1473 1474 return -EBADRQC; 1475 } 1476 1477 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1478 { 1479 return unexpected_cmd(s); 1480 } 1481 1482 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1483 { 1484 return unexpected_cmd(s); 1485 } 1486 1487 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1488 { 1489 return unexpected_cmd(s); 1490 } 1491 1492 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1493 { 1494 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1495 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1496 sizeof(u32); 1497 unsigned long gma, gma_high; 1498 int ret = 0; 1499 1500 if (!(cmd_val(s, 0) & (1 << 22))) 1501 return ret; 1502 1503 gma = cmd_val(s, 1) & GENMASK(31, 2); 1504 if (gmadr_bytes == 8) { 1505 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1506 gma = (gma_high << 32) | gma; 1507 } 1508 ret = cmd_address_audit(s, gma, op_size, false); 1509 return ret; 1510 } 1511 1512 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1513 { 1514 return unexpected_cmd(s); 1515 } 1516 1517 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1518 { 1519 return unexpected_cmd(s); 1520 } 1521 1522 static int cmd_handler_mi_conditional_batch_buffer_end( 1523 struct parser_exec_state *s) 1524 { 1525 return unexpected_cmd(s); 1526 } 1527 1528 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1529 { 1530 return unexpected_cmd(s); 1531 } 1532 1533 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1534 { 1535 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1536 unsigned long gma; 1537 bool index_mode = false; 1538 int ret = 0; 1539 1540 /* Check post-sync and ppgtt bit */ 1541 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1542 gma = cmd_val(s, 1) & GENMASK(31, 3); 1543 if (gmadr_bytes == 8) 1544 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1545 /* Store Data Index */ 1546 if (cmd_val(s, 0) & (1 << 21)) 1547 index_mode = true; 1548 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1549 } 1550 /* Check notify bit */ 1551 if ((cmd_val(s, 0) & (1 << 8))) 1552 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1553 s->workload->pending_events); 1554 return ret; 1555 } 1556 1557 static void addr_type_update_snb(struct parser_exec_state *s) 1558 { 1559 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1560 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1561 s->buf_addr_type = PPGTT_BUFFER; 1562 } 1563 } 1564 1565 1566 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1567 unsigned long gma, unsigned long end_gma, void *va) 1568 { 1569 unsigned long copy_len, offset; 1570 unsigned long len = 0; 1571 unsigned long gpa; 1572 1573 while (gma != end_gma) { 1574 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1575 if (gpa == INTEL_GVT_INVALID_ADDR) { 1576 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1577 return -EFAULT; 1578 } 1579 1580 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1581 1582 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1583 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1584 1585 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1586 1587 len += copy_len; 1588 gma += copy_len; 1589 } 1590 return len; 1591 } 1592 1593 1594 /* 1595 * Check whether a batch buffer needs to be scanned. Currently 1596 * the only criteria is based on privilege. 1597 */ 1598 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1599 { 1600 struct intel_gvt *gvt = s->vgpu->gvt; 1601 1602 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv) 1603 || IS_KABYLAKE(gvt->dev_priv)) { 1604 /* BDW decides privilege based on address space */ 1605 if (cmd_val(s, 0) & (1 << 8)) 1606 return 0; 1607 } 1608 return 1; 1609 } 1610 1611 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1612 { 1613 unsigned long gma = 0; 1614 struct cmd_info *info; 1615 uint32_t cmd_len = 0; 1616 bool bb_end = false; 1617 struct intel_vgpu *vgpu = s->vgpu; 1618 u32 cmd; 1619 1620 *bb_size = 0; 1621 1622 /* get the start gm address of the batch buffer */ 1623 gma = get_gma_bb_from_cmd(s, 1); 1624 if (gma == INTEL_GVT_INVALID_ADDR) 1625 return -EFAULT; 1626 1627 cmd = cmd_val(s, 0); 1628 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1629 if (info == NULL) { 1630 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n", 1631 cmd, get_opcode(cmd, s->ring_id)); 1632 return -EBADRQC; 1633 } 1634 do { 1635 if (copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1636 gma, gma + 4, &cmd) < 0) 1637 return -EFAULT; 1638 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1639 if (info == NULL) { 1640 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n", 1641 cmd, get_opcode(cmd, s->ring_id)); 1642 return -EBADRQC; 1643 } 1644 1645 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1646 bb_end = true; 1647 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1648 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1649 /* chained batch buffer */ 1650 bb_end = true; 1651 } 1652 cmd_len = get_cmd_length(info, cmd) << 2; 1653 *bb_size += cmd_len; 1654 gma += cmd_len; 1655 } while (!bb_end); 1656 1657 return 0; 1658 } 1659 1660 static int perform_bb_shadow(struct parser_exec_state *s) 1661 { 1662 struct intel_vgpu *vgpu = s->vgpu; 1663 struct intel_vgpu_shadow_bb *bb; 1664 unsigned long gma = 0; 1665 unsigned long bb_size; 1666 int ret = 0; 1667 1668 /* get the start gm address of the batch buffer */ 1669 gma = get_gma_bb_from_cmd(s, 1); 1670 if (gma == INTEL_GVT_INVALID_ADDR) 1671 return -EFAULT; 1672 1673 ret = find_bb_size(s, &bb_size); 1674 if (ret) 1675 return ret; 1676 1677 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1678 if (!bb) 1679 return -ENOMEM; 1680 1681 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv, 1682 roundup(bb_size, PAGE_SIZE)); 1683 if (IS_ERR(bb->obj)) { 1684 ret = PTR_ERR(bb->obj); 1685 goto err_free_bb; 1686 } 1687 1688 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush); 1689 if (ret) 1690 goto err_free_obj; 1691 1692 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1693 if (IS_ERR(bb->va)) { 1694 ret = PTR_ERR(bb->va); 1695 goto err_finish_shmem_access; 1696 } 1697 1698 if (bb->clflush & CLFLUSH_BEFORE) { 1699 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1700 bb->clflush &= ~CLFLUSH_BEFORE; 1701 } 1702 1703 ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1704 gma, gma + bb_size, 1705 bb->va); 1706 if (ret < 0) { 1707 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1708 ret = -EFAULT; 1709 goto err_unmap; 1710 } 1711 1712 INIT_LIST_HEAD(&bb->list); 1713 list_add(&bb->list, &s->workload->shadow_bb); 1714 1715 bb->accessing = true; 1716 bb->bb_start_cmd_va = s->ip_va; 1717 1718 /* 1719 * ip_va saves the virtual address of the shadow batch buffer, while 1720 * ip_gma saves the graphics address of the original batch buffer. 1721 * As the shadow batch buffer is just a copy from the originial one, 1722 * it should be right to use shadow batch buffer'va and original batch 1723 * buffer's gma in pair. After all, we don't want to pin the shadow 1724 * buffer here (too early). 1725 */ 1726 s->ip_va = bb->va; 1727 s->ip_gma = gma; 1728 return 0; 1729 err_unmap: 1730 i915_gem_object_unpin_map(bb->obj); 1731 err_finish_shmem_access: 1732 i915_gem_obj_finish_shmem_access(bb->obj); 1733 err_free_obj: 1734 i915_gem_object_put(bb->obj); 1735 err_free_bb: 1736 kfree(bb); 1737 return ret; 1738 } 1739 1740 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1741 { 1742 bool second_level; 1743 int ret = 0; 1744 struct intel_vgpu *vgpu = s->vgpu; 1745 1746 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1747 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1748 return -EFAULT; 1749 } 1750 1751 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1752 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1753 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1754 return -EFAULT; 1755 } 1756 1757 s->saved_buf_addr_type = s->buf_addr_type; 1758 addr_type_update_snb(s); 1759 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1760 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1761 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1762 } else if (second_level) { 1763 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1764 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1765 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1766 } 1767 1768 if (batch_buffer_needs_scan(s)) { 1769 ret = perform_bb_shadow(s); 1770 if (ret < 0) 1771 gvt_vgpu_err("invalid shadow batch buffer\n"); 1772 } else { 1773 /* emulate a batch buffer end to do return right */ 1774 ret = cmd_handler_mi_batch_buffer_end(s); 1775 if (ret < 0) 1776 return ret; 1777 } 1778 return ret; 1779 } 1780 1781 static struct cmd_info cmd_info[] = { 1782 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1783 1784 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1785 0, 1, NULL}, 1786 1787 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1788 0, 1, cmd_handler_mi_user_interrupt}, 1789 1790 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1791 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1792 1793 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1794 1795 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1796 NULL}, 1797 1798 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1799 NULL}, 1800 1801 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1802 NULL}, 1803 1804 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1805 NULL}, 1806 1807 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1808 D_ALL, 0, 1, NULL}, 1809 1810 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1811 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1812 cmd_handler_mi_batch_buffer_end}, 1813 1814 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1815 0, 1, NULL}, 1816 1817 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1818 NULL}, 1819 1820 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1821 D_ALL, 0, 1, NULL}, 1822 1823 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1824 NULL}, 1825 1826 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1827 NULL}, 1828 1829 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1830 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1831 1832 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1833 0, 8, NULL}, 1834 1835 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1836 1837 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1838 1839 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1840 D_BDW_PLUS, 0, 8, NULL}, 1841 1842 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1843 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1844 1845 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1846 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1847 1848 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1849 0, 8, cmd_handler_mi_store_data_index}, 1850 1851 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1852 D_ALL, 0, 8, cmd_handler_lri}, 1853 1854 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1855 cmd_handler_mi_update_gtt}, 1856 1857 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1858 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1859 1860 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1861 cmd_handler_mi_flush_dw}, 1862 1863 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1864 10, cmd_handler_mi_clflush}, 1865 1866 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1867 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1868 1869 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1870 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1871 1872 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1873 D_ALL, 0, 8, cmd_handler_lrr}, 1874 1875 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1876 D_ALL, 0, 8, NULL}, 1877 1878 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1879 ADDR_FIX_1(2), 8, NULL}, 1880 1881 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1882 ADDR_FIX_1(2), 8, NULL}, 1883 1884 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1885 8, cmd_handler_mi_op_2e}, 1886 1887 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1888 8, cmd_handler_mi_op_2f}, 1889 1890 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1891 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1892 cmd_handler_mi_batch_buffer_start}, 1893 1894 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1895 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1896 cmd_handler_mi_conditional_batch_buffer_end}, 1897 1898 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1899 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1900 1901 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1902 ADDR_FIX_2(4, 7), 8, NULL}, 1903 1904 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1905 0, 8, NULL}, 1906 1907 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1908 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1909 1910 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1911 1912 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1913 0, 8, NULL}, 1914 1915 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1916 ADDR_FIX_1(3), 8, NULL}, 1917 1918 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1919 D_ALL, 0, 8, NULL}, 1920 1921 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1922 ADDR_FIX_1(4), 8, NULL}, 1923 1924 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1925 ADDR_FIX_2(4, 5), 8, NULL}, 1926 1927 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1928 ADDR_FIX_1(4), 8, NULL}, 1929 1930 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1931 ADDR_FIX_2(4, 7), 8, NULL}, 1932 1933 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1934 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1935 1936 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1937 1938 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 1939 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 1940 1941 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 1942 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1943 1944 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 1945 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 1946 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1947 1948 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 1949 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1950 1951 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 1952 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1953 1954 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 1955 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1956 1957 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 1958 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1959 1960 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 1961 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1962 1963 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 1964 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 1965 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1966 1967 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 1968 ADDR_FIX_2(4, 5), 8, NULL}, 1969 1970 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 1971 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1972 1973 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 1974 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 1975 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1976 1977 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 1978 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 1979 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1980 1981 {"3DSTATE_BLEND_STATE_POINTERS", 1982 OP_3DSTATE_BLEND_STATE_POINTERS, 1983 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1984 1985 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 1986 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 1987 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1988 1989 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 1990 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 1991 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1992 1993 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 1994 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 1995 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1996 1997 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 1998 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 1999 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2000 2001 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2002 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2003 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2004 2005 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2006 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2007 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2008 2009 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2010 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2011 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2012 2013 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2014 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2015 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2016 2017 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2018 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2019 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2020 2021 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2022 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2023 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2024 2025 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2026 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2027 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2028 2029 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2030 0, 8, NULL}, 2031 2032 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2033 0, 8, NULL}, 2034 2035 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2036 0, 8, NULL}, 2037 2038 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2039 0, 8, NULL}, 2040 2041 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2042 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2043 2044 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2045 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2046 2047 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2048 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2049 2050 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2051 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2052 2053 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2054 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2055 2056 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2057 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2058 2059 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2060 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2061 2062 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2063 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2064 2065 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2066 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2067 2068 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2069 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2070 2071 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2072 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2073 2074 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2075 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2076 2077 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2078 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2079 2080 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2081 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2082 2083 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2084 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2085 2086 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2087 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2088 2089 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2090 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2091 2092 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2093 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2094 2095 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2096 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2097 2098 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2099 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2100 2101 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2102 D_BDW_PLUS, 0, 8, NULL}, 2103 2104 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2105 NULL}, 2106 2107 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2108 D_BDW_PLUS, 0, 8, NULL}, 2109 2110 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2111 D_BDW_PLUS, 0, 8, NULL}, 2112 2113 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2114 8, NULL}, 2115 2116 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2117 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2118 2119 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2120 8, NULL}, 2121 2122 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2123 NULL}, 2124 2125 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2126 NULL}, 2127 2128 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2129 NULL}, 2130 2131 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2132 D_BDW_PLUS, 0, 8, NULL}, 2133 2134 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2135 R_RCS, D_ALL, 0, 8, NULL}, 2136 2137 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2138 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2139 2140 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2141 R_RCS, D_ALL, 0, 1, NULL}, 2142 2143 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2144 2145 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2146 R_RCS, D_ALL, 0, 8, NULL}, 2147 2148 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2149 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2150 2151 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2152 2153 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2154 2155 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2156 2157 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2158 D_BDW_PLUS, 0, 8, NULL}, 2159 2160 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2161 D_BDW_PLUS, 0, 8, NULL}, 2162 2163 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2164 D_ALL, 0, 8, NULL}, 2165 2166 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2167 D_BDW_PLUS, 0, 8, NULL}, 2168 2169 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2170 D_BDW_PLUS, 0, 8, NULL}, 2171 2172 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2173 2174 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2175 2176 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2177 2178 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2179 D_ALL, 0, 8, NULL}, 2180 2181 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2182 2183 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2184 2185 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2186 R_RCS, D_ALL, 0, 8, NULL}, 2187 2188 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2189 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2190 2191 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2192 0, 8, NULL}, 2193 2194 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2195 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2196 2197 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2198 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2199 2200 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2201 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2202 2203 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2204 D_ALL, 0, 8, NULL}, 2205 2206 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2207 D_ALL, 0, 8, NULL}, 2208 2209 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2210 D_ALL, 0, 8, NULL}, 2211 2212 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2213 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2214 2215 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2216 D_BDW_PLUS, 0, 8, NULL}, 2217 2218 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2219 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2220 2221 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2222 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2223 2224 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2225 R_RCS, D_ALL, 0, 8, NULL}, 2226 2227 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2228 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2229 2230 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2231 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2232 2233 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2234 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2235 2236 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2240 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2241 2242 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2243 R_RCS, D_ALL, 0, 8, NULL}, 2244 2245 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2246 D_ALL, 0, 9, NULL}, 2247 2248 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2249 ADDR_FIX_2(2, 4), 8, NULL}, 2250 2251 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2252 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2253 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2254 2255 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2256 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2257 2258 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2259 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2260 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2261 2262 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2263 D_BDW_PLUS, 0, 8, NULL}, 2264 2265 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2266 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2267 2268 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2271 1, NULL}, 2272 2273 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2274 ADDR_FIX_1(1), 8, NULL}, 2275 2276 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2277 2278 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2279 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2280 2281 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2282 ADDR_FIX_1(1), 8, NULL}, 2283 2284 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2285 2286 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2287 2288 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2289 0, 8, NULL}, 2290 2291 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2292 D_SKL_PLUS, 0, 8, NULL}, 2293 2294 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2295 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2296 2297 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2298 0, 16, NULL}, 2299 2300 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2301 0, 16, NULL}, 2302 2303 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2304 2305 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2306 0, 16, NULL}, 2307 2308 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2309 0, 16, NULL}, 2310 2311 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2312 0, 16, NULL}, 2313 2314 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2315 0, 8, NULL}, 2316 2317 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2318 NULL}, 2319 2320 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2321 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2322 2323 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2324 R_VCS, D_ALL, 0, 12, NULL}, 2325 2326 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2327 R_VCS, D_ALL, 0, 12, NULL}, 2328 2329 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2330 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2331 2332 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2333 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2334 2335 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2336 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2337 2338 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2339 2340 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2341 R_VCS, D_ALL, 0, 12, NULL}, 2342 2343 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2344 R_VCS, D_ALL, 0, 12, NULL}, 2345 2346 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2347 R_VCS, D_ALL, 0, 12, NULL}, 2348 2349 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2350 R_VCS, D_ALL, 0, 12, NULL}, 2351 2352 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2353 R_VCS, D_ALL, 0, 12, NULL}, 2354 2355 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2356 R_VCS, D_ALL, 0, 12, NULL}, 2357 2358 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2359 R_VCS, D_ALL, 0, 6, NULL}, 2360 2361 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2362 R_VCS, D_ALL, 0, 12, NULL}, 2363 2364 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2365 R_VCS, D_ALL, 0, 12, NULL}, 2366 2367 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2368 R_VCS, D_ALL, 0, 12, NULL}, 2369 2370 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2371 R_VCS, D_ALL, 0, 12, NULL}, 2372 2373 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2374 R_VCS, D_ALL, 0, 12, NULL}, 2375 2376 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2377 R_VCS, D_ALL, 0, 12, NULL}, 2378 2379 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2380 R_VCS, D_ALL, 0, 12, NULL}, 2381 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2382 R_VCS, D_ALL, 0, 12, NULL}, 2383 2384 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2385 R_VCS, D_ALL, 0, 12, NULL}, 2386 2387 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2388 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2389 2390 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2391 R_VCS, D_ALL, 0, 12, NULL}, 2392 2393 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2394 R_VCS, D_ALL, 0, 12, NULL}, 2395 2396 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2397 R_VCS, D_ALL, 0, 12, NULL}, 2398 2399 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2400 R_VCS, D_ALL, 0, 12, NULL}, 2401 2402 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2403 R_VCS, D_ALL, 0, 12, NULL}, 2404 2405 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2406 R_VCS, D_ALL, 0, 12, NULL}, 2407 2408 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2409 R_VCS, D_ALL, 0, 12, NULL}, 2410 2411 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2412 R_VCS, D_ALL, 0, 12, NULL}, 2413 2414 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2415 R_VCS, D_ALL, 0, 12, NULL}, 2416 2417 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2418 R_VCS, D_ALL, 0, 12, NULL}, 2419 2420 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2421 R_VCS, D_ALL, 0, 12, NULL}, 2422 2423 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2424 0, 16, NULL}, 2425 2426 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2427 2428 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2429 2430 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2431 R_VCS, D_ALL, 0, 12, NULL}, 2432 2433 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2434 R_VCS, D_ALL, 0, 12, NULL}, 2435 2436 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2437 R_VCS, D_ALL, 0, 12, NULL}, 2438 2439 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2440 2441 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2442 0, 12, NULL}, 2443 2444 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2445 0, 20, NULL}, 2446 }; 2447 2448 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2449 { 2450 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2451 } 2452 2453 /* call the cmd handler, and advance ip */ 2454 static int cmd_parser_exec(struct parser_exec_state *s) 2455 { 2456 struct intel_vgpu *vgpu = s->vgpu; 2457 struct cmd_info *info; 2458 u32 cmd; 2459 int ret = 0; 2460 2461 cmd = cmd_val(s, 0); 2462 2463 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2464 if (info == NULL) { 2465 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n", 2466 cmd, get_opcode(cmd, s->ring_id)); 2467 return -EBADRQC; 2468 } 2469 2470 s->info = info; 2471 2472 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2473 cmd_length(s), s->buf_type); 2474 2475 if (info->handler) { 2476 ret = info->handler(s); 2477 if (ret < 0) { 2478 gvt_vgpu_err("%s handler error\n", info->name); 2479 return ret; 2480 } 2481 } 2482 2483 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2484 ret = cmd_advance_default(s); 2485 if (ret) { 2486 gvt_vgpu_err("%s IP advance error\n", info->name); 2487 return ret; 2488 } 2489 } 2490 return 0; 2491 } 2492 2493 static inline bool gma_out_of_range(unsigned long gma, 2494 unsigned long gma_head, unsigned int gma_tail) 2495 { 2496 if (gma_tail >= gma_head) 2497 return (gma < gma_head) || (gma > gma_tail); 2498 else 2499 return (gma > gma_tail) && (gma < gma_head); 2500 } 2501 2502 /* Keep the consistent return type, e.g EBADRQC for unknown 2503 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2504 * works as the input of VM healthy status. 2505 */ 2506 static int command_scan(struct parser_exec_state *s, 2507 unsigned long rb_head, unsigned long rb_tail, 2508 unsigned long rb_start, unsigned long rb_len) 2509 { 2510 2511 unsigned long gma_head, gma_tail, gma_bottom; 2512 int ret = 0; 2513 struct intel_vgpu *vgpu = s->vgpu; 2514 2515 gma_head = rb_start + rb_head; 2516 gma_tail = rb_start + rb_tail; 2517 gma_bottom = rb_start + rb_len; 2518 2519 while (s->ip_gma != gma_tail) { 2520 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2521 if (!(s->ip_gma >= rb_start) || 2522 !(s->ip_gma < gma_bottom)) { 2523 gvt_vgpu_err("ip_gma %lx out of ring scope." 2524 "(base:0x%lx, bottom: 0x%lx)\n", 2525 s->ip_gma, rb_start, 2526 gma_bottom); 2527 parser_exec_state_dump(s); 2528 return -EFAULT; 2529 } 2530 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2531 gvt_vgpu_err("ip_gma %lx out of range." 2532 "base 0x%lx head 0x%lx tail 0x%lx\n", 2533 s->ip_gma, rb_start, 2534 rb_head, rb_tail); 2535 parser_exec_state_dump(s); 2536 break; 2537 } 2538 } 2539 ret = cmd_parser_exec(s); 2540 if (ret) { 2541 gvt_vgpu_err("cmd parser error\n"); 2542 parser_exec_state_dump(s); 2543 break; 2544 } 2545 } 2546 2547 return ret; 2548 } 2549 2550 static int scan_workload(struct intel_vgpu_workload *workload) 2551 { 2552 unsigned long gma_head, gma_tail, gma_bottom; 2553 struct parser_exec_state s; 2554 int ret = 0; 2555 2556 /* ring base is page aligned */ 2557 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2558 return -EINVAL; 2559 2560 gma_head = workload->rb_start + workload->rb_head; 2561 gma_tail = workload->rb_start + workload->rb_tail; 2562 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2563 2564 s.buf_type = RING_BUFFER_INSTRUCTION; 2565 s.buf_addr_type = GTT_BUFFER; 2566 s.vgpu = workload->vgpu; 2567 s.ring_id = workload->ring_id; 2568 s.ring_start = workload->rb_start; 2569 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2570 s.ring_head = gma_head; 2571 s.ring_tail = gma_tail; 2572 s.rb_va = workload->shadow_ring_buffer_va; 2573 s.workload = workload; 2574 2575 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2576 gma_head == gma_tail) 2577 return 0; 2578 2579 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2580 ret = -EINVAL; 2581 goto out; 2582 } 2583 2584 ret = ip_gma_set(&s, gma_head); 2585 if (ret) 2586 goto out; 2587 2588 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2589 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2590 2591 out: 2592 return ret; 2593 } 2594 2595 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2596 { 2597 2598 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2599 struct parser_exec_state s; 2600 int ret = 0; 2601 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2602 struct intel_vgpu_workload, 2603 wa_ctx); 2604 2605 /* ring base is page aligned */ 2606 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2607 I915_GTT_PAGE_SIZE))) 2608 return -EINVAL; 2609 2610 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2611 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2612 PAGE_SIZE); 2613 gma_head = wa_ctx->indirect_ctx.guest_gma; 2614 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2615 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2616 2617 s.buf_type = RING_BUFFER_INSTRUCTION; 2618 s.buf_addr_type = GTT_BUFFER; 2619 s.vgpu = workload->vgpu; 2620 s.ring_id = workload->ring_id; 2621 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2622 s.ring_size = ring_size; 2623 s.ring_head = gma_head; 2624 s.ring_tail = gma_tail; 2625 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2626 s.workload = workload; 2627 2628 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2629 ret = -EINVAL; 2630 goto out; 2631 } 2632 2633 ret = ip_gma_set(&s, gma_head); 2634 if (ret) 2635 goto out; 2636 2637 ret = command_scan(&s, 0, ring_tail, 2638 wa_ctx->indirect_ctx.guest_gma, ring_size); 2639 out: 2640 return ret; 2641 } 2642 2643 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2644 { 2645 struct intel_vgpu *vgpu = workload->vgpu; 2646 struct intel_vgpu_submission *s = &vgpu->submission; 2647 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2648 void *shadow_ring_buffer_va; 2649 int ring_id = workload->ring_id; 2650 int ret; 2651 2652 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2653 2654 /* calculate workload ring buffer size */ 2655 workload->rb_len = (workload->rb_tail + guest_rb_size - 2656 workload->rb_head) % guest_rb_size; 2657 2658 gma_head = workload->rb_start + workload->rb_head; 2659 gma_tail = workload->rb_start + workload->rb_tail; 2660 gma_top = workload->rb_start + guest_rb_size; 2661 2662 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2663 void *p; 2664 2665 /* realloc the new ring buffer if needed */ 2666 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2667 GFP_KERNEL); 2668 if (!p) { 2669 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2670 return -ENOMEM; 2671 } 2672 s->ring_scan_buffer[ring_id] = p; 2673 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2674 } 2675 2676 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2677 2678 /* get shadow ring buffer va */ 2679 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2680 2681 /* head > tail --> copy head <-> top */ 2682 if (gma_head > gma_tail) { 2683 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2684 gma_head, gma_top, shadow_ring_buffer_va); 2685 if (ret < 0) { 2686 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2687 return ret; 2688 } 2689 shadow_ring_buffer_va += ret; 2690 gma_head = workload->rb_start; 2691 } 2692 2693 /* copy head or start <-> tail */ 2694 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2695 shadow_ring_buffer_va); 2696 if (ret < 0) { 2697 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2698 return ret; 2699 } 2700 return 0; 2701 } 2702 2703 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2704 { 2705 int ret; 2706 struct intel_vgpu *vgpu = workload->vgpu; 2707 2708 ret = shadow_workload_ring_buffer(workload); 2709 if (ret) { 2710 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2711 return ret; 2712 } 2713 2714 ret = scan_workload(workload); 2715 if (ret) { 2716 gvt_vgpu_err("scan workload error\n"); 2717 return ret; 2718 } 2719 return 0; 2720 } 2721 2722 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2723 { 2724 int ctx_size = wa_ctx->indirect_ctx.size; 2725 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2726 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2727 struct intel_vgpu_workload, 2728 wa_ctx); 2729 struct intel_vgpu *vgpu = workload->vgpu; 2730 struct drm_i915_gem_object *obj; 2731 int ret = 0; 2732 void *map; 2733 2734 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv, 2735 roundup(ctx_size + CACHELINE_BYTES, 2736 PAGE_SIZE)); 2737 if (IS_ERR(obj)) 2738 return PTR_ERR(obj); 2739 2740 /* get the va of the shadow batch buffer */ 2741 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2742 if (IS_ERR(map)) { 2743 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2744 ret = PTR_ERR(map); 2745 goto put_obj; 2746 } 2747 2748 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2749 if (ret) { 2750 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2751 goto unmap_src; 2752 } 2753 2754 ret = copy_gma_to_hva(workload->vgpu, 2755 workload->vgpu->gtt.ggtt_mm, 2756 guest_gma, guest_gma + ctx_size, 2757 map); 2758 if (ret < 0) { 2759 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2760 goto unmap_src; 2761 } 2762 2763 wa_ctx->indirect_ctx.obj = obj; 2764 wa_ctx->indirect_ctx.shadow_va = map; 2765 return 0; 2766 2767 unmap_src: 2768 i915_gem_object_unpin_map(obj); 2769 put_obj: 2770 i915_gem_object_put(obj); 2771 return ret; 2772 } 2773 2774 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2775 { 2776 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2777 unsigned char *bb_start_sva; 2778 2779 if (!wa_ctx->per_ctx.valid) 2780 return 0; 2781 2782 per_ctx_start[0] = 0x18800001; 2783 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2784 2785 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2786 wa_ctx->indirect_ctx.size; 2787 2788 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2789 2790 return 0; 2791 } 2792 2793 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2794 { 2795 int ret; 2796 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2797 struct intel_vgpu_workload, 2798 wa_ctx); 2799 struct intel_vgpu *vgpu = workload->vgpu; 2800 2801 if (wa_ctx->indirect_ctx.size == 0) 2802 return 0; 2803 2804 ret = shadow_indirect_ctx(wa_ctx); 2805 if (ret) { 2806 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2807 return ret; 2808 } 2809 2810 combine_wa_ctx(wa_ctx); 2811 2812 ret = scan_wa_ctx(wa_ctx); 2813 if (ret) { 2814 gvt_vgpu_err("scan wa ctx error\n"); 2815 return ret; 2816 } 2817 2818 return 0; 2819 } 2820 2821 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2822 unsigned int opcode, unsigned long rings) 2823 { 2824 struct cmd_info *info = NULL; 2825 unsigned int ring; 2826 2827 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2828 info = find_cmd_entry(gvt, opcode, ring); 2829 if (info) 2830 break; 2831 } 2832 return info; 2833 } 2834 2835 static int init_cmd_table(struct intel_gvt *gvt) 2836 { 2837 int i; 2838 struct cmd_entry *e; 2839 struct cmd_info *info; 2840 unsigned int gen_type; 2841 2842 gen_type = intel_gvt_get_device_type(gvt); 2843 2844 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2845 if (!(cmd_info[i].devices & gen_type)) 2846 continue; 2847 2848 e = kzalloc(sizeof(*e), GFP_KERNEL); 2849 if (!e) 2850 return -ENOMEM; 2851 2852 e->info = &cmd_info[i]; 2853 info = find_cmd_entry_any_ring(gvt, 2854 e->info->opcode, e->info->rings); 2855 if (info) { 2856 gvt_err("%s %s duplicated\n", e->info->name, 2857 info->name); 2858 return -EEXIST; 2859 } 2860 2861 INIT_HLIST_NODE(&e->hlist); 2862 add_cmd_entry(gvt, e); 2863 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2864 e->info->name, e->info->opcode, e->info->flag, 2865 e->info->devices, e->info->rings); 2866 } 2867 return 0; 2868 } 2869 2870 static void clean_cmd_table(struct intel_gvt *gvt) 2871 { 2872 struct hlist_node *tmp; 2873 struct cmd_entry *e; 2874 int i; 2875 2876 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2877 kfree(e); 2878 2879 hash_init(gvt->cmd_table); 2880 } 2881 2882 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2883 { 2884 clean_cmd_table(gvt); 2885 } 2886 2887 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2888 { 2889 int ret; 2890 2891 ret = init_cmd_table(gvt); 2892 if (ret) { 2893 intel_gvt_clean_cmd_parser(gvt); 2894 return ret; 2895 } 2896 return 0; 2897 } 2898