1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_ring.h" 41 #include "gvt.h" 42 #include "i915_pvinfo.h" 43 #include "trace.h" 44 45 #define INVALID_OP (~0U) 46 47 #define OP_LEN_MI 9 48 #define OP_LEN_2D 10 49 #define OP_LEN_3D_MEDIA 16 50 #define OP_LEN_MFX_VC 16 51 #define OP_LEN_VEBOX 16 52 53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 54 55 struct sub_op_bits { 56 int hi; 57 int low; 58 }; 59 struct decode_info { 60 const char *name; 61 int op_len; 62 int nr_sub_op; 63 const struct sub_op_bits *sub_op; 64 }; 65 66 #define MAX_CMD_BUDGET 0x7fffffff 67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 70 71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 74 75 /* Render Command Map */ 76 77 /* MI_* command Opcode (28:23) */ 78 #define OP_MI_NOOP 0x0 79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 80 #define OP_MI_USER_INTERRUPT 0x2 81 #define OP_MI_WAIT_FOR_EVENT 0x3 82 #define OP_MI_FLUSH 0x4 83 #define OP_MI_ARB_CHECK 0x5 84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 85 #define OP_MI_REPORT_HEAD 0x7 86 #define OP_MI_ARB_ON_OFF 0x8 87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 88 #define OP_MI_BATCH_BUFFER_END 0xA 89 #define OP_MI_SUSPEND_FLUSH 0xB 90 #define OP_MI_PREDICATE 0xC /* IVB+ */ 91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 92 #define OP_MI_SET_APPID 0xE /* IVB+ */ 93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 95 #define OP_MI_DISPLAY_FLIP 0x14 96 #define OP_MI_SEMAPHORE_MBOX 0x16 97 #define OP_MI_SET_CONTEXT 0x18 98 #define OP_MI_MATH 0x1A 99 #define OP_MI_URB_CLEAR 0x19 100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 102 103 #define OP_MI_STORE_DATA_IMM 0x20 104 #define OP_MI_STORE_DATA_INDEX 0x21 105 #define OP_MI_LOAD_REGISTER_IMM 0x22 106 #define OP_MI_UPDATE_GTT 0x23 107 #define OP_MI_STORE_REGISTER_MEM 0x24 108 #define OP_MI_FLUSH_DW 0x26 109 #define OP_MI_CLFLUSH 0x27 110 #define OP_MI_REPORT_PERF_COUNT 0x28 111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 116 #define OP_MI_2E 0x2E /* BDW+ */ 117 #define OP_MI_2F 0x2F /* BDW+ */ 118 #define OP_MI_BATCH_BUFFER_START 0x31 119 120 /* Bit definition for dword 0 */ 121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 122 123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 124 125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 129 130 /* 2D command: Opcode (28:22) */ 131 #define OP_2D(x) ((2<<7) | x) 132 133 #define OP_XY_SETUP_BLT OP_2D(0x1) 134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 136 #define OP_XY_PIXEL_BLT OP_2D(0x24) 137 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 138 #define OP_XY_TEXT_BLT OP_2D(0x26) 139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 140 #define OP_XY_COLOR_BLT OP_2D(0x50) 141 #define OP_XY_PAT_BLT OP_2D(0x51) 142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 145 #define OP_XY_FULL_BLT OP_2D(0x55) 146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 157 158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 161 162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 163 164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 167 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 168 169 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 170 171 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 172 173 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 174 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 176 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 177 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 178 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 179 180 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 181 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 182 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 183 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 184 185 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 186 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 187 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 188 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 189 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 190 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 191 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 192 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 193 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 194 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 196 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 197 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 198 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 199 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 200 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 201 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 202 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 203 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 204 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 205 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 206 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 207 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 208 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 209 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 210 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 211 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 212 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 215 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 227 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 228 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 229 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 230 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 233 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 234 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 235 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 239 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 240 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 241 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 251 252 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 253 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 254 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 255 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 256 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 257 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 258 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 259 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 260 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 261 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 262 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 263 264 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 266 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 267 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 270 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 271 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 272 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 274 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 275 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 277 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 278 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 284 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 285 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 287 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 289 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 290 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 291 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 292 293 /* VCCP Command Parser */ 294 295 /* 296 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 297 * git://anongit.freedesktop.org/vaapi/intel-driver 298 * src/i965_defines.h 299 * 300 */ 301 302 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 303 (3 << 13 | \ 304 (pipeline) << 11 | \ 305 (op) << 8 | \ 306 (sub_opa) << 5 | \ 307 (sub_opb)) 308 309 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 310 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 311 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 314 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 315 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 316 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 317 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 318 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 319 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 320 321 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 322 323 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 324 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 325 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 326 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 327 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 328 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 330 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 331 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 332 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 333 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 334 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 335 336 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 337 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 338 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 339 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 340 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 341 342 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 343 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 344 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 345 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 346 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 347 348 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 349 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 350 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 351 352 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 353 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 354 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 355 356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 357 (3 << 13 | \ 358 (pipeline) << 11 | \ 359 (op) << 8 | \ 360 (sub_opa) << 5 | \ 361 (sub_opb)) 362 363 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 364 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 365 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 366 367 struct parser_exec_state; 368 369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 370 371 #define GVT_CMD_HASH_BITS 7 372 373 /* which DWords need address fix */ 374 #define ADDR_FIX_1(x1) (1 << (x1)) 375 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 376 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 377 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 378 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 379 380 #define DWORD_FIELD(dword, end, start) \ 381 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 382 383 #define OP_LENGTH_BIAS 2 384 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 385 386 static int gvt_check_valid_cmd_length(int len, int valid_len) 387 { 388 if (valid_len != len) { 389 gvt_err("len is not valid: len=%u valid_len=%u\n", 390 len, valid_len); 391 return -EFAULT; 392 } 393 return 0; 394 } 395 396 struct cmd_info { 397 const char *name; 398 u32 opcode; 399 400 #define F_LEN_MASK 3U 401 #define F_LEN_CONST 1U 402 #define F_LEN_VAR 0U 403 /* value is const although LEN maybe variable */ 404 #define F_LEN_VAR_FIXED (1<<1) 405 406 /* 407 * command has its own ip advance logic 408 * e.g. MI_BATCH_START, MI_BATCH_END 409 */ 410 #define F_IP_ADVANCE_CUSTOM (1<<2) 411 u32 flag; 412 413 #define R_RCS BIT(RCS0) 414 #define R_VCS1 BIT(VCS0) 415 #define R_VCS2 BIT(VCS1) 416 #define R_VCS (R_VCS1 | R_VCS2) 417 #define R_BCS BIT(BCS0) 418 #define R_VECS BIT(VECS0) 419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 420 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 421 u16 rings; 422 423 /* devices that support this cmd: SNB/IVB/HSW/... */ 424 u16 devices; 425 426 /* which DWords are address that need fix up. 427 * bit 0 means a 32-bit non address operand in command 428 * bit 1 means address operand, which could be 32-bit 429 * or 64-bit depending on different architectures.( 430 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 431 * No matter the address length, each address only takes 432 * one bit in the bitmap. 433 */ 434 u16 addr_bitmap; 435 436 /* flag == F_LEN_CONST : command length 437 * flag == F_LEN_VAR : length bias bits 438 * Note: length is in DWord 439 */ 440 u32 len; 441 442 parser_cmd_handler handler; 443 444 /* valid length in DWord */ 445 u32 valid_len; 446 }; 447 448 struct cmd_entry { 449 struct hlist_node hlist; 450 const struct cmd_info *info; 451 }; 452 453 enum { 454 RING_BUFFER_INSTRUCTION, 455 BATCH_BUFFER_INSTRUCTION, 456 BATCH_BUFFER_2ND_LEVEL, 457 }; 458 459 enum { 460 GTT_BUFFER, 461 PPGTT_BUFFER 462 }; 463 464 struct parser_exec_state { 465 struct intel_vgpu *vgpu; 466 const struct intel_engine_cs *engine; 467 468 int buf_type; 469 470 /* batch buffer address type */ 471 int buf_addr_type; 472 473 /* graphics memory address of ring buffer start */ 474 unsigned long ring_start; 475 unsigned long ring_size; 476 unsigned long ring_head; 477 unsigned long ring_tail; 478 479 /* instruction graphics memory address */ 480 unsigned long ip_gma; 481 482 /* mapped va of the instr_gma */ 483 void *ip_va; 484 void *rb_va; 485 486 void *ret_bb_va; 487 /* next instruction when return from batch buffer to ring buffer */ 488 unsigned long ret_ip_gma_ring; 489 490 /* next instruction when return from 2nd batch buffer to batch buffer */ 491 unsigned long ret_ip_gma_bb; 492 493 /* batch buffer address type (GTT or PPGTT) 494 * used when ret from 2nd level batch buffer 495 */ 496 int saved_buf_addr_type; 497 bool is_ctx_wa; 498 499 const struct cmd_info *info; 500 501 struct intel_vgpu_workload *workload; 502 }; 503 504 #define gmadr_dw_number(s) \ 505 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 506 507 static unsigned long bypass_scan_mask = 0; 508 509 /* ring ALL, type = 0 */ 510 static const struct sub_op_bits sub_op_mi[] = { 511 {31, 29}, 512 {28, 23}, 513 }; 514 515 static const struct decode_info decode_info_mi = { 516 "MI", 517 OP_LEN_MI, 518 ARRAY_SIZE(sub_op_mi), 519 sub_op_mi, 520 }; 521 522 /* ring RCS, command type 2 */ 523 static const struct sub_op_bits sub_op_2d[] = { 524 {31, 29}, 525 {28, 22}, 526 }; 527 528 static const struct decode_info decode_info_2d = { 529 "2D", 530 OP_LEN_2D, 531 ARRAY_SIZE(sub_op_2d), 532 sub_op_2d, 533 }; 534 535 /* ring RCS, command type 3 */ 536 static const struct sub_op_bits sub_op_3d_media[] = { 537 {31, 29}, 538 {28, 27}, 539 {26, 24}, 540 {23, 16}, 541 }; 542 543 static const struct decode_info decode_info_3d_media = { 544 "3D_Media", 545 OP_LEN_3D_MEDIA, 546 ARRAY_SIZE(sub_op_3d_media), 547 sub_op_3d_media, 548 }; 549 550 /* ring VCS, command type 3 */ 551 static const struct sub_op_bits sub_op_mfx_vc[] = { 552 {31, 29}, 553 {28, 27}, 554 {26, 24}, 555 {23, 21}, 556 {20, 16}, 557 }; 558 559 static const struct decode_info decode_info_mfx_vc = { 560 "MFX_VC", 561 OP_LEN_MFX_VC, 562 ARRAY_SIZE(sub_op_mfx_vc), 563 sub_op_mfx_vc, 564 }; 565 566 /* ring VECS, command type 3 */ 567 static const struct sub_op_bits sub_op_vebox[] = { 568 {31, 29}, 569 {28, 27}, 570 {26, 24}, 571 {23, 21}, 572 {20, 16}, 573 }; 574 575 static const struct decode_info decode_info_vebox = { 576 "VEBOX", 577 OP_LEN_VEBOX, 578 ARRAY_SIZE(sub_op_vebox), 579 sub_op_vebox, 580 }; 581 582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 583 [RCS0] = { 584 &decode_info_mi, 585 NULL, 586 NULL, 587 &decode_info_3d_media, 588 NULL, 589 NULL, 590 NULL, 591 NULL, 592 }, 593 594 [VCS0] = { 595 &decode_info_mi, 596 NULL, 597 NULL, 598 &decode_info_mfx_vc, 599 NULL, 600 NULL, 601 NULL, 602 NULL, 603 }, 604 605 [BCS0] = { 606 &decode_info_mi, 607 NULL, 608 &decode_info_2d, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 }, 615 616 [VECS0] = { 617 &decode_info_mi, 618 NULL, 619 NULL, 620 &decode_info_vebox, 621 NULL, 622 NULL, 623 NULL, 624 NULL, 625 }, 626 627 [VCS1] = { 628 &decode_info_mi, 629 NULL, 630 NULL, 631 &decode_info_mfx_vc, 632 NULL, 633 NULL, 634 NULL, 635 NULL, 636 }, 637 }; 638 639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 640 { 641 const struct decode_info *d_info; 642 643 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 644 if (d_info == NULL) 645 return INVALID_OP; 646 647 return cmd >> (32 - d_info->op_len); 648 } 649 650 static inline const struct cmd_info * 651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 652 const struct intel_engine_cs *engine) 653 { 654 struct cmd_entry *e; 655 656 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 657 if (opcode == e->info->opcode && 658 e->info->rings & engine->mask) 659 return e->info; 660 } 661 return NULL; 662 } 663 664 static inline const struct cmd_info * 665 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 666 const struct intel_engine_cs *engine) 667 { 668 u32 opcode; 669 670 opcode = get_opcode(cmd, engine); 671 if (opcode == INVALID_OP) 672 return NULL; 673 674 return find_cmd_entry(gvt, opcode, engine); 675 } 676 677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 678 { 679 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 680 } 681 682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 683 { 684 const struct decode_info *d_info; 685 int i; 686 687 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 688 if (d_info == NULL) 689 return; 690 691 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 692 cmd >> (32 - d_info->op_len), d_info->name); 693 694 for (i = 0; i < d_info->nr_sub_op; i++) 695 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 696 d_info->sub_op[i].low)); 697 698 pr_err("\n"); 699 } 700 701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 702 { 703 return s->ip_va + (index << 2); 704 } 705 706 static inline u32 cmd_val(struct parser_exec_state *s, int index) 707 { 708 return *cmd_ptr(s, index); 709 } 710 711 static void parser_exec_state_dump(struct parser_exec_state *s) 712 { 713 int cnt = 0; 714 int i; 715 716 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 717 " ring_head(%08lx) ring_tail(%08lx)\n", 718 s->vgpu->id, s->engine->name, 719 s->ring_start, s->ring_start + s->ring_size, 720 s->ring_head, s->ring_tail); 721 722 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 723 s->buf_type == RING_BUFFER_INSTRUCTION ? 724 "RING_BUFFER" : "BATCH_BUFFER", 725 s->buf_addr_type == GTT_BUFFER ? 726 "GTT" : "PPGTT", s->ip_gma); 727 728 if (s->ip_va == NULL) { 729 gvt_dbg_cmd(" ip_va(NULL)"); 730 return; 731 } 732 733 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 734 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 735 cmd_val(s, 2), cmd_val(s, 3)); 736 737 print_opcode(cmd_val(s, 0), s->engine); 738 739 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 740 741 while (cnt < 1024) { 742 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 743 for (i = 0; i < 8; i++) 744 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 745 gvt_dbg_cmd("\n"); 746 747 s->ip_va += 8 * sizeof(u32); 748 cnt += 8; 749 } 750 } 751 752 static inline void update_ip_va(struct parser_exec_state *s) 753 { 754 unsigned long len = 0; 755 756 if (WARN_ON(s->ring_head == s->ring_tail)) 757 return; 758 759 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 760 unsigned long ring_top = s->ring_start + s->ring_size; 761 762 if (s->ring_head > s->ring_tail) { 763 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 764 len = (s->ip_gma - s->ring_head); 765 else if (s->ip_gma >= s->ring_start && 766 s->ip_gma <= s->ring_tail) 767 len = (ring_top - s->ring_head) + 768 (s->ip_gma - s->ring_start); 769 } else 770 len = (s->ip_gma - s->ring_head); 771 772 s->ip_va = s->rb_va + len; 773 } else {/* shadow batch buffer */ 774 s->ip_va = s->ret_bb_va; 775 } 776 } 777 778 static inline int ip_gma_set(struct parser_exec_state *s, 779 unsigned long ip_gma) 780 { 781 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 782 783 s->ip_gma = ip_gma; 784 update_ip_va(s); 785 return 0; 786 } 787 788 static inline int ip_gma_advance(struct parser_exec_state *s, 789 unsigned int dw_len) 790 { 791 s->ip_gma += (dw_len << 2); 792 793 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 794 if (s->ip_gma >= s->ring_start + s->ring_size) 795 s->ip_gma -= s->ring_size; 796 update_ip_va(s); 797 } else { 798 s->ip_va += (dw_len << 2); 799 } 800 801 return 0; 802 } 803 804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 805 { 806 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 807 return info->len; 808 else 809 return (cmd & ((1U << info->len) - 1)) + 2; 810 return 0; 811 } 812 813 static inline int cmd_length(struct parser_exec_state *s) 814 { 815 return get_cmd_length(s->info, cmd_val(s, 0)); 816 } 817 818 /* do not remove this, some platform may need clflush here */ 819 #define patch_value(s, addr, val) do { \ 820 *addr = val; \ 821 } while (0) 822 823 static bool is_shadowed_mmio(unsigned int offset) 824 { 825 bool ret = false; 826 827 if ((offset == 0x2168) || /*BB current head register UDW */ 828 (offset == 0x2140) || /*BB current header register */ 829 (offset == 0x211c) || /*second BB header register UDW */ 830 (offset == 0x2114)) { /*second BB header register UDW */ 831 ret = true; 832 } 833 return ret; 834 } 835 836 static inline bool is_force_nonpriv_mmio(unsigned int offset) 837 { 838 return (offset >= 0x24d0 && offset < 0x2500); 839 } 840 841 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 842 unsigned int offset, unsigned int index, char *cmd) 843 { 844 struct intel_gvt *gvt = s->vgpu->gvt; 845 unsigned int data; 846 u32 ring_base; 847 u32 nopid; 848 849 if (!strcmp(cmd, "lri")) 850 data = cmd_val(s, index + 1); 851 else { 852 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 853 offset, cmd); 854 return -EINVAL; 855 } 856 857 ring_base = s->engine->mmio_base; 858 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 859 860 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 861 data != nopid) { 862 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 863 offset, data); 864 patch_value(s, cmd_ptr(s, index), nopid); 865 return 0; 866 } 867 return 0; 868 } 869 870 static inline bool is_mocs_mmio(unsigned int offset) 871 { 872 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 873 ((offset >= 0xb020) && (offset <= 0xb0a0)); 874 } 875 876 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 877 unsigned int offset, unsigned int index) 878 { 879 if (!is_mocs_mmio(offset)) 880 return -EINVAL; 881 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 882 return 0; 883 } 884 885 static int is_cmd_update_pdps(unsigned int offset, 886 struct parser_exec_state *s) 887 { 888 u32 base = s->workload->engine->mmio_base; 889 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 890 } 891 892 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 893 unsigned int offset, unsigned int index) 894 { 895 struct intel_vgpu *vgpu = s->vgpu; 896 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 897 struct intel_vgpu_mm *mm; 898 u64 pdps[GEN8_3LVL_PDPES]; 899 900 if (shadow_mm->ppgtt_mm.root_entry_type == 901 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 902 pdps[0] = (u64)cmd_val(s, 2) << 32; 903 pdps[0] |= cmd_val(s, 4); 904 905 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 906 if (!mm) { 907 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 908 return -EINVAL; 909 } 910 intel_vgpu_mm_get(mm); 911 list_add_tail(&mm->ppgtt_mm.link, 912 &s->workload->lri_shadow_mm); 913 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 914 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 915 } else { 916 /* Currently all guests use PML4 table and now can't 917 * have a guest with 3-level table but uses LRI for 918 * PPGTT update. So this is simply un-testable. */ 919 GEM_BUG_ON(1); 920 gvt_vgpu_err("invalid shared shadow vm type\n"); 921 return -EINVAL; 922 } 923 return 0; 924 } 925 926 static int cmd_reg_handler(struct parser_exec_state *s, 927 unsigned int offset, unsigned int index, char *cmd) 928 { 929 struct intel_vgpu *vgpu = s->vgpu; 930 struct intel_gvt *gvt = vgpu->gvt; 931 u32 ctx_sr_ctl; 932 933 if (offset + 4 > gvt->device_info.mmio_size) { 934 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 935 cmd, offset); 936 return -EFAULT; 937 } 938 939 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 940 gvt_vgpu_err("%s access to non-render register (%x)\n", 941 cmd, offset); 942 return -EBADRQC; 943 } 944 945 if (is_shadowed_mmio(offset)) { 946 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 947 return 0; 948 } 949 950 if (is_mocs_mmio(offset) && 951 mocs_cmd_reg_handler(s, offset, index)) 952 return -EINVAL; 953 954 if (is_force_nonpriv_mmio(offset) && 955 force_nonpriv_reg_handler(s, offset, index, cmd)) 956 return -EPERM; 957 958 if (offset == i915_mmio_reg_offset(DERRMR) || 959 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 960 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 961 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 962 } 963 964 if (is_cmd_update_pdps(offset, s) && 965 cmd_pdp_mmio_update_handler(s, offset, index)) 966 return -EINVAL; 967 968 /* TODO 969 * In order to let workload with inhibit context to generate 970 * correct image data into memory, vregs values will be loaded to 971 * hw via LRIs in the workload with inhibit context. But as 972 * indirect context is loaded prior to LRIs in workload, we don't 973 * want reg values specified in indirect context overwritten by 974 * LRIs in workloads. So, when scanning an indirect context, we 975 * update reg values in it into vregs, so LRIs in workload with 976 * inhibit context will restore with correct values 977 */ 978 if (IS_GEN(s->engine->i915, 9) && 979 intel_gvt_mmio_is_in_ctx(gvt, offset) && 980 !strncmp(cmd, "lri", 3)) { 981 intel_gvt_hypervisor_read_gpa(s->vgpu, 982 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 983 /* check inhibit context */ 984 if (ctx_sr_ctl & 1) { 985 u32 data = cmd_val(s, index + 1); 986 987 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 988 intel_vgpu_mask_mmio_write(vgpu, 989 offset, &data, 4); 990 else 991 vgpu_vreg(vgpu, offset) = data; 992 } 993 } 994 995 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 996 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 997 return 0; 998 } 999 1000 #define cmd_reg(s, i) \ 1001 (cmd_val(s, i) & GENMASK(22, 2)) 1002 1003 #define cmd_reg_inhibit(s, i) \ 1004 (cmd_val(s, i) & GENMASK(22, 18)) 1005 1006 #define cmd_gma(s, i) \ 1007 (cmd_val(s, i) & GENMASK(31, 2)) 1008 1009 #define cmd_gma_hi(s, i) \ 1010 (cmd_val(s, i) & GENMASK(15, 0)) 1011 1012 static int cmd_handler_lri(struct parser_exec_state *s) 1013 { 1014 int i, ret = 0; 1015 int cmd_len = cmd_length(s); 1016 1017 for (i = 1; i < cmd_len; i += 2) { 1018 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1019 if (s->engine->id == BCS0 && 1020 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1021 ret |= 0; 1022 else 1023 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1024 } 1025 if (ret) 1026 break; 1027 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1028 if (ret) 1029 break; 1030 } 1031 return ret; 1032 } 1033 1034 static int cmd_handler_lrr(struct parser_exec_state *s) 1035 { 1036 int i, ret = 0; 1037 int cmd_len = cmd_length(s); 1038 1039 for (i = 1; i < cmd_len; i += 2) { 1040 if (IS_BROADWELL(s->engine->i915)) 1041 ret |= ((cmd_reg_inhibit(s, i) || 1042 (cmd_reg_inhibit(s, i + 1)))) ? 1043 -EBADRQC : 0; 1044 if (ret) 1045 break; 1046 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1047 if (ret) 1048 break; 1049 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1050 if (ret) 1051 break; 1052 } 1053 return ret; 1054 } 1055 1056 static inline int cmd_address_audit(struct parser_exec_state *s, 1057 unsigned long guest_gma, int op_size, bool index_mode); 1058 1059 static int cmd_handler_lrm(struct parser_exec_state *s) 1060 { 1061 struct intel_gvt *gvt = s->vgpu->gvt; 1062 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1063 unsigned long gma; 1064 int i, ret = 0; 1065 int cmd_len = cmd_length(s); 1066 1067 for (i = 1; i < cmd_len;) { 1068 if (IS_BROADWELL(s->engine->i915)) 1069 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1070 if (ret) 1071 break; 1072 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1073 if (ret) 1074 break; 1075 if (cmd_val(s, 0) & (1 << 22)) { 1076 gma = cmd_gma(s, i + 1); 1077 if (gmadr_bytes == 8) 1078 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1079 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1080 if (ret) 1081 break; 1082 } 1083 i += gmadr_dw_number(s) + 1; 1084 } 1085 return ret; 1086 } 1087 1088 static int cmd_handler_srm(struct parser_exec_state *s) 1089 { 1090 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1091 unsigned long gma; 1092 int i, ret = 0; 1093 int cmd_len = cmd_length(s); 1094 1095 for (i = 1; i < cmd_len;) { 1096 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1097 if (ret) 1098 break; 1099 if (cmd_val(s, 0) & (1 << 22)) { 1100 gma = cmd_gma(s, i + 1); 1101 if (gmadr_bytes == 8) 1102 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1103 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1104 if (ret) 1105 break; 1106 } 1107 i += gmadr_dw_number(s) + 1; 1108 } 1109 return ret; 1110 } 1111 1112 struct cmd_interrupt_event { 1113 int pipe_control_notify; 1114 int mi_flush_dw; 1115 int mi_user_interrupt; 1116 }; 1117 1118 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1119 [RCS0] = { 1120 .pipe_control_notify = RCS_PIPE_CONTROL, 1121 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1122 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1123 }, 1124 [BCS0] = { 1125 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1126 .mi_flush_dw = BCS_MI_FLUSH_DW, 1127 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1128 }, 1129 [VCS0] = { 1130 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1131 .mi_flush_dw = VCS_MI_FLUSH_DW, 1132 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1133 }, 1134 [VCS1] = { 1135 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1136 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1137 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1138 }, 1139 [VECS0] = { 1140 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1141 .mi_flush_dw = VECS_MI_FLUSH_DW, 1142 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1143 }, 1144 }; 1145 1146 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1147 { 1148 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1149 unsigned long gma; 1150 bool index_mode = false; 1151 unsigned int post_sync; 1152 int ret = 0; 1153 u32 hws_pga, val; 1154 1155 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1156 1157 /* LRI post sync */ 1158 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1159 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1160 /* post sync */ 1161 else if (post_sync) { 1162 if (post_sync == 2) 1163 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1164 else if (post_sync == 3) 1165 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1166 else if (post_sync == 1) { 1167 /* check ggtt*/ 1168 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1169 gma = cmd_val(s, 2) & GENMASK(31, 3); 1170 if (gmadr_bytes == 8) 1171 gma |= (cmd_gma_hi(s, 3)) << 32; 1172 /* Store Data Index */ 1173 if (cmd_val(s, 1) & (1 << 21)) 1174 index_mode = true; 1175 ret |= cmd_address_audit(s, gma, sizeof(u64), 1176 index_mode); 1177 if (ret) 1178 return ret; 1179 if (index_mode) { 1180 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1181 gma = hws_pga + gma; 1182 patch_value(s, cmd_ptr(s, 2), gma); 1183 val = cmd_val(s, 1) & (~(1 << 21)); 1184 patch_value(s, cmd_ptr(s, 1), val); 1185 } 1186 } 1187 } 1188 } 1189 1190 if (ret) 1191 return ret; 1192 1193 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1194 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1195 s->workload->pending_events); 1196 return 0; 1197 } 1198 1199 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1200 { 1201 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1202 s->workload->pending_events); 1203 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1204 return 0; 1205 } 1206 1207 static int cmd_advance_default(struct parser_exec_state *s) 1208 { 1209 return ip_gma_advance(s, cmd_length(s)); 1210 } 1211 1212 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1213 { 1214 int ret; 1215 1216 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1217 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1218 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1219 s->buf_addr_type = s->saved_buf_addr_type; 1220 } else { 1221 s->buf_type = RING_BUFFER_INSTRUCTION; 1222 s->buf_addr_type = GTT_BUFFER; 1223 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1224 s->ret_ip_gma_ring -= s->ring_size; 1225 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1226 } 1227 return ret; 1228 } 1229 1230 struct mi_display_flip_command_info { 1231 int pipe; 1232 int plane; 1233 int event; 1234 i915_reg_t stride_reg; 1235 i915_reg_t ctrl_reg; 1236 i915_reg_t surf_reg; 1237 u64 stride_val; 1238 u64 tile_val; 1239 u64 surf_val; 1240 bool async_flip; 1241 }; 1242 1243 struct plane_code_mapping { 1244 int pipe; 1245 int plane; 1246 int event; 1247 }; 1248 1249 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1250 struct mi_display_flip_command_info *info) 1251 { 1252 struct drm_i915_private *dev_priv = s->engine->i915; 1253 struct plane_code_mapping gen8_plane_code[] = { 1254 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1255 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1256 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1257 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1258 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1259 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1260 }; 1261 u32 dword0, dword1, dword2; 1262 u32 v; 1263 1264 dword0 = cmd_val(s, 0); 1265 dword1 = cmd_val(s, 1); 1266 dword2 = cmd_val(s, 2); 1267 1268 v = (dword0 & GENMASK(21, 19)) >> 19; 1269 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1270 return -EBADRQC; 1271 1272 info->pipe = gen8_plane_code[v].pipe; 1273 info->plane = gen8_plane_code[v].plane; 1274 info->event = gen8_plane_code[v].event; 1275 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1276 info->tile_val = (dword1 & 0x1); 1277 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1278 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1279 1280 if (info->plane == PLANE_A) { 1281 info->ctrl_reg = DSPCNTR(info->pipe); 1282 info->stride_reg = DSPSTRIDE(info->pipe); 1283 info->surf_reg = DSPSURF(info->pipe); 1284 } else if (info->plane == PLANE_B) { 1285 info->ctrl_reg = SPRCTL(info->pipe); 1286 info->stride_reg = SPRSTRIDE(info->pipe); 1287 info->surf_reg = SPRSURF(info->pipe); 1288 } else { 1289 drm_WARN_ON(&dev_priv->drm, 1); 1290 return -EBADRQC; 1291 } 1292 return 0; 1293 } 1294 1295 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1296 struct mi_display_flip_command_info *info) 1297 { 1298 struct drm_i915_private *dev_priv = s->engine->i915; 1299 struct intel_vgpu *vgpu = s->vgpu; 1300 u32 dword0 = cmd_val(s, 0); 1301 u32 dword1 = cmd_val(s, 1); 1302 u32 dword2 = cmd_val(s, 2); 1303 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1304 1305 info->plane = PRIMARY_PLANE; 1306 1307 switch (plane) { 1308 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1309 info->pipe = PIPE_A; 1310 info->event = PRIMARY_A_FLIP_DONE; 1311 break; 1312 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1313 info->pipe = PIPE_B; 1314 info->event = PRIMARY_B_FLIP_DONE; 1315 break; 1316 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1317 info->pipe = PIPE_C; 1318 info->event = PRIMARY_C_FLIP_DONE; 1319 break; 1320 1321 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1322 info->pipe = PIPE_A; 1323 info->event = SPRITE_A_FLIP_DONE; 1324 info->plane = SPRITE_PLANE; 1325 break; 1326 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1327 info->pipe = PIPE_B; 1328 info->event = SPRITE_B_FLIP_DONE; 1329 info->plane = SPRITE_PLANE; 1330 break; 1331 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1332 info->pipe = PIPE_C; 1333 info->event = SPRITE_C_FLIP_DONE; 1334 info->plane = SPRITE_PLANE; 1335 break; 1336 1337 default: 1338 gvt_vgpu_err("unknown plane code %d\n", plane); 1339 return -EBADRQC; 1340 } 1341 1342 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1343 info->tile_val = (dword1 & GENMASK(2, 0)); 1344 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1345 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1346 1347 info->ctrl_reg = DSPCNTR(info->pipe); 1348 info->stride_reg = DSPSTRIDE(info->pipe); 1349 info->surf_reg = DSPSURF(info->pipe); 1350 1351 return 0; 1352 } 1353 1354 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1355 struct mi_display_flip_command_info *info) 1356 { 1357 u32 stride, tile; 1358 1359 if (!info->async_flip) 1360 return 0; 1361 1362 if (INTEL_GEN(s->engine->i915) >= 9) { 1363 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1364 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1365 GENMASK(12, 10)) >> 10; 1366 } else { 1367 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1368 GENMASK(15, 6)) >> 6; 1369 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1370 } 1371 1372 if (stride != info->stride_val) 1373 gvt_dbg_cmd("cannot change stride during async flip\n"); 1374 1375 if (tile != info->tile_val) 1376 gvt_dbg_cmd("cannot change tile during async flip\n"); 1377 1378 return 0; 1379 } 1380 1381 static int gen8_update_plane_mmio_from_mi_display_flip( 1382 struct parser_exec_state *s, 1383 struct mi_display_flip_command_info *info) 1384 { 1385 struct drm_i915_private *dev_priv = s->engine->i915; 1386 struct intel_vgpu *vgpu = s->vgpu; 1387 1388 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1389 info->surf_val << 12); 1390 if (INTEL_GEN(dev_priv) >= 9) { 1391 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1392 info->stride_val); 1393 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1394 info->tile_val << 10); 1395 } else { 1396 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1397 info->stride_val << 6); 1398 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1399 info->tile_val << 10); 1400 } 1401 1402 if (info->plane == PLANE_PRIMARY) 1403 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1404 1405 if (info->async_flip) 1406 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1407 else 1408 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1409 1410 return 0; 1411 } 1412 1413 static int decode_mi_display_flip(struct parser_exec_state *s, 1414 struct mi_display_flip_command_info *info) 1415 { 1416 if (IS_BROADWELL(s->engine->i915)) 1417 return gen8_decode_mi_display_flip(s, info); 1418 if (INTEL_GEN(s->engine->i915) >= 9) 1419 return skl_decode_mi_display_flip(s, info); 1420 1421 return -ENODEV; 1422 } 1423 1424 static int check_mi_display_flip(struct parser_exec_state *s, 1425 struct mi_display_flip_command_info *info) 1426 { 1427 return gen8_check_mi_display_flip(s, info); 1428 } 1429 1430 static int update_plane_mmio_from_mi_display_flip( 1431 struct parser_exec_state *s, 1432 struct mi_display_flip_command_info *info) 1433 { 1434 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1435 } 1436 1437 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1438 { 1439 struct mi_display_flip_command_info info; 1440 struct intel_vgpu *vgpu = s->vgpu; 1441 int ret; 1442 int i; 1443 int len = cmd_length(s); 1444 u32 valid_len = CMD_LEN(1); 1445 1446 /* Flip Type == Stereo 3D Flip */ 1447 if (DWORD_FIELD(2, 1, 0) == 2) 1448 valid_len++; 1449 ret = gvt_check_valid_cmd_length(cmd_length(s), 1450 valid_len); 1451 if (ret) 1452 return ret; 1453 1454 ret = decode_mi_display_flip(s, &info); 1455 if (ret) { 1456 gvt_vgpu_err("fail to decode MI display flip command\n"); 1457 return ret; 1458 } 1459 1460 ret = check_mi_display_flip(s, &info); 1461 if (ret) { 1462 gvt_vgpu_err("invalid MI display flip command\n"); 1463 return ret; 1464 } 1465 1466 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1467 if (ret) { 1468 gvt_vgpu_err("fail to update plane mmio\n"); 1469 return ret; 1470 } 1471 1472 for (i = 0; i < len; i++) 1473 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1474 return 0; 1475 } 1476 1477 static bool is_wait_for_flip_pending(u32 cmd) 1478 { 1479 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1480 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1481 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1482 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1483 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1484 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1485 } 1486 1487 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1488 { 1489 u32 cmd = cmd_val(s, 0); 1490 1491 if (!is_wait_for_flip_pending(cmd)) 1492 return 0; 1493 1494 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1495 return 0; 1496 } 1497 1498 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1499 { 1500 unsigned long addr; 1501 unsigned long gma_high, gma_low; 1502 struct intel_vgpu *vgpu = s->vgpu; 1503 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1504 1505 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1506 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1507 return INTEL_GVT_INVALID_ADDR; 1508 } 1509 1510 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1511 if (gmadr_bytes == 4) { 1512 addr = gma_low; 1513 } else { 1514 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1515 addr = (((unsigned long)gma_high) << 32) | gma_low; 1516 } 1517 return addr; 1518 } 1519 1520 static inline int cmd_address_audit(struct parser_exec_state *s, 1521 unsigned long guest_gma, int op_size, bool index_mode) 1522 { 1523 struct intel_vgpu *vgpu = s->vgpu; 1524 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1525 int i; 1526 int ret; 1527 1528 if (op_size > max_surface_size) { 1529 gvt_vgpu_err("command address audit fail name %s\n", 1530 s->info->name); 1531 return -EFAULT; 1532 } 1533 1534 if (index_mode) { 1535 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1536 ret = -EFAULT; 1537 goto err; 1538 } 1539 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1540 ret = -EFAULT; 1541 goto err; 1542 } 1543 1544 return 0; 1545 1546 err: 1547 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1548 s->info->name, guest_gma, op_size); 1549 1550 pr_err("cmd dump: "); 1551 for (i = 0; i < cmd_length(s); i++) { 1552 if (!(i % 4)) 1553 pr_err("\n%08x ", cmd_val(s, i)); 1554 else 1555 pr_err("%08x ", cmd_val(s, i)); 1556 } 1557 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1558 vgpu->id, 1559 vgpu_aperture_gmadr_base(vgpu), 1560 vgpu_aperture_gmadr_end(vgpu), 1561 vgpu_hidden_gmadr_base(vgpu), 1562 vgpu_hidden_gmadr_end(vgpu)); 1563 return ret; 1564 } 1565 1566 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1567 { 1568 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1569 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1570 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1571 unsigned long gma, gma_low, gma_high; 1572 u32 valid_len = CMD_LEN(2); 1573 int ret = 0; 1574 1575 /* check ppggt */ 1576 if (!(cmd_val(s, 0) & (1 << 22))) 1577 return 0; 1578 1579 /* check if QWORD */ 1580 if (DWORD_FIELD(0, 21, 21)) 1581 valid_len++; 1582 ret = gvt_check_valid_cmd_length(cmd_length(s), 1583 valid_len); 1584 if (ret) 1585 return ret; 1586 1587 gma = cmd_val(s, 2) & GENMASK(31, 2); 1588 1589 if (gmadr_bytes == 8) { 1590 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1591 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1592 gma = (gma_high << 32) | gma_low; 1593 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1594 } 1595 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1596 return ret; 1597 } 1598 1599 static inline int unexpected_cmd(struct parser_exec_state *s) 1600 { 1601 struct intel_vgpu *vgpu = s->vgpu; 1602 1603 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1604 1605 return -EBADRQC; 1606 } 1607 1608 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1609 { 1610 return unexpected_cmd(s); 1611 } 1612 1613 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1614 { 1615 return unexpected_cmd(s); 1616 } 1617 1618 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1619 { 1620 return unexpected_cmd(s); 1621 } 1622 1623 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1624 { 1625 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1626 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1627 sizeof(u32); 1628 unsigned long gma, gma_high; 1629 u32 valid_len = CMD_LEN(1); 1630 int ret = 0; 1631 1632 if (!(cmd_val(s, 0) & (1 << 22))) 1633 return ret; 1634 1635 /* check inline data */ 1636 if (cmd_val(s, 0) & BIT(18)) 1637 valid_len = CMD_LEN(9); 1638 ret = gvt_check_valid_cmd_length(cmd_length(s), 1639 valid_len); 1640 if (ret) 1641 return ret; 1642 1643 gma = cmd_val(s, 1) & GENMASK(31, 2); 1644 if (gmadr_bytes == 8) { 1645 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1646 gma = (gma_high << 32) | gma; 1647 } 1648 ret = cmd_address_audit(s, gma, op_size, false); 1649 return ret; 1650 } 1651 1652 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1653 { 1654 return unexpected_cmd(s); 1655 } 1656 1657 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1658 { 1659 return unexpected_cmd(s); 1660 } 1661 1662 static int cmd_handler_mi_conditional_batch_buffer_end( 1663 struct parser_exec_state *s) 1664 { 1665 return unexpected_cmd(s); 1666 } 1667 1668 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1669 { 1670 return unexpected_cmd(s); 1671 } 1672 1673 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1674 { 1675 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1676 unsigned long gma; 1677 bool index_mode = false; 1678 int ret = 0; 1679 u32 hws_pga, val; 1680 u32 valid_len = CMD_LEN(2); 1681 1682 ret = gvt_check_valid_cmd_length(cmd_length(s), 1683 valid_len); 1684 if (ret) { 1685 /* Check again for Qword */ 1686 ret = gvt_check_valid_cmd_length(cmd_length(s), 1687 ++valid_len); 1688 return ret; 1689 } 1690 1691 /* Check post-sync and ppgtt bit */ 1692 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1693 gma = cmd_val(s, 1) & GENMASK(31, 3); 1694 if (gmadr_bytes == 8) 1695 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1696 /* Store Data Index */ 1697 if (cmd_val(s, 0) & (1 << 21)) 1698 index_mode = true; 1699 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1700 if (ret) 1701 return ret; 1702 if (index_mode) { 1703 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1704 gma = hws_pga + gma; 1705 patch_value(s, cmd_ptr(s, 1), gma); 1706 val = cmd_val(s, 0) & (~(1 << 21)); 1707 patch_value(s, cmd_ptr(s, 0), val); 1708 } 1709 } 1710 /* Check notify bit */ 1711 if ((cmd_val(s, 0) & (1 << 8))) 1712 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1713 s->workload->pending_events); 1714 return ret; 1715 } 1716 1717 static void addr_type_update_snb(struct parser_exec_state *s) 1718 { 1719 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1720 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1721 s->buf_addr_type = PPGTT_BUFFER; 1722 } 1723 } 1724 1725 1726 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1727 unsigned long gma, unsigned long end_gma, void *va) 1728 { 1729 unsigned long copy_len, offset; 1730 unsigned long len = 0; 1731 unsigned long gpa; 1732 1733 while (gma != end_gma) { 1734 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1735 if (gpa == INTEL_GVT_INVALID_ADDR) { 1736 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1737 return -EFAULT; 1738 } 1739 1740 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1741 1742 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1743 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1744 1745 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1746 1747 len += copy_len; 1748 gma += copy_len; 1749 } 1750 return len; 1751 } 1752 1753 1754 /* 1755 * Check whether a batch buffer needs to be scanned. Currently 1756 * the only criteria is based on privilege. 1757 */ 1758 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1759 { 1760 /* Decide privilege based on address space */ 1761 if (cmd_val(s, 0) & BIT(8) && 1762 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1763 return 0; 1764 1765 return 1; 1766 } 1767 1768 static const char *repr_addr_type(unsigned int type) 1769 { 1770 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1771 } 1772 1773 static int find_bb_size(struct parser_exec_state *s, 1774 unsigned long *bb_size, 1775 unsigned long *bb_end_cmd_offset) 1776 { 1777 unsigned long gma = 0; 1778 const struct cmd_info *info; 1779 u32 cmd_len = 0; 1780 bool bb_end = false; 1781 struct intel_vgpu *vgpu = s->vgpu; 1782 u32 cmd; 1783 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1784 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1785 1786 *bb_size = 0; 1787 *bb_end_cmd_offset = 0; 1788 1789 /* get the start gm address of the batch buffer */ 1790 gma = get_gma_bb_from_cmd(s, 1); 1791 if (gma == INTEL_GVT_INVALID_ADDR) 1792 return -EFAULT; 1793 1794 cmd = cmd_val(s, 0); 1795 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1796 if (info == NULL) { 1797 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1798 cmd, get_opcode(cmd, s->engine), 1799 repr_addr_type(s->buf_addr_type), 1800 s->engine->name, s->workload); 1801 return -EBADRQC; 1802 } 1803 do { 1804 if (copy_gma_to_hva(s->vgpu, mm, 1805 gma, gma + 4, &cmd) < 0) 1806 return -EFAULT; 1807 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1808 if (info == NULL) { 1809 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1810 cmd, get_opcode(cmd, s->engine), 1811 repr_addr_type(s->buf_addr_type), 1812 s->engine->name, s->workload); 1813 return -EBADRQC; 1814 } 1815 1816 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1817 bb_end = true; 1818 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1819 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1820 /* chained batch buffer */ 1821 bb_end = true; 1822 } 1823 1824 if (bb_end) 1825 *bb_end_cmd_offset = *bb_size; 1826 1827 cmd_len = get_cmd_length(info, cmd) << 2; 1828 *bb_size += cmd_len; 1829 gma += cmd_len; 1830 } while (!bb_end); 1831 1832 return 0; 1833 } 1834 1835 static int audit_bb_end(struct parser_exec_state *s, void *va) 1836 { 1837 struct intel_vgpu *vgpu = s->vgpu; 1838 u32 cmd = *(u32 *)va; 1839 const struct cmd_info *info; 1840 1841 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1842 if (info == NULL) { 1843 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1844 cmd, get_opcode(cmd, s->engine), 1845 repr_addr_type(s->buf_addr_type), 1846 s->engine->name, s->workload); 1847 return -EBADRQC; 1848 } 1849 1850 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1851 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1852 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1853 return 0; 1854 1855 return -EBADRQC; 1856 } 1857 1858 static int perform_bb_shadow(struct parser_exec_state *s) 1859 { 1860 struct intel_vgpu *vgpu = s->vgpu; 1861 struct intel_vgpu_shadow_bb *bb; 1862 unsigned long gma = 0; 1863 unsigned long bb_size; 1864 unsigned long bb_end_cmd_offset; 1865 int ret = 0; 1866 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1867 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1868 unsigned long start_offset = 0; 1869 1870 /* get the start gm address of the batch buffer */ 1871 gma = get_gma_bb_from_cmd(s, 1); 1872 if (gma == INTEL_GVT_INVALID_ADDR) 1873 return -EFAULT; 1874 1875 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1876 if (ret) 1877 return ret; 1878 1879 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1880 if (!bb) 1881 return -ENOMEM; 1882 1883 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1884 1885 /* the start_offset stores the batch buffer's start gma's 1886 * offset relative to page boundary. so for non-privileged batch 1887 * buffer, the shadowed gem object holds exactly the same page 1888 * layout as original gem object. This is for the convience of 1889 * replacing the whole non-privilged batch buffer page to this 1890 * shadowed one in PPGTT at the same gma address. (this replacing 1891 * action is not implemented yet now, but may be necessary in 1892 * future). 1893 * for prileged batch buffer, we just change start gma address to 1894 * that of shadowed page. 1895 */ 1896 if (bb->ppgtt) 1897 start_offset = gma & ~I915_GTT_PAGE_MASK; 1898 1899 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1900 round_up(bb_size + start_offset, 1901 PAGE_SIZE)); 1902 if (IS_ERR(bb->obj)) { 1903 ret = PTR_ERR(bb->obj); 1904 goto err_free_bb; 1905 } 1906 1907 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1908 if (IS_ERR(bb->va)) { 1909 ret = PTR_ERR(bb->va); 1910 goto err_free_obj; 1911 } 1912 1913 ret = copy_gma_to_hva(s->vgpu, mm, 1914 gma, gma + bb_size, 1915 bb->va + start_offset); 1916 if (ret < 0) { 1917 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1918 ret = -EFAULT; 1919 goto err_unmap; 1920 } 1921 1922 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1923 if (ret) 1924 goto err_unmap; 1925 1926 INIT_LIST_HEAD(&bb->list); 1927 list_add(&bb->list, &s->workload->shadow_bb); 1928 1929 bb->bb_start_cmd_va = s->ip_va; 1930 1931 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1932 bb->bb_offset = s->ip_va - s->rb_va; 1933 else 1934 bb->bb_offset = 0; 1935 1936 /* 1937 * ip_va saves the virtual address of the shadow batch buffer, while 1938 * ip_gma saves the graphics address of the original batch buffer. 1939 * As the shadow batch buffer is just a copy from the originial one, 1940 * it should be right to use shadow batch buffer'va and original batch 1941 * buffer's gma in pair. After all, we don't want to pin the shadow 1942 * buffer here (too early). 1943 */ 1944 s->ip_va = bb->va + start_offset; 1945 s->ip_gma = gma; 1946 return 0; 1947 err_unmap: 1948 i915_gem_object_unpin_map(bb->obj); 1949 err_free_obj: 1950 i915_gem_object_put(bb->obj); 1951 err_free_bb: 1952 kfree(bb); 1953 return ret; 1954 } 1955 1956 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1957 { 1958 bool second_level; 1959 int ret = 0; 1960 struct intel_vgpu *vgpu = s->vgpu; 1961 1962 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1963 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1964 return -EFAULT; 1965 } 1966 1967 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1968 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1969 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1970 return -EFAULT; 1971 } 1972 1973 s->saved_buf_addr_type = s->buf_addr_type; 1974 addr_type_update_snb(s); 1975 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1976 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1977 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1978 } else if (second_level) { 1979 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1980 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1981 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1982 } 1983 1984 if (batch_buffer_needs_scan(s)) { 1985 ret = perform_bb_shadow(s); 1986 if (ret < 0) 1987 gvt_vgpu_err("invalid shadow batch buffer\n"); 1988 } else { 1989 /* emulate a batch buffer end to do return right */ 1990 ret = cmd_handler_mi_batch_buffer_end(s); 1991 if (ret < 0) 1992 return ret; 1993 } 1994 return ret; 1995 } 1996 1997 static int mi_noop_index; 1998 1999 static const struct cmd_info cmd_info[] = { 2000 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2001 2002 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2003 0, 1, NULL}, 2004 2005 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2006 0, 1, cmd_handler_mi_user_interrupt}, 2007 2008 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2009 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2010 2011 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2012 2013 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2014 NULL}, 2015 2016 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2017 NULL}, 2018 2019 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2020 NULL}, 2021 2022 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2023 NULL}, 2024 2025 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2026 D_ALL, 0, 1, NULL}, 2027 2028 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2029 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2030 cmd_handler_mi_batch_buffer_end}, 2031 2032 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2033 0, 1, NULL}, 2034 2035 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2036 NULL}, 2037 2038 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2039 D_ALL, 0, 1, NULL}, 2040 2041 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2042 NULL}, 2043 2044 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2045 NULL}, 2046 2047 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2048 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2049 2050 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2051 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2052 2053 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2054 2055 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2056 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2057 2058 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2059 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2060 NULL, CMD_LEN(0)}, 2061 2062 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2063 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2064 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2065 2066 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2067 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2068 2069 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2070 0, 8, cmd_handler_mi_store_data_index}, 2071 2072 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2073 D_ALL, 0, 8, cmd_handler_lri}, 2074 2075 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2076 cmd_handler_mi_update_gtt}, 2077 2078 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2079 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2080 cmd_handler_srm, CMD_LEN(2)}, 2081 2082 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2083 cmd_handler_mi_flush_dw}, 2084 2085 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2086 10, cmd_handler_mi_clflush}, 2087 2088 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2089 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2090 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2091 2092 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2093 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2094 cmd_handler_lrm, CMD_LEN(2)}, 2095 2096 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2097 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2098 cmd_handler_lrr, CMD_LEN(1)}, 2099 2100 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2101 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2102 8, NULL, CMD_LEN(2)}, 2103 2104 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2105 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2106 2107 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2108 ADDR_FIX_1(2), 8, NULL}, 2109 2110 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2111 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2112 2113 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2114 8, cmd_handler_mi_op_2f}, 2115 2116 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2117 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2118 cmd_handler_mi_batch_buffer_start}, 2119 2120 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2121 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2122 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2123 2124 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2125 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2126 2127 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2128 ADDR_FIX_2(4, 7), 8, NULL}, 2129 2130 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2131 0, 8, NULL}, 2132 2133 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2134 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2135 2136 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2137 2138 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2139 0, 8, NULL}, 2140 2141 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2142 ADDR_FIX_1(3), 8, NULL}, 2143 2144 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2145 D_ALL, 0, 8, NULL}, 2146 2147 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2148 ADDR_FIX_1(4), 8, NULL}, 2149 2150 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2151 ADDR_FIX_2(4, 5), 8, NULL}, 2152 2153 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2154 ADDR_FIX_1(4), 8, NULL}, 2155 2156 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2157 ADDR_FIX_2(4, 7), 8, NULL}, 2158 2159 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2160 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2161 2162 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2163 2164 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2165 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2166 2167 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2168 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2169 2170 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2171 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2172 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2173 2174 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2175 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2176 2177 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2178 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2179 2180 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2181 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2182 2183 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2184 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2185 2186 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2187 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2188 2189 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2190 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2191 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2192 2193 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2194 ADDR_FIX_2(4, 5), 8, NULL}, 2195 2196 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2197 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2198 2199 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2200 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2201 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2202 2203 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2204 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2205 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2206 2207 {"3DSTATE_BLEND_STATE_POINTERS", 2208 OP_3DSTATE_BLEND_STATE_POINTERS, 2209 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2210 2211 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2212 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2213 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2214 2215 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2216 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2217 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2218 2219 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2220 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2221 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2222 2223 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2224 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2225 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2226 2227 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2228 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2229 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2230 2231 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2232 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2233 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2234 2235 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2236 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2240 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2244 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2246 2247 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2248 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2250 2251 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2252 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2256 0, 8, NULL}, 2257 2258 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2259 0, 8, NULL}, 2260 2261 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2262 0, 8, NULL}, 2263 2264 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2265 0, 8, NULL}, 2266 2267 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2272 2273 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2281 2282 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2284 2285 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2287 2288 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2289 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2290 2291 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2292 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2293 2294 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2295 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2296 2297 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2298 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2299 2300 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2301 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2302 2303 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2304 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2305 2306 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2307 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2308 2309 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2310 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2311 2312 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2313 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2314 2315 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2316 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2317 2318 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2319 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2320 2321 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2322 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2323 2324 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2325 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2326 2327 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2328 D_BDW_PLUS, 0, 8, NULL}, 2329 2330 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2331 NULL}, 2332 2333 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2334 D_BDW_PLUS, 0, 8, NULL}, 2335 2336 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2337 D_BDW_PLUS, 0, 8, NULL}, 2338 2339 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2340 8, NULL}, 2341 2342 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2343 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2344 2345 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2346 8, NULL}, 2347 2348 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2349 NULL}, 2350 2351 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2352 NULL}, 2353 2354 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2355 NULL}, 2356 2357 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2358 D_BDW_PLUS, 0, 8, NULL}, 2359 2360 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2361 R_RCS, D_ALL, 0, 8, NULL}, 2362 2363 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2364 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2365 2366 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2367 R_RCS, D_ALL, 0, 1, NULL}, 2368 2369 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2370 2371 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2372 R_RCS, D_ALL, 0, 8, NULL}, 2373 2374 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2375 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2376 2377 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2378 2379 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2380 2381 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2382 2383 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2384 D_BDW_PLUS, 0, 8, NULL}, 2385 2386 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2387 D_BDW_PLUS, 0, 8, NULL}, 2388 2389 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2390 D_ALL, 0, 8, NULL}, 2391 2392 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2393 D_BDW_PLUS, 0, 8, NULL}, 2394 2395 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2396 D_BDW_PLUS, 0, 8, NULL}, 2397 2398 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2399 2400 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2401 2402 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2403 2404 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2405 D_ALL, 0, 8, NULL}, 2406 2407 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2408 2409 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2410 2411 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2412 R_RCS, D_ALL, 0, 8, NULL}, 2413 2414 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2415 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2416 2417 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2418 0, 8, NULL}, 2419 2420 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2421 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2422 2423 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2424 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2427 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2428 2429 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2430 D_ALL, 0, 8, NULL}, 2431 2432 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2433 D_ALL, 0, 8, NULL}, 2434 2435 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2436 D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2439 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2440 2441 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2442 D_BDW_PLUS, 0, 8, NULL}, 2443 2444 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2445 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2446 2447 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2448 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2449 2450 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2451 R_RCS, D_ALL, 0, 8, NULL}, 2452 2453 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2454 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2455 2456 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2457 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2458 2459 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2460 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2461 2462 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2463 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2464 2465 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2466 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2467 2468 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2469 R_RCS, D_ALL, 0, 8, NULL}, 2470 2471 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2472 D_ALL, 0, 9, NULL}, 2473 2474 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2475 ADDR_FIX_2(2, 4), 8, NULL}, 2476 2477 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2478 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2479 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2480 2481 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2482 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2483 2484 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2485 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2486 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2487 2488 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2489 D_BDW_PLUS, 0, 8, NULL}, 2490 2491 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2492 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2493 2494 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2495 2496 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2497 1, NULL}, 2498 2499 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2500 ADDR_FIX_1(1), 8, NULL}, 2501 2502 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2503 2504 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2505 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2506 2507 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2508 ADDR_FIX_1(1), 8, NULL}, 2509 2510 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2511 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2512 2513 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2514 2515 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2516 2517 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2518 0, 8, NULL}, 2519 2520 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2521 D_SKL_PLUS, 0, 8, NULL}, 2522 2523 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2524 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2525 2526 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2527 0, 16, NULL}, 2528 2529 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2530 0, 16, NULL}, 2531 2532 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2533 0, 16, NULL}, 2534 2535 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2536 2537 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2538 0, 16, NULL}, 2539 2540 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2541 0, 16, NULL}, 2542 2543 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2544 0, 16, NULL}, 2545 2546 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2547 0, 8, NULL}, 2548 2549 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2550 NULL}, 2551 2552 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2553 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2554 2555 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2556 R_VCS, D_ALL, 0, 12, NULL}, 2557 2558 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2559 R_VCS, D_ALL, 0, 12, NULL}, 2560 2561 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2562 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2563 2564 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2565 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2566 2567 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2568 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2569 2570 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2571 2572 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2573 R_VCS, D_ALL, 0, 12, NULL}, 2574 2575 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2576 R_VCS, D_ALL, 0, 12, NULL}, 2577 2578 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2579 R_VCS, D_ALL, 0, 12, NULL}, 2580 2581 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2582 R_VCS, D_ALL, 0, 12, NULL}, 2583 2584 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2585 R_VCS, D_ALL, 0, 12, NULL}, 2586 2587 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2588 R_VCS, D_ALL, 0, 12, NULL}, 2589 2590 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2591 R_VCS, D_ALL, 0, 6, NULL}, 2592 2593 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2594 R_VCS, D_ALL, 0, 12, NULL}, 2595 2596 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2597 R_VCS, D_ALL, 0, 12, NULL}, 2598 2599 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2600 R_VCS, D_ALL, 0, 12, NULL}, 2601 2602 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2603 R_VCS, D_ALL, 0, 12, NULL}, 2604 2605 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2606 R_VCS, D_ALL, 0, 12, NULL}, 2607 2608 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2609 R_VCS, D_ALL, 0, 12, NULL}, 2610 2611 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2612 R_VCS, D_ALL, 0, 12, NULL}, 2613 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2620 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2621 2622 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 12, NULL}, 2624 2625 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2626 R_VCS, D_ALL, 0, 12, NULL}, 2627 2628 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2629 R_VCS, D_ALL, 0, 12, NULL}, 2630 2631 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2632 R_VCS, D_ALL, 0, 12, NULL}, 2633 2634 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2635 R_VCS, D_ALL, 0, 12, NULL}, 2636 2637 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 2643 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2644 R_VCS, D_ALL, 0, 12, NULL}, 2645 2646 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2647 R_VCS, D_ALL, 0, 12, NULL}, 2648 2649 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2650 R_VCS, D_ALL, 0, 12, NULL}, 2651 2652 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2653 R_VCS, D_ALL, 0, 12, NULL}, 2654 2655 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2656 0, 16, NULL}, 2657 2658 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2659 2660 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2661 2662 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2663 R_VCS, D_ALL, 0, 12, NULL}, 2664 2665 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2666 R_VCS, D_ALL, 0, 12, NULL}, 2667 2668 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2669 R_VCS, D_ALL, 0, 12, NULL}, 2670 2671 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2672 2673 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2674 0, 12, NULL}, 2675 2676 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2677 0, 12, NULL}, 2678 }; 2679 2680 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2681 { 2682 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2683 } 2684 2685 /* call the cmd handler, and advance ip */ 2686 static int cmd_parser_exec(struct parser_exec_state *s) 2687 { 2688 struct intel_vgpu *vgpu = s->vgpu; 2689 const struct cmd_info *info; 2690 u32 cmd; 2691 int ret = 0; 2692 2693 cmd = cmd_val(s, 0); 2694 2695 /* fastpath for MI_NOOP */ 2696 if (cmd == MI_NOOP) 2697 info = &cmd_info[mi_noop_index]; 2698 else 2699 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2700 2701 if (info == NULL) { 2702 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2703 cmd, get_opcode(cmd, s->engine), 2704 repr_addr_type(s->buf_addr_type), 2705 s->engine->name, s->workload); 2706 return -EBADRQC; 2707 } 2708 2709 s->info = info; 2710 2711 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2712 cmd_length(s), s->buf_type, s->buf_addr_type, 2713 s->workload, info->name); 2714 2715 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2716 ret = gvt_check_valid_cmd_length(cmd_length(s), 2717 info->valid_len); 2718 if (ret) 2719 return ret; 2720 } 2721 2722 if (info->handler) { 2723 ret = info->handler(s); 2724 if (ret < 0) { 2725 gvt_vgpu_err("%s handler error\n", info->name); 2726 return ret; 2727 } 2728 } 2729 2730 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2731 ret = cmd_advance_default(s); 2732 if (ret) { 2733 gvt_vgpu_err("%s IP advance error\n", info->name); 2734 return ret; 2735 } 2736 } 2737 return 0; 2738 } 2739 2740 static inline bool gma_out_of_range(unsigned long gma, 2741 unsigned long gma_head, unsigned int gma_tail) 2742 { 2743 if (gma_tail >= gma_head) 2744 return (gma < gma_head) || (gma > gma_tail); 2745 else 2746 return (gma > gma_tail) && (gma < gma_head); 2747 } 2748 2749 /* Keep the consistent return type, e.g EBADRQC for unknown 2750 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2751 * works as the input of VM healthy status. 2752 */ 2753 static int command_scan(struct parser_exec_state *s, 2754 unsigned long rb_head, unsigned long rb_tail, 2755 unsigned long rb_start, unsigned long rb_len) 2756 { 2757 2758 unsigned long gma_head, gma_tail, gma_bottom; 2759 int ret = 0; 2760 struct intel_vgpu *vgpu = s->vgpu; 2761 2762 gma_head = rb_start + rb_head; 2763 gma_tail = rb_start + rb_tail; 2764 gma_bottom = rb_start + rb_len; 2765 2766 while (s->ip_gma != gma_tail) { 2767 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2768 if (!(s->ip_gma >= rb_start) || 2769 !(s->ip_gma < gma_bottom)) { 2770 gvt_vgpu_err("ip_gma %lx out of ring scope." 2771 "(base:0x%lx, bottom: 0x%lx)\n", 2772 s->ip_gma, rb_start, 2773 gma_bottom); 2774 parser_exec_state_dump(s); 2775 return -EFAULT; 2776 } 2777 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2778 gvt_vgpu_err("ip_gma %lx out of range." 2779 "base 0x%lx head 0x%lx tail 0x%lx\n", 2780 s->ip_gma, rb_start, 2781 rb_head, rb_tail); 2782 parser_exec_state_dump(s); 2783 break; 2784 } 2785 } 2786 ret = cmd_parser_exec(s); 2787 if (ret) { 2788 gvt_vgpu_err("cmd parser error\n"); 2789 parser_exec_state_dump(s); 2790 break; 2791 } 2792 } 2793 2794 return ret; 2795 } 2796 2797 static int scan_workload(struct intel_vgpu_workload *workload) 2798 { 2799 unsigned long gma_head, gma_tail, gma_bottom; 2800 struct parser_exec_state s; 2801 int ret = 0; 2802 2803 /* ring base is page aligned */ 2804 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2805 return -EINVAL; 2806 2807 gma_head = workload->rb_start + workload->rb_head; 2808 gma_tail = workload->rb_start + workload->rb_tail; 2809 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2810 2811 s.buf_type = RING_BUFFER_INSTRUCTION; 2812 s.buf_addr_type = GTT_BUFFER; 2813 s.vgpu = workload->vgpu; 2814 s.engine = workload->engine; 2815 s.ring_start = workload->rb_start; 2816 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2817 s.ring_head = gma_head; 2818 s.ring_tail = gma_tail; 2819 s.rb_va = workload->shadow_ring_buffer_va; 2820 s.workload = workload; 2821 s.is_ctx_wa = false; 2822 2823 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2824 return 0; 2825 2826 ret = ip_gma_set(&s, gma_head); 2827 if (ret) 2828 goto out; 2829 2830 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2831 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2832 2833 out: 2834 return ret; 2835 } 2836 2837 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2838 { 2839 2840 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2841 struct parser_exec_state s; 2842 int ret = 0; 2843 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2844 struct intel_vgpu_workload, 2845 wa_ctx); 2846 2847 /* ring base is page aligned */ 2848 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2849 I915_GTT_PAGE_SIZE))) 2850 return -EINVAL; 2851 2852 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2853 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2854 PAGE_SIZE); 2855 gma_head = wa_ctx->indirect_ctx.guest_gma; 2856 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2857 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2858 2859 s.buf_type = RING_BUFFER_INSTRUCTION; 2860 s.buf_addr_type = GTT_BUFFER; 2861 s.vgpu = workload->vgpu; 2862 s.engine = workload->engine; 2863 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2864 s.ring_size = ring_size; 2865 s.ring_head = gma_head; 2866 s.ring_tail = gma_tail; 2867 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2868 s.workload = workload; 2869 s.is_ctx_wa = true; 2870 2871 ret = ip_gma_set(&s, gma_head); 2872 if (ret) 2873 goto out; 2874 2875 ret = command_scan(&s, 0, ring_tail, 2876 wa_ctx->indirect_ctx.guest_gma, ring_size); 2877 out: 2878 return ret; 2879 } 2880 2881 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2882 { 2883 struct intel_vgpu *vgpu = workload->vgpu; 2884 struct intel_vgpu_submission *s = &vgpu->submission; 2885 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2886 void *shadow_ring_buffer_va; 2887 int ret; 2888 2889 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2890 2891 /* calculate workload ring buffer size */ 2892 workload->rb_len = (workload->rb_tail + guest_rb_size - 2893 workload->rb_head) % guest_rb_size; 2894 2895 gma_head = workload->rb_start + workload->rb_head; 2896 gma_tail = workload->rb_start + workload->rb_tail; 2897 gma_top = workload->rb_start + guest_rb_size; 2898 2899 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2900 void *p; 2901 2902 /* realloc the new ring buffer if needed */ 2903 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2904 workload->rb_len, GFP_KERNEL); 2905 if (!p) { 2906 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2907 return -ENOMEM; 2908 } 2909 s->ring_scan_buffer[workload->engine->id] = p; 2910 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2911 } 2912 2913 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2914 2915 /* get shadow ring buffer va */ 2916 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2917 2918 /* head > tail --> copy head <-> top */ 2919 if (gma_head > gma_tail) { 2920 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2921 gma_head, gma_top, shadow_ring_buffer_va); 2922 if (ret < 0) { 2923 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2924 return ret; 2925 } 2926 shadow_ring_buffer_va += ret; 2927 gma_head = workload->rb_start; 2928 } 2929 2930 /* copy head or start <-> tail */ 2931 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2932 shadow_ring_buffer_va); 2933 if (ret < 0) { 2934 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2935 return ret; 2936 } 2937 return 0; 2938 } 2939 2940 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2941 { 2942 int ret; 2943 struct intel_vgpu *vgpu = workload->vgpu; 2944 2945 ret = shadow_workload_ring_buffer(workload); 2946 if (ret) { 2947 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2948 return ret; 2949 } 2950 2951 ret = scan_workload(workload); 2952 if (ret) { 2953 gvt_vgpu_err("scan workload error\n"); 2954 return ret; 2955 } 2956 return 0; 2957 } 2958 2959 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2960 { 2961 int ctx_size = wa_ctx->indirect_ctx.size; 2962 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2963 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2964 struct intel_vgpu_workload, 2965 wa_ctx); 2966 struct intel_vgpu *vgpu = workload->vgpu; 2967 struct drm_i915_gem_object *obj; 2968 int ret = 0; 2969 void *map; 2970 2971 obj = i915_gem_object_create_shmem(workload->engine->i915, 2972 roundup(ctx_size + CACHELINE_BYTES, 2973 PAGE_SIZE)); 2974 if (IS_ERR(obj)) 2975 return PTR_ERR(obj); 2976 2977 /* get the va of the shadow batch buffer */ 2978 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2979 if (IS_ERR(map)) { 2980 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2981 ret = PTR_ERR(map); 2982 goto put_obj; 2983 } 2984 2985 i915_gem_object_lock(obj); 2986 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2987 i915_gem_object_unlock(obj); 2988 if (ret) { 2989 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2990 goto unmap_src; 2991 } 2992 2993 ret = copy_gma_to_hva(workload->vgpu, 2994 workload->vgpu->gtt.ggtt_mm, 2995 guest_gma, guest_gma + ctx_size, 2996 map); 2997 if (ret < 0) { 2998 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2999 goto unmap_src; 3000 } 3001 3002 wa_ctx->indirect_ctx.obj = obj; 3003 wa_ctx->indirect_ctx.shadow_va = map; 3004 return 0; 3005 3006 unmap_src: 3007 i915_gem_object_unpin_map(obj); 3008 put_obj: 3009 i915_gem_object_put(obj); 3010 return ret; 3011 } 3012 3013 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3014 { 3015 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3016 unsigned char *bb_start_sva; 3017 3018 if (!wa_ctx->per_ctx.valid) 3019 return 0; 3020 3021 per_ctx_start[0] = 0x18800001; 3022 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3023 3024 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3025 wa_ctx->indirect_ctx.size; 3026 3027 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3028 3029 return 0; 3030 } 3031 3032 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3033 { 3034 int ret; 3035 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3036 struct intel_vgpu_workload, 3037 wa_ctx); 3038 struct intel_vgpu *vgpu = workload->vgpu; 3039 3040 if (wa_ctx->indirect_ctx.size == 0) 3041 return 0; 3042 3043 ret = shadow_indirect_ctx(wa_ctx); 3044 if (ret) { 3045 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3046 return ret; 3047 } 3048 3049 combine_wa_ctx(wa_ctx); 3050 3051 ret = scan_wa_ctx(wa_ctx); 3052 if (ret) { 3053 gvt_vgpu_err("scan wa ctx error\n"); 3054 return ret; 3055 } 3056 3057 return 0; 3058 } 3059 3060 static int init_cmd_table(struct intel_gvt *gvt) 3061 { 3062 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3063 int i; 3064 3065 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3066 struct cmd_entry *e; 3067 3068 if (!(cmd_info[i].devices & gen_type)) 3069 continue; 3070 3071 e = kzalloc(sizeof(*e), GFP_KERNEL); 3072 if (!e) 3073 return -ENOMEM; 3074 3075 e->info = &cmd_info[i]; 3076 if (cmd_info[i].opcode == OP_MI_NOOP) 3077 mi_noop_index = i; 3078 3079 INIT_HLIST_NODE(&e->hlist); 3080 add_cmd_entry(gvt, e); 3081 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3082 e->info->name, e->info->opcode, e->info->flag, 3083 e->info->devices, e->info->rings); 3084 } 3085 3086 return 0; 3087 } 3088 3089 static void clean_cmd_table(struct intel_gvt *gvt) 3090 { 3091 struct hlist_node *tmp; 3092 struct cmd_entry *e; 3093 int i; 3094 3095 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3096 kfree(e); 3097 3098 hash_init(gvt->cmd_table); 3099 } 3100 3101 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3102 { 3103 clean_cmd_table(gvt); 3104 } 3105 3106 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3107 { 3108 int ret; 3109 3110 ret = init_cmd_table(gvt); 3111 if (ret) { 3112 intel_gvt_clean_cmd_parser(gvt); 3113 return ret; 3114 } 3115 return 0; 3116 } 3117