1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_ring.h" 41 #include "gvt.h" 42 #include "i915_pvinfo.h" 43 #include "trace.h" 44 45 #define INVALID_OP (~0U) 46 47 #define OP_LEN_MI 9 48 #define OP_LEN_2D 10 49 #define OP_LEN_3D_MEDIA 16 50 #define OP_LEN_MFX_VC 16 51 #define OP_LEN_VEBOX 16 52 53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 54 55 struct sub_op_bits { 56 int hi; 57 int low; 58 }; 59 struct decode_info { 60 const char *name; 61 int op_len; 62 int nr_sub_op; 63 const struct sub_op_bits *sub_op; 64 }; 65 66 #define MAX_CMD_BUDGET 0x7fffffff 67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 70 71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 74 75 /* Render Command Map */ 76 77 /* MI_* command Opcode (28:23) */ 78 #define OP_MI_NOOP 0x0 79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 80 #define OP_MI_USER_INTERRUPT 0x2 81 #define OP_MI_WAIT_FOR_EVENT 0x3 82 #define OP_MI_FLUSH 0x4 83 #define OP_MI_ARB_CHECK 0x5 84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 85 #define OP_MI_REPORT_HEAD 0x7 86 #define OP_MI_ARB_ON_OFF 0x8 87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 88 #define OP_MI_BATCH_BUFFER_END 0xA 89 #define OP_MI_SUSPEND_FLUSH 0xB 90 #define OP_MI_PREDICATE 0xC /* IVB+ */ 91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 92 #define OP_MI_SET_APPID 0xE /* IVB+ */ 93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 95 #define OP_MI_DISPLAY_FLIP 0x14 96 #define OP_MI_SEMAPHORE_MBOX 0x16 97 #define OP_MI_SET_CONTEXT 0x18 98 #define OP_MI_MATH 0x1A 99 #define OP_MI_URB_CLEAR 0x19 100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 102 103 #define OP_MI_STORE_DATA_IMM 0x20 104 #define OP_MI_STORE_DATA_INDEX 0x21 105 #define OP_MI_LOAD_REGISTER_IMM 0x22 106 #define OP_MI_UPDATE_GTT 0x23 107 #define OP_MI_STORE_REGISTER_MEM 0x24 108 #define OP_MI_FLUSH_DW 0x26 109 #define OP_MI_CLFLUSH 0x27 110 #define OP_MI_REPORT_PERF_COUNT 0x28 111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 116 #define OP_MI_2E 0x2E /* BDW+ */ 117 #define OP_MI_2F 0x2F /* BDW+ */ 118 #define OP_MI_BATCH_BUFFER_START 0x31 119 120 /* Bit definition for dword 0 */ 121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 122 123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 124 125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 129 130 /* 2D command: Opcode (28:22) */ 131 #define OP_2D(x) ((2<<7) | x) 132 133 #define OP_XY_SETUP_BLT OP_2D(0x1) 134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 136 #define OP_XY_PIXEL_BLT OP_2D(0x24) 137 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 138 #define OP_XY_TEXT_BLT OP_2D(0x26) 139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 140 #define OP_XY_COLOR_BLT OP_2D(0x50) 141 #define OP_XY_PAT_BLT OP_2D(0x51) 142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 145 #define OP_XY_FULL_BLT OP_2D(0x55) 146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 157 158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 161 162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 163 164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 167 168 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 169 170 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 171 172 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 173 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 175 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 176 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 177 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 178 179 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 180 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 181 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 182 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 183 184 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 185 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 186 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 187 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 188 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 189 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 190 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 191 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 192 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 193 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 195 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 196 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 197 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 198 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 199 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 200 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 201 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 202 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 203 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 204 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 205 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 206 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 207 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 208 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 209 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 210 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 211 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 214 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 226 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 227 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 228 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 229 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 233 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 234 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 239 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 240 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 250 251 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 252 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 253 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 254 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 255 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 256 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 257 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 258 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 259 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 260 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 261 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 262 263 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 265 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 266 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 269 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 270 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 271 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 273 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 274 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 276 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 277 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 283 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 284 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 286 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 288 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 289 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 290 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 291 292 /* VCCP Command Parser */ 293 294 /* 295 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 296 * git://anongit.freedesktop.org/vaapi/intel-driver 297 * src/i965_defines.h 298 * 299 */ 300 301 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 302 (3 << 13 | \ 303 (pipeline) << 11 | \ 304 (op) << 8 | \ 305 (sub_opa) << 5 | \ 306 (sub_opb)) 307 308 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 309 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 310 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 313 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 314 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 315 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 316 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 317 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 318 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 319 320 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 321 322 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 323 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 324 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 325 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 326 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 327 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 329 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 330 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 331 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 332 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 333 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 334 335 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 336 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 337 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 338 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 339 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 340 341 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 342 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 343 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 344 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 345 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 346 347 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 348 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 349 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 350 351 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 352 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 353 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 354 355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 356 (3 << 13 | \ 357 (pipeline) << 11 | \ 358 (op) << 8 | \ 359 (sub_opa) << 5 | \ 360 (sub_opb)) 361 362 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 363 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 364 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 365 366 struct parser_exec_state; 367 368 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 369 370 #define GVT_CMD_HASH_BITS 7 371 372 /* which DWords need address fix */ 373 #define ADDR_FIX_1(x1) (1 << (x1)) 374 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 375 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 376 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 377 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 378 379 #define DWORD_FIELD(dword, end, start) \ 380 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 381 382 #define OP_LENGTH_BIAS 2 383 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 384 385 static int gvt_check_valid_cmd_length(int len, int valid_len) 386 { 387 if (valid_len != len) { 388 gvt_err("len is not valid: len=%u valid_len=%u\n", 389 len, valid_len); 390 return -EFAULT; 391 } 392 return 0; 393 } 394 395 struct cmd_info { 396 const char *name; 397 u32 opcode; 398 399 #define F_LEN_MASK 3U 400 #define F_LEN_CONST 1U 401 #define F_LEN_VAR 0U 402 /* value is const although LEN maybe variable */ 403 #define F_LEN_VAR_FIXED (1<<1) 404 405 /* 406 * command has its own ip advance logic 407 * e.g. MI_BATCH_START, MI_BATCH_END 408 */ 409 #define F_IP_ADVANCE_CUSTOM (1<<2) 410 u32 flag; 411 412 #define R_RCS BIT(RCS0) 413 #define R_VCS1 BIT(VCS0) 414 #define R_VCS2 BIT(VCS1) 415 #define R_VCS (R_VCS1 | R_VCS2) 416 #define R_BCS BIT(BCS0) 417 #define R_VECS BIT(VECS0) 418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 419 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 420 u16 rings; 421 422 /* devices that support this cmd: SNB/IVB/HSW/... */ 423 u16 devices; 424 425 /* which DWords are address that need fix up. 426 * bit 0 means a 32-bit non address operand in command 427 * bit 1 means address operand, which could be 32-bit 428 * or 64-bit depending on different architectures.( 429 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 430 * No matter the address length, each address only takes 431 * one bit in the bitmap. 432 */ 433 u16 addr_bitmap; 434 435 /* flag == F_LEN_CONST : command length 436 * flag == F_LEN_VAR : length bias bits 437 * Note: length is in DWord 438 */ 439 u32 len; 440 441 parser_cmd_handler handler; 442 443 /* valid length in DWord */ 444 u32 valid_len; 445 }; 446 447 struct cmd_entry { 448 struct hlist_node hlist; 449 const struct cmd_info *info; 450 }; 451 452 enum { 453 RING_BUFFER_INSTRUCTION, 454 BATCH_BUFFER_INSTRUCTION, 455 BATCH_BUFFER_2ND_LEVEL, 456 }; 457 458 enum { 459 GTT_BUFFER, 460 PPGTT_BUFFER 461 }; 462 463 struct parser_exec_state { 464 struct intel_vgpu *vgpu; 465 int ring_id; 466 467 int buf_type; 468 469 /* batch buffer address type */ 470 int buf_addr_type; 471 472 /* graphics memory address of ring buffer start */ 473 unsigned long ring_start; 474 unsigned long ring_size; 475 unsigned long ring_head; 476 unsigned long ring_tail; 477 478 /* instruction graphics memory address */ 479 unsigned long ip_gma; 480 481 /* mapped va of the instr_gma */ 482 void *ip_va; 483 void *rb_va; 484 485 void *ret_bb_va; 486 /* next instruction when return from batch buffer to ring buffer */ 487 unsigned long ret_ip_gma_ring; 488 489 /* next instruction when return from 2nd batch buffer to batch buffer */ 490 unsigned long ret_ip_gma_bb; 491 492 /* batch buffer address type (GTT or PPGTT) 493 * used when ret from 2nd level batch buffer 494 */ 495 int saved_buf_addr_type; 496 bool is_ctx_wa; 497 498 const struct cmd_info *info; 499 500 struct intel_vgpu_workload *workload; 501 }; 502 503 #define gmadr_dw_number(s) \ 504 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 505 506 static unsigned long bypass_scan_mask = 0; 507 508 /* ring ALL, type = 0 */ 509 static const struct sub_op_bits sub_op_mi[] = { 510 {31, 29}, 511 {28, 23}, 512 }; 513 514 static const struct decode_info decode_info_mi = { 515 "MI", 516 OP_LEN_MI, 517 ARRAY_SIZE(sub_op_mi), 518 sub_op_mi, 519 }; 520 521 /* ring RCS, command type 2 */ 522 static const struct sub_op_bits sub_op_2d[] = { 523 {31, 29}, 524 {28, 22}, 525 }; 526 527 static const struct decode_info decode_info_2d = { 528 "2D", 529 OP_LEN_2D, 530 ARRAY_SIZE(sub_op_2d), 531 sub_op_2d, 532 }; 533 534 /* ring RCS, command type 3 */ 535 static const struct sub_op_bits sub_op_3d_media[] = { 536 {31, 29}, 537 {28, 27}, 538 {26, 24}, 539 {23, 16}, 540 }; 541 542 static const struct decode_info decode_info_3d_media = { 543 "3D_Media", 544 OP_LEN_3D_MEDIA, 545 ARRAY_SIZE(sub_op_3d_media), 546 sub_op_3d_media, 547 }; 548 549 /* ring VCS, command type 3 */ 550 static const struct sub_op_bits sub_op_mfx_vc[] = { 551 {31, 29}, 552 {28, 27}, 553 {26, 24}, 554 {23, 21}, 555 {20, 16}, 556 }; 557 558 static const struct decode_info decode_info_mfx_vc = { 559 "MFX_VC", 560 OP_LEN_MFX_VC, 561 ARRAY_SIZE(sub_op_mfx_vc), 562 sub_op_mfx_vc, 563 }; 564 565 /* ring VECS, command type 3 */ 566 static const struct sub_op_bits sub_op_vebox[] = { 567 {31, 29}, 568 {28, 27}, 569 {26, 24}, 570 {23, 21}, 571 {20, 16}, 572 }; 573 574 static const struct decode_info decode_info_vebox = { 575 "VEBOX", 576 OP_LEN_VEBOX, 577 ARRAY_SIZE(sub_op_vebox), 578 sub_op_vebox, 579 }; 580 581 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 582 [RCS0] = { 583 &decode_info_mi, 584 NULL, 585 NULL, 586 &decode_info_3d_media, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 }, 592 593 [VCS0] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_mfx_vc, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [BCS0] = { 605 &decode_info_mi, 606 NULL, 607 &decode_info_2d, 608 NULL, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 615 [VECS0] = { 616 &decode_info_mi, 617 NULL, 618 NULL, 619 &decode_info_vebox, 620 NULL, 621 NULL, 622 NULL, 623 NULL, 624 }, 625 626 [VCS1] = { 627 &decode_info_mi, 628 NULL, 629 NULL, 630 &decode_info_mfx_vc, 631 NULL, 632 NULL, 633 NULL, 634 NULL, 635 }, 636 }; 637 638 static inline u32 get_opcode(u32 cmd, int ring_id) 639 { 640 const struct decode_info *d_info; 641 642 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 643 if (d_info == NULL) 644 return INVALID_OP; 645 646 return cmd >> (32 - d_info->op_len); 647 } 648 649 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 650 unsigned int opcode, int ring_id) 651 { 652 struct cmd_entry *e; 653 654 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 655 if (opcode == e->info->opcode && e->info->rings & BIT(ring_id)) 656 return e->info; 657 } 658 return NULL; 659 } 660 661 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 662 u32 cmd, int ring_id) 663 { 664 u32 opcode; 665 666 opcode = get_opcode(cmd, ring_id); 667 if (opcode == INVALID_OP) 668 return NULL; 669 670 return find_cmd_entry(gvt, opcode, ring_id); 671 } 672 673 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 674 { 675 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 676 } 677 678 static inline void print_opcode(u32 cmd, int ring_id) 679 { 680 const struct decode_info *d_info; 681 int i; 682 683 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 684 if (d_info == NULL) 685 return; 686 687 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 688 cmd >> (32 - d_info->op_len), d_info->name); 689 690 for (i = 0; i < d_info->nr_sub_op; i++) 691 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 692 d_info->sub_op[i].low)); 693 694 pr_err("\n"); 695 } 696 697 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 698 { 699 return s->ip_va + (index << 2); 700 } 701 702 static inline u32 cmd_val(struct parser_exec_state *s, int index) 703 { 704 return *cmd_ptr(s, index); 705 } 706 707 static void parser_exec_state_dump(struct parser_exec_state *s) 708 { 709 int cnt = 0; 710 int i; 711 712 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 713 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 714 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 715 s->ring_head, s->ring_tail); 716 717 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 718 s->buf_type == RING_BUFFER_INSTRUCTION ? 719 "RING_BUFFER" : "BATCH_BUFFER", 720 s->buf_addr_type == GTT_BUFFER ? 721 "GTT" : "PPGTT", s->ip_gma); 722 723 if (s->ip_va == NULL) { 724 gvt_dbg_cmd(" ip_va(NULL)"); 725 return; 726 } 727 728 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 729 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 730 cmd_val(s, 2), cmd_val(s, 3)); 731 732 print_opcode(cmd_val(s, 0), s->ring_id); 733 734 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 735 736 while (cnt < 1024) { 737 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 738 for (i = 0; i < 8; i++) 739 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 740 gvt_dbg_cmd("\n"); 741 742 s->ip_va += 8 * sizeof(u32); 743 cnt += 8; 744 } 745 } 746 747 static inline void update_ip_va(struct parser_exec_state *s) 748 { 749 unsigned long len = 0; 750 751 if (WARN_ON(s->ring_head == s->ring_tail)) 752 return; 753 754 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 755 unsigned long ring_top = s->ring_start + s->ring_size; 756 757 if (s->ring_head > s->ring_tail) { 758 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 759 len = (s->ip_gma - s->ring_head); 760 else if (s->ip_gma >= s->ring_start && 761 s->ip_gma <= s->ring_tail) 762 len = (ring_top - s->ring_head) + 763 (s->ip_gma - s->ring_start); 764 } else 765 len = (s->ip_gma - s->ring_head); 766 767 s->ip_va = s->rb_va + len; 768 } else {/* shadow batch buffer */ 769 s->ip_va = s->ret_bb_va; 770 } 771 } 772 773 static inline int ip_gma_set(struct parser_exec_state *s, 774 unsigned long ip_gma) 775 { 776 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 777 778 s->ip_gma = ip_gma; 779 update_ip_va(s); 780 return 0; 781 } 782 783 static inline int ip_gma_advance(struct parser_exec_state *s, 784 unsigned int dw_len) 785 { 786 s->ip_gma += (dw_len << 2); 787 788 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 789 if (s->ip_gma >= s->ring_start + s->ring_size) 790 s->ip_gma -= s->ring_size; 791 update_ip_va(s); 792 } else { 793 s->ip_va += (dw_len << 2); 794 } 795 796 return 0; 797 } 798 799 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 800 { 801 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 802 return info->len; 803 else 804 return (cmd & ((1U << info->len) - 1)) + 2; 805 return 0; 806 } 807 808 static inline int cmd_length(struct parser_exec_state *s) 809 { 810 return get_cmd_length(s->info, cmd_val(s, 0)); 811 } 812 813 /* do not remove this, some platform may need clflush here */ 814 #define patch_value(s, addr, val) do { \ 815 *addr = val; \ 816 } while (0) 817 818 static bool is_shadowed_mmio(unsigned int offset) 819 { 820 bool ret = false; 821 822 if ((offset == 0x2168) || /*BB current head register UDW */ 823 (offset == 0x2140) || /*BB current header register */ 824 (offset == 0x211c) || /*second BB header register UDW */ 825 (offset == 0x2114)) { /*second BB header register UDW */ 826 ret = true; 827 } 828 return ret; 829 } 830 831 static inline bool is_force_nonpriv_mmio(unsigned int offset) 832 { 833 return (offset >= 0x24d0 && offset < 0x2500); 834 } 835 836 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 837 unsigned int offset, unsigned int index, char *cmd) 838 { 839 struct intel_gvt *gvt = s->vgpu->gvt; 840 unsigned int data; 841 u32 ring_base; 842 u32 nopid; 843 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 844 845 if (!strcmp(cmd, "lri")) 846 data = cmd_val(s, index + 1); 847 else { 848 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 849 offset, cmd); 850 return -EINVAL; 851 } 852 853 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 854 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 855 856 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 857 data != nopid) { 858 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 859 offset, data); 860 patch_value(s, cmd_ptr(s, index), nopid); 861 return 0; 862 } 863 return 0; 864 } 865 866 static inline bool is_mocs_mmio(unsigned int offset) 867 { 868 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 869 ((offset >= 0xb020) && (offset <= 0xb0a0)); 870 } 871 872 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 873 unsigned int offset, unsigned int index) 874 { 875 if (!is_mocs_mmio(offset)) 876 return -EINVAL; 877 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 878 return 0; 879 } 880 881 static int cmd_reg_handler(struct parser_exec_state *s, 882 unsigned int offset, unsigned int index, char *cmd) 883 { 884 struct intel_vgpu *vgpu = s->vgpu; 885 struct intel_gvt *gvt = vgpu->gvt; 886 u32 ctx_sr_ctl; 887 888 if (offset + 4 > gvt->device_info.mmio_size) { 889 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 890 cmd, offset); 891 return -EFAULT; 892 } 893 894 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 895 gvt_vgpu_err("%s access to non-render register (%x)\n", 896 cmd, offset); 897 return -EBADRQC; 898 } 899 900 if (is_shadowed_mmio(offset)) { 901 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 902 return 0; 903 } 904 905 if (is_mocs_mmio(offset) && 906 mocs_cmd_reg_handler(s, offset, index)) 907 return -EINVAL; 908 909 if (is_force_nonpriv_mmio(offset) && 910 force_nonpriv_reg_handler(s, offset, index, cmd)) 911 return -EPERM; 912 913 if (offset == i915_mmio_reg_offset(DERRMR) || 914 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 915 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 916 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 917 } 918 919 /* TODO 920 * In order to let workload with inhibit context to generate 921 * correct image data into memory, vregs values will be loaded to 922 * hw via LRIs in the workload with inhibit context. But as 923 * indirect context is loaded prior to LRIs in workload, we don't 924 * want reg values specified in indirect context overwritten by 925 * LRIs in workloads. So, when scanning an indirect context, we 926 * update reg values in it into vregs, so LRIs in workload with 927 * inhibit context will restore with correct values 928 */ 929 if (IS_GEN(gvt->dev_priv, 9) && 930 intel_gvt_mmio_is_in_ctx(gvt, offset) && 931 !strncmp(cmd, "lri", 3)) { 932 intel_gvt_hypervisor_read_gpa(s->vgpu, 933 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 934 /* check inhibit context */ 935 if (ctx_sr_ctl & 1) { 936 u32 data = cmd_val(s, index + 1); 937 938 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 939 intel_vgpu_mask_mmio_write(vgpu, 940 offset, &data, 4); 941 else 942 vgpu_vreg(vgpu, offset) = data; 943 } 944 } 945 946 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 947 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 948 return 0; 949 } 950 951 #define cmd_reg(s, i) \ 952 (cmd_val(s, i) & GENMASK(22, 2)) 953 954 #define cmd_reg_inhibit(s, i) \ 955 (cmd_val(s, i) & GENMASK(22, 18)) 956 957 #define cmd_gma(s, i) \ 958 (cmd_val(s, i) & GENMASK(31, 2)) 959 960 #define cmd_gma_hi(s, i) \ 961 (cmd_val(s, i) & GENMASK(15, 0)) 962 963 static int cmd_handler_lri(struct parser_exec_state *s) 964 { 965 int i, ret = 0; 966 int cmd_len = cmd_length(s); 967 struct intel_gvt *gvt = s->vgpu->gvt; 968 u32 valid_len = CMD_LEN(1); 969 970 /* 971 * Official intel docs are somewhat sloppy , check the definition of 972 * MI_LOAD_REGISTER_IMM. 973 */ 974 #define MAX_VALID_LEN 127 975 if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) { 976 gvt_err("len is not valid: len=%u valid_len=%u\n", 977 cmd_len, valid_len); 978 return -EFAULT; 979 } 980 981 for (i = 1; i < cmd_len; i += 2) { 982 if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) { 983 if (s->ring_id == BCS0 && 984 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 985 ret |= 0; 986 else 987 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 988 } 989 if (ret) 990 break; 991 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 992 if (ret) 993 break; 994 } 995 return ret; 996 } 997 998 static int cmd_handler_lrr(struct parser_exec_state *s) 999 { 1000 int i, ret = 0; 1001 int cmd_len = cmd_length(s); 1002 1003 for (i = 1; i < cmd_len; i += 2) { 1004 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 1005 ret |= ((cmd_reg_inhibit(s, i) || 1006 (cmd_reg_inhibit(s, i + 1)))) ? 1007 -EBADRQC : 0; 1008 if (ret) 1009 break; 1010 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1011 if (ret) 1012 break; 1013 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1014 if (ret) 1015 break; 1016 } 1017 return ret; 1018 } 1019 1020 static inline int cmd_address_audit(struct parser_exec_state *s, 1021 unsigned long guest_gma, int op_size, bool index_mode); 1022 1023 static int cmd_handler_lrm(struct parser_exec_state *s) 1024 { 1025 struct intel_gvt *gvt = s->vgpu->gvt; 1026 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1027 unsigned long gma; 1028 int i, ret = 0; 1029 int cmd_len = cmd_length(s); 1030 1031 for (i = 1; i < cmd_len;) { 1032 if (IS_BROADWELL(gvt->dev_priv)) 1033 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1034 if (ret) 1035 break; 1036 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1037 if (ret) 1038 break; 1039 if (cmd_val(s, 0) & (1 << 22)) { 1040 gma = cmd_gma(s, i + 1); 1041 if (gmadr_bytes == 8) 1042 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1043 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1044 if (ret) 1045 break; 1046 } 1047 i += gmadr_dw_number(s) + 1; 1048 } 1049 return ret; 1050 } 1051 1052 static int cmd_handler_srm(struct parser_exec_state *s) 1053 { 1054 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1055 unsigned long gma; 1056 int i, ret = 0; 1057 int cmd_len = cmd_length(s); 1058 1059 for (i = 1; i < cmd_len;) { 1060 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1061 if (ret) 1062 break; 1063 if (cmd_val(s, 0) & (1 << 22)) { 1064 gma = cmd_gma(s, i + 1); 1065 if (gmadr_bytes == 8) 1066 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1067 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1068 if (ret) 1069 break; 1070 } 1071 i += gmadr_dw_number(s) + 1; 1072 } 1073 return ret; 1074 } 1075 1076 struct cmd_interrupt_event { 1077 int pipe_control_notify; 1078 int mi_flush_dw; 1079 int mi_user_interrupt; 1080 }; 1081 1082 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1083 [RCS0] = { 1084 .pipe_control_notify = RCS_PIPE_CONTROL, 1085 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1086 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1087 }, 1088 [BCS0] = { 1089 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1090 .mi_flush_dw = BCS_MI_FLUSH_DW, 1091 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1092 }, 1093 [VCS0] = { 1094 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1095 .mi_flush_dw = VCS_MI_FLUSH_DW, 1096 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1097 }, 1098 [VCS1] = { 1099 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1100 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1101 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1102 }, 1103 [VECS0] = { 1104 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1105 .mi_flush_dw = VECS_MI_FLUSH_DW, 1106 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1107 }, 1108 }; 1109 1110 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1111 { 1112 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1113 unsigned long gma; 1114 bool index_mode = false; 1115 unsigned int post_sync; 1116 int ret = 0; 1117 u32 hws_pga, val; 1118 1119 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1120 1121 /* LRI post sync */ 1122 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1123 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1124 /* post sync */ 1125 else if (post_sync) { 1126 if (post_sync == 2) 1127 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1128 else if (post_sync == 3) 1129 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1130 else if (post_sync == 1) { 1131 /* check ggtt*/ 1132 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1133 gma = cmd_val(s, 2) & GENMASK(31, 3); 1134 if (gmadr_bytes == 8) 1135 gma |= (cmd_gma_hi(s, 3)) << 32; 1136 /* Store Data Index */ 1137 if (cmd_val(s, 1) & (1 << 21)) 1138 index_mode = true; 1139 ret |= cmd_address_audit(s, gma, sizeof(u64), 1140 index_mode); 1141 if (ret) 1142 return ret; 1143 if (index_mode) { 1144 hws_pga = s->vgpu->hws_pga[s->ring_id]; 1145 gma = hws_pga + gma; 1146 patch_value(s, cmd_ptr(s, 2), gma); 1147 val = cmd_val(s, 1) & (~(1 << 21)); 1148 patch_value(s, cmd_ptr(s, 1), val); 1149 } 1150 } 1151 } 1152 } 1153 1154 if (ret) 1155 return ret; 1156 1157 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1158 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1159 s->workload->pending_events); 1160 return 0; 1161 } 1162 1163 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1164 { 1165 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1166 s->workload->pending_events); 1167 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1168 return 0; 1169 } 1170 1171 static int cmd_advance_default(struct parser_exec_state *s) 1172 { 1173 return ip_gma_advance(s, cmd_length(s)); 1174 } 1175 1176 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1177 { 1178 int ret; 1179 1180 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1181 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1182 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1183 s->buf_addr_type = s->saved_buf_addr_type; 1184 } else { 1185 s->buf_type = RING_BUFFER_INSTRUCTION; 1186 s->buf_addr_type = GTT_BUFFER; 1187 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1188 s->ret_ip_gma_ring -= s->ring_size; 1189 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1190 } 1191 return ret; 1192 } 1193 1194 struct mi_display_flip_command_info { 1195 int pipe; 1196 int plane; 1197 int event; 1198 i915_reg_t stride_reg; 1199 i915_reg_t ctrl_reg; 1200 i915_reg_t surf_reg; 1201 u64 stride_val; 1202 u64 tile_val; 1203 u64 surf_val; 1204 bool async_flip; 1205 }; 1206 1207 struct plane_code_mapping { 1208 int pipe; 1209 int plane; 1210 int event; 1211 }; 1212 1213 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1214 struct mi_display_flip_command_info *info) 1215 { 1216 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1217 struct plane_code_mapping gen8_plane_code[] = { 1218 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1219 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1220 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1221 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1222 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1223 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1224 }; 1225 u32 dword0, dword1, dword2; 1226 u32 v; 1227 1228 dword0 = cmd_val(s, 0); 1229 dword1 = cmd_val(s, 1); 1230 dword2 = cmd_val(s, 2); 1231 1232 v = (dword0 & GENMASK(21, 19)) >> 19; 1233 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1234 return -EBADRQC; 1235 1236 info->pipe = gen8_plane_code[v].pipe; 1237 info->plane = gen8_plane_code[v].plane; 1238 info->event = gen8_plane_code[v].event; 1239 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1240 info->tile_val = (dword1 & 0x1); 1241 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1242 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1243 1244 if (info->plane == PLANE_A) { 1245 info->ctrl_reg = DSPCNTR(info->pipe); 1246 info->stride_reg = DSPSTRIDE(info->pipe); 1247 info->surf_reg = DSPSURF(info->pipe); 1248 } else if (info->plane == PLANE_B) { 1249 info->ctrl_reg = SPRCTL(info->pipe); 1250 info->stride_reg = SPRSTRIDE(info->pipe); 1251 info->surf_reg = SPRSURF(info->pipe); 1252 } else { 1253 WARN_ON(1); 1254 return -EBADRQC; 1255 } 1256 return 0; 1257 } 1258 1259 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1260 struct mi_display_flip_command_info *info) 1261 { 1262 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1263 struct intel_vgpu *vgpu = s->vgpu; 1264 u32 dword0 = cmd_val(s, 0); 1265 u32 dword1 = cmd_val(s, 1); 1266 u32 dword2 = cmd_val(s, 2); 1267 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1268 1269 info->plane = PRIMARY_PLANE; 1270 1271 switch (plane) { 1272 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1273 info->pipe = PIPE_A; 1274 info->event = PRIMARY_A_FLIP_DONE; 1275 break; 1276 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1277 info->pipe = PIPE_B; 1278 info->event = PRIMARY_B_FLIP_DONE; 1279 break; 1280 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1281 info->pipe = PIPE_C; 1282 info->event = PRIMARY_C_FLIP_DONE; 1283 break; 1284 1285 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1286 info->pipe = PIPE_A; 1287 info->event = SPRITE_A_FLIP_DONE; 1288 info->plane = SPRITE_PLANE; 1289 break; 1290 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1291 info->pipe = PIPE_B; 1292 info->event = SPRITE_B_FLIP_DONE; 1293 info->plane = SPRITE_PLANE; 1294 break; 1295 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1296 info->pipe = PIPE_C; 1297 info->event = SPRITE_C_FLIP_DONE; 1298 info->plane = SPRITE_PLANE; 1299 break; 1300 1301 default: 1302 gvt_vgpu_err("unknown plane code %d\n", plane); 1303 return -EBADRQC; 1304 } 1305 1306 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1307 info->tile_val = (dword1 & GENMASK(2, 0)); 1308 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1309 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1310 1311 info->ctrl_reg = DSPCNTR(info->pipe); 1312 info->stride_reg = DSPSTRIDE(info->pipe); 1313 info->surf_reg = DSPSURF(info->pipe); 1314 1315 return 0; 1316 } 1317 1318 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1319 struct mi_display_flip_command_info *info) 1320 { 1321 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1322 u32 stride, tile; 1323 1324 if (!info->async_flip) 1325 return 0; 1326 1327 if (INTEL_GEN(dev_priv) >= 9) { 1328 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1329 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1330 GENMASK(12, 10)) >> 10; 1331 } else { 1332 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1333 GENMASK(15, 6)) >> 6; 1334 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1335 } 1336 1337 if (stride != info->stride_val) 1338 gvt_dbg_cmd("cannot change stride during async flip\n"); 1339 1340 if (tile != info->tile_val) 1341 gvt_dbg_cmd("cannot change tile during async flip\n"); 1342 1343 return 0; 1344 } 1345 1346 static int gen8_update_plane_mmio_from_mi_display_flip( 1347 struct parser_exec_state *s, 1348 struct mi_display_flip_command_info *info) 1349 { 1350 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1351 struct intel_vgpu *vgpu = s->vgpu; 1352 1353 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1354 info->surf_val << 12); 1355 if (INTEL_GEN(dev_priv) >= 9) { 1356 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1357 info->stride_val); 1358 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1359 info->tile_val << 10); 1360 } else { 1361 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1362 info->stride_val << 6); 1363 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1364 info->tile_val << 10); 1365 } 1366 1367 if (info->plane == PLANE_PRIMARY) 1368 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1369 1370 if (info->async_flip) 1371 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1372 else 1373 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1374 1375 return 0; 1376 } 1377 1378 static int decode_mi_display_flip(struct parser_exec_state *s, 1379 struct mi_display_flip_command_info *info) 1380 { 1381 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1382 1383 if (IS_BROADWELL(dev_priv)) 1384 return gen8_decode_mi_display_flip(s, info); 1385 if (INTEL_GEN(dev_priv) >= 9) 1386 return skl_decode_mi_display_flip(s, info); 1387 1388 return -ENODEV; 1389 } 1390 1391 static int check_mi_display_flip(struct parser_exec_state *s, 1392 struct mi_display_flip_command_info *info) 1393 { 1394 return gen8_check_mi_display_flip(s, info); 1395 } 1396 1397 static int update_plane_mmio_from_mi_display_flip( 1398 struct parser_exec_state *s, 1399 struct mi_display_flip_command_info *info) 1400 { 1401 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1402 } 1403 1404 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1405 { 1406 struct mi_display_flip_command_info info; 1407 struct intel_vgpu *vgpu = s->vgpu; 1408 int ret; 1409 int i; 1410 int len = cmd_length(s); 1411 u32 valid_len = CMD_LEN(1); 1412 1413 /* Flip Type == Stereo 3D Flip */ 1414 if (DWORD_FIELD(2, 1, 0) == 2) 1415 valid_len++; 1416 ret = gvt_check_valid_cmd_length(cmd_length(s), 1417 valid_len); 1418 if (ret) 1419 return ret; 1420 1421 ret = decode_mi_display_flip(s, &info); 1422 if (ret) { 1423 gvt_vgpu_err("fail to decode MI display flip command\n"); 1424 return ret; 1425 } 1426 1427 ret = check_mi_display_flip(s, &info); 1428 if (ret) { 1429 gvt_vgpu_err("invalid MI display flip command\n"); 1430 return ret; 1431 } 1432 1433 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1434 if (ret) { 1435 gvt_vgpu_err("fail to update plane mmio\n"); 1436 return ret; 1437 } 1438 1439 for (i = 0; i < len; i++) 1440 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1441 return 0; 1442 } 1443 1444 static bool is_wait_for_flip_pending(u32 cmd) 1445 { 1446 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1447 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1448 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1449 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1450 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1451 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1452 } 1453 1454 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1455 { 1456 u32 cmd = cmd_val(s, 0); 1457 1458 if (!is_wait_for_flip_pending(cmd)) 1459 return 0; 1460 1461 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1462 return 0; 1463 } 1464 1465 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1466 { 1467 unsigned long addr; 1468 unsigned long gma_high, gma_low; 1469 struct intel_vgpu *vgpu = s->vgpu; 1470 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1471 1472 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1473 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1474 return INTEL_GVT_INVALID_ADDR; 1475 } 1476 1477 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1478 if (gmadr_bytes == 4) { 1479 addr = gma_low; 1480 } else { 1481 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1482 addr = (((unsigned long)gma_high) << 32) | gma_low; 1483 } 1484 return addr; 1485 } 1486 1487 static inline int cmd_address_audit(struct parser_exec_state *s, 1488 unsigned long guest_gma, int op_size, bool index_mode) 1489 { 1490 struct intel_vgpu *vgpu = s->vgpu; 1491 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1492 int i; 1493 int ret; 1494 1495 if (op_size > max_surface_size) { 1496 gvt_vgpu_err("command address audit fail name %s\n", 1497 s->info->name); 1498 return -EFAULT; 1499 } 1500 1501 if (index_mode) { 1502 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1503 ret = -EFAULT; 1504 goto err; 1505 } 1506 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1507 ret = -EFAULT; 1508 goto err; 1509 } 1510 1511 return 0; 1512 1513 err: 1514 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1515 s->info->name, guest_gma, op_size); 1516 1517 pr_err("cmd dump: "); 1518 for (i = 0; i < cmd_length(s); i++) { 1519 if (!(i % 4)) 1520 pr_err("\n%08x ", cmd_val(s, i)); 1521 else 1522 pr_err("%08x ", cmd_val(s, i)); 1523 } 1524 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1525 vgpu->id, 1526 vgpu_aperture_gmadr_base(vgpu), 1527 vgpu_aperture_gmadr_end(vgpu), 1528 vgpu_hidden_gmadr_base(vgpu), 1529 vgpu_hidden_gmadr_end(vgpu)); 1530 return ret; 1531 } 1532 1533 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1534 { 1535 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1536 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1537 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1538 unsigned long gma, gma_low, gma_high; 1539 u32 valid_len = CMD_LEN(2); 1540 int ret = 0; 1541 1542 /* check ppggt */ 1543 if (!(cmd_val(s, 0) & (1 << 22))) 1544 return 0; 1545 1546 /* check if QWORD */ 1547 if (DWORD_FIELD(0, 21, 21)) 1548 valid_len++; 1549 ret = gvt_check_valid_cmd_length(cmd_length(s), 1550 valid_len); 1551 if (ret) 1552 return ret; 1553 1554 gma = cmd_val(s, 2) & GENMASK(31, 2); 1555 1556 if (gmadr_bytes == 8) { 1557 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1558 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1559 gma = (gma_high << 32) | gma_low; 1560 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1561 } 1562 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1563 return ret; 1564 } 1565 1566 static inline int unexpected_cmd(struct parser_exec_state *s) 1567 { 1568 struct intel_vgpu *vgpu = s->vgpu; 1569 1570 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1571 1572 return -EBADRQC; 1573 } 1574 1575 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1576 { 1577 return unexpected_cmd(s); 1578 } 1579 1580 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1581 { 1582 return unexpected_cmd(s); 1583 } 1584 1585 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1586 { 1587 return unexpected_cmd(s); 1588 } 1589 1590 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1591 { 1592 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1593 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1594 sizeof(u32); 1595 unsigned long gma, gma_high; 1596 u32 valid_len = CMD_LEN(1); 1597 int ret = 0; 1598 1599 if (!(cmd_val(s, 0) & (1 << 22))) 1600 return ret; 1601 1602 /* check inline data */ 1603 if (cmd_val(s, 0) & BIT(18)) 1604 valid_len = CMD_LEN(9); 1605 ret = gvt_check_valid_cmd_length(cmd_length(s), 1606 valid_len); 1607 if (ret) 1608 return ret; 1609 1610 gma = cmd_val(s, 1) & GENMASK(31, 2); 1611 if (gmadr_bytes == 8) { 1612 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1613 gma = (gma_high << 32) | gma; 1614 } 1615 ret = cmd_address_audit(s, gma, op_size, false); 1616 return ret; 1617 } 1618 1619 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1620 { 1621 return unexpected_cmd(s); 1622 } 1623 1624 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1625 { 1626 return unexpected_cmd(s); 1627 } 1628 1629 static int cmd_handler_mi_conditional_batch_buffer_end( 1630 struct parser_exec_state *s) 1631 { 1632 return unexpected_cmd(s); 1633 } 1634 1635 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1636 { 1637 return unexpected_cmd(s); 1638 } 1639 1640 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1641 { 1642 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1643 unsigned long gma; 1644 bool index_mode = false; 1645 int ret = 0; 1646 u32 hws_pga, val; 1647 u32 valid_len = CMD_LEN(2); 1648 1649 ret = gvt_check_valid_cmd_length(cmd_length(s), 1650 valid_len); 1651 if (ret) { 1652 /* Check again for Qword */ 1653 ret = gvt_check_valid_cmd_length(cmd_length(s), 1654 ++valid_len); 1655 return ret; 1656 } 1657 1658 /* Check post-sync and ppgtt bit */ 1659 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1660 gma = cmd_val(s, 1) & GENMASK(31, 3); 1661 if (gmadr_bytes == 8) 1662 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1663 /* Store Data Index */ 1664 if (cmd_val(s, 0) & (1 << 21)) 1665 index_mode = true; 1666 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1667 if (ret) 1668 return ret; 1669 if (index_mode) { 1670 hws_pga = s->vgpu->hws_pga[s->ring_id]; 1671 gma = hws_pga + gma; 1672 patch_value(s, cmd_ptr(s, 1), gma); 1673 val = cmd_val(s, 0) & (~(1 << 21)); 1674 patch_value(s, cmd_ptr(s, 0), val); 1675 } 1676 } 1677 /* Check notify bit */ 1678 if ((cmd_val(s, 0) & (1 << 8))) 1679 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1680 s->workload->pending_events); 1681 return ret; 1682 } 1683 1684 static void addr_type_update_snb(struct parser_exec_state *s) 1685 { 1686 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1687 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1688 s->buf_addr_type = PPGTT_BUFFER; 1689 } 1690 } 1691 1692 1693 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1694 unsigned long gma, unsigned long end_gma, void *va) 1695 { 1696 unsigned long copy_len, offset; 1697 unsigned long len = 0; 1698 unsigned long gpa; 1699 1700 while (gma != end_gma) { 1701 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1702 if (gpa == INTEL_GVT_INVALID_ADDR) { 1703 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1704 return -EFAULT; 1705 } 1706 1707 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1708 1709 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1710 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1711 1712 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1713 1714 len += copy_len; 1715 gma += copy_len; 1716 } 1717 return len; 1718 } 1719 1720 1721 /* 1722 * Check whether a batch buffer needs to be scanned. Currently 1723 * the only criteria is based on privilege. 1724 */ 1725 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1726 { 1727 /* Decide privilege based on address space */ 1728 if (cmd_val(s, 0) & (1 << 8) && 1729 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1730 return 0; 1731 return 1; 1732 } 1733 1734 static int find_bb_size(struct parser_exec_state *s, 1735 unsigned long *bb_size, 1736 unsigned long *bb_end_cmd_offset) 1737 { 1738 unsigned long gma = 0; 1739 const struct cmd_info *info; 1740 u32 cmd_len = 0; 1741 bool bb_end = false; 1742 struct intel_vgpu *vgpu = s->vgpu; 1743 u32 cmd; 1744 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1745 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1746 1747 *bb_size = 0; 1748 *bb_end_cmd_offset = 0; 1749 1750 /* get the start gm address of the batch buffer */ 1751 gma = get_gma_bb_from_cmd(s, 1); 1752 if (gma == INTEL_GVT_INVALID_ADDR) 1753 return -EFAULT; 1754 1755 cmd = cmd_val(s, 0); 1756 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1757 if (info == NULL) { 1758 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1759 cmd, get_opcode(cmd, s->ring_id), 1760 (s->buf_addr_type == PPGTT_BUFFER) ? 1761 "ppgtt" : "ggtt", s->ring_id, s->workload); 1762 return -EBADRQC; 1763 } 1764 do { 1765 if (copy_gma_to_hva(s->vgpu, mm, 1766 gma, gma + 4, &cmd) < 0) 1767 return -EFAULT; 1768 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1769 if (info == NULL) { 1770 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1771 cmd, get_opcode(cmd, s->ring_id), 1772 (s->buf_addr_type == PPGTT_BUFFER) ? 1773 "ppgtt" : "ggtt", s->ring_id, s->workload); 1774 return -EBADRQC; 1775 } 1776 1777 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1778 bb_end = true; 1779 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1780 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1781 /* chained batch buffer */ 1782 bb_end = true; 1783 } 1784 1785 if (bb_end) 1786 *bb_end_cmd_offset = *bb_size; 1787 1788 cmd_len = get_cmd_length(info, cmd) << 2; 1789 *bb_size += cmd_len; 1790 gma += cmd_len; 1791 } while (!bb_end); 1792 1793 return 0; 1794 } 1795 1796 static int audit_bb_end(struct parser_exec_state *s, void *va) 1797 { 1798 struct intel_vgpu *vgpu = s->vgpu; 1799 u32 cmd = *(u32 *)va; 1800 const struct cmd_info *info; 1801 1802 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1803 if (info == NULL) { 1804 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1805 cmd, get_opcode(cmd, s->ring_id), 1806 (s->buf_addr_type == PPGTT_BUFFER) ? 1807 "ppgtt" : "ggtt", s->ring_id, s->workload); 1808 return -EBADRQC; 1809 } 1810 1811 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1812 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1813 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1814 return 0; 1815 1816 return -EBADRQC; 1817 } 1818 1819 static int perform_bb_shadow(struct parser_exec_state *s) 1820 { 1821 struct intel_vgpu *vgpu = s->vgpu; 1822 struct intel_vgpu_shadow_bb *bb; 1823 unsigned long gma = 0; 1824 unsigned long bb_size; 1825 unsigned long bb_end_cmd_offset; 1826 int ret = 0; 1827 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1828 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1829 unsigned long start_offset = 0; 1830 1831 /* get the start gm address of the batch buffer */ 1832 gma = get_gma_bb_from_cmd(s, 1); 1833 if (gma == INTEL_GVT_INVALID_ADDR) 1834 return -EFAULT; 1835 1836 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1837 if (ret) 1838 return ret; 1839 1840 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1841 if (!bb) 1842 return -ENOMEM; 1843 1844 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1845 1846 /* the start_offset stores the batch buffer's start gma's 1847 * offset relative to page boundary. so for non-privileged batch 1848 * buffer, the shadowed gem object holds exactly the same page 1849 * layout as original gem object. This is for the convience of 1850 * replacing the whole non-privilged batch buffer page to this 1851 * shadowed one in PPGTT at the same gma address. (this replacing 1852 * action is not implemented yet now, but may be necessary in 1853 * future). 1854 * for prileged batch buffer, we just change start gma address to 1855 * that of shadowed page. 1856 */ 1857 if (bb->ppgtt) 1858 start_offset = gma & ~I915_GTT_PAGE_MASK; 1859 1860 bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv, 1861 round_up(bb_size + start_offset, 1862 PAGE_SIZE)); 1863 if (IS_ERR(bb->obj)) { 1864 ret = PTR_ERR(bb->obj); 1865 goto err_free_bb; 1866 } 1867 1868 ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush); 1869 if (ret) 1870 goto err_free_obj; 1871 1872 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1873 if (IS_ERR(bb->va)) { 1874 ret = PTR_ERR(bb->va); 1875 goto err_finish_shmem_access; 1876 } 1877 1878 if (bb->clflush & CLFLUSH_BEFORE) { 1879 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1880 bb->clflush &= ~CLFLUSH_BEFORE; 1881 } 1882 1883 ret = copy_gma_to_hva(s->vgpu, mm, 1884 gma, gma + bb_size, 1885 bb->va + start_offset); 1886 if (ret < 0) { 1887 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1888 ret = -EFAULT; 1889 goto err_unmap; 1890 } 1891 1892 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1893 if (ret) 1894 goto err_unmap; 1895 1896 INIT_LIST_HEAD(&bb->list); 1897 list_add(&bb->list, &s->workload->shadow_bb); 1898 1899 bb->accessing = true; 1900 bb->bb_start_cmd_va = s->ip_va; 1901 1902 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1903 bb->bb_offset = s->ip_va - s->rb_va; 1904 else 1905 bb->bb_offset = 0; 1906 1907 /* 1908 * ip_va saves the virtual address of the shadow batch buffer, while 1909 * ip_gma saves the graphics address of the original batch buffer. 1910 * As the shadow batch buffer is just a copy from the originial one, 1911 * it should be right to use shadow batch buffer'va and original batch 1912 * buffer's gma in pair. After all, we don't want to pin the shadow 1913 * buffer here (too early). 1914 */ 1915 s->ip_va = bb->va + start_offset; 1916 s->ip_gma = gma; 1917 return 0; 1918 err_unmap: 1919 i915_gem_object_unpin_map(bb->obj); 1920 err_finish_shmem_access: 1921 i915_gem_object_finish_access(bb->obj); 1922 err_free_obj: 1923 i915_gem_object_put(bb->obj); 1924 err_free_bb: 1925 kfree(bb); 1926 return ret; 1927 } 1928 1929 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1930 { 1931 bool second_level; 1932 int ret = 0; 1933 struct intel_vgpu *vgpu = s->vgpu; 1934 1935 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1936 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1937 return -EFAULT; 1938 } 1939 1940 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1941 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1942 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1943 return -EFAULT; 1944 } 1945 1946 s->saved_buf_addr_type = s->buf_addr_type; 1947 addr_type_update_snb(s); 1948 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1949 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1950 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1951 } else if (second_level) { 1952 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1953 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1954 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1955 } 1956 1957 if (batch_buffer_needs_scan(s)) { 1958 ret = perform_bb_shadow(s); 1959 if (ret < 0) 1960 gvt_vgpu_err("invalid shadow batch buffer\n"); 1961 } else { 1962 /* emulate a batch buffer end to do return right */ 1963 ret = cmd_handler_mi_batch_buffer_end(s); 1964 if (ret < 0) 1965 return ret; 1966 } 1967 return ret; 1968 } 1969 1970 static int mi_noop_index; 1971 1972 static const struct cmd_info cmd_info[] = { 1973 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1974 1975 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1976 0, 1, NULL}, 1977 1978 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1979 0, 1, cmd_handler_mi_user_interrupt}, 1980 1981 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1982 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1983 1984 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1985 1986 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1987 NULL}, 1988 1989 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1990 NULL}, 1991 1992 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1993 NULL}, 1994 1995 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1996 NULL}, 1997 1998 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1999 D_ALL, 0, 1, NULL}, 2000 2001 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2002 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2003 cmd_handler_mi_batch_buffer_end}, 2004 2005 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2006 0, 1, NULL}, 2007 2008 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2009 NULL}, 2010 2011 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2012 D_ALL, 0, 1, NULL}, 2013 2014 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2015 NULL}, 2016 2017 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2018 NULL}, 2019 2020 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2021 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2022 2023 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2024 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2025 2026 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2027 2028 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2029 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2030 2031 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2032 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2033 NULL, CMD_LEN(0)}, 2034 2035 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2036 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2037 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2038 2039 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2040 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2041 2042 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2043 0, 8, cmd_handler_mi_store_data_index}, 2044 2045 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2046 D_ALL, 0, 8, cmd_handler_lri}, 2047 2048 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2049 cmd_handler_mi_update_gtt}, 2050 2051 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2052 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2053 cmd_handler_srm, CMD_LEN(2)}, 2054 2055 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2056 cmd_handler_mi_flush_dw}, 2057 2058 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2059 10, cmd_handler_mi_clflush}, 2060 2061 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2062 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2063 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2064 2065 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2066 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2067 cmd_handler_lrm, CMD_LEN(2)}, 2068 2069 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2070 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2071 cmd_handler_lrr, CMD_LEN(1)}, 2072 2073 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2074 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2075 8, NULL, CMD_LEN(2)}, 2076 2077 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2078 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2079 2080 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2081 ADDR_FIX_1(2), 8, NULL}, 2082 2083 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2084 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2085 2086 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2087 8, cmd_handler_mi_op_2f}, 2088 2089 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2090 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2091 cmd_handler_mi_batch_buffer_start}, 2092 2093 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2094 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2095 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2096 2097 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2098 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2099 2100 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2101 ADDR_FIX_2(4, 7), 8, NULL}, 2102 2103 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2104 0, 8, NULL}, 2105 2106 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2107 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2108 2109 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2110 2111 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2112 0, 8, NULL}, 2113 2114 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2115 ADDR_FIX_1(3), 8, NULL}, 2116 2117 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2118 D_ALL, 0, 8, NULL}, 2119 2120 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2121 ADDR_FIX_1(4), 8, NULL}, 2122 2123 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2124 ADDR_FIX_2(4, 5), 8, NULL}, 2125 2126 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2127 ADDR_FIX_1(4), 8, NULL}, 2128 2129 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2130 ADDR_FIX_2(4, 7), 8, NULL}, 2131 2132 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2133 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2134 2135 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2136 2137 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2138 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2139 2140 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2141 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2142 2143 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2144 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2145 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2146 2147 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2148 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2149 2150 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2151 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2152 2153 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2154 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2155 2156 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2157 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2158 2159 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2160 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2161 2162 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2163 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2164 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2165 2166 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2167 ADDR_FIX_2(4, 5), 8, NULL}, 2168 2169 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2170 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2171 2172 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2173 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2174 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2175 2176 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2177 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2178 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2179 2180 {"3DSTATE_BLEND_STATE_POINTERS", 2181 OP_3DSTATE_BLEND_STATE_POINTERS, 2182 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2183 2184 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2185 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2186 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2187 2188 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2189 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2190 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2191 2192 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2193 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2194 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2195 2196 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2197 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2198 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2199 2200 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2201 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2202 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2203 2204 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2205 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2206 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2207 2208 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2209 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2210 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2211 2212 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2213 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2214 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2215 2216 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2217 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2218 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2219 2220 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2221 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2222 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2223 2224 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2225 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2226 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2227 2228 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2229 0, 8, NULL}, 2230 2231 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2232 0, 8, NULL}, 2233 2234 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2235 0, 8, NULL}, 2236 2237 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2238 0, 8, NULL}, 2239 2240 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2248 2249 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2256 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2257 2258 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2259 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2260 2261 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2266 2267 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2272 2273 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2281 2282 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2284 2285 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2287 2288 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2289 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2290 2291 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2292 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2293 2294 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2295 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2296 2297 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2298 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2299 2300 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2301 D_BDW_PLUS, 0, 8, NULL}, 2302 2303 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2304 NULL}, 2305 2306 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2307 D_BDW_PLUS, 0, 8, NULL}, 2308 2309 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2310 D_BDW_PLUS, 0, 8, NULL}, 2311 2312 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2313 8, NULL}, 2314 2315 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2316 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2317 2318 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2319 8, NULL}, 2320 2321 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2322 NULL}, 2323 2324 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2325 NULL}, 2326 2327 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2328 NULL}, 2329 2330 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2331 D_BDW_PLUS, 0, 8, NULL}, 2332 2333 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2334 R_RCS, D_ALL, 0, 8, NULL}, 2335 2336 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2337 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2338 2339 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2340 R_RCS, D_ALL, 0, 1, NULL}, 2341 2342 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2343 2344 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2345 R_RCS, D_ALL, 0, 8, NULL}, 2346 2347 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2348 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2349 2350 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2351 2352 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2353 2354 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2355 2356 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2357 D_BDW_PLUS, 0, 8, NULL}, 2358 2359 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2360 D_BDW_PLUS, 0, 8, NULL}, 2361 2362 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2363 D_ALL, 0, 8, NULL}, 2364 2365 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2366 D_BDW_PLUS, 0, 8, NULL}, 2367 2368 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2369 D_BDW_PLUS, 0, 8, NULL}, 2370 2371 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2372 2373 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2374 2375 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2376 2377 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2378 D_ALL, 0, 8, NULL}, 2379 2380 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2381 2382 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2383 2384 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2385 R_RCS, D_ALL, 0, 8, NULL}, 2386 2387 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2388 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2389 2390 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2391 0, 8, NULL}, 2392 2393 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2394 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2395 2396 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2397 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2398 2399 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2400 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2401 2402 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2403 D_ALL, 0, 8, NULL}, 2404 2405 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2406 D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2409 D_ALL, 0, 8, NULL}, 2410 2411 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2412 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2413 2414 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2415 D_BDW_PLUS, 0, 8, NULL}, 2416 2417 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2418 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2419 2420 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2421 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2422 2423 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2424 R_RCS, D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2427 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2428 2429 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2430 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2431 2432 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2433 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2434 2435 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2436 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2439 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2440 2441 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2442 R_RCS, D_ALL, 0, 8, NULL}, 2443 2444 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2445 D_ALL, 0, 9, NULL}, 2446 2447 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2448 ADDR_FIX_2(2, 4), 8, NULL}, 2449 2450 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2451 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2452 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2453 2454 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2455 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2456 2457 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2458 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2459 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2460 2461 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2462 D_BDW_PLUS, 0, 8, NULL}, 2463 2464 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2465 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2466 2467 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2468 2469 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2470 1, NULL}, 2471 2472 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2473 ADDR_FIX_1(1), 8, NULL}, 2474 2475 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2476 2477 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2478 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2479 2480 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2481 ADDR_FIX_1(1), 8, NULL}, 2482 2483 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2484 2485 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2486 2487 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2488 0, 8, NULL}, 2489 2490 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2491 D_SKL_PLUS, 0, 8, NULL}, 2492 2493 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2494 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2495 2496 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2497 0, 16, NULL}, 2498 2499 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2500 0, 16, NULL}, 2501 2502 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2503 0, 16, NULL}, 2504 2505 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2506 2507 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2508 0, 16, NULL}, 2509 2510 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2511 0, 16, NULL}, 2512 2513 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2514 0, 16, NULL}, 2515 2516 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2517 0, 8, NULL}, 2518 2519 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2520 NULL}, 2521 2522 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2523 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2524 2525 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2526 R_VCS, D_ALL, 0, 12, NULL}, 2527 2528 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2529 R_VCS, D_ALL, 0, 12, NULL}, 2530 2531 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2532 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2533 2534 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2535 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2536 2537 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2538 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2539 2540 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2541 2542 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2543 R_VCS, D_ALL, 0, 12, NULL}, 2544 2545 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2546 R_VCS, D_ALL, 0, 12, NULL}, 2547 2548 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2549 R_VCS, D_ALL, 0, 12, NULL}, 2550 2551 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2552 R_VCS, D_ALL, 0, 12, NULL}, 2553 2554 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2555 R_VCS, D_ALL, 0, 12, NULL}, 2556 2557 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2558 R_VCS, D_ALL, 0, 12, NULL}, 2559 2560 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2561 R_VCS, D_ALL, 0, 6, NULL}, 2562 2563 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2564 R_VCS, D_ALL, 0, 12, NULL}, 2565 2566 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2567 R_VCS, D_ALL, 0, 12, NULL}, 2568 2569 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2570 R_VCS, D_ALL, 0, 12, NULL}, 2571 2572 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2573 R_VCS, D_ALL, 0, 12, NULL}, 2574 2575 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2576 R_VCS, D_ALL, 0, 12, NULL}, 2577 2578 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2579 R_VCS, D_ALL, 0, 12, NULL}, 2580 2581 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2582 R_VCS, D_ALL, 0, 12, NULL}, 2583 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2584 R_VCS, D_ALL, 0, 12, NULL}, 2585 2586 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2587 R_VCS, D_ALL, 0, 12, NULL}, 2588 2589 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2590 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2591 2592 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2593 R_VCS, D_ALL, 0, 12, NULL}, 2594 2595 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2596 R_VCS, D_ALL, 0, 12, NULL}, 2597 2598 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2599 R_VCS, D_ALL, 0, 12, NULL}, 2600 2601 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2602 R_VCS, D_ALL, 0, 12, NULL}, 2603 2604 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2605 R_VCS, D_ALL, 0, 12, NULL}, 2606 2607 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2608 R_VCS, D_ALL, 0, 12, NULL}, 2609 2610 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 2613 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2620 R_VCS, D_ALL, 0, 12, NULL}, 2621 2622 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 12, NULL}, 2624 2625 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2626 0, 16, NULL}, 2627 2628 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2629 2630 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2631 2632 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2633 R_VCS, D_ALL, 0, 12, NULL}, 2634 2635 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2636 R_VCS, D_ALL, 0, 12, NULL}, 2637 2638 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2639 R_VCS, D_ALL, 0, 12, NULL}, 2640 2641 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2642 2643 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2644 0, 12, NULL}, 2645 2646 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2647 0, 12, NULL}, 2648 }; 2649 2650 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2651 { 2652 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2653 } 2654 2655 /* call the cmd handler, and advance ip */ 2656 static int cmd_parser_exec(struct parser_exec_state *s) 2657 { 2658 struct intel_vgpu *vgpu = s->vgpu; 2659 const struct cmd_info *info; 2660 u32 cmd; 2661 int ret = 0; 2662 2663 cmd = cmd_val(s, 0); 2664 2665 /* fastpath for MI_NOOP */ 2666 if (cmd == MI_NOOP) 2667 info = &cmd_info[mi_noop_index]; 2668 else 2669 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2670 2671 if (info == NULL) { 2672 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2673 cmd, get_opcode(cmd, s->ring_id), 2674 (s->buf_addr_type == PPGTT_BUFFER) ? 2675 "ppgtt" : "ggtt", s->ring_id, s->workload); 2676 return -EBADRQC; 2677 } 2678 2679 s->info = info; 2680 2681 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2682 cmd_length(s), s->buf_type, s->buf_addr_type, 2683 s->workload, info->name); 2684 2685 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2686 ret = gvt_check_valid_cmd_length(cmd_length(s), 2687 info->valid_len); 2688 if (ret) 2689 return ret; 2690 } 2691 2692 if (info->handler) { 2693 ret = info->handler(s); 2694 if (ret < 0) { 2695 gvt_vgpu_err("%s handler error\n", info->name); 2696 return ret; 2697 } 2698 } 2699 2700 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2701 ret = cmd_advance_default(s); 2702 if (ret) { 2703 gvt_vgpu_err("%s IP advance error\n", info->name); 2704 return ret; 2705 } 2706 } 2707 return 0; 2708 } 2709 2710 static inline bool gma_out_of_range(unsigned long gma, 2711 unsigned long gma_head, unsigned int gma_tail) 2712 { 2713 if (gma_tail >= gma_head) 2714 return (gma < gma_head) || (gma > gma_tail); 2715 else 2716 return (gma > gma_tail) && (gma < gma_head); 2717 } 2718 2719 /* Keep the consistent return type, e.g EBADRQC for unknown 2720 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2721 * works as the input of VM healthy status. 2722 */ 2723 static int command_scan(struct parser_exec_state *s, 2724 unsigned long rb_head, unsigned long rb_tail, 2725 unsigned long rb_start, unsigned long rb_len) 2726 { 2727 2728 unsigned long gma_head, gma_tail, gma_bottom; 2729 int ret = 0; 2730 struct intel_vgpu *vgpu = s->vgpu; 2731 2732 gma_head = rb_start + rb_head; 2733 gma_tail = rb_start + rb_tail; 2734 gma_bottom = rb_start + rb_len; 2735 2736 while (s->ip_gma != gma_tail) { 2737 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2738 if (!(s->ip_gma >= rb_start) || 2739 !(s->ip_gma < gma_bottom)) { 2740 gvt_vgpu_err("ip_gma %lx out of ring scope." 2741 "(base:0x%lx, bottom: 0x%lx)\n", 2742 s->ip_gma, rb_start, 2743 gma_bottom); 2744 parser_exec_state_dump(s); 2745 return -EFAULT; 2746 } 2747 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2748 gvt_vgpu_err("ip_gma %lx out of range." 2749 "base 0x%lx head 0x%lx tail 0x%lx\n", 2750 s->ip_gma, rb_start, 2751 rb_head, rb_tail); 2752 parser_exec_state_dump(s); 2753 break; 2754 } 2755 } 2756 ret = cmd_parser_exec(s); 2757 if (ret) { 2758 gvt_vgpu_err("cmd parser error\n"); 2759 parser_exec_state_dump(s); 2760 break; 2761 } 2762 } 2763 2764 return ret; 2765 } 2766 2767 static int scan_workload(struct intel_vgpu_workload *workload) 2768 { 2769 unsigned long gma_head, gma_tail, gma_bottom; 2770 struct parser_exec_state s; 2771 int ret = 0; 2772 2773 /* ring base is page aligned */ 2774 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2775 return -EINVAL; 2776 2777 gma_head = workload->rb_start + workload->rb_head; 2778 gma_tail = workload->rb_start + workload->rb_tail; 2779 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2780 2781 s.buf_type = RING_BUFFER_INSTRUCTION; 2782 s.buf_addr_type = GTT_BUFFER; 2783 s.vgpu = workload->vgpu; 2784 s.ring_id = workload->ring_id; 2785 s.ring_start = workload->rb_start; 2786 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2787 s.ring_head = gma_head; 2788 s.ring_tail = gma_tail; 2789 s.rb_va = workload->shadow_ring_buffer_va; 2790 s.workload = workload; 2791 s.is_ctx_wa = false; 2792 2793 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2794 gma_head == gma_tail) 2795 return 0; 2796 2797 ret = ip_gma_set(&s, gma_head); 2798 if (ret) 2799 goto out; 2800 2801 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2802 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2803 2804 out: 2805 return ret; 2806 } 2807 2808 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2809 { 2810 2811 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2812 struct parser_exec_state s; 2813 int ret = 0; 2814 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2815 struct intel_vgpu_workload, 2816 wa_ctx); 2817 2818 /* ring base is page aligned */ 2819 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2820 I915_GTT_PAGE_SIZE))) 2821 return -EINVAL; 2822 2823 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2824 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2825 PAGE_SIZE); 2826 gma_head = wa_ctx->indirect_ctx.guest_gma; 2827 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2828 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2829 2830 s.buf_type = RING_BUFFER_INSTRUCTION; 2831 s.buf_addr_type = GTT_BUFFER; 2832 s.vgpu = workload->vgpu; 2833 s.ring_id = workload->ring_id; 2834 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2835 s.ring_size = ring_size; 2836 s.ring_head = gma_head; 2837 s.ring_tail = gma_tail; 2838 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2839 s.workload = workload; 2840 s.is_ctx_wa = true; 2841 2842 ret = ip_gma_set(&s, gma_head); 2843 if (ret) 2844 goto out; 2845 2846 ret = command_scan(&s, 0, ring_tail, 2847 wa_ctx->indirect_ctx.guest_gma, ring_size); 2848 out: 2849 return ret; 2850 } 2851 2852 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2853 { 2854 struct intel_vgpu *vgpu = workload->vgpu; 2855 struct intel_vgpu_submission *s = &vgpu->submission; 2856 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2857 void *shadow_ring_buffer_va; 2858 int ring_id = workload->ring_id; 2859 int ret; 2860 2861 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2862 2863 /* calculate workload ring buffer size */ 2864 workload->rb_len = (workload->rb_tail + guest_rb_size - 2865 workload->rb_head) % guest_rb_size; 2866 2867 gma_head = workload->rb_start + workload->rb_head; 2868 gma_tail = workload->rb_start + workload->rb_tail; 2869 gma_top = workload->rb_start + guest_rb_size; 2870 2871 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2872 void *p; 2873 2874 /* realloc the new ring buffer if needed */ 2875 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2876 GFP_KERNEL); 2877 if (!p) { 2878 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2879 return -ENOMEM; 2880 } 2881 s->ring_scan_buffer[ring_id] = p; 2882 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2883 } 2884 2885 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2886 2887 /* get shadow ring buffer va */ 2888 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2889 2890 /* head > tail --> copy head <-> top */ 2891 if (gma_head > gma_tail) { 2892 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2893 gma_head, gma_top, shadow_ring_buffer_va); 2894 if (ret < 0) { 2895 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2896 return ret; 2897 } 2898 shadow_ring_buffer_va += ret; 2899 gma_head = workload->rb_start; 2900 } 2901 2902 /* copy head or start <-> tail */ 2903 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2904 shadow_ring_buffer_va); 2905 if (ret < 0) { 2906 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2907 return ret; 2908 } 2909 return 0; 2910 } 2911 2912 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2913 { 2914 int ret; 2915 struct intel_vgpu *vgpu = workload->vgpu; 2916 2917 ret = shadow_workload_ring_buffer(workload); 2918 if (ret) { 2919 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2920 return ret; 2921 } 2922 2923 ret = scan_workload(workload); 2924 if (ret) { 2925 gvt_vgpu_err("scan workload error\n"); 2926 return ret; 2927 } 2928 return 0; 2929 } 2930 2931 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2932 { 2933 int ctx_size = wa_ctx->indirect_ctx.size; 2934 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2935 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2936 struct intel_vgpu_workload, 2937 wa_ctx); 2938 struct intel_vgpu *vgpu = workload->vgpu; 2939 struct drm_i915_gem_object *obj; 2940 int ret = 0; 2941 void *map; 2942 2943 obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv, 2944 roundup(ctx_size + CACHELINE_BYTES, 2945 PAGE_SIZE)); 2946 if (IS_ERR(obj)) 2947 return PTR_ERR(obj); 2948 2949 /* get the va of the shadow batch buffer */ 2950 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2951 if (IS_ERR(map)) { 2952 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2953 ret = PTR_ERR(map); 2954 goto put_obj; 2955 } 2956 2957 i915_gem_object_lock(obj); 2958 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2959 i915_gem_object_unlock(obj); 2960 if (ret) { 2961 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2962 goto unmap_src; 2963 } 2964 2965 ret = copy_gma_to_hva(workload->vgpu, 2966 workload->vgpu->gtt.ggtt_mm, 2967 guest_gma, guest_gma + ctx_size, 2968 map); 2969 if (ret < 0) { 2970 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2971 goto unmap_src; 2972 } 2973 2974 wa_ctx->indirect_ctx.obj = obj; 2975 wa_ctx->indirect_ctx.shadow_va = map; 2976 return 0; 2977 2978 unmap_src: 2979 i915_gem_object_unpin_map(obj); 2980 put_obj: 2981 i915_gem_object_put(obj); 2982 return ret; 2983 } 2984 2985 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2986 { 2987 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 2988 unsigned char *bb_start_sva; 2989 2990 if (!wa_ctx->per_ctx.valid) 2991 return 0; 2992 2993 per_ctx_start[0] = 0x18800001; 2994 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2995 2996 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2997 wa_ctx->indirect_ctx.size; 2998 2999 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3000 3001 return 0; 3002 } 3003 3004 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3005 { 3006 int ret; 3007 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3008 struct intel_vgpu_workload, 3009 wa_ctx); 3010 struct intel_vgpu *vgpu = workload->vgpu; 3011 3012 if (wa_ctx->indirect_ctx.size == 0) 3013 return 0; 3014 3015 ret = shadow_indirect_ctx(wa_ctx); 3016 if (ret) { 3017 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3018 return ret; 3019 } 3020 3021 combine_wa_ctx(wa_ctx); 3022 3023 ret = scan_wa_ctx(wa_ctx); 3024 if (ret) { 3025 gvt_vgpu_err("scan wa ctx error\n"); 3026 return ret; 3027 } 3028 3029 return 0; 3030 } 3031 3032 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 3033 unsigned int opcode, unsigned long rings) 3034 { 3035 const struct cmd_info *info = NULL; 3036 unsigned int ring; 3037 3038 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 3039 info = find_cmd_entry(gvt, opcode, ring); 3040 if (info) 3041 break; 3042 } 3043 return info; 3044 } 3045 3046 static int init_cmd_table(struct intel_gvt *gvt) 3047 { 3048 int i; 3049 struct cmd_entry *e; 3050 const struct cmd_info *info; 3051 unsigned int gen_type; 3052 3053 gen_type = intel_gvt_get_device_type(gvt); 3054 3055 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3056 if (!(cmd_info[i].devices & gen_type)) 3057 continue; 3058 3059 e = kzalloc(sizeof(*e), GFP_KERNEL); 3060 if (!e) 3061 return -ENOMEM; 3062 3063 e->info = &cmd_info[i]; 3064 info = find_cmd_entry_any_ring(gvt, 3065 e->info->opcode, e->info->rings); 3066 if (info) { 3067 gvt_err("%s %s duplicated\n", e->info->name, 3068 info->name); 3069 kfree(e); 3070 return -EEXIST; 3071 } 3072 if (cmd_info[i].opcode == OP_MI_NOOP) 3073 mi_noop_index = i; 3074 3075 INIT_HLIST_NODE(&e->hlist); 3076 add_cmd_entry(gvt, e); 3077 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3078 e->info->name, e->info->opcode, e->info->flag, 3079 e->info->devices, e->info->rings); 3080 } 3081 return 0; 3082 } 3083 3084 static void clean_cmd_table(struct intel_gvt *gvt) 3085 { 3086 struct hlist_node *tmp; 3087 struct cmd_entry *e; 3088 int i; 3089 3090 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3091 kfree(e); 3092 3093 hash_init(gvt->cmd_table); 3094 } 3095 3096 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3097 { 3098 clean_cmd_table(gvt); 3099 } 3100 3101 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3102 { 3103 int ret; 3104 3105 ret = init_cmd_table(gvt); 3106 if (ret) { 3107 intel_gvt_clean_cmd_parser(gvt); 3108 return ret; 3109 } 3110 return 0; 3111 } 3112