1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_ring.h" 41 #include "gvt.h" 42 #include "i915_pvinfo.h" 43 #include "trace.h" 44 45 #define INVALID_OP (~0U) 46 47 #define OP_LEN_MI 9 48 #define OP_LEN_2D 10 49 #define OP_LEN_3D_MEDIA 16 50 #define OP_LEN_MFX_VC 16 51 #define OP_LEN_VEBOX 16 52 53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 54 55 struct sub_op_bits { 56 int hi; 57 int low; 58 }; 59 struct decode_info { 60 const char *name; 61 int op_len; 62 int nr_sub_op; 63 const struct sub_op_bits *sub_op; 64 }; 65 66 #define MAX_CMD_BUDGET 0x7fffffff 67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 70 71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 74 75 /* Render Command Map */ 76 77 /* MI_* command Opcode (28:23) */ 78 #define OP_MI_NOOP 0x0 79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 80 #define OP_MI_USER_INTERRUPT 0x2 81 #define OP_MI_WAIT_FOR_EVENT 0x3 82 #define OP_MI_FLUSH 0x4 83 #define OP_MI_ARB_CHECK 0x5 84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 85 #define OP_MI_REPORT_HEAD 0x7 86 #define OP_MI_ARB_ON_OFF 0x8 87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 88 #define OP_MI_BATCH_BUFFER_END 0xA 89 #define OP_MI_SUSPEND_FLUSH 0xB 90 #define OP_MI_PREDICATE 0xC /* IVB+ */ 91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 92 #define OP_MI_SET_APPID 0xE /* IVB+ */ 93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 95 #define OP_MI_DISPLAY_FLIP 0x14 96 #define OP_MI_SEMAPHORE_MBOX 0x16 97 #define OP_MI_SET_CONTEXT 0x18 98 #define OP_MI_MATH 0x1A 99 #define OP_MI_URB_CLEAR 0x19 100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 102 103 #define OP_MI_STORE_DATA_IMM 0x20 104 #define OP_MI_STORE_DATA_INDEX 0x21 105 #define OP_MI_LOAD_REGISTER_IMM 0x22 106 #define OP_MI_UPDATE_GTT 0x23 107 #define OP_MI_STORE_REGISTER_MEM 0x24 108 #define OP_MI_FLUSH_DW 0x26 109 #define OP_MI_CLFLUSH 0x27 110 #define OP_MI_REPORT_PERF_COUNT 0x28 111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 116 #define OP_MI_2E 0x2E /* BDW+ */ 117 #define OP_MI_2F 0x2F /* BDW+ */ 118 #define OP_MI_BATCH_BUFFER_START 0x31 119 120 /* Bit definition for dword 0 */ 121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 122 123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 124 125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 129 130 /* 2D command: Opcode (28:22) */ 131 #define OP_2D(x) ((2<<7) | x) 132 133 #define OP_XY_SETUP_BLT OP_2D(0x1) 134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 136 #define OP_XY_PIXEL_BLT OP_2D(0x24) 137 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 138 #define OP_XY_TEXT_BLT OP_2D(0x26) 139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 140 #define OP_XY_COLOR_BLT OP_2D(0x50) 141 #define OP_XY_PAT_BLT OP_2D(0x51) 142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 145 #define OP_XY_FULL_BLT OP_2D(0x55) 146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 157 158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 161 162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 163 164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 167 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 168 169 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 170 171 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 172 173 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 174 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 176 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 177 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 178 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 179 180 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 181 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 182 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 183 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 184 185 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 186 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 187 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 188 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 189 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 190 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 191 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 192 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 193 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 194 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 196 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 197 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 198 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 199 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 200 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 201 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 202 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 203 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 204 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 205 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 206 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 207 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 208 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 209 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 210 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 211 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 212 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 215 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 227 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 228 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 229 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 230 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 233 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 234 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 235 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 239 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 240 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 241 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 251 252 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 253 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 254 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 255 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 256 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 257 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 258 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 259 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 260 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 261 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 262 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 263 264 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 266 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 267 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 270 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 271 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 272 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 274 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 275 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 277 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 278 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 284 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 285 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 287 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 289 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 290 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 291 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 292 293 /* VCCP Command Parser */ 294 295 /* 296 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 297 * git://anongit.freedesktop.org/vaapi/intel-driver 298 * src/i965_defines.h 299 * 300 */ 301 302 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 303 (3 << 13 | \ 304 (pipeline) << 11 | \ 305 (op) << 8 | \ 306 (sub_opa) << 5 | \ 307 (sub_opb)) 308 309 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 310 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 311 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 314 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 315 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 316 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 317 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 318 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 319 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 320 321 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 322 323 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 324 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 325 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 326 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 327 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 328 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 330 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 331 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 332 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 333 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 334 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 335 336 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 337 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 338 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 339 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 340 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 341 342 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 343 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 344 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 345 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 346 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 347 348 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 349 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 350 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 351 352 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 353 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 354 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 355 356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 357 (3 << 13 | \ 358 (pipeline) << 11 | \ 359 (op) << 8 | \ 360 (sub_opa) << 5 | \ 361 (sub_opb)) 362 363 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 364 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 365 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 366 367 struct parser_exec_state; 368 369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 370 371 #define GVT_CMD_HASH_BITS 7 372 373 /* which DWords need address fix */ 374 #define ADDR_FIX_1(x1) (1 << (x1)) 375 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 376 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 377 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 378 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 379 380 #define DWORD_FIELD(dword, end, start) \ 381 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 382 383 #define OP_LENGTH_BIAS 2 384 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 385 386 static int gvt_check_valid_cmd_length(int len, int valid_len) 387 { 388 if (valid_len != len) { 389 gvt_err("len is not valid: len=%u valid_len=%u\n", 390 len, valid_len); 391 return -EFAULT; 392 } 393 return 0; 394 } 395 396 struct cmd_info { 397 const char *name; 398 u32 opcode; 399 400 #define F_LEN_MASK 3U 401 #define F_LEN_CONST 1U 402 #define F_LEN_VAR 0U 403 /* value is const although LEN maybe variable */ 404 #define F_LEN_VAR_FIXED (1<<1) 405 406 /* 407 * command has its own ip advance logic 408 * e.g. MI_BATCH_START, MI_BATCH_END 409 */ 410 #define F_IP_ADVANCE_CUSTOM (1<<2) 411 u32 flag; 412 413 #define R_RCS BIT(RCS0) 414 #define R_VCS1 BIT(VCS0) 415 #define R_VCS2 BIT(VCS1) 416 #define R_VCS (R_VCS1 | R_VCS2) 417 #define R_BCS BIT(BCS0) 418 #define R_VECS BIT(VECS0) 419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 420 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 421 u16 rings; 422 423 /* devices that support this cmd: SNB/IVB/HSW/... */ 424 u16 devices; 425 426 /* which DWords are address that need fix up. 427 * bit 0 means a 32-bit non address operand in command 428 * bit 1 means address operand, which could be 32-bit 429 * or 64-bit depending on different architectures.( 430 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 431 * No matter the address length, each address only takes 432 * one bit in the bitmap. 433 */ 434 u16 addr_bitmap; 435 436 /* flag == F_LEN_CONST : command length 437 * flag == F_LEN_VAR : length bias bits 438 * Note: length is in DWord 439 */ 440 u32 len; 441 442 parser_cmd_handler handler; 443 444 /* valid length in DWord */ 445 u32 valid_len; 446 }; 447 448 struct cmd_entry { 449 struct hlist_node hlist; 450 const struct cmd_info *info; 451 }; 452 453 enum { 454 RING_BUFFER_INSTRUCTION, 455 BATCH_BUFFER_INSTRUCTION, 456 BATCH_BUFFER_2ND_LEVEL, 457 }; 458 459 enum { 460 GTT_BUFFER, 461 PPGTT_BUFFER 462 }; 463 464 struct parser_exec_state { 465 struct intel_vgpu *vgpu; 466 const struct intel_engine_cs *engine; 467 468 int buf_type; 469 470 /* batch buffer address type */ 471 int buf_addr_type; 472 473 /* graphics memory address of ring buffer start */ 474 unsigned long ring_start; 475 unsigned long ring_size; 476 unsigned long ring_head; 477 unsigned long ring_tail; 478 479 /* instruction graphics memory address */ 480 unsigned long ip_gma; 481 482 /* mapped va of the instr_gma */ 483 void *ip_va; 484 void *rb_va; 485 486 void *ret_bb_va; 487 /* next instruction when return from batch buffer to ring buffer */ 488 unsigned long ret_ip_gma_ring; 489 490 /* next instruction when return from 2nd batch buffer to batch buffer */ 491 unsigned long ret_ip_gma_bb; 492 493 /* batch buffer address type (GTT or PPGTT) 494 * used when ret from 2nd level batch buffer 495 */ 496 int saved_buf_addr_type; 497 bool is_ctx_wa; 498 499 const struct cmd_info *info; 500 501 struct intel_vgpu_workload *workload; 502 }; 503 504 #define gmadr_dw_number(s) \ 505 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 506 507 static unsigned long bypass_scan_mask = 0; 508 509 /* ring ALL, type = 0 */ 510 static const struct sub_op_bits sub_op_mi[] = { 511 {31, 29}, 512 {28, 23}, 513 }; 514 515 static const struct decode_info decode_info_mi = { 516 "MI", 517 OP_LEN_MI, 518 ARRAY_SIZE(sub_op_mi), 519 sub_op_mi, 520 }; 521 522 /* ring RCS, command type 2 */ 523 static const struct sub_op_bits sub_op_2d[] = { 524 {31, 29}, 525 {28, 22}, 526 }; 527 528 static const struct decode_info decode_info_2d = { 529 "2D", 530 OP_LEN_2D, 531 ARRAY_SIZE(sub_op_2d), 532 sub_op_2d, 533 }; 534 535 /* ring RCS, command type 3 */ 536 static const struct sub_op_bits sub_op_3d_media[] = { 537 {31, 29}, 538 {28, 27}, 539 {26, 24}, 540 {23, 16}, 541 }; 542 543 static const struct decode_info decode_info_3d_media = { 544 "3D_Media", 545 OP_LEN_3D_MEDIA, 546 ARRAY_SIZE(sub_op_3d_media), 547 sub_op_3d_media, 548 }; 549 550 /* ring VCS, command type 3 */ 551 static const struct sub_op_bits sub_op_mfx_vc[] = { 552 {31, 29}, 553 {28, 27}, 554 {26, 24}, 555 {23, 21}, 556 {20, 16}, 557 }; 558 559 static const struct decode_info decode_info_mfx_vc = { 560 "MFX_VC", 561 OP_LEN_MFX_VC, 562 ARRAY_SIZE(sub_op_mfx_vc), 563 sub_op_mfx_vc, 564 }; 565 566 /* ring VECS, command type 3 */ 567 static const struct sub_op_bits sub_op_vebox[] = { 568 {31, 29}, 569 {28, 27}, 570 {26, 24}, 571 {23, 21}, 572 {20, 16}, 573 }; 574 575 static const struct decode_info decode_info_vebox = { 576 "VEBOX", 577 OP_LEN_VEBOX, 578 ARRAY_SIZE(sub_op_vebox), 579 sub_op_vebox, 580 }; 581 582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 583 [RCS0] = { 584 &decode_info_mi, 585 NULL, 586 NULL, 587 &decode_info_3d_media, 588 NULL, 589 NULL, 590 NULL, 591 NULL, 592 }, 593 594 [VCS0] = { 595 &decode_info_mi, 596 NULL, 597 NULL, 598 &decode_info_mfx_vc, 599 NULL, 600 NULL, 601 NULL, 602 NULL, 603 }, 604 605 [BCS0] = { 606 &decode_info_mi, 607 NULL, 608 &decode_info_2d, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 }, 615 616 [VECS0] = { 617 &decode_info_mi, 618 NULL, 619 NULL, 620 &decode_info_vebox, 621 NULL, 622 NULL, 623 NULL, 624 NULL, 625 }, 626 627 [VCS1] = { 628 &decode_info_mi, 629 NULL, 630 NULL, 631 &decode_info_mfx_vc, 632 NULL, 633 NULL, 634 NULL, 635 NULL, 636 }, 637 }; 638 639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 640 { 641 const struct decode_info *d_info; 642 643 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 644 if (d_info == NULL) 645 return INVALID_OP; 646 647 return cmd >> (32 - d_info->op_len); 648 } 649 650 static inline const struct cmd_info * 651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 652 const struct intel_engine_cs *engine) 653 { 654 struct cmd_entry *e; 655 656 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 657 if (opcode == e->info->opcode && 658 e->info->rings & engine->mask) 659 return e->info; 660 } 661 return NULL; 662 } 663 664 static inline const struct cmd_info * 665 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 666 const struct intel_engine_cs *engine) 667 { 668 u32 opcode; 669 670 opcode = get_opcode(cmd, engine); 671 if (opcode == INVALID_OP) 672 return NULL; 673 674 return find_cmd_entry(gvt, opcode, engine); 675 } 676 677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 678 { 679 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 680 } 681 682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 683 { 684 const struct decode_info *d_info; 685 int i; 686 687 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 688 if (d_info == NULL) 689 return; 690 691 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 692 cmd >> (32 - d_info->op_len), d_info->name); 693 694 for (i = 0; i < d_info->nr_sub_op; i++) 695 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 696 d_info->sub_op[i].low)); 697 698 pr_err("\n"); 699 } 700 701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 702 { 703 return s->ip_va + (index << 2); 704 } 705 706 static inline u32 cmd_val(struct parser_exec_state *s, int index) 707 { 708 return *cmd_ptr(s, index); 709 } 710 711 static void parser_exec_state_dump(struct parser_exec_state *s) 712 { 713 int cnt = 0; 714 int i; 715 716 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 717 " ring_head(%08lx) ring_tail(%08lx)\n", 718 s->vgpu->id, s->engine->name, 719 s->ring_start, s->ring_start + s->ring_size, 720 s->ring_head, s->ring_tail); 721 722 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 723 s->buf_type == RING_BUFFER_INSTRUCTION ? 724 "RING_BUFFER" : "BATCH_BUFFER", 725 s->buf_addr_type == GTT_BUFFER ? 726 "GTT" : "PPGTT", s->ip_gma); 727 728 if (s->ip_va == NULL) { 729 gvt_dbg_cmd(" ip_va(NULL)"); 730 return; 731 } 732 733 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 734 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 735 cmd_val(s, 2), cmd_val(s, 3)); 736 737 print_opcode(cmd_val(s, 0), s->engine); 738 739 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 740 741 while (cnt < 1024) { 742 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 743 for (i = 0; i < 8; i++) 744 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 745 gvt_dbg_cmd("\n"); 746 747 s->ip_va += 8 * sizeof(u32); 748 cnt += 8; 749 } 750 } 751 752 static inline void update_ip_va(struct parser_exec_state *s) 753 { 754 unsigned long len = 0; 755 756 if (WARN_ON(s->ring_head == s->ring_tail)) 757 return; 758 759 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 760 unsigned long ring_top = s->ring_start + s->ring_size; 761 762 if (s->ring_head > s->ring_tail) { 763 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 764 len = (s->ip_gma - s->ring_head); 765 else if (s->ip_gma >= s->ring_start && 766 s->ip_gma <= s->ring_tail) 767 len = (ring_top - s->ring_head) + 768 (s->ip_gma - s->ring_start); 769 } else 770 len = (s->ip_gma - s->ring_head); 771 772 s->ip_va = s->rb_va + len; 773 } else {/* shadow batch buffer */ 774 s->ip_va = s->ret_bb_va; 775 } 776 } 777 778 static inline int ip_gma_set(struct parser_exec_state *s, 779 unsigned long ip_gma) 780 { 781 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 782 783 s->ip_gma = ip_gma; 784 update_ip_va(s); 785 return 0; 786 } 787 788 static inline int ip_gma_advance(struct parser_exec_state *s, 789 unsigned int dw_len) 790 { 791 s->ip_gma += (dw_len << 2); 792 793 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 794 if (s->ip_gma >= s->ring_start + s->ring_size) 795 s->ip_gma -= s->ring_size; 796 update_ip_va(s); 797 } else { 798 s->ip_va += (dw_len << 2); 799 } 800 801 return 0; 802 } 803 804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 805 { 806 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 807 return info->len; 808 else 809 return (cmd & ((1U << info->len) - 1)) + 2; 810 return 0; 811 } 812 813 static inline int cmd_length(struct parser_exec_state *s) 814 { 815 return get_cmd_length(s->info, cmd_val(s, 0)); 816 } 817 818 /* do not remove this, some platform may need clflush here */ 819 #define patch_value(s, addr, val) do { \ 820 *addr = val; \ 821 } while (0) 822 823 static bool is_shadowed_mmio(unsigned int offset) 824 { 825 bool ret = false; 826 827 if ((offset == 0x2168) || /*BB current head register UDW */ 828 (offset == 0x2140) || /*BB current header register */ 829 (offset == 0x211c) || /*second BB header register UDW */ 830 (offset == 0x2114)) { /*second BB header register UDW */ 831 ret = true; 832 } 833 return ret; 834 } 835 836 static inline bool is_force_nonpriv_mmio(unsigned int offset) 837 { 838 return (offset >= 0x24d0 && offset < 0x2500); 839 } 840 841 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 842 unsigned int offset, unsigned int index, char *cmd) 843 { 844 struct intel_gvt *gvt = s->vgpu->gvt; 845 unsigned int data; 846 u32 ring_base; 847 u32 nopid; 848 849 if (!strcmp(cmd, "lri")) 850 data = cmd_val(s, index + 1); 851 else { 852 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 853 offset, cmd); 854 return -EINVAL; 855 } 856 857 ring_base = s->engine->mmio_base; 858 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 859 860 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 861 data != nopid) { 862 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 863 offset, data); 864 patch_value(s, cmd_ptr(s, index), nopid); 865 return 0; 866 } 867 return 0; 868 } 869 870 static inline bool is_mocs_mmio(unsigned int offset) 871 { 872 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 873 ((offset >= 0xb020) && (offset <= 0xb0a0)); 874 } 875 876 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 877 unsigned int offset, unsigned int index) 878 { 879 if (!is_mocs_mmio(offset)) 880 return -EINVAL; 881 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 882 return 0; 883 } 884 885 static int is_cmd_update_pdps(unsigned int offset, 886 struct parser_exec_state *s) 887 { 888 u32 base = s->workload->engine->mmio_base; 889 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 890 } 891 892 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 893 unsigned int offset, unsigned int index) 894 { 895 struct intel_vgpu *vgpu = s->vgpu; 896 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 897 struct intel_vgpu_mm *mm; 898 u64 pdps[GEN8_3LVL_PDPES]; 899 900 if (shadow_mm->ppgtt_mm.root_entry_type == 901 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 902 pdps[0] = (u64)cmd_val(s, 2) << 32; 903 pdps[0] |= cmd_val(s, 4); 904 905 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 906 if (!mm) { 907 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 908 return -EINVAL; 909 } 910 intel_vgpu_mm_get(mm); 911 list_add_tail(&mm->ppgtt_mm.link, 912 &s->workload->lri_shadow_mm); 913 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 914 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 915 } else { 916 /* Currently all guests use PML4 table and now can't 917 * have a guest with 3-level table but uses LRI for 918 * PPGTT update. So this is simply un-testable. */ 919 GEM_BUG_ON(1); 920 gvt_vgpu_err("invalid shared shadow vm type\n"); 921 return -EINVAL; 922 } 923 return 0; 924 } 925 926 static int cmd_reg_handler(struct parser_exec_state *s, 927 unsigned int offset, unsigned int index, char *cmd) 928 { 929 struct intel_vgpu *vgpu = s->vgpu; 930 struct intel_gvt *gvt = vgpu->gvt; 931 u32 ctx_sr_ctl; 932 933 if (offset + 4 > gvt->device_info.mmio_size) { 934 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 935 cmd, offset); 936 return -EFAULT; 937 } 938 939 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 940 gvt_vgpu_err("%s access to non-render register (%x)\n", 941 cmd, offset); 942 return -EBADRQC; 943 } 944 945 if (is_shadowed_mmio(offset)) { 946 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 947 return 0; 948 } 949 950 if (is_mocs_mmio(offset) && 951 mocs_cmd_reg_handler(s, offset, index)) 952 return -EINVAL; 953 954 if (is_force_nonpriv_mmio(offset) && 955 force_nonpriv_reg_handler(s, offset, index, cmd)) 956 return -EPERM; 957 958 if (offset == i915_mmio_reg_offset(DERRMR) || 959 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 960 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 961 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 962 } 963 964 if (is_cmd_update_pdps(offset, s) && 965 cmd_pdp_mmio_update_handler(s, offset, index)) 966 return -EINVAL; 967 968 /* TODO 969 * In order to let workload with inhibit context to generate 970 * correct image data into memory, vregs values will be loaded to 971 * hw via LRIs in the workload with inhibit context. But as 972 * indirect context is loaded prior to LRIs in workload, we don't 973 * want reg values specified in indirect context overwritten by 974 * LRIs in workloads. So, when scanning an indirect context, we 975 * update reg values in it into vregs, so LRIs in workload with 976 * inhibit context will restore with correct values 977 */ 978 if (IS_GEN(s->engine->i915, 9) && 979 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 980 !strncmp(cmd, "lri", 3)) { 981 intel_gvt_hypervisor_read_gpa(s->vgpu, 982 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 983 /* check inhibit context */ 984 if (ctx_sr_ctl & 1) { 985 u32 data = cmd_val(s, index + 1); 986 987 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 988 intel_vgpu_mask_mmio_write(vgpu, 989 offset, &data, 4); 990 else 991 vgpu_vreg(vgpu, offset) = data; 992 } 993 } 994 995 return 0; 996 } 997 998 #define cmd_reg(s, i) \ 999 (cmd_val(s, i) & GENMASK(22, 2)) 1000 1001 #define cmd_reg_inhibit(s, i) \ 1002 (cmd_val(s, i) & GENMASK(22, 18)) 1003 1004 #define cmd_gma(s, i) \ 1005 (cmd_val(s, i) & GENMASK(31, 2)) 1006 1007 #define cmd_gma_hi(s, i) \ 1008 (cmd_val(s, i) & GENMASK(15, 0)) 1009 1010 static int cmd_handler_lri(struct parser_exec_state *s) 1011 { 1012 int i, ret = 0; 1013 int cmd_len = cmd_length(s); 1014 1015 for (i = 1; i < cmd_len; i += 2) { 1016 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1017 if (s->engine->id == BCS0 && 1018 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1019 ret |= 0; 1020 else 1021 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1022 } 1023 if (ret) 1024 break; 1025 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1026 if (ret) 1027 break; 1028 } 1029 return ret; 1030 } 1031 1032 static int cmd_handler_lrr(struct parser_exec_state *s) 1033 { 1034 int i, ret = 0; 1035 int cmd_len = cmd_length(s); 1036 1037 for (i = 1; i < cmd_len; i += 2) { 1038 if (IS_BROADWELL(s->engine->i915)) 1039 ret |= ((cmd_reg_inhibit(s, i) || 1040 (cmd_reg_inhibit(s, i + 1)))) ? 1041 -EBADRQC : 0; 1042 if (ret) 1043 break; 1044 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1045 if (ret) 1046 break; 1047 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1048 if (ret) 1049 break; 1050 } 1051 return ret; 1052 } 1053 1054 static inline int cmd_address_audit(struct parser_exec_state *s, 1055 unsigned long guest_gma, int op_size, bool index_mode); 1056 1057 static int cmd_handler_lrm(struct parser_exec_state *s) 1058 { 1059 struct intel_gvt *gvt = s->vgpu->gvt; 1060 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1061 unsigned long gma; 1062 int i, ret = 0; 1063 int cmd_len = cmd_length(s); 1064 1065 for (i = 1; i < cmd_len;) { 1066 if (IS_BROADWELL(s->engine->i915)) 1067 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1068 if (ret) 1069 break; 1070 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1071 if (ret) 1072 break; 1073 if (cmd_val(s, 0) & (1 << 22)) { 1074 gma = cmd_gma(s, i + 1); 1075 if (gmadr_bytes == 8) 1076 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1077 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1078 if (ret) 1079 break; 1080 } 1081 i += gmadr_dw_number(s) + 1; 1082 } 1083 return ret; 1084 } 1085 1086 static int cmd_handler_srm(struct parser_exec_state *s) 1087 { 1088 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1089 unsigned long gma; 1090 int i, ret = 0; 1091 int cmd_len = cmd_length(s); 1092 1093 for (i = 1; i < cmd_len;) { 1094 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1095 if (ret) 1096 break; 1097 if (cmd_val(s, 0) & (1 << 22)) { 1098 gma = cmd_gma(s, i + 1); 1099 if (gmadr_bytes == 8) 1100 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1101 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1102 if (ret) 1103 break; 1104 } 1105 i += gmadr_dw_number(s) + 1; 1106 } 1107 return ret; 1108 } 1109 1110 struct cmd_interrupt_event { 1111 int pipe_control_notify; 1112 int mi_flush_dw; 1113 int mi_user_interrupt; 1114 }; 1115 1116 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1117 [RCS0] = { 1118 .pipe_control_notify = RCS_PIPE_CONTROL, 1119 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1120 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1121 }, 1122 [BCS0] = { 1123 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1124 .mi_flush_dw = BCS_MI_FLUSH_DW, 1125 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1126 }, 1127 [VCS0] = { 1128 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1129 .mi_flush_dw = VCS_MI_FLUSH_DW, 1130 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1131 }, 1132 [VCS1] = { 1133 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1134 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1135 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1136 }, 1137 [VECS0] = { 1138 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1139 .mi_flush_dw = VECS_MI_FLUSH_DW, 1140 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1141 }, 1142 }; 1143 1144 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1145 { 1146 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1147 unsigned long gma; 1148 bool index_mode = false; 1149 unsigned int post_sync; 1150 int ret = 0; 1151 u32 hws_pga, val; 1152 1153 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1154 1155 /* LRI post sync */ 1156 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1157 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1158 /* post sync */ 1159 else if (post_sync) { 1160 if (post_sync == 2) 1161 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1162 else if (post_sync == 3) 1163 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1164 else if (post_sync == 1) { 1165 /* check ggtt*/ 1166 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1167 gma = cmd_val(s, 2) & GENMASK(31, 3); 1168 if (gmadr_bytes == 8) 1169 gma |= (cmd_gma_hi(s, 3)) << 32; 1170 /* Store Data Index */ 1171 if (cmd_val(s, 1) & (1 << 21)) 1172 index_mode = true; 1173 ret |= cmd_address_audit(s, gma, sizeof(u64), 1174 index_mode); 1175 if (ret) 1176 return ret; 1177 if (index_mode) { 1178 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1179 gma = hws_pga + gma; 1180 patch_value(s, cmd_ptr(s, 2), gma); 1181 val = cmd_val(s, 1) & (~(1 << 21)); 1182 patch_value(s, cmd_ptr(s, 1), val); 1183 } 1184 } 1185 } 1186 } 1187 1188 if (ret) 1189 return ret; 1190 1191 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1192 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1193 s->workload->pending_events); 1194 return 0; 1195 } 1196 1197 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1198 { 1199 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1200 s->workload->pending_events); 1201 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1202 return 0; 1203 } 1204 1205 static int cmd_advance_default(struct parser_exec_state *s) 1206 { 1207 return ip_gma_advance(s, cmd_length(s)); 1208 } 1209 1210 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1211 { 1212 int ret; 1213 1214 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1215 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1216 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1217 s->buf_addr_type = s->saved_buf_addr_type; 1218 } else { 1219 s->buf_type = RING_BUFFER_INSTRUCTION; 1220 s->buf_addr_type = GTT_BUFFER; 1221 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1222 s->ret_ip_gma_ring -= s->ring_size; 1223 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1224 } 1225 return ret; 1226 } 1227 1228 struct mi_display_flip_command_info { 1229 int pipe; 1230 int plane; 1231 int event; 1232 i915_reg_t stride_reg; 1233 i915_reg_t ctrl_reg; 1234 i915_reg_t surf_reg; 1235 u64 stride_val; 1236 u64 tile_val; 1237 u64 surf_val; 1238 bool async_flip; 1239 }; 1240 1241 struct plane_code_mapping { 1242 int pipe; 1243 int plane; 1244 int event; 1245 }; 1246 1247 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1248 struct mi_display_flip_command_info *info) 1249 { 1250 struct drm_i915_private *dev_priv = s->engine->i915; 1251 struct plane_code_mapping gen8_plane_code[] = { 1252 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1253 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1254 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1255 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1256 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1257 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1258 }; 1259 u32 dword0, dword1, dword2; 1260 u32 v; 1261 1262 dword0 = cmd_val(s, 0); 1263 dword1 = cmd_val(s, 1); 1264 dword2 = cmd_val(s, 2); 1265 1266 v = (dword0 & GENMASK(21, 19)) >> 19; 1267 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1268 return -EBADRQC; 1269 1270 info->pipe = gen8_plane_code[v].pipe; 1271 info->plane = gen8_plane_code[v].plane; 1272 info->event = gen8_plane_code[v].event; 1273 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1274 info->tile_val = (dword1 & 0x1); 1275 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1276 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1277 1278 if (info->plane == PLANE_A) { 1279 info->ctrl_reg = DSPCNTR(info->pipe); 1280 info->stride_reg = DSPSTRIDE(info->pipe); 1281 info->surf_reg = DSPSURF(info->pipe); 1282 } else if (info->plane == PLANE_B) { 1283 info->ctrl_reg = SPRCTL(info->pipe); 1284 info->stride_reg = SPRSTRIDE(info->pipe); 1285 info->surf_reg = SPRSURF(info->pipe); 1286 } else { 1287 drm_WARN_ON(&dev_priv->drm, 1); 1288 return -EBADRQC; 1289 } 1290 return 0; 1291 } 1292 1293 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1294 struct mi_display_flip_command_info *info) 1295 { 1296 struct drm_i915_private *dev_priv = s->engine->i915; 1297 struct intel_vgpu *vgpu = s->vgpu; 1298 u32 dword0 = cmd_val(s, 0); 1299 u32 dword1 = cmd_val(s, 1); 1300 u32 dword2 = cmd_val(s, 2); 1301 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1302 1303 info->plane = PRIMARY_PLANE; 1304 1305 switch (plane) { 1306 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1307 info->pipe = PIPE_A; 1308 info->event = PRIMARY_A_FLIP_DONE; 1309 break; 1310 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1311 info->pipe = PIPE_B; 1312 info->event = PRIMARY_B_FLIP_DONE; 1313 break; 1314 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1315 info->pipe = PIPE_C; 1316 info->event = PRIMARY_C_FLIP_DONE; 1317 break; 1318 1319 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1320 info->pipe = PIPE_A; 1321 info->event = SPRITE_A_FLIP_DONE; 1322 info->plane = SPRITE_PLANE; 1323 break; 1324 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1325 info->pipe = PIPE_B; 1326 info->event = SPRITE_B_FLIP_DONE; 1327 info->plane = SPRITE_PLANE; 1328 break; 1329 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1330 info->pipe = PIPE_C; 1331 info->event = SPRITE_C_FLIP_DONE; 1332 info->plane = SPRITE_PLANE; 1333 break; 1334 1335 default: 1336 gvt_vgpu_err("unknown plane code %d\n", plane); 1337 return -EBADRQC; 1338 } 1339 1340 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1341 info->tile_val = (dword1 & GENMASK(2, 0)); 1342 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1343 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1344 1345 info->ctrl_reg = DSPCNTR(info->pipe); 1346 info->stride_reg = DSPSTRIDE(info->pipe); 1347 info->surf_reg = DSPSURF(info->pipe); 1348 1349 return 0; 1350 } 1351 1352 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1353 struct mi_display_flip_command_info *info) 1354 { 1355 u32 stride, tile; 1356 1357 if (!info->async_flip) 1358 return 0; 1359 1360 if (INTEL_GEN(s->engine->i915) >= 9) { 1361 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1362 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1363 GENMASK(12, 10)) >> 10; 1364 } else { 1365 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1366 GENMASK(15, 6)) >> 6; 1367 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1368 } 1369 1370 if (stride != info->stride_val) 1371 gvt_dbg_cmd("cannot change stride during async flip\n"); 1372 1373 if (tile != info->tile_val) 1374 gvt_dbg_cmd("cannot change tile during async flip\n"); 1375 1376 return 0; 1377 } 1378 1379 static int gen8_update_plane_mmio_from_mi_display_flip( 1380 struct parser_exec_state *s, 1381 struct mi_display_flip_command_info *info) 1382 { 1383 struct drm_i915_private *dev_priv = s->engine->i915; 1384 struct intel_vgpu *vgpu = s->vgpu; 1385 1386 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1387 info->surf_val << 12); 1388 if (INTEL_GEN(dev_priv) >= 9) { 1389 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1390 info->stride_val); 1391 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1392 info->tile_val << 10); 1393 } else { 1394 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1395 info->stride_val << 6); 1396 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1397 info->tile_val << 10); 1398 } 1399 1400 if (info->plane == PLANE_PRIMARY) 1401 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1402 1403 if (info->async_flip) 1404 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1405 else 1406 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1407 1408 return 0; 1409 } 1410 1411 static int decode_mi_display_flip(struct parser_exec_state *s, 1412 struct mi_display_flip_command_info *info) 1413 { 1414 if (IS_BROADWELL(s->engine->i915)) 1415 return gen8_decode_mi_display_flip(s, info); 1416 if (INTEL_GEN(s->engine->i915) >= 9) 1417 return skl_decode_mi_display_flip(s, info); 1418 1419 return -ENODEV; 1420 } 1421 1422 static int check_mi_display_flip(struct parser_exec_state *s, 1423 struct mi_display_flip_command_info *info) 1424 { 1425 return gen8_check_mi_display_flip(s, info); 1426 } 1427 1428 static int update_plane_mmio_from_mi_display_flip( 1429 struct parser_exec_state *s, 1430 struct mi_display_flip_command_info *info) 1431 { 1432 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1433 } 1434 1435 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1436 { 1437 struct mi_display_flip_command_info info; 1438 struct intel_vgpu *vgpu = s->vgpu; 1439 int ret; 1440 int i; 1441 int len = cmd_length(s); 1442 u32 valid_len = CMD_LEN(1); 1443 1444 /* Flip Type == Stereo 3D Flip */ 1445 if (DWORD_FIELD(2, 1, 0) == 2) 1446 valid_len++; 1447 ret = gvt_check_valid_cmd_length(cmd_length(s), 1448 valid_len); 1449 if (ret) 1450 return ret; 1451 1452 ret = decode_mi_display_flip(s, &info); 1453 if (ret) { 1454 gvt_vgpu_err("fail to decode MI display flip command\n"); 1455 return ret; 1456 } 1457 1458 ret = check_mi_display_flip(s, &info); 1459 if (ret) { 1460 gvt_vgpu_err("invalid MI display flip command\n"); 1461 return ret; 1462 } 1463 1464 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1465 if (ret) { 1466 gvt_vgpu_err("fail to update plane mmio\n"); 1467 return ret; 1468 } 1469 1470 for (i = 0; i < len; i++) 1471 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1472 return 0; 1473 } 1474 1475 static bool is_wait_for_flip_pending(u32 cmd) 1476 { 1477 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1478 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1479 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1480 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1481 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1482 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1483 } 1484 1485 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1486 { 1487 u32 cmd = cmd_val(s, 0); 1488 1489 if (!is_wait_for_flip_pending(cmd)) 1490 return 0; 1491 1492 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1493 return 0; 1494 } 1495 1496 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1497 { 1498 unsigned long addr; 1499 unsigned long gma_high, gma_low; 1500 struct intel_vgpu *vgpu = s->vgpu; 1501 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1502 1503 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1504 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1505 return INTEL_GVT_INVALID_ADDR; 1506 } 1507 1508 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1509 if (gmadr_bytes == 4) { 1510 addr = gma_low; 1511 } else { 1512 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1513 addr = (((unsigned long)gma_high) << 32) | gma_low; 1514 } 1515 return addr; 1516 } 1517 1518 static inline int cmd_address_audit(struct parser_exec_state *s, 1519 unsigned long guest_gma, int op_size, bool index_mode) 1520 { 1521 struct intel_vgpu *vgpu = s->vgpu; 1522 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1523 int i; 1524 int ret; 1525 1526 if (op_size > max_surface_size) { 1527 gvt_vgpu_err("command address audit fail name %s\n", 1528 s->info->name); 1529 return -EFAULT; 1530 } 1531 1532 if (index_mode) { 1533 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1534 ret = -EFAULT; 1535 goto err; 1536 } 1537 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1538 ret = -EFAULT; 1539 goto err; 1540 } 1541 1542 return 0; 1543 1544 err: 1545 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1546 s->info->name, guest_gma, op_size); 1547 1548 pr_err("cmd dump: "); 1549 for (i = 0; i < cmd_length(s); i++) { 1550 if (!(i % 4)) 1551 pr_err("\n%08x ", cmd_val(s, i)); 1552 else 1553 pr_err("%08x ", cmd_val(s, i)); 1554 } 1555 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1556 vgpu->id, 1557 vgpu_aperture_gmadr_base(vgpu), 1558 vgpu_aperture_gmadr_end(vgpu), 1559 vgpu_hidden_gmadr_base(vgpu), 1560 vgpu_hidden_gmadr_end(vgpu)); 1561 return ret; 1562 } 1563 1564 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1565 { 1566 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1567 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1568 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1569 unsigned long gma, gma_low, gma_high; 1570 u32 valid_len = CMD_LEN(2); 1571 int ret = 0; 1572 1573 /* check ppggt */ 1574 if (!(cmd_val(s, 0) & (1 << 22))) 1575 return 0; 1576 1577 /* check if QWORD */ 1578 if (DWORD_FIELD(0, 21, 21)) 1579 valid_len++; 1580 ret = gvt_check_valid_cmd_length(cmd_length(s), 1581 valid_len); 1582 if (ret) 1583 return ret; 1584 1585 gma = cmd_val(s, 2) & GENMASK(31, 2); 1586 1587 if (gmadr_bytes == 8) { 1588 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1589 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1590 gma = (gma_high << 32) | gma_low; 1591 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1592 } 1593 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1594 return ret; 1595 } 1596 1597 static inline int unexpected_cmd(struct parser_exec_state *s) 1598 { 1599 struct intel_vgpu *vgpu = s->vgpu; 1600 1601 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1602 1603 return -EBADRQC; 1604 } 1605 1606 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1607 { 1608 return unexpected_cmd(s); 1609 } 1610 1611 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1612 { 1613 return unexpected_cmd(s); 1614 } 1615 1616 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1617 { 1618 return unexpected_cmd(s); 1619 } 1620 1621 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1622 { 1623 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1624 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1625 sizeof(u32); 1626 unsigned long gma, gma_high; 1627 u32 valid_len = CMD_LEN(1); 1628 int ret = 0; 1629 1630 if (!(cmd_val(s, 0) & (1 << 22))) 1631 return ret; 1632 1633 /* check inline data */ 1634 if (cmd_val(s, 0) & BIT(18)) 1635 valid_len = CMD_LEN(9); 1636 ret = gvt_check_valid_cmd_length(cmd_length(s), 1637 valid_len); 1638 if (ret) 1639 return ret; 1640 1641 gma = cmd_val(s, 1) & GENMASK(31, 2); 1642 if (gmadr_bytes == 8) { 1643 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1644 gma = (gma_high << 32) | gma; 1645 } 1646 ret = cmd_address_audit(s, gma, op_size, false); 1647 return ret; 1648 } 1649 1650 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1651 { 1652 return unexpected_cmd(s); 1653 } 1654 1655 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1656 { 1657 return unexpected_cmd(s); 1658 } 1659 1660 static int cmd_handler_mi_conditional_batch_buffer_end( 1661 struct parser_exec_state *s) 1662 { 1663 return unexpected_cmd(s); 1664 } 1665 1666 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1667 { 1668 return unexpected_cmd(s); 1669 } 1670 1671 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1672 { 1673 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1674 unsigned long gma; 1675 bool index_mode = false; 1676 int ret = 0; 1677 u32 hws_pga, val; 1678 u32 valid_len = CMD_LEN(2); 1679 1680 ret = gvt_check_valid_cmd_length(cmd_length(s), 1681 valid_len); 1682 if (ret) { 1683 /* Check again for Qword */ 1684 ret = gvt_check_valid_cmd_length(cmd_length(s), 1685 ++valid_len); 1686 return ret; 1687 } 1688 1689 /* Check post-sync and ppgtt bit */ 1690 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1691 gma = cmd_val(s, 1) & GENMASK(31, 3); 1692 if (gmadr_bytes == 8) 1693 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1694 /* Store Data Index */ 1695 if (cmd_val(s, 0) & (1 << 21)) 1696 index_mode = true; 1697 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1698 if (ret) 1699 return ret; 1700 if (index_mode) { 1701 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1702 gma = hws_pga + gma; 1703 patch_value(s, cmd_ptr(s, 1), gma); 1704 val = cmd_val(s, 0) & (~(1 << 21)); 1705 patch_value(s, cmd_ptr(s, 0), val); 1706 } 1707 } 1708 /* Check notify bit */ 1709 if ((cmd_val(s, 0) & (1 << 8))) 1710 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1711 s->workload->pending_events); 1712 return ret; 1713 } 1714 1715 static void addr_type_update_snb(struct parser_exec_state *s) 1716 { 1717 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1718 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1719 s->buf_addr_type = PPGTT_BUFFER; 1720 } 1721 } 1722 1723 1724 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1725 unsigned long gma, unsigned long end_gma, void *va) 1726 { 1727 unsigned long copy_len, offset; 1728 unsigned long len = 0; 1729 unsigned long gpa; 1730 1731 while (gma != end_gma) { 1732 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1733 if (gpa == INTEL_GVT_INVALID_ADDR) { 1734 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1735 return -EFAULT; 1736 } 1737 1738 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1739 1740 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1741 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1742 1743 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1744 1745 len += copy_len; 1746 gma += copy_len; 1747 } 1748 return len; 1749 } 1750 1751 1752 /* 1753 * Check whether a batch buffer needs to be scanned. Currently 1754 * the only criteria is based on privilege. 1755 */ 1756 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1757 { 1758 /* Decide privilege based on address space */ 1759 if (cmd_val(s, 0) & BIT(8) && 1760 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1761 return 0; 1762 1763 return 1; 1764 } 1765 1766 static const char *repr_addr_type(unsigned int type) 1767 { 1768 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1769 } 1770 1771 static int find_bb_size(struct parser_exec_state *s, 1772 unsigned long *bb_size, 1773 unsigned long *bb_end_cmd_offset) 1774 { 1775 unsigned long gma = 0; 1776 const struct cmd_info *info; 1777 u32 cmd_len = 0; 1778 bool bb_end = false; 1779 struct intel_vgpu *vgpu = s->vgpu; 1780 u32 cmd; 1781 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1782 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1783 1784 *bb_size = 0; 1785 *bb_end_cmd_offset = 0; 1786 1787 /* get the start gm address of the batch buffer */ 1788 gma = get_gma_bb_from_cmd(s, 1); 1789 if (gma == INTEL_GVT_INVALID_ADDR) 1790 return -EFAULT; 1791 1792 cmd = cmd_val(s, 0); 1793 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1794 if (info == NULL) { 1795 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1796 cmd, get_opcode(cmd, s->engine), 1797 repr_addr_type(s->buf_addr_type), 1798 s->engine->name, s->workload); 1799 return -EBADRQC; 1800 } 1801 do { 1802 if (copy_gma_to_hva(s->vgpu, mm, 1803 gma, gma + 4, &cmd) < 0) 1804 return -EFAULT; 1805 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1806 if (info == NULL) { 1807 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1808 cmd, get_opcode(cmd, s->engine), 1809 repr_addr_type(s->buf_addr_type), 1810 s->engine->name, s->workload); 1811 return -EBADRQC; 1812 } 1813 1814 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1815 bb_end = true; 1816 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1817 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1818 /* chained batch buffer */ 1819 bb_end = true; 1820 } 1821 1822 if (bb_end) 1823 *bb_end_cmd_offset = *bb_size; 1824 1825 cmd_len = get_cmd_length(info, cmd) << 2; 1826 *bb_size += cmd_len; 1827 gma += cmd_len; 1828 } while (!bb_end); 1829 1830 return 0; 1831 } 1832 1833 static int audit_bb_end(struct parser_exec_state *s, void *va) 1834 { 1835 struct intel_vgpu *vgpu = s->vgpu; 1836 u32 cmd = *(u32 *)va; 1837 const struct cmd_info *info; 1838 1839 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1840 if (info == NULL) { 1841 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1842 cmd, get_opcode(cmd, s->engine), 1843 repr_addr_type(s->buf_addr_type), 1844 s->engine->name, s->workload); 1845 return -EBADRQC; 1846 } 1847 1848 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1849 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1850 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1851 return 0; 1852 1853 return -EBADRQC; 1854 } 1855 1856 static int perform_bb_shadow(struct parser_exec_state *s) 1857 { 1858 struct intel_vgpu *vgpu = s->vgpu; 1859 struct intel_vgpu_shadow_bb *bb; 1860 unsigned long gma = 0; 1861 unsigned long bb_size; 1862 unsigned long bb_end_cmd_offset; 1863 int ret = 0; 1864 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1865 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1866 unsigned long start_offset = 0; 1867 1868 /* get the start gm address of the batch buffer */ 1869 gma = get_gma_bb_from_cmd(s, 1); 1870 if (gma == INTEL_GVT_INVALID_ADDR) 1871 return -EFAULT; 1872 1873 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1874 if (ret) 1875 return ret; 1876 1877 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1878 if (!bb) 1879 return -ENOMEM; 1880 1881 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1882 1883 /* the start_offset stores the batch buffer's start gma's 1884 * offset relative to page boundary. so for non-privileged batch 1885 * buffer, the shadowed gem object holds exactly the same page 1886 * layout as original gem object. This is for the convience of 1887 * replacing the whole non-privilged batch buffer page to this 1888 * shadowed one in PPGTT at the same gma address. (this replacing 1889 * action is not implemented yet now, but may be necessary in 1890 * future). 1891 * for prileged batch buffer, we just change start gma address to 1892 * that of shadowed page. 1893 */ 1894 if (bb->ppgtt) 1895 start_offset = gma & ~I915_GTT_PAGE_MASK; 1896 1897 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1898 round_up(bb_size + start_offset, 1899 PAGE_SIZE)); 1900 if (IS_ERR(bb->obj)) { 1901 ret = PTR_ERR(bb->obj); 1902 goto err_free_bb; 1903 } 1904 1905 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1906 if (IS_ERR(bb->va)) { 1907 ret = PTR_ERR(bb->va); 1908 goto err_free_obj; 1909 } 1910 1911 ret = copy_gma_to_hva(s->vgpu, mm, 1912 gma, gma + bb_size, 1913 bb->va + start_offset); 1914 if (ret < 0) { 1915 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1916 ret = -EFAULT; 1917 goto err_unmap; 1918 } 1919 1920 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1921 if (ret) 1922 goto err_unmap; 1923 1924 i915_gem_object_unlock(bb->obj); 1925 INIT_LIST_HEAD(&bb->list); 1926 list_add(&bb->list, &s->workload->shadow_bb); 1927 1928 bb->bb_start_cmd_va = s->ip_va; 1929 1930 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1931 bb->bb_offset = s->ip_va - s->rb_va; 1932 else 1933 bb->bb_offset = 0; 1934 1935 /* 1936 * ip_va saves the virtual address of the shadow batch buffer, while 1937 * ip_gma saves the graphics address of the original batch buffer. 1938 * As the shadow batch buffer is just a copy from the originial one, 1939 * it should be right to use shadow batch buffer'va and original batch 1940 * buffer's gma in pair. After all, we don't want to pin the shadow 1941 * buffer here (too early). 1942 */ 1943 s->ip_va = bb->va + start_offset; 1944 s->ip_gma = gma; 1945 return 0; 1946 err_unmap: 1947 i915_gem_object_unpin_map(bb->obj); 1948 err_free_obj: 1949 i915_gem_object_put(bb->obj); 1950 err_free_bb: 1951 kfree(bb); 1952 return ret; 1953 } 1954 1955 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1956 { 1957 bool second_level; 1958 int ret = 0; 1959 struct intel_vgpu *vgpu = s->vgpu; 1960 1961 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1962 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1963 return -EFAULT; 1964 } 1965 1966 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1967 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1968 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1969 return -EFAULT; 1970 } 1971 1972 s->saved_buf_addr_type = s->buf_addr_type; 1973 addr_type_update_snb(s); 1974 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1975 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1976 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1977 } else if (second_level) { 1978 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1979 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1980 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1981 } 1982 1983 if (batch_buffer_needs_scan(s)) { 1984 ret = perform_bb_shadow(s); 1985 if (ret < 0) 1986 gvt_vgpu_err("invalid shadow batch buffer\n"); 1987 } else { 1988 /* emulate a batch buffer end to do return right */ 1989 ret = cmd_handler_mi_batch_buffer_end(s); 1990 if (ret < 0) 1991 return ret; 1992 } 1993 return ret; 1994 } 1995 1996 static int mi_noop_index; 1997 1998 static const struct cmd_info cmd_info[] = { 1999 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2000 2001 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2002 0, 1, NULL}, 2003 2004 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2005 0, 1, cmd_handler_mi_user_interrupt}, 2006 2007 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2008 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2009 2010 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2011 2012 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2013 NULL}, 2014 2015 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2016 NULL}, 2017 2018 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2019 NULL}, 2020 2021 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2022 NULL}, 2023 2024 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2025 D_ALL, 0, 1, NULL}, 2026 2027 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2028 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2029 cmd_handler_mi_batch_buffer_end}, 2030 2031 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2032 0, 1, NULL}, 2033 2034 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2035 NULL}, 2036 2037 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2038 D_ALL, 0, 1, NULL}, 2039 2040 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2041 NULL}, 2042 2043 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2044 NULL}, 2045 2046 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2047 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2048 2049 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2050 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2051 2052 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2053 2054 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2055 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2056 2057 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2058 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2059 NULL, CMD_LEN(0)}, 2060 2061 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2062 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2063 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2064 2065 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2066 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2067 2068 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2069 0, 8, cmd_handler_mi_store_data_index}, 2070 2071 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2072 D_ALL, 0, 8, cmd_handler_lri}, 2073 2074 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2075 cmd_handler_mi_update_gtt}, 2076 2077 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2078 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2079 cmd_handler_srm, CMD_LEN(2)}, 2080 2081 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2082 cmd_handler_mi_flush_dw}, 2083 2084 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2085 10, cmd_handler_mi_clflush}, 2086 2087 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2088 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2089 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2090 2091 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2092 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2093 cmd_handler_lrm, CMD_LEN(2)}, 2094 2095 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2096 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2097 cmd_handler_lrr, CMD_LEN(1)}, 2098 2099 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2100 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2101 8, NULL, CMD_LEN(2)}, 2102 2103 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2104 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2105 2106 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2107 ADDR_FIX_1(2), 8, NULL}, 2108 2109 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2110 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2111 2112 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2113 8, cmd_handler_mi_op_2f}, 2114 2115 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2116 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2117 cmd_handler_mi_batch_buffer_start}, 2118 2119 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2120 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2121 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2122 2123 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2124 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2125 2126 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2127 ADDR_FIX_2(4, 7), 8, NULL}, 2128 2129 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2130 0, 8, NULL}, 2131 2132 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2133 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2134 2135 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2136 2137 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2138 0, 8, NULL}, 2139 2140 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2141 ADDR_FIX_1(3), 8, NULL}, 2142 2143 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2144 D_ALL, 0, 8, NULL}, 2145 2146 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2147 ADDR_FIX_1(4), 8, NULL}, 2148 2149 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2150 ADDR_FIX_2(4, 5), 8, NULL}, 2151 2152 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2153 ADDR_FIX_1(4), 8, NULL}, 2154 2155 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2156 ADDR_FIX_2(4, 7), 8, NULL}, 2157 2158 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2159 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2160 2161 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2162 2163 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2164 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2165 2166 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2167 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2168 2169 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2170 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2171 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2172 2173 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2174 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2175 2176 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2177 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2178 2179 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2180 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2181 2182 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2183 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2184 2185 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2186 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2187 2188 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2189 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2190 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2191 2192 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2193 ADDR_FIX_2(4, 5), 8, NULL}, 2194 2195 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2196 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2197 2198 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2199 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2200 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2201 2202 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2203 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2204 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2205 2206 {"3DSTATE_BLEND_STATE_POINTERS", 2207 OP_3DSTATE_BLEND_STATE_POINTERS, 2208 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2209 2210 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2211 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2212 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2213 2214 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2215 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2216 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2217 2218 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2219 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2220 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2221 2222 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2223 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2224 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2225 2226 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2227 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2228 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2229 2230 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2231 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2232 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2233 2234 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2235 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2236 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2237 2238 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2239 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2240 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2241 2242 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2243 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2247 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2248 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2249 2250 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2251 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2253 2254 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2255 0, 8, NULL}, 2256 2257 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2258 0, 8, NULL}, 2259 2260 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2261 0, 8, NULL}, 2262 2263 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2264 0, 8, NULL}, 2265 2266 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2268 2269 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2274 2275 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2277 2278 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2280 2281 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2282 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2283 2284 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2285 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2286 2287 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2288 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2289 2290 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2291 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2292 2293 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2294 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2295 2296 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2297 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2298 2299 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2300 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2301 2302 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2304 2305 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2307 2308 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2310 2311 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2312 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2313 2314 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2315 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2316 2317 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2318 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2319 2320 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2321 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2322 2323 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2324 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2325 2326 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2327 D_BDW_PLUS, 0, 8, NULL}, 2328 2329 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2330 NULL}, 2331 2332 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2333 D_BDW_PLUS, 0, 8, NULL}, 2334 2335 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2336 D_BDW_PLUS, 0, 8, NULL}, 2337 2338 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2339 8, NULL}, 2340 2341 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2342 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2343 2344 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2345 8, NULL}, 2346 2347 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2348 NULL}, 2349 2350 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2351 NULL}, 2352 2353 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2354 NULL}, 2355 2356 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2357 D_BDW_PLUS, 0, 8, NULL}, 2358 2359 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2360 R_RCS, D_ALL, 0, 8, NULL}, 2361 2362 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2363 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2364 2365 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2366 R_RCS, D_ALL, 0, 1, NULL}, 2367 2368 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2369 2370 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2371 R_RCS, D_ALL, 0, 8, NULL}, 2372 2373 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2374 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2375 2376 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2377 2378 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2379 2380 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2381 2382 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2383 D_BDW_PLUS, 0, 8, NULL}, 2384 2385 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2386 D_BDW_PLUS, 0, 8, NULL}, 2387 2388 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2389 D_ALL, 0, 8, NULL}, 2390 2391 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2392 D_BDW_PLUS, 0, 8, NULL}, 2393 2394 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2395 D_BDW_PLUS, 0, 8, NULL}, 2396 2397 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2398 2399 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2400 2401 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2402 2403 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2404 D_ALL, 0, 8, NULL}, 2405 2406 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2409 2410 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2411 R_RCS, D_ALL, 0, 8, NULL}, 2412 2413 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2414 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2415 2416 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2417 0, 8, NULL}, 2418 2419 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2420 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2421 2422 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2423 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2424 2425 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2426 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2427 2428 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2429 D_ALL, 0, 8, NULL}, 2430 2431 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2432 D_ALL, 0, 8, NULL}, 2433 2434 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2435 D_ALL, 0, 8, NULL}, 2436 2437 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2438 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2439 2440 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2441 D_BDW_PLUS, 0, 8, NULL}, 2442 2443 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2444 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2445 2446 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2447 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2448 2449 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2450 R_RCS, D_ALL, 0, 8, NULL}, 2451 2452 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2453 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2454 2455 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2456 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2457 2458 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2459 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2460 2461 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2462 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2463 2464 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2465 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2466 2467 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2468 R_RCS, D_ALL, 0, 8, NULL}, 2469 2470 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2471 D_ALL, 0, 9, NULL}, 2472 2473 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2474 ADDR_FIX_2(2, 4), 8, NULL}, 2475 2476 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2477 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2478 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2479 2480 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2481 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2482 2483 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2484 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2485 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2486 2487 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2488 D_BDW_PLUS, 0, 8, NULL}, 2489 2490 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2491 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2492 2493 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2494 2495 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2496 1, NULL}, 2497 2498 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2499 ADDR_FIX_1(1), 8, NULL}, 2500 2501 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2502 2503 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2504 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2505 2506 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2507 ADDR_FIX_1(1), 8, NULL}, 2508 2509 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2510 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2511 2512 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2513 2514 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2515 2516 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2517 0, 8, NULL}, 2518 2519 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2520 D_SKL_PLUS, 0, 8, NULL}, 2521 2522 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2523 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2524 2525 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2526 0, 16, NULL}, 2527 2528 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2529 0, 16, NULL}, 2530 2531 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2532 0, 16, NULL}, 2533 2534 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2535 2536 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2537 0, 16, NULL}, 2538 2539 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2540 0, 16, NULL}, 2541 2542 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2543 0, 16, NULL}, 2544 2545 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2546 0, 8, NULL}, 2547 2548 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2549 NULL}, 2550 2551 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2552 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2553 2554 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2555 R_VCS, D_ALL, 0, 12, NULL}, 2556 2557 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2558 R_VCS, D_ALL, 0, 12, NULL}, 2559 2560 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2561 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2562 2563 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2564 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2565 2566 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2567 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2568 2569 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2570 2571 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2572 R_VCS, D_ALL, 0, 12, NULL}, 2573 2574 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2575 R_VCS, D_ALL, 0, 12, NULL}, 2576 2577 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2578 R_VCS, D_ALL, 0, 12, NULL}, 2579 2580 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2581 R_VCS, D_ALL, 0, 12, NULL}, 2582 2583 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2584 R_VCS, D_ALL, 0, 12, NULL}, 2585 2586 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2587 R_VCS, D_ALL, 0, 12, NULL}, 2588 2589 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2590 R_VCS, D_ALL, 0, 6, NULL}, 2591 2592 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2593 R_VCS, D_ALL, 0, 12, NULL}, 2594 2595 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2596 R_VCS, D_ALL, 0, 12, NULL}, 2597 2598 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2599 R_VCS, D_ALL, 0, 12, NULL}, 2600 2601 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2602 R_VCS, D_ALL, 0, 12, NULL}, 2603 2604 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2605 R_VCS, D_ALL, 0, 12, NULL}, 2606 2607 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2608 R_VCS, D_ALL, 0, 12, NULL}, 2609 2610 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2613 R_VCS, D_ALL, 0, 12, NULL}, 2614 2615 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2616 R_VCS, D_ALL, 0, 12, NULL}, 2617 2618 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2619 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2620 2621 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2622 R_VCS, D_ALL, 0, 12, NULL}, 2623 2624 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2625 R_VCS, D_ALL, 0, 12, NULL}, 2626 2627 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2628 R_VCS, D_ALL, 0, 12, NULL}, 2629 2630 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2631 R_VCS, D_ALL, 0, 12, NULL}, 2632 2633 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2634 R_VCS, D_ALL, 0, 12, NULL}, 2635 2636 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2637 R_VCS, D_ALL, 0, 12, NULL}, 2638 2639 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2640 R_VCS, D_ALL, 0, 12, NULL}, 2641 2642 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2643 R_VCS, D_ALL, 0, 12, NULL}, 2644 2645 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2646 R_VCS, D_ALL, 0, 12, NULL}, 2647 2648 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2649 R_VCS, D_ALL, 0, 12, NULL}, 2650 2651 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2652 R_VCS, D_ALL, 0, 12, NULL}, 2653 2654 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2655 0, 16, NULL}, 2656 2657 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2658 2659 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2660 2661 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2662 R_VCS, D_ALL, 0, 12, NULL}, 2663 2664 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2665 R_VCS, D_ALL, 0, 12, NULL}, 2666 2667 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2668 R_VCS, D_ALL, 0, 12, NULL}, 2669 2670 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2671 2672 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2673 0, 12, NULL}, 2674 2675 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2676 0, 12, NULL}, 2677 }; 2678 2679 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2680 { 2681 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2682 } 2683 2684 /* call the cmd handler, and advance ip */ 2685 static int cmd_parser_exec(struct parser_exec_state *s) 2686 { 2687 struct intel_vgpu *vgpu = s->vgpu; 2688 const struct cmd_info *info; 2689 u32 cmd; 2690 int ret = 0; 2691 2692 cmd = cmd_val(s, 0); 2693 2694 /* fastpath for MI_NOOP */ 2695 if (cmd == MI_NOOP) 2696 info = &cmd_info[mi_noop_index]; 2697 else 2698 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2699 2700 if (info == NULL) { 2701 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2702 cmd, get_opcode(cmd, s->engine), 2703 repr_addr_type(s->buf_addr_type), 2704 s->engine->name, s->workload); 2705 return -EBADRQC; 2706 } 2707 2708 s->info = info; 2709 2710 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2711 cmd_length(s), s->buf_type, s->buf_addr_type, 2712 s->workload, info->name); 2713 2714 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2715 ret = gvt_check_valid_cmd_length(cmd_length(s), 2716 info->valid_len); 2717 if (ret) 2718 return ret; 2719 } 2720 2721 if (info->handler) { 2722 ret = info->handler(s); 2723 if (ret < 0) { 2724 gvt_vgpu_err("%s handler error\n", info->name); 2725 return ret; 2726 } 2727 } 2728 2729 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2730 ret = cmd_advance_default(s); 2731 if (ret) { 2732 gvt_vgpu_err("%s IP advance error\n", info->name); 2733 return ret; 2734 } 2735 } 2736 return 0; 2737 } 2738 2739 static inline bool gma_out_of_range(unsigned long gma, 2740 unsigned long gma_head, unsigned int gma_tail) 2741 { 2742 if (gma_tail >= gma_head) 2743 return (gma < gma_head) || (gma > gma_tail); 2744 else 2745 return (gma > gma_tail) && (gma < gma_head); 2746 } 2747 2748 /* Keep the consistent return type, e.g EBADRQC for unknown 2749 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2750 * works as the input of VM healthy status. 2751 */ 2752 static int command_scan(struct parser_exec_state *s, 2753 unsigned long rb_head, unsigned long rb_tail, 2754 unsigned long rb_start, unsigned long rb_len) 2755 { 2756 2757 unsigned long gma_head, gma_tail, gma_bottom; 2758 int ret = 0; 2759 struct intel_vgpu *vgpu = s->vgpu; 2760 2761 gma_head = rb_start + rb_head; 2762 gma_tail = rb_start + rb_tail; 2763 gma_bottom = rb_start + rb_len; 2764 2765 while (s->ip_gma != gma_tail) { 2766 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2767 if (!(s->ip_gma >= rb_start) || 2768 !(s->ip_gma < gma_bottom)) { 2769 gvt_vgpu_err("ip_gma %lx out of ring scope." 2770 "(base:0x%lx, bottom: 0x%lx)\n", 2771 s->ip_gma, rb_start, 2772 gma_bottom); 2773 parser_exec_state_dump(s); 2774 return -EFAULT; 2775 } 2776 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2777 gvt_vgpu_err("ip_gma %lx out of range." 2778 "base 0x%lx head 0x%lx tail 0x%lx\n", 2779 s->ip_gma, rb_start, 2780 rb_head, rb_tail); 2781 parser_exec_state_dump(s); 2782 break; 2783 } 2784 } 2785 ret = cmd_parser_exec(s); 2786 if (ret) { 2787 gvt_vgpu_err("cmd parser error\n"); 2788 parser_exec_state_dump(s); 2789 break; 2790 } 2791 } 2792 2793 return ret; 2794 } 2795 2796 static int scan_workload(struct intel_vgpu_workload *workload) 2797 { 2798 unsigned long gma_head, gma_tail, gma_bottom; 2799 struct parser_exec_state s; 2800 int ret = 0; 2801 2802 /* ring base is page aligned */ 2803 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2804 return -EINVAL; 2805 2806 gma_head = workload->rb_start + workload->rb_head; 2807 gma_tail = workload->rb_start + workload->rb_tail; 2808 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2809 2810 s.buf_type = RING_BUFFER_INSTRUCTION; 2811 s.buf_addr_type = GTT_BUFFER; 2812 s.vgpu = workload->vgpu; 2813 s.engine = workload->engine; 2814 s.ring_start = workload->rb_start; 2815 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2816 s.ring_head = gma_head; 2817 s.ring_tail = gma_tail; 2818 s.rb_va = workload->shadow_ring_buffer_va; 2819 s.workload = workload; 2820 s.is_ctx_wa = false; 2821 2822 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2823 return 0; 2824 2825 ret = ip_gma_set(&s, gma_head); 2826 if (ret) 2827 goto out; 2828 2829 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2830 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2831 2832 out: 2833 return ret; 2834 } 2835 2836 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2837 { 2838 2839 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2840 struct parser_exec_state s; 2841 int ret = 0; 2842 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2843 struct intel_vgpu_workload, 2844 wa_ctx); 2845 2846 /* ring base is page aligned */ 2847 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2848 I915_GTT_PAGE_SIZE))) 2849 return -EINVAL; 2850 2851 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2852 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2853 PAGE_SIZE); 2854 gma_head = wa_ctx->indirect_ctx.guest_gma; 2855 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2856 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2857 2858 s.buf_type = RING_BUFFER_INSTRUCTION; 2859 s.buf_addr_type = GTT_BUFFER; 2860 s.vgpu = workload->vgpu; 2861 s.engine = workload->engine; 2862 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2863 s.ring_size = ring_size; 2864 s.ring_head = gma_head; 2865 s.ring_tail = gma_tail; 2866 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2867 s.workload = workload; 2868 s.is_ctx_wa = true; 2869 2870 ret = ip_gma_set(&s, gma_head); 2871 if (ret) 2872 goto out; 2873 2874 ret = command_scan(&s, 0, ring_tail, 2875 wa_ctx->indirect_ctx.guest_gma, ring_size); 2876 out: 2877 return ret; 2878 } 2879 2880 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2881 { 2882 struct intel_vgpu *vgpu = workload->vgpu; 2883 struct intel_vgpu_submission *s = &vgpu->submission; 2884 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2885 void *shadow_ring_buffer_va; 2886 int ret; 2887 2888 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2889 2890 /* calculate workload ring buffer size */ 2891 workload->rb_len = (workload->rb_tail + guest_rb_size - 2892 workload->rb_head) % guest_rb_size; 2893 2894 gma_head = workload->rb_start + workload->rb_head; 2895 gma_tail = workload->rb_start + workload->rb_tail; 2896 gma_top = workload->rb_start + guest_rb_size; 2897 2898 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2899 void *p; 2900 2901 /* realloc the new ring buffer if needed */ 2902 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2903 workload->rb_len, GFP_KERNEL); 2904 if (!p) { 2905 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2906 return -ENOMEM; 2907 } 2908 s->ring_scan_buffer[workload->engine->id] = p; 2909 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2910 } 2911 2912 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2913 2914 /* get shadow ring buffer va */ 2915 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2916 2917 /* head > tail --> copy head <-> top */ 2918 if (gma_head > gma_tail) { 2919 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2920 gma_head, gma_top, shadow_ring_buffer_va); 2921 if (ret < 0) { 2922 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2923 return ret; 2924 } 2925 shadow_ring_buffer_va += ret; 2926 gma_head = workload->rb_start; 2927 } 2928 2929 /* copy head or start <-> tail */ 2930 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2931 shadow_ring_buffer_va); 2932 if (ret < 0) { 2933 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2934 return ret; 2935 } 2936 return 0; 2937 } 2938 2939 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2940 { 2941 int ret; 2942 struct intel_vgpu *vgpu = workload->vgpu; 2943 2944 ret = shadow_workload_ring_buffer(workload); 2945 if (ret) { 2946 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2947 return ret; 2948 } 2949 2950 ret = scan_workload(workload); 2951 if (ret) { 2952 gvt_vgpu_err("scan workload error\n"); 2953 return ret; 2954 } 2955 return 0; 2956 } 2957 2958 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2959 { 2960 int ctx_size = wa_ctx->indirect_ctx.size; 2961 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2962 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2963 struct intel_vgpu_workload, 2964 wa_ctx); 2965 struct intel_vgpu *vgpu = workload->vgpu; 2966 struct drm_i915_gem_object *obj; 2967 int ret = 0; 2968 void *map; 2969 2970 obj = i915_gem_object_create_shmem(workload->engine->i915, 2971 roundup(ctx_size + CACHELINE_BYTES, 2972 PAGE_SIZE)); 2973 if (IS_ERR(obj)) 2974 return PTR_ERR(obj); 2975 2976 /* get the va of the shadow batch buffer */ 2977 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2978 if (IS_ERR(map)) { 2979 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2980 ret = PTR_ERR(map); 2981 goto put_obj; 2982 } 2983 2984 i915_gem_object_lock(obj, NULL); 2985 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2986 i915_gem_object_unlock(obj); 2987 if (ret) { 2988 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2989 goto unmap_src; 2990 } 2991 2992 ret = copy_gma_to_hva(workload->vgpu, 2993 workload->vgpu->gtt.ggtt_mm, 2994 guest_gma, guest_gma + ctx_size, 2995 map); 2996 if (ret < 0) { 2997 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2998 goto unmap_src; 2999 } 3000 3001 wa_ctx->indirect_ctx.obj = obj; 3002 wa_ctx->indirect_ctx.shadow_va = map; 3003 return 0; 3004 3005 unmap_src: 3006 i915_gem_object_unpin_map(obj); 3007 put_obj: 3008 i915_gem_object_put(obj); 3009 return ret; 3010 } 3011 3012 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3013 { 3014 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3015 unsigned char *bb_start_sva; 3016 3017 if (!wa_ctx->per_ctx.valid) 3018 return 0; 3019 3020 per_ctx_start[0] = 0x18800001; 3021 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3022 3023 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3024 wa_ctx->indirect_ctx.size; 3025 3026 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3027 3028 return 0; 3029 } 3030 3031 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3032 { 3033 int ret; 3034 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3035 struct intel_vgpu_workload, 3036 wa_ctx); 3037 struct intel_vgpu *vgpu = workload->vgpu; 3038 3039 if (wa_ctx->indirect_ctx.size == 0) 3040 return 0; 3041 3042 ret = shadow_indirect_ctx(wa_ctx); 3043 if (ret) { 3044 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3045 return ret; 3046 } 3047 3048 combine_wa_ctx(wa_ctx); 3049 3050 ret = scan_wa_ctx(wa_ctx); 3051 if (ret) { 3052 gvt_vgpu_err("scan wa ctx error\n"); 3053 return ret; 3054 } 3055 3056 return 0; 3057 } 3058 3059 static int init_cmd_table(struct intel_gvt *gvt) 3060 { 3061 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3062 int i; 3063 3064 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3065 struct cmd_entry *e; 3066 3067 if (!(cmd_info[i].devices & gen_type)) 3068 continue; 3069 3070 e = kzalloc(sizeof(*e), GFP_KERNEL); 3071 if (!e) 3072 return -ENOMEM; 3073 3074 e->info = &cmd_info[i]; 3075 if (cmd_info[i].opcode == OP_MI_NOOP) 3076 mi_noop_index = i; 3077 3078 INIT_HLIST_NODE(&e->hlist); 3079 add_cmd_entry(gvt, e); 3080 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3081 e->info->name, e->info->opcode, e->info->flag, 3082 e->info->devices, e->info->rings); 3083 } 3084 3085 return 0; 3086 } 3087 3088 static void clean_cmd_table(struct intel_gvt *gvt) 3089 { 3090 struct hlist_node *tmp; 3091 struct cmd_entry *e; 3092 int i; 3093 3094 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3095 kfree(e); 3096 3097 hash_init(gvt->cmd_table); 3098 } 3099 3100 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3101 { 3102 clean_cmd_table(gvt); 3103 } 3104 3105 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3106 { 3107 int ret; 3108 3109 ret = init_cmd_table(gvt); 3110 if (ret) { 3111 intel_gvt_clean_cmd_parser(gvt); 3112 return ret; 3113 } 3114 return 0; 3115 } 3116