1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_lrc.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_gt_requests.h" 44 #include "gvt.h" 45 #include "i915_pvinfo.h" 46 #include "trace.h" 47 48 #include "gem/i915_gem_context.h" 49 #include "gem/i915_gem_pm.h" 50 #include "gt/intel_context.h" 51 52 #define INVALID_OP (~0U) 53 54 #define OP_LEN_MI 9 55 #define OP_LEN_2D 10 56 #define OP_LEN_3D_MEDIA 16 57 #define OP_LEN_MFX_VC 16 58 #define OP_LEN_VEBOX 16 59 60 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 61 62 struct sub_op_bits { 63 int hi; 64 int low; 65 }; 66 struct decode_info { 67 const char *name; 68 int op_len; 69 int nr_sub_op; 70 const struct sub_op_bits *sub_op; 71 }; 72 73 #define MAX_CMD_BUDGET 0x7fffffff 74 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 75 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 76 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 77 78 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 79 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 80 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 81 82 /* Render Command Map */ 83 84 /* MI_* command Opcode (28:23) */ 85 #define OP_MI_NOOP 0x0 86 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 87 #define OP_MI_USER_INTERRUPT 0x2 88 #define OP_MI_WAIT_FOR_EVENT 0x3 89 #define OP_MI_FLUSH 0x4 90 #define OP_MI_ARB_CHECK 0x5 91 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 92 #define OP_MI_REPORT_HEAD 0x7 93 #define OP_MI_ARB_ON_OFF 0x8 94 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 95 #define OP_MI_BATCH_BUFFER_END 0xA 96 #define OP_MI_SUSPEND_FLUSH 0xB 97 #define OP_MI_PREDICATE 0xC /* IVB+ */ 98 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 99 #define OP_MI_SET_APPID 0xE /* IVB+ */ 100 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 101 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 102 #define OP_MI_DISPLAY_FLIP 0x14 103 #define OP_MI_SEMAPHORE_MBOX 0x16 104 #define OP_MI_SET_CONTEXT 0x18 105 #define OP_MI_MATH 0x1A 106 #define OP_MI_URB_CLEAR 0x19 107 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 108 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 109 110 #define OP_MI_STORE_DATA_IMM 0x20 111 #define OP_MI_STORE_DATA_INDEX 0x21 112 #define OP_MI_LOAD_REGISTER_IMM 0x22 113 #define OP_MI_UPDATE_GTT 0x23 114 #define OP_MI_STORE_REGISTER_MEM 0x24 115 #define OP_MI_FLUSH_DW 0x26 116 #define OP_MI_CLFLUSH 0x27 117 #define OP_MI_REPORT_PERF_COUNT 0x28 118 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 119 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 120 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 121 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 122 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 123 #define OP_MI_2E 0x2E /* BDW+ */ 124 #define OP_MI_2F 0x2F /* BDW+ */ 125 #define OP_MI_BATCH_BUFFER_START 0x31 126 127 /* Bit definition for dword 0 */ 128 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 129 130 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 131 132 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 133 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 134 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 135 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 136 137 /* 2D command: Opcode (28:22) */ 138 #define OP_2D(x) ((2<<7) | x) 139 140 #define OP_XY_SETUP_BLT OP_2D(0x1) 141 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 142 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 143 #define OP_XY_PIXEL_BLT OP_2D(0x24) 144 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 145 #define OP_XY_TEXT_BLT OP_2D(0x26) 146 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 147 #define OP_XY_COLOR_BLT OP_2D(0x50) 148 #define OP_XY_PAT_BLT OP_2D(0x51) 149 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 150 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 151 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 152 #define OP_XY_FULL_BLT OP_2D(0x55) 153 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 154 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 155 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 156 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 157 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 158 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 159 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 160 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 161 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 162 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 163 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 164 165 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 166 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 167 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 168 169 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 170 171 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 172 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 173 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 174 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 175 176 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 177 178 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 179 180 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 181 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 182 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 183 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 184 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 185 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 186 187 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 188 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 189 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 190 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 191 192 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 193 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 194 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 195 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 196 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 197 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 198 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 199 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 200 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 201 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 202 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 203 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 204 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 205 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 206 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 207 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 208 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 209 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 210 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 211 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 212 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 213 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 214 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 215 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 216 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 217 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 218 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 219 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 220 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 222 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 223 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 224 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 229 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 234 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 235 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 236 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 237 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 238 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 239 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 240 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 241 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 242 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 243 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 244 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 245 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 246 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 247 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 248 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 249 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 250 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 251 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 253 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 254 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 255 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 256 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 257 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 258 259 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 260 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 261 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 262 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 263 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 264 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 265 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 266 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 267 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 268 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 269 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 270 271 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 273 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 274 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 275 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 276 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 277 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 278 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 279 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 280 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 281 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 282 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 283 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 284 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 285 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 286 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 291 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 292 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 293 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 294 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 295 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 296 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 297 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 298 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 299 300 /* VCCP Command Parser */ 301 302 /* 303 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 304 * git://anongit.freedesktop.org/vaapi/intel-driver 305 * src/i965_defines.h 306 * 307 */ 308 309 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 310 (3 << 13 | \ 311 (pipeline) << 11 | \ 312 (op) << 8 | \ 313 (sub_opa) << 5 | \ 314 (sub_opb)) 315 316 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 317 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 318 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 319 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 320 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 321 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 322 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 323 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 324 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 325 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 326 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 327 328 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 329 330 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 331 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 332 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 333 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 334 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 335 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 336 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 337 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 338 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 339 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 340 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 341 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 342 343 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 344 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 345 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 346 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 347 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 348 349 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 350 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 351 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 352 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 353 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 354 355 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 356 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 357 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 358 359 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 360 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 361 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 362 363 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 364 (3 << 13 | \ 365 (pipeline) << 11 | \ 366 (op) << 8 | \ 367 (sub_opa) << 5 | \ 368 (sub_opb)) 369 370 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 371 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 372 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 373 374 struct parser_exec_state; 375 376 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 377 378 #define GVT_CMD_HASH_BITS 7 379 380 /* which DWords need address fix */ 381 #define ADDR_FIX_1(x1) (1 << (x1)) 382 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 383 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 384 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 385 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 386 387 #define DWORD_FIELD(dword, end, start) \ 388 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 389 390 #define OP_LENGTH_BIAS 2 391 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 392 393 static int gvt_check_valid_cmd_length(int len, int valid_len) 394 { 395 if (valid_len != len) { 396 gvt_err("len is not valid: len=%u valid_len=%u\n", 397 len, valid_len); 398 return -EFAULT; 399 } 400 return 0; 401 } 402 403 struct cmd_info { 404 const char *name; 405 u32 opcode; 406 407 #define F_LEN_MASK 3U 408 #define F_LEN_CONST 1U 409 #define F_LEN_VAR 0U 410 /* value is const although LEN maybe variable */ 411 #define F_LEN_VAR_FIXED (1<<1) 412 413 /* 414 * command has its own ip advance logic 415 * e.g. MI_BATCH_START, MI_BATCH_END 416 */ 417 #define F_IP_ADVANCE_CUSTOM (1<<2) 418 u32 flag; 419 420 #define R_RCS BIT(RCS0) 421 #define R_VCS1 BIT(VCS0) 422 #define R_VCS2 BIT(VCS1) 423 #define R_VCS (R_VCS1 | R_VCS2) 424 #define R_BCS BIT(BCS0) 425 #define R_VECS BIT(VECS0) 426 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 427 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 428 u16 rings; 429 430 /* devices that support this cmd: SNB/IVB/HSW/... */ 431 u16 devices; 432 433 /* which DWords are address that need fix up. 434 * bit 0 means a 32-bit non address operand in command 435 * bit 1 means address operand, which could be 32-bit 436 * or 64-bit depending on different architectures.( 437 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 438 * No matter the address length, each address only takes 439 * one bit in the bitmap. 440 */ 441 u16 addr_bitmap; 442 443 /* flag == F_LEN_CONST : command length 444 * flag == F_LEN_VAR : length bias bits 445 * Note: length is in DWord 446 */ 447 u32 len; 448 449 parser_cmd_handler handler; 450 451 /* valid length in DWord */ 452 u32 valid_len; 453 }; 454 455 struct cmd_entry { 456 struct hlist_node hlist; 457 const struct cmd_info *info; 458 }; 459 460 enum { 461 RING_BUFFER_INSTRUCTION, 462 BATCH_BUFFER_INSTRUCTION, 463 BATCH_BUFFER_2ND_LEVEL, 464 RING_BUFFER_CTX, 465 }; 466 467 enum { 468 GTT_BUFFER, 469 PPGTT_BUFFER 470 }; 471 472 struct parser_exec_state { 473 struct intel_vgpu *vgpu; 474 const struct intel_engine_cs *engine; 475 476 int buf_type; 477 478 /* batch buffer address type */ 479 int buf_addr_type; 480 481 /* graphics memory address of ring buffer start */ 482 unsigned long ring_start; 483 unsigned long ring_size; 484 unsigned long ring_head; 485 unsigned long ring_tail; 486 487 /* instruction graphics memory address */ 488 unsigned long ip_gma; 489 490 /* mapped va of the instr_gma */ 491 void *ip_va; 492 void *rb_va; 493 494 void *ret_bb_va; 495 /* next instruction when return from batch buffer to ring buffer */ 496 unsigned long ret_ip_gma_ring; 497 498 /* next instruction when return from 2nd batch buffer to batch buffer */ 499 unsigned long ret_ip_gma_bb; 500 501 /* batch buffer address type (GTT or PPGTT) 502 * used when ret from 2nd level batch buffer 503 */ 504 int saved_buf_addr_type; 505 bool is_ctx_wa; 506 bool is_init_ctx; 507 508 const struct cmd_info *info; 509 510 struct intel_vgpu_workload *workload; 511 }; 512 513 #define gmadr_dw_number(s) \ 514 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 515 516 static unsigned long bypass_scan_mask = 0; 517 518 /* ring ALL, type = 0 */ 519 static const struct sub_op_bits sub_op_mi[] = { 520 {31, 29}, 521 {28, 23}, 522 }; 523 524 static const struct decode_info decode_info_mi = { 525 "MI", 526 OP_LEN_MI, 527 ARRAY_SIZE(sub_op_mi), 528 sub_op_mi, 529 }; 530 531 /* ring RCS, command type 2 */ 532 static const struct sub_op_bits sub_op_2d[] = { 533 {31, 29}, 534 {28, 22}, 535 }; 536 537 static const struct decode_info decode_info_2d = { 538 "2D", 539 OP_LEN_2D, 540 ARRAY_SIZE(sub_op_2d), 541 sub_op_2d, 542 }; 543 544 /* ring RCS, command type 3 */ 545 static const struct sub_op_bits sub_op_3d_media[] = { 546 {31, 29}, 547 {28, 27}, 548 {26, 24}, 549 {23, 16}, 550 }; 551 552 static const struct decode_info decode_info_3d_media = { 553 "3D_Media", 554 OP_LEN_3D_MEDIA, 555 ARRAY_SIZE(sub_op_3d_media), 556 sub_op_3d_media, 557 }; 558 559 /* ring VCS, command type 3 */ 560 static const struct sub_op_bits sub_op_mfx_vc[] = { 561 {31, 29}, 562 {28, 27}, 563 {26, 24}, 564 {23, 21}, 565 {20, 16}, 566 }; 567 568 static const struct decode_info decode_info_mfx_vc = { 569 "MFX_VC", 570 OP_LEN_MFX_VC, 571 ARRAY_SIZE(sub_op_mfx_vc), 572 sub_op_mfx_vc, 573 }; 574 575 /* ring VECS, command type 3 */ 576 static const struct sub_op_bits sub_op_vebox[] = { 577 {31, 29}, 578 {28, 27}, 579 {26, 24}, 580 {23, 21}, 581 {20, 16}, 582 }; 583 584 static const struct decode_info decode_info_vebox = { 585 "VEBOX", 586 OP_LEN_VEBOX, 587 ARRAY_SIZE(sub_op_vebox), 588 sub_op_vebox, 589 }; 590 591 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 592 [RCS0] = { 593 &decode_info_mi, 594 NULL, 595 NULL, 596 &decode_info_3d_media, 597 NULL, 598 NULL, 599 NULL, 600 NULL, 601 }, 602 603 [VCS0] = { 604 &decode_info_mi, 605 NULL, 606 NULL, 607 &decode_info_mfx_vc, 608 NULL, 609 NULL, 610 NULL, 611 NULL, 612 }, 613 614 [BCS0] = { 615 &decode_info_mi, 616 NULL, 617 &decode_info_2d, 618 NULL, 619 NULL, 620 NULL, 621 NULL, 622 NULL, 623 }, 624 625 [VECS0] = { 626 &decode_info_mi, 627 NULL, 628 NULL, 629 &decode_info_vebox, 630 NULL, 631 NULL, 632 NULL, 633 NULL, 634 }, 635 636 [VCS1] = { 637 &decode_info_mi, 638 NULL, 639 NULL, 640 &decode_info_mfx_vc, 641 NULL, 642 NULL, 643 NULL, 644 NULL, 645 }, 646 }; 647 648 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 649 { 650 const struct decode_info *d_info; 651 652 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 653 if (d_info == NULL) 654 return INVALID_OP; 655 656 return cmd >> (32 - d_info->op_len); 657 } 658 659 static inline const struct cmd_info * 660 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 661 const struct intel_engine_cs *engine) 662 { 663 struct cmd_entry *e; 664 665 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 666 if (opcode == e->info->opcode && 667 e->info->rings & engine->mask) 668 return e->info; 669 } 670 return NULL; 671 } 672 673 static inline const struct cmd_info * 674 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 675 const struct intel_engine_cs *engine) 676 { 677 u32 opcode; 678 679 opcode = get_opcode(cmd, engine); 680 if (opcode == INVALID_OP) 681 return NULL; 682 683 return find_cmd_entry(gvt, opcode, engine); 684 } 685 686 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 687 { 688 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 689 } 690 691 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 692 { 693 const struct decode_info *d_info; 694 int i; 695 696 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 697 if (d_info == NULL) 698 return; 699 700 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 701 cmd >> (32 - d_info->op_len), d_info->name); 702 703 for (i = 0; i < d_info->nr_sub_op; i++) 704 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 705 d_info->sub_op[i].low)); 706 707 pr_err("\n"); 708 } 709 710 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 711 { 712 return s->ip_va + (index << 2); 713 } 714 715 static inline u32 cmd_val(struct parser_exec_state *s, int index) 716 { 717 return *cmd_ptr(s, index); 718 } 719 720 static inline bool is_init_ctx(struct parser_exec_state *s) 721 { 722 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 723 } 724 725 static void parser_exec_state_dump(struct parser_exec_state *s) 726 { 727 int cnt = 0; 728 int i; 729 730 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 731 " ring_head(%08lx) ring_tail(%08lx)\n", 732 s->vgpu->id, s->engine->name, 733 s->ring_start, s->ring_start + s->ring_size, 734 s->ring_head, s->ring_tail); 735 736 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 737 s->buf_type == RING_BUFFER_INSTRUCTION ? 738 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 739 "CTX_BUFFER" : "BATCH_BUFFER"), 740 s->buf_addr_type == GTT_BUFFER ? 741 "GTT" : "PPGTT", s->ip_gma); 742 743 if (s->ip_va == NULL) { 744 gvt_dbg_cmd(" ip_va(NULL)"); 745 return; 746 } 747 748 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 749 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 750 cmd_val(s, 2), cmd_val(s, 3)); 751 752 print_opcode(cmd_val(s, 0), s->engine); 753 754 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 755 756 while (cnt < 1024) { 757 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 758 for (i = 0; i < 8; i++) 759 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 760 gvt_dbg_cmd("\n"); 761 762 s->ip_va += 8 * sizeof(u32); 763 cnt += 8; 764 } 765 } 766 767 static inline void update_ip_va(struct parser_exec_state *s) 768 { 769 unsigned long len = 0; 770 771 if (WARN_ON(s->ring_head == s->ring_tail)) 772 return; 773 774 if (s->buf_type == RING_BUFFER_INSTRUCTION || 775 s->buf_type == RING_BUFFER_CTX) { 776 unsigned long ring_top = s->ring_start + s->ring_size; 777 778 if (s->ring_head > s->ring_tail) { 779 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 780 len = (s->ip_gma - s->ring_head); 781 else if (s->ip_gma >= s->ring_start && 782 s->ip_gma <= s->ring_tail) 783 len = (ring_top - s->ring_head) + 784 (s->ip_gma - s->ring_start); 785 } else 786 len = (s->ip_gma - s->ring_head); 787 788 s->ip_va = s->rb_va + len; 789 } else {/* shadow batch buffer */ 790 s->ip_va = s->ret_bb_va; 791 } 792 } 793 794 static inline int ip_gma_set(struct parser_exec_state *s, 795 unsigned long ip_gma) 796 { 797 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 798 799 s->ip_gma = ip_gma; 800 update_ip_va(s); 801 return 0; 802 } 803 804 static inline int ip_gma_advance(struct parser_exec_state *s, 805 unsigned int dw_len) 806 { 807 s->ip_gma += (dw_len << 2); 808 809 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 810 if (s->ip_gma >= s->ring_start + s->ring_size) 811 s->ip_gma -= s->ring_size; 812 update_ip_va(s); 813 } else { 814 s->ip_va += (dw_len << 2); 815 } 816 817 return 0; 818 } 819 820 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 821 { 822 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 823 return info->len; 824 else 825 return (cmd & ((1U << info->len) - 1)) + 2; 826 return 0; 827 } 828 829 static inline int cmd_length(struct parser_exec_state *s) 830 { 831 return get_cmd_length(s->info, cmd_val(s, 0)); 832 } 833 834 /* do not remove this, some platform may need clflush here */ 835 #define patch_value(s, addr, val) do { \ 836 *addr = val; \ 837 } while (0) 838 839 static inline bool is_mocs_mmio(unsigned int offset) 840 { 841 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 842 ((offset >= 0xb020) && (offset <= 0xb0a0)); 843 } 844 845 static int is_cmd_update_pdps(unsigned int offset, 846 struct parser_exec_state *s) 847 { 848 u32 base = s->workload->engine->mmio_base; 849 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 850 } 851 852 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 853 unsigned int offset, unsigned int index) 854 { 855 struct intel_vgpu *vgpu = s->vgpu; 856 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 857 struct intel_vgpu_mm *mm; 858 u64 pdps[GEN8_3LVL_PDPES]; 859 860 if (shadow_mm->ppgtt_mm.root_entry_type == 861 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 862 pdps[0] = (u64)cmd_val(s, 2) << 32; 863 pdps[0] |= cmd_val(s, 4); 864 865 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 866 if (!mm) { 867 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 868 return -EINVAL; 869 } 870 intel_vgpu_mm_get(mm); 871 list_add_tail(&mm->ppgtt_mm.link, 872 &s->workload->lri_shadow_mm); 873 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 874 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 875 } else { 876 /* Currently all guests use PML4 table and now can't 877 * have a guest with 3-level table but uses LRI for 878 * PPGTT update. So this is simply un-testable. */ 879 GEM_BUG_ON(1); 880 gvt_vgpu_err("invalid shared shadow vm type\n"); 881 return -EINVAL; 882 } 883 return 0; 884 } 885 886 static int cmd_reg_handler(struct parser_exec_state *s, 887 unsigned int offset, unsigned int index, char *cmd) 888 { 889 struct intel_vgpu *vgpu = s->vgpu; 890 struct intel_gvt *gvt = vgpu->gvt; 891 u32 ctx_sr_ctl; 892 u32 *vreg, vreg_old; 893 894 if (offset + 4 > gvt->device_info.mmio_size) { 895 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 896 cmd, offset); 897 return -EFAULT; 898 } 899 900 if (is_init_ctx(s)) { 901 struct intel_gvt_mmio_info *mmio_info; 902 903 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 904 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 905 if (mmio_info && mmio_info->write) 906 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 907 return 0; 908 } 909 910 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 911 gvt_vgpu_err("%s access to non-render register (%x)\n", 912 cmd, offset); 913 return -EBADRQC; 914 } 915 916 if (!strncmp(cmd, "srm", 3) || 917 !strncmp(cmd, "lrm", 3)) { 918 if (offset != i915_mmio_reg_offset(GEN8_L3SQCREG4) && 919 offset != 0x21f0) { 920 gvt_vgpu_err("%s access to register (%x)\n", 921 cmd, offset); 922 return -EPERM; 923 } else 924 return 0; 925 } 926 927 if (!strncmp(cmd, "lrr-src", 7) || 928 !strncmp(cmd, "lrr-dst", 7)) { 929 gvt_vgpu_err("not allowed cmd %s\n", cmd); 930 return -EPERM; 931 } 932 933 if (!strncmp(cmd, "pipe_ctrl", 9)) { 934 /* TODO: add LRI POST logic here */ 935 return 0; 936 } 937 938 if (strncmp(cmd, "lri", 3)) 939 return -EPERM; 940 941 /* below are all lri handlers */ 942 vreg = &vgpu_vreg(s->vgpu, offset); 943 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 944 gvt_vgpu_err("%s access to non-render register (%x)\n", 945 cmd, offset); 946 return -EBADRQC; 947 } 948 949 if (is_cmd_update_pdps(offset, s) && 950 cmd_pdp_mmio_update_handler(s, offset, index)) 951 return -EINVAL; 952 953 if (offset == i915_mmio_reg_offset(DERRMR) || 954 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 955 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 956 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 957 } 958 959 if (is_mocs_mmio(offset)) 960 *vreg = cmd_val(s, index + 1); 961 962 vreg_old = *vreg; 963 964 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 965 u32 cmdval_new, cmdval; 966 struct intel_gvt_mmio_info *mmio_info; 967 968 cmdval = cmd_val(s, index + 1); 969 970 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 971 if (!mmio_info) { 972 cmdval_new = cmdval; 973 } else { 974 u64 ro_mask = mmio_info->ro_mask; 975 int ret; 976 977 if (likely(!ro_mask)) 978 ret = mmio_info->write(s->vgpu, offset, 979 &cmdval, 4); 980 else { 981 gvt_vgpu_err("try to write RO reg %x\n", 982 offset); 983 ret = -EBADRQC; 984 } 985 if (ret) 986 return ret; 987 cmdval_new = *vreg; 988 } 989 if (cmdval_new != cmdval) 990 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 991 } 992 993 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 994 *vreg = vreg_old; 995 996 /* TODO 997 * In order to let workload with inhibit context to generate 998 * correct image data into memory, vregs values will be loaded to 999 * hw via LRIs in the workload with inhibit context. But as 1000 * indirect context is loaded prior to LRIs in workload, we don't 1001 * want reg values specified in indirect context overwritten by 1002 * LRIs in workloads. So, when scanning an indirect context, we 1003 * update reg values in it into vregs, so LRIs in workload with 1004 * inhibit context will restore with correct values 1005 */ 1006 if (IS_GEN(s->engine->i915, 9) && 1007 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1008 !strncmp(cmd, "lri", 3)) { 1009 intel_gvt_hypervisor_read_gpa(s->vgpu, 1010 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1011 /* check inhibit context */ 1012 if (ctx_sr_ctl & 1) { 1013 u32 data = cmd_val(s, index + 1); 1014 1015 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1016 intel_vgpu_mask_mmio_write(vgpu, 1017 offset, &data, 4); 1018 else 1019 vgpu_vreg(vgpu, offset) = data; 1020 } 1021 } 1022 1023 return 0; 1024 } 1025 1026 #define cmd_reg(s, i) \ 1027 (cmd_val(s, i) & GENMASK(22, 2)) 1028 1029 #define cmd_reg_inhibit(s, i) \ 1030 (cmd_val(s, i) & GENMASK(22, 18)) 1031 1032 #define cmd_gma(s, i) \ 1033 (cmd_val(s, i) & GENMASK(31, 2)) 1034 1035 #define cmd_gma_hi(s, i) \ 1036 (cmd_val(s, i) & GENMASK(15, 0)) 1037 1038 static int cmd_handler_lri(struct parser_exec_state *s) 1039 { 1040 int i, ret = 0; 1041 int cmd_len = cmd_length(s); 1042 1043 for (i = 1; i < cmd_len; i += 2) { 1044 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1045 if (s->engine->id == BCS0 && 1046 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1047 ret |= 0; 1048 else 1049 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1050 } 1051 if (ret) 1052 break; 1053 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1054 if (ret) 1055 break; 1056 } 1057 return ret; 1058 } 1059 1060 static int cmd_handler_lrr(struct parser_exec_state *s) 1061 { 1062 int i, ret = 0; 1063 int cmd_len = cmd_length(s); 1064 1065 for (i = 1; i < cmd_len; i += 2) { 1066 if (IS_BROADWELL(s->engine->i915)) 1067 ret |= ((cmd_reg_inhibit(s, i) || 1068 (cmd_reg_inhibit(s, i + 1)))) ? 1069 -EBADRQC : 0; 1070 if (ret) 1071 break; 1072 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1073 if (ret) 1074 break; 1075 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1076 if (ret) 1077 break; 1078 } 1079 return ret; 1080 } 1081 1082 static inline int cmd_address_audit(struct parser_exec_state *s, 1083 unsigned long guest_gma, int op_size, bool index_mode); 1084 1085 static int cmd_handler_lrm(struct parser_exec_state *s) 1086 { 1087 struct intel_gvt *gvt = s->vgpu->gvt; 1088 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1089 unsigned long gma; 1090 int i, ret = 0; 1091 int cmd_len = cmd_length(s); 1092 1093 for (i = 1; i < cmd_len;) { 1094 if (IS_BROADWELL(s->engine->i915)) 1095 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1096 if (ret) 1097 break; 1098 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1099 if (ret) 1100 break; 1101 if (cmd_val(s, 0) & (1 << 22)) { 1102 gma = cmd_gma(s, i + 1); 1103 if (gmadr_bytes == 8) 1104 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1105 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1106 if (ret) 1107 break; 1108 } 1109 i += gmadr_dw_number(s) + 1; 1110 } 1111 return ret; 1112 } 1113 1114 static int cmd_handler_srm(struct parser_exec_state *s) 1115 { 1116 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1117 unsigned long gma; 1118 int i, ret = 0; 1119 int cmd_len = cmd_length(s); 1120 1121 for (i = 1; i < cmd_len;) { 1122 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1123 if (ret) 1124 break; 1125 if (cmd_val(s, 0) & (1 << 22)) { 1126 gma = cmd_gma(s, i + 1); 1127 if (gmadr_bytes == 8) 1128 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1129 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1130 if (ret) 1131 break; 1132 } 1133 i += gmadr_dw_number(s) + 1; 1134 } 1135 return ret; 1136 } 1137 1138 struct cmd_interrupt_event { 1139 int pipe_control_notify; 1140 int mi_flush_dw; 1141 int mi_user_interrupt; 1142 }; 1143 1144 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1145 [RCS0] = { 1146 .pipe_control_notify = RCS_PIPE_CONTROL, 1147 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1148 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1149 }, 1150 [BCS0] = { 1151 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1152 .mi_flush_dw = BCS_MI_FLUSH_DW, 1153 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1154 }, 1155 [VCS0] = { 1156 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1157 .mi_flush_dw = VCS_MI_FLUSH_DW, 1158 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1159 }, 1160 [VCS1] = { 1161 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1162 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1163 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1164 }, 1165 [VECS0] = { 1166 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1167 .mi_flush_dw = VECS_MI_FLUSH_DW, 1168 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1169 }, 1170 }; 1171 1172 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1173 { 1174 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1175 unsigned long gma; 1176 bool index_mode = false; 1177 unsigned int post_sync; 1178 int ret = 0; 1179 u32 hws_pga, val; 1180 1181 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1182 1183 /* LRI post sync */ 1184 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1185 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1186 /* post sync */ 1187 else if (post_sync) { 1188 if (post_sync == 2) 1189 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1190 else if (post_sync == 3) 1191 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1192 else if (post_sync == 1) { 1193 /* check ggtt*/ 1194 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1195 gma = cmd_val(s, 2) & GENMASK(31, 3); 1196 if (gmadr_bytes == 8) 1197 gma |= (cmd_gma_hi(s, 3)) << 32; 1198 /* Store Data Index */ 1199 if (cmd_val(s, 1) & (1 << 21)) 1200 index_mode = true; 1201 ret |= cmd_address_audit(s, gma, sizeof(u64), 1202 index_mode); 1203 if (ret) 1204 return ret; 1205 if (index_mode) { 1206 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1207 gma = hws_pga + gma; 1208 patch_value(s, cmd_ptr(s, 2), gma); 1209 val = cmd_val(s, 1) & (~(1 << 21)); 1210 patch_value(s, cmd_ptr(s, 1), val); 1211 } 1212 } 1213 } 1214 } 1215 1216 if (ret) 1217 return ret; 1218 1219 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1220 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1221 s->workload->pending_events); 1222 return 0; 1223 } 1224 1225 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1226 { 1227 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1228 s->workload->pending_events); 1229 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1230 return 0; 1231 } 1232 1233 static int cmd_advance_default(struct parser_exec_state *s) 1234 { 1235 return ip_gma_advance(s, cmd_length(s)); 1236 } 1237 1238 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1239 { 1240 int ret; 1241 1242 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1243 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1244 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1245 s->buf_addr_type = s->saved_buf_addr_type; 1246 } else if (s->buf_type == RING_BUFFER_CTX) { 1247 ret = ip_gma_set(s, s->ring_tail); 1248 } else { 1249 s->buf_type = RING_BUFFER_INSTRUCTION; 1250 s->buf_addr_type = GTT_BUFFER; 1251 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1252 s->ret_ip_gma_ring -= s->ring_size; 1253 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1254 } 1255 return ret; 1256 } 1257 1258 struct mi_display_flip_command_info { 1259 int pipe; 1260 int plane; 1261 int event; 1262 i915_reg_t stride_reg; 1263 i915_reg_t ctrl_reg; 1264 i915_reg_t surf_reg; 1265 u64 stride_val; 1266 u64 tile_val; 1267 u64 surf_val; 1268 bool async_flip; 1269 }; 1270 1271 struct plane_code_mapping { 1272 int pipe; 1273 int plane; 1274 int event; 1275 }; 1276 1277 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1278 struct mi_display_flip_command_info *info) 1279 { 1280 struct drm_i915_private *dev_priv = s->engine->i915; 1281 struct plane_code_mapping gen8_plane_code[] = { 1282 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1283 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1284 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1285 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1286 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1287 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1288 }; 1289 u32 dword0, dword1, dword2; 1290 u32 v; 1291 1292 dword0 = cmd_val(s, 0); 1293 dword1 = cmd_val(s, 1); 1294 dword2 = cmd_val(s, 2); 1295 1296 v = (dword0 & GENMASK(21, 19)) >> 19; 1297 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1298 return -EBADRQC; 1299 1300 info->pipe = gen8_plane_code[v].pipe; 1301 info->plane = gen8_plane_code[v].plane; 1302 info->event = gen8_plane_code[v].event; 1303 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1304 info->tile_val = (dword1 & 0x1); 1305 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1306 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1307 1308 if (info->plane == PLANE_A) { 1309 info->ctrl_reg = DSPCNTR(info->pipe); 1310 info->stride_reg = DSPSTRIDE(info->pipe); 1311 info->surf_reg = DSPSURF(info->pipe); 1312 } else if (info->plane == PLANE_B) { 1313 info->ctrl_reg = SPRCTL(info->pipe); 1314 info->stride_reg = SPRSTRIDE(info->pipe); 1315 info->surf_reg = SPRSURF(info->pipe); 1316 } else { 1317 drm_WARN_ON(&dev_priv->drm, 1); 1318 return -EBADRQC; 1319 } 1320 return 0; 1321 } 1322 1323 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1324 struct mi_display_flip_command_info *info) 1325 { 1326 struct drm_i915_private *dev_priv = s->engine->i915; 1327 struct intel_vgpu *vgpu = s->vgpu; 1328 u32 dword0 = cmd_val(s, 0); 1329 u32 dword1 = cmd_val(s, 1); 1330 u32 dword2 = cmd_val(s, 2); 1331 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1332 1333 info->plane = PRIMARY_PLANE; 1334 1335 switch (plane) { 1336 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1337 info->pipe = PIPE_A; 1338 info->event = PRIMARY_A_FLIP_DONE; 1339 break; 1340 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1341 info->pipe = PIPE_B; 1342 info->event = PRIMARY_B_FLIP_DONE; 1343 break; 1344 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1345 info->pipe = PIPE_C; 1346 info->event = PRIMARY_C_FLIP_DONE; 1347 break; 1348 1349 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1350 info->pipe = PIPE_A; 1351 info->event = SPRITE_A_FLIP_DONE; 1352 info->plane = SPRITE_PLANE; 1353 break; 1354 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1355 info->pipe = PIPE_B; 1356 info->event = SPRITE_B_FLIP_DONE; 1357 info->plane = SPRITE_PLANE; 1358 break; 1359 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1360 info->pipe = PIPE_C; 1361 info->event = SPRITE_C_FLIP_DONE; 1362 info->plane = SPRITE_PLANE; 1363 break; 1364 1365 default: 1366 gvt_vgpu_err("unknown plane code %d\n", plane); 1367 return -EBADRQC; 1368 } 1369 1370 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1371 info->tile_val = (dword1 & GENMASK(2, 0)); 1372 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1373 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1374 1375 info->ctrl_reg = DSPCNTR(info->pipe); 1376 info->stride_reg = DSPSTRIDE(info->pipe); 1377 info->surf_reg = DSPSURF(info->pipe); 1378 1379 return 0; 1380 } 1381 1382 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1383 struct mi_display_flip_command_info *info) 1384 { 1385 u32 stride, tile; 1386 1387 if (!info->async_flip) 1388 return 0; 1389 1390 if (INTEL_GEN(s->engine->i915) >= 9) { 1391 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1392 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1393 GENMASK(12, 10)) >> 10; 1394 } else { 1395 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1396 GENMASK(15, 6)) >> 6; 1397 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1398 } 1399 1400 if (stride != info->stride_val) 1401 gvt_dbg_cmd("cannot change stride during async flip\n"); 1402 1403 if (tile != info->tile_val) 1404 gvt_dbg_cmd("cannot change tile during async flip\n"); 1405 1406 return 0; 1407 } 1408 1409 static int gen8_update_plane_mmio_from_mi_display_flip( 1410 struct parser_exec_state *s, 1411 struct mi_display_flip_command_info *info) 1412 { 1413 struct drm_i915_private *dev_priv = s->engine->i915; 1414 struct intel_vgpu *vgpu = s->vgpu; 1415 1416 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1417 info->surf_val << 12); 1418 if (INTEL_GEN(dev_priv) >= 9) { 1419 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1420 info->stride_val); 1421 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1422 info->tile_val << 10); 1423 } else { 1424 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1425 info->stride_val << 6); 1426 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1427 info->tile_val << 10); 1428 } 1429 1430 if (info->plane == PLANE_PRIMARY) 1431 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1432 1433 if (info->async_flip) 1434 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1435 else 1436 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1437 1438 return 0; 1439 } 1440 1441 static int decode_mi_display_flip(struct parser_exec_state *s, 1442 struct mi_display_flip_command_info *info) 1443 { 1444 if (IS_BROADWELL(s->engine->i915)) 1445 return gen8_decode_mi_display_flip(s, info); 1446 if (INTEL_GEN(s->engine->i915) >= 9) 1447 return skl_decode_mi_display_flip(s, info); 1448 1449 return -ENODEV; 1450 } 1451 1452 static int check_mi_display_flip(struct parser_exec_state *s, 1453 struct mi_display_flip_command_info *info) 1454 { 1455 return gen8_check_mi_display_flip(s, info); 1456 } 1457 1458 static int update_plane_mmio_from_mi_display_flip( 1459 struct parser_exec_state *s, 1460 struct mi_display_flip_command_info *info) 1461 { 1462 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1463 } 1464 1465 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1466 { 1467 struct mi_display_flip_command_info info; 1468 struct intel_vgpu *vgpu = s->vgpu; 1469 int ret; 1470 int i; 1471 int len = cmd_length(s); 1472 u32 valid_len = CMD_LEN(1); 1473 1474 /* Flip Type == Stereo 3D Flip */ 1475 if (DWORD_FIELD(2, 1, 0) == 2) 1476 valid_len++; 1477 ret = gvt_check_valid_cmd_length(cmd_length(s), 1478 valid_len); 1479 if (ret) 1480 return ret; 1481 1482 ret = decode_mi_display_flip(s, &info); 1483 if (ret) { 1484 gvt_vgpu_err("fail to decode MI display flip command\n"); 1485 return ret; 1486 } 1487 1488 ret = check_mi_display_flip(s, &info); 1489 if (ret) { 1490 gvt_vgpu_err("invalid MI display flip command\n"); 1491 return ret; 1492 } 1493 1494 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1495 if (ret) { 1496 gvt_vgpu_err("fail to update plane mmio\n"); 1497 return ret; 1498 } 1499 1500 for (i = 0; i < len; i++) 1501 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1502 return 0; 1503 } 1504 1505 static bool is_wait_for_flip_pending(u32 cmd) 1506 { 1507 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1508 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1509 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1510 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1511 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1512 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1513 } 1514 1515 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1516 { 1517 u32 cmd = cmd_val(s, 0); 1518 1519 if (!is_wait_for_flip_pending(cmd)) 1520 return 0; 1521 1522 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1523 return 0; 1524 } 1525 1526 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1527 { 1528 unsigned long addr; 1529 unsigned long gma_high, gma_low; 1530 struct intel_vgpu *vgpu = s->vgpu; 1531 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1532 1533 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1534 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1535 return INTEL_GVT_INVALID_ADDR; 1536 } 1537 1538 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1539 if (gmadr_bytes == 4) { 1540 addr = gma_low; 1541 } else { 1542 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1543 addr = (((unsigned long)gma_high) << 32) | gma_low; 1544 } 1545 return addr; 1546 } 1547 1548 static inline int cmd_address_audit(struct parser_exec_state *s, 1549 unsigned long guest_gma, int op_size, bool index_mode) 1550 { 1551 struct intel_vgpu *vgpu = s->vgpu; 1552 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1553 int i; 1554 int ret; 1555 1556 if (op_size > max_surface_size) { 1557 gvt_vgpu_err("command address audit fail name %s\n", 1558 s->info->name); 1559 return -EFAULT; 1560 } 1561 1562 if (index_mode) { 1563 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1564 ret = -EFAULT; 1565 goto err; 1566 } 1567 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1568 ret = -EFAULT; 1569 goto err; 1570 } 1571 1572 return 0; 1573 1574 err: 1575 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1576 s->info->name, guest_gma, op_size); 1577 1578 pr_err("cmd dump: "); 1579 for (i = 0; i < cmd_length(s); i++) { 1580 if (!(i % 4)) 1581 pr_err("\n%08x ", cmd_val(s, i)); 1582 else 1583 pr_err("%08x ", cmd_val(s, i)); 1584 } 1585 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1586 vgpu->id, 1587 vgpu_aperture_gmadr_base(vgpu), 1588 vgpu_aperture_gmadr_end(vgpu), 1589 vgpu_hidden_gmadr_base(vgpu), 1590 vgpu_hidden_gmadr_end(vgpu)); 1591 return ret; 1592 } 1593 1594 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1595 { 1596 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1597 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1598 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1599 unsigned long gma, gma_low, gma_high; 1600 u32 valid_len = CMD_LEN(2); 1601 int ret = 0; 1602 1603 /* check ppggt */ 1604 if (!(cmd_val(s, 0) & (1 << 22))) 1605 return 0; 1606 1607 /* check if QWORD */ 1608 if (DWORD_FIELD(0, 21, 21)) 1609 valid_len++; 1610 ret = gvt_check_valid_cmd_length(cmd_length(s), 1611 valid_len); 1612 if (ret) 1613 return ret; 1614 1615 gma = cmd_val(s, 2) & GENMASK(31, 2); 1616 1617 if (gmadr_bytes == 8) { 1618 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1619 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1620 gma = (gma_high << 32) | gma_low; 1621 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1622 } 1623 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1624 return ret; 1625 } 1626 1627 static inline int unexpected_cmd(struct parser_exec_state *s) 1628 { 1629 struct intel_vgpu *vgpu = s->vgpu; 1630 1631 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1632 1633 return -EBADRQC; 1634 } 1635 1636 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1637 { 1638 return unexpected_cmd(s); 1639 } 1640 1641 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1642 { 1643 return unexpected_cmd(s); 1644 } 1645 1646 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1647 { 1648 return unexpected_cmd(s); 1649 } 1650 1651 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1652 { 1653 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1654 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1655 sizeof(u32); 1656 unsigned long gma, gma_high; 1657 u32 valid_len = CMD_LEN(1); 1658 int ret = 0; 1659 1660 if (!(cmd_val(s, 0) & (1 << 22))) 1661 return ret; 1662 1663 /* check inline data */ 1664 if (cmd_val(s, 0) & BIT(18)) 1665 valid_len = CMD_LEN(9); 1666 ret = gvt_check_valid_cmd_length(cmd_length(s), 1667 valid_len); 1668 if (ret) 1669 return ret; 1670 1671 gma = cmd_val(s, 1) & GENMASK(31, 2); 1672 if (gmadr_bytes == 8) { 1673 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1674 gma = (gma_high << 32) | gma; 1675 } 1676 ret = cmd_address_audit(s, gma, op_size, false); 1677 return ret; 1678 } 1679 1680 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1681 { 1682 return unexpected_cmd(s); 1683 } 1684 1685 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1686 { 1687 return unexpected_cmd(s); 1688 } 1689 1690 static int cmd_handler_mi_conditional_batch_buffer_end( 1691 struct parser_exec_state *s) 1692 { 1693 return unexpected_cmd(s); 1694 } 1695 1696 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1697 { 1698 return unexpected_cmd(s); 1699 } 1700 1701 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1702 { 1703 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1704 unsigned long gma; 1705 bool index_mode = false; 1706 int ret = 0; 1707 u32 hws_pga, val; 1708 u32 valid_len = CMD_LEN(2); 1709 1710 ret = gvt_check_valid_cmd_length(cmd_length(s), 1711 valid_len); 1712 if (ret) { 1713 /* Check again for Qword */ 1714 ret = gvt_check_valid_cmd_length(cmd_length(s), 1715 ++valid_len); 1716 return ret; 1717 } 1718 1719 /* Check post-sync and ppgtt bit */ 1720 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1721 gma = cmd_val(s, 1) & GENMASK(31, 3); 1722 if (gmadr_bytes == 8) 1723 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1724 /* Store Data Index */ 1725 if (cmd_val(s, 0) & (1 << 21)) 1726 index_mode = true; 1727 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1728 if (ret) 1729 return ret; 1730 if (index_mode) { 1731 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1732 gma = hws_pga + gma; 1733 patch_value(s, cmd_ptr(s, 1), gma); 1734 val = cmd_val(s, 0) & (~(1 << 21)); 1735 patch_value(s, cmd_ptr(s, 0), val); 1736 } 1737 } 1738 /* Check notify bit */ 1739 if ((cmd_val(s, 0) & (1 << 8))) 1740 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1741 s->workload->pending_events); 1742 return ret; 1743 } 1744 1745 static void addr_type_update_snb(struct parser_exec_state *s) 1746 { 1747 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1748 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1749 s->buf_addr_type = PPGTT_BUFFER; 1750 } 1751 } 1752 1753 1754 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1755 unsigned long gma, unsigned long end_gma, void *va) 1756 { 1757 unsigned long copy_len, offset; 1758 unsigned long len = 0; 1759 unsigned long gpa; 1760 1761 while (gma != end_gma) { 1762 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1763 if (gpa == INTEL_GVT_INVALID_ADDR) { 1764 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1765 return -EFAULT; 1766 } 1767 1768 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1769 1770 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1771 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1772 1773 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1774 1775 len += copy_len; 1776 gma += copy_len; 1777 } 1778 return len; 1779 } 1780 1781 1782 /* 1783 * Check whether a batch buffer needs to be scanned. Currently 1784 * the only criteria is based on privilege. 1785 */ 1786 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1787 { 1788 /* Decide privilege based on address space */ 1789 if (cmd_val(s, 0) & BIT(8) && 1790 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1791 return 0; 1792 1793 return 1; 1794 } 1795 1796 static const char *repr_addr_type(unsigned int type) 1797 { 1798 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1799 } 1800 1801 static int find_bb_size(struct parser_exec_state *s, 1802 unsigned long *bb_size, 1803 unsigned long *bb_end_cmd_offset) 1804 { 1805 unsigned long gma = 0; 1806 const struct cmd_info *info; 1807 u32 cmd_len = 0; 1808 bool bb_end = false; 1809 struct intel_vgpu *vgpu = s->vgpu; 1810 u32 cmd; 1811 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1812 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1813 1814 *bb_size = 0; 1815 *bb_end_cmd_offset = 0; 1816 1817 /* get the start gm address of the batch buffer */ 1818 gma = get_gma_bb_from_cmd(s, 1); 1819 if (gma == INTEL_GVT_INVALID_ADDR) 1820 return -EFAULT; 1821 1822 cmd = cmd_val(s, 0); 1823 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1824 if (info == NULL) { 1825 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1826 cmd, get_opcode(cmd, s->engine), 1827 repr_addr_type(s->buf_addr_type), 1828 s->engine->name, s->workload); 1829 return -EBADRQC; 1830 } 1831 do { 1832 if (copy_gma_to_hva(s->vgpu, mm, 1833 gma, gma + 4, &cmd) < 0) 1834 return -EFAULT; 1835 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1836 if (info == NULL) { 1837 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1838 cmd, get_opcode(cmd, s->engine), 1839 repr_addr_type(s->buf_addr_type), 1840 s->engine->name, s->workload); 1841 return -EBADRQC; 1842 } 1843 1844 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1845 bb_end = true; 1846 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1847 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1848 /* chained batch buffer */ 1849 bb_end = true; 1850 } 1851 1852 if (bb_end) 1853 *bb_end_cmd_offset = *bb_size; 1854 1855 cmd_len = get_cmd_length(info, cmd) << 2; 1856 *bb_size += cmd_len; 1857 gma += cmd_len; 1858 } while (!bb_end); 1859 1860 return 0; 1861 } 1862 1863 static int audit_bb_end(struct parser_exec_state *s, void *va) 1864 { 1865 struct intel_vgpu *vgpu = s->vgpu; 1866 u32 cmd = *(u32 *)va; 1867 const struct cmd_info *info; 1868 1869 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1870 if (info == NULL) { 1871 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1872 cmd, get_opcode(cmd, s->engine), 1873 repr_addr_type(s->buf_addr_type), 1874 s->engine->name, s->workload); 1875 return -EBADRQC; 1876 } 1877 1878 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1879 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1880 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1881 return 0; 1882 1883 return -EBADRQC; 1884 } 1885 1886 static int perform_bb_shadow(struct parser_exec_state *s) 1887 { 1888 struct intel_vgpu *vgpu = s->vgpu; 1889 struct intel_vgpu_shadow_bb *bb; 1890 unsigned long gma = 0; 1891 unsigned long bb_size; 1892 unsigned long bb_end_cmd_offset; 1893 int ret = 0; 1894 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1895 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1896 unsigned long start_offset = 0; 1897 1898 /* get the start gm address of the batch buffer */ 1899 gma = get_gma_bb_from_cmd(s, 1); 1900 if (gma == INTEL_GVT_INVALID_ADDR) 1901 return -EFAULT; 1902 1903 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1904 if (ret) 1905 return ret; 1906 1907 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1908 if (!bb) 1909 return -ENOMEM; 1910 1911 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1912 1913 /* the start_offset stores the batch buffer's start gma's 1914 * offset relative to page boundary. so for non-privileged batch 1915 * buffer, the shadowed gem object holds exactly the same page 1916 * layout as original gem object. This is for the convience of 1917 * replacing the whole non-privilged batch buffer page to this 1918 * shadowed one in PPGTT at the same gma address. (this replacing 1919 * action is not implemented yet now, but may be necessary in 1920 * future). 1921 * for prileged batch buffer, we just change start gma address to 1922 * that of shadowed page. 1923 */ 1924 if (bb->ppgtt) 1925 start_offset = gma & ~I915_GTT_PAGE_MASK; 1926 1927 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1928 round_up(bb_size + start_offset, 1929 PAGE_SIZE)); 1930 if (IS_ERR(bb->obj)) { 1931 ret = PTR_ERR(bb->obj); 1932 goto err_free_bb; 1933 } 1934 1935 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1936 if (IS_ERR(bb->va)) { 1937 ret = PTR_ERR(bb->va); 1938 goto err_free_obj; 1939 } 1940 1941 ret = copy_gma_to_hva(s->vgpu, mm, 1942 gma, gma + bb_size, 1943 bb->va + start_offset); 1944 if (ret < 0) { 1945 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1946 ret = -EFAULT; 1947 goto err_unmap; 1948 } 1949 1950 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1951 if (ret) 1952 goto err_unmap; 1953 1954 i915_gem_object_unlock(bb->obj); 1955 INIT_LIST_HEAD(&bb->list); 1956 list_add(&bb->list, &s->workload->shadow_bb); 1957 1958 bb->bb_start_cmd_va = s->ip_va; 1959 1960 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1961 bb->bb_offset = s->ip_va - s->rb_va; 1962 else 1963 bb->bb_offset = 0; 1964 1965 /* 1966 * ip_va saves the virtual address of the shadow batch buffer, while 1967 * ip_gma saves the graphics address of the original batch buffer. 1968 * As the shadow batch buffer is just a copy from the originial one, 1969 * it should be right to use shadow batch buffer'va and original batch 1970 * buffer's gma in pair. After all, we don't want to pin the shadow 1971 * buffer here (too early). 1972 */ 1973 s->ip_va = bb->va + start_offset; 1974 s->ip_gma = gma; 1975 return 0; 1976 err_unmap: 1977 i915_gem_object_unpin_map(bb->obj); 1978 err_free_obj: 1979 i915_gem_object_put(bb->obj); 1980 err_free_bb: 1981 kfree(bb); 1982 return ret; 1983 } 1984 1985 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1986 { 1987 bool second_level; 1988 int ret = 0; 1989 struct intel_vgpu *vgpu = s->vgpu; 1990 1991 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1992 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1993 return -EFAULT; 1994 } 1995 1996 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1997 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1998 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1999 return -EFAULT; 2000 } 2001 2002 s->saved_buf_addr_type = s->buf_addr_type; 2003 addr_type_update_snb(s); 2004 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2005 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2006 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2007 } else if (second_level) { 2008 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2009 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2010 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2011 } 2012 2013 if (batch_buffer_needs_scan(s)) { 2014 ret = perform_bb_shadow(s); 2015 if (ret < 0) 2016 gvt_vgpu_err("invalid shadow batch buffer\n"); 2017 } else { 2018 /* emulate a batch buffer end to do return right */ 2019 ret = cmd_handler_mi_batch_buffer_end(s); 2020 if (ret < 0) 2021 return ret; 2022 } 2023 return ret; 2024 } 2025 2026 static int mi_noop_index; 2027 2028 static const struct cmd_info cmd_info[] = { 2029 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2030 2031 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2032 0, 1, NULL}, 2033 2034 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2035 0, 1, cmd_handler_mi_user_interrupt}, 2036 2037 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2038 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2039 2040 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2041 2042 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2043 NULL}, 2044 2045 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2046 NULL}, 2047 2048 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2049 NULL}, 2050 2051 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2052 NULL}, 2053 2054 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2055 D_ALL, 0, 1, NULL}, 2056 2057 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2058 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2059 cmd_handler_mi_batch_buffer_end}, 2060 2061 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2062 0, 1, NULL}, 2063 2064 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2065 NULL}, 2066 2067 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2068 D_ALL, 0, 1, NULL}, 2069 2070 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2071 NULL}, 2072 2073 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2074 NULL}, 2075 2076 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2077 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2078 2079 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2080 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2081 2082 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2083 2084 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2085 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2086 2087 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2088 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2089 NULL, CMD_LEN(0)}, 2090 2091 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2092 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2093 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2094 2095 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2096 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2097 2098 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2099 0, 8, cmd_handler_mi_store_data_index}, 2100 2101 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2102 D_ALL, 0, 8, cmd_handler_lri}, 2103 2104 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2105 cmd_handler_mi_update_gtt}, 2106 2107 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2108 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2109 cmd_handler_srm, CMD_LEN(2)}, 2110 2111 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2112 cmd_handler_mi_flush_dw}, 2113 2114 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2115 10, cmd_handler_mi_clflush}, 2116 2117 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2118 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2119 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2120 2121 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2122 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2123 cmd_handler_lrm, CMD_LEN(2)}, 2124 2125 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2126 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2127 cmd_handler_lrr, CMD_LEN(1)}, 2128 2129 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2130 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2131 8, NULL, CMD_LEN(2)}, 2132 2133 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2134 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2135 2136 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2137 ADDR_FIX_1(2), 8, NULL}, 2138 2139 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2140 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2141 2142 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2143 8, cmd_handler_mi_op_2f}, 2144 2145 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2146 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2147 cmd_handler_mi_batch_buffer_start}, 2148 2149 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2150 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2151 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2152 2153 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2154 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2155 2156 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2157 ADDR_FIX_2(4, 7), 8, NULL}, 2158 2159 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2160 0, 8, NULL}, 2161 2162 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2163 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2164 2165 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2166 2167 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2168 0, 8, NULL}, 2169 2170 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2171 ADDR_FIX_1(3), 8, NULL}, 2172 2173 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2174 D_ALL, 0, 8, NULL}, 2175 2176 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2177 ADDR_FIX_1(4), 8, NULL}, 2178 2179 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2180 ADDR_FIX_2(4, 5), 8, NULL}, 2181 2182 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2183 ADDR_FIX_1(4), 8, NULL}, 2184 2185 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2186 ADDR_FIX_2(4, 7), 8, NULL}, 2187 2188 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2189 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2190 2191 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2192 2193 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2194 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2195 2196 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2197 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2198 2199 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2200 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2201 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2202 2203 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2204 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2205 2206 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2207 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2208 2209 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2210 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2211 2212 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2213 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2214 2215 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2216 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2217 2218 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2219 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2220 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2221 2222 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2223 ADDR_FIX_2(4, 5), 8, NULL}, 2224 2225 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2226 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2227 2228 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2229 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2230 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2231 2232 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2233 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2234 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2235 2236 {"3DSTATE_BLEND_STATE_POINTERS", 2237 OP_3DSTATE_BLEND_STATE_POINTERS, 2238 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2239 2240 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2241 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2242 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2243 2244 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2245 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2246 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2247 2248 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2249 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2253 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2254 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2255 2256 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2257 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2258 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2259 2260 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2261 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2265 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2266 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2267 2268 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2269 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2273 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2277 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2278 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2279 2280 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2281 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2282 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2283 2284 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2285 0, 8, NULL}, 2286 2287 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2288 0, 8, NULL}, 2289 2290 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2291 0, 8, NULL}, 2292 2293 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2294 0, 8, NULL}, 2295 2296 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2297 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2298 2299 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2300 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2301 2302 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2304 2305 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2307 2308 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2310 2311 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2312 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2313 2314 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2315 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2316 2317 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2318 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2319 2320 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2321 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2322 2323 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2324 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2325 2326 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2327 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2328 2329 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2330 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2331 2332 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2333 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2334 2335 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2336 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2337 2338 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2339 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2340 2341 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2342 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2343 2344 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2345 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2346 2347 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2348 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2349 2350 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2351 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2352 2353 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2354 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2355 2356 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2357 D_BDW_PLUS, 0, 8, NULL}, 2358 2359 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2360 NULL}, 2361 2362 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2363 D_BDW_PLUS, 0, 8, NULL}, 2364 2365 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2366 D_BDW_PLUS, 0, 8, NULL}, 2367 2368 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2369 8, NULL}, 2370 2371 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2372 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2373 2374 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2375 8, NULL}, 2376 2377 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2378 NULL}, 2379 2380 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2381 NULL}, 2382 2383 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2384 NULL}, 2385 2386 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2387 D_BDW_PLUS, 0, 8, NULL}, 2388 2389 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2390 R_RCS, D_ALL, 0, 8, NULL}, 2391 2392 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2393 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2394 2395 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2396 R_RCS, D_ALL, 0, 1, NULL}, 2397 2398 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2399 2400 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2401 R_RCS, D_ALL, 0, 8, NULL}, 2402 2403 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2404 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2405 2406 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2409 2410 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2411 2412 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2413 D_BDW_PLUS, 0, 8, NULL}, 2414 2415 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2416 D_BDW_PLUS, 0, 8, NULL}, 2417 2418 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2419 D_ALL, 0, 8, NULL}, 2420 2421 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2422 D_BDW_PLUS, 0, 8, NULL}, 2423 2424 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2425 D_BDW_PLUS, 0, 8, NULL}, 2426 2427 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2428 2429 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2430 2431 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2432 2433 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2434 D_ALL, 0, 8, NULL}, 2435 2436 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2439 2440 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2441 R_RCS, D_ALL, 0, 8, NULL}, 2442 2443 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2444 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2445 2446 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2447 0, 8, NULL}, 2448 2449 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2450 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2451 2452 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2453 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2454 2455 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2456 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2457 2458 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2459 D_ALL, 0, 8, NULL}, 2460 2461 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2462 D_ALL, 0, 8, NULL}, 2463 2464 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2465 D_ALL, 0, 8, NULL}, 2466 2467 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2468 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2469 2470 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2471 D_BDW_PLUS, 0, 8, NULL}, 2472 2473 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2474 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2475 2476 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2477 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2478 2479 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2480 R_RCS, D_ALL, 0, 8, NULL}, 2481 2482 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2483 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2484 2485 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2486 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2487 2488 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2489 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2490 2491 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2492 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2493 2494 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2495 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2496 2497 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2498 R_RCS, D_ALL, 0, 8, NULL}, 2499 2500 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2501 D_ALL, 0, 9, NULL}, 2502 2503 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2504 ADDR_FIX_2(2, 4), 8, NULL}, 2505 2506 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2507 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2508 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2509 2510 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2511 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2512 2513 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2514 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2515 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2516 2517 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2518 D_BDW_PLUS, 0, 8, NULL}, 2519 2520 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2521 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2522 2523 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2524 2525 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2526 1, NULL}, 2527 2528 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2529 ADDR_FIX_1(1), 8, NULL}, 2530 2531 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2532 2533 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2534 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2535 2536 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2537 ADDR_FIX_1(1), 8, NULL}, 2538 2539 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2540 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2541 2542 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2543 2544 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2545 2546 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2547 0, 8, NULL}, 2548 2549 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2550 D_SKL_PLUS, 0, 8, NULL}, 2551 2552 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2553 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2554 2555 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2556 0, 16, NULL}, 2557 2558 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2559 0, 16, NULL}, 2560 2561 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2562 0, 16, NULL}, 2563 2564 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2565 2566 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2567 0, 16, NULL}, 2568 2569 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2570 0, 16, NULL}, 2571 2572 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2573 0, 16, NULL}, 2574 2575 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2576 0, 8, NULL}, 2577 2578 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2579 NULL}, 2580 2581 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2582 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2583 2584 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2585 R_VCS, D_ALL, 0, 12, NULL}, 2586 2587 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2588 R_VCS, D_ALL, 0, 12, NULL}, 2589 2590 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2591 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2592 2593 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2594 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2595 2596 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2597 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2598 2599 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2600 2601 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2602 R_VCS, D_ALL, 0, 12, NULL}, 2603 2604 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2605 R_VCS, D_ALL, 0, 12, NULL}, 2606 2607 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2608 R_VCS, D_ALL, 0, 12, NULL}, 2609 2610 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 2613 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2620 R_VCS, D_ALL, 0, 6, NULL}, 2621 2622 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 12, NULL}, 2624 2625 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2626 R_VCS, D_ALL, 0, 12, NULL}, 2627 2628 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2629 R_VCS, D_ALL, 0, 12, NULL}, 2630 2631 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2632 R_VCS, D_ALL, 0, 12, NULL}, 2633 2634 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2635 R_VCS, D_ALL, 0, 12, NULL}, 2636 2637 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2643 R_VCS, D_ALL, 0, 12, NULL}, 2644 2645 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2646 R_VCS, D_ALL, 0, 12, NULL}, 2647 2648 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2649 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2650 2651 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2652 R_VCS, D_ALL, 0, 12, NULL}, 2653 2654 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2655 R_VCS, D_ALL, 0, 12, NULL}, 2656 2657 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2658 R_VCS, D_ALL, 0, 12, NULL}, 2659 2660 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2661 R_VCS, D_ALL, 0, 12, NULL}, 2662 2663 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2664 R_VCS, D_ALL, 0, 12, NULL}, 2665 2666 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2667 R_VCS, D_ALL, 0, 12, NULL}, 2668 2669 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2670 R_VCS, D_ALL, 0, 12, NULL}, 2671 2672 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2673 R_VCS, D_ALL, 0, 12, NULL}, 2674 2675 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2676 R_VCS, D_ALL, 0, 12, NULL}, 2677 2678 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2679 R_VCS, D_ALL, 0, 12, NULL}, 2680 2681 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2682 R_VCS, D_ALL, 0, 12, NULL}, 2683 2684 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2685 0, 16, NULL}, 2686 2687 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2688 2689 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2690 2691 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2692 R_VCS, D_ALL, 0, 12, NULL}, 2693 2694 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2695 R_VCS, D_ALL, 0, 12, NULL}, 2696 2697 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2698 R_VCS, D_ALL, 0, 12, NULL}, 2699 2700 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2701 2702 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2703 0, 12, NULL}, 2704 2705 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2706 0, 12, NULL}, 2707 }; 2708 2709 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2710 { 2711 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2712 } 2713 2714 /* call the cmd handler, and advance ip */ 2715 static int cmd_parser_exec(struct parser_exec_state *s) 2716 { 2717 struct intel_vgpu *vgpu = s->vgpu; 2718 const struct cmd_info *info; 2719 u32 cmd; 2720 int ret = 0; 2721 2722 cmd = cmd_val(s, 0); 2723 2724 /* fastpath for MI_NOOP */ 2725 if (cmd == MI_NOOP) 2726 info = &cmd_info[mi_noop_index]; 2727 else 2728 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2729 2730 if (info == NULL) { 2731 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2732 cmd, get_opcode(cmd, s->engine), 2733 repr_addr_type(s->buf_addr_type), 2734 s->engine->name, s->workload); 2735 return -EBADRQC; 2736 } 2737 2738 s->info = info; 2739 2740 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2741 cmd_length(s), s->buf_type, s->buf_addr_type, 2742 s->workload, info->name); 2743 2744 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2745 ret = gvt_check_valid_cmd_length(cmd_length(s), 2746 info->valid_len); 2747 if (ret) 2748 return ret; 2749 } 2750 2751 if (info->handler) { 2752 ret = info->handler(s); 2753 if (ret < 0) { 2754 gvt_vgpu_err("%s handler error\n", info->name); 2755 return ret; 2756 } 2757 } 2758 2759 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2760 ret = cmd_advance_default(s); 2761 if (ret) { 2762 gvt_vgpu_err("%s IP advance error\n", info->name); 2763 return ret; 2764 } 2765 } 2766 return 0; 2767 } 2768 2769 static inline bool gma_out_of_range(unsigned long gma, 2770 unsigned long gma_head, unsigned int gma_tail) 2771 { 2772 if (gma_tail >= gma_head) 2773 return (gma < gma_head) || (gma > gma_tail); 2774 else 2775 return (gma > gma_tail) && (gma < gma_head); 2776 } 2777 2778 /* Keep the consistent return type, e.g EBADRQC for unknown 2779 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2780 * works as the input of VM healthy status. 2781 */ 2782 static int command_scan(struct parser_exec_state *s, 2783 unsigned long rb_head, unsigned long rb_tail, 2784 unsigned long rb_start, unsigned long rb_len) 2785 { 2786 2787 unsigned long gma_head, gma_tail, gma_bottom; 2788 int ret = 0; 2789 struct intel_vgpu *vgpu = s->vgpu; 2790 2791 gma_head = rb_start + rb_head; 2792 gma_tail = rb_start + rb_tail; 2793 gma_bottom = rb_start + rb_len; 2794 2795 while (s->ip_gma != gma_tail) { 2796 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2797 s->buf_type == RING_BUFFER_CTX) { 2798 if (!(s->ip_gma >= rb_start) || 2799 !(s->ip_gma < gma_bottom)) { 2800 gvt_vgpu_err("ip_gma %lx out of ring scope." 2801 "(base:0x%lx, bottom: 0x%lx)\n", 2802 s->ip_gma, rb_start, 2803 gma_bottom); 2804 parser_exec_state_dump(s); 2805 return -EFAULT; 2806 } 2807 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2808 gvt_vgpu_err("ip_gma %lx out of range." 2809 "base 0x%lx head 0x%lx tail 0x%lx\n", 2810 s->ip_gma, rb_start, 2811 rb_head, rb_tail); 2812 parser_exec_state_dump(s); 2813 break; 2814 } 2815 } 2816 ret = cmd_parser_exec(s); 2817 if (ret) { 2818 gvt_vgpu_err("cmd parser error\n"); 2819 parser_exec_state_dump(s); 2820 break; 2821 } 2822 } 2823 2824 return ret; 2825 } 2826 2827 static int scan_workload(struct intel_vgpu_workload *workload) 2828 { 2829 unsigned long gma_head, gma_tail, gma_bottom; 2830 struct parser_exec_state s; 2831 int ret = 0; 2832 2833 /* ring base is page aligned */ 2834 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2835 return -EINVAL; 2836 2837 gma_head = workload->rb_start + workload->rb_head; 2838 gma_tail = workload->rb_start + workload->rb_tail; 2839 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2840 2841 s.buf_type = RING_BUFFER_INSTRUCTION; 2842 s.buf_addr_type = GTT_BUFFER; 2843 s.vgpu = workload->vgpu; 2844 s.engine = workload->engine; 2845 s.ring_start = workload->rb_start; 2846 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2847 s.ring_head = gma_head; 2848 s.ring_tail = gma_tail; 2849 s.rb_va = workload->shadow_ring_buffer_va; 2850 s.workload = workload; 2851 s.is_ctx_wa = false; 2852 2853 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2854 return 0; 2855 2856 ret = ip_gma_set(&s, gma_head); 2857 if (ret) 2858 goto out; 2859 2860 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2861 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2862 2863 out: 2864 return ret; 2865 } 2866 2867 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2868 { 2869 2870 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2871 struct parser_exec_state s; 2872 int ret = 0; 2873 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2874 struct intel_vgpu_workload, 2875 wa_ctx); 2876 2877 /* ring base is page aligned */ 2878 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2879 I915_GTT_PAGE_SIZE))) 2880 return -EINVAL; 2881 2882 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2883 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2884 PAGE_SIZE); 2885 gma_head = wa_ctx->indirect_ctx.guest_gma; 2886 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2887 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2888 2889 s.buf_type = RING_BUFFER_INSTRUCTION; 2890 s.buf_addr_type = GTT_BUFFER; 2891 s.vgpu = workload->vgpu; 2892 s.engine = workload->engine; 2893 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2894 s.ring_size = ring_size; 2895 s.ring_head = gma_head; 2896 s.ring_tail = gma_tail; 2897 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2898 s.workload = workload; 2899 s.is_ctx_wa = true; 2900 2901 ret = ip_gma_set(&s, gma_head); 2902 if (ret) 2903 goto out; 2904 2905 ret = command_scan(&s, 0, ring_tail, 2906 wa_ctx->indirect_ctx.guest_gma, ring_size); 2907 out: 2908 return ret; 2909 } 2910 2911 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2912 { 2913 struct intel_vgpu *vgpu = workload->vgpu; 2914 struct intel_vgpu_submission *s = &vgpu->submission; 2915 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2916 void *shadow_ring_buffer_va; 2917 int ret; 2918 2919 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2920 2921 /* calculate workload ring buffer size */ 2922 workload->rb_len = (workload->rb_tail + guest_rb_size - 2923 workload->rb_head) % guest_rb_size; 2924 2925 gma_head = workload->rb_start + workload->rb_head; 2926 gma_tail = workload->rb_start + workload->rb_tail; 2927 gma_top = workload->rb_start + guest_rb_size; 2928 2929 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2930 void *p; 2931 2932 /* realloc the new ring buffer if needed */ 2933 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2934 workload->rb_len, GFP_KERNEL); 2935 if (!p) { 2936 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2937 return -ENOMEM; 2938 } 2939 s->ring_scan_buffer[workload->engine->id] = p; 2940 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2941 } 2942 2943 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2944 2945 /* get shadow ring buffer va */ 2946 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2947 2948 /* head > tail --> copy head <-> top */ 2949 if (gma_head > gma_tail) { 2950 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2951 gma_head, gma_top, shadow_ring_buffer_va); 2952 if (ret < 0) { 2953 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2954 return ret; 2955 } 2956 shadow_ring_buffer_va += ret; 2957 gma_head = workload->rb_start; 2958 } 2959 2960 /* copy head or start <-> tail */ 2961 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2962 shadow_ring_buffer_va); 2963 if (ret < 0) { 2964 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2965 return ret; 2966 } 2967 return 0; 2968 } 2969 2970 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2971 { 2972 int ret; 2973 struct intel_vgpu *vgpu = workload->vgpu; 2974 2975 ret = shadow_workload_ring_buffer(workload); 2976 if (ret) { 2977 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2978 return ret; 2979 } 2980 2981 ret = scan_workload(workload); 2982 if (ret) { 2983 gvt_vgpu_err("scan workload error\n"); 2984 return ret; 2985 } 2986 return 0; 2987 } 2988 2989 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2990 { 2991 int ctx_size = wa_ctx->indirect_ctx.size; 2992 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2993 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2994 struct intel_vgpu_workload, 2995 wa_ctx); 2996 struct intel_vgpu *vgpu = workload->vgpu; 2997 struct drm_i915_gem_object *obj; 2998 int ret = 0; 2999 void *map; 3000 3001 obj = i915_gem_object_create_shmem(workload->engine->i915, 3002 roundup(ctx_size + CACHELINE_BYTES, 3003 PAGE_SIZE)); 3004 if (IS_ERR(obj)) 3005 return PTR_ERR(obj); 3006 3007 /* get the va of the shadow batch buffer */ 3008 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3009 if (IS_ERR(map)) { 3010 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3011 ret = PTR_ERR(map); 3012 goto put_obj; 3013 } 3014 3015 i915_gem_object_lock(obj, NULL); 3016 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3017 i915_gem_object_unlock(obj); 3018 if (ret) { 3019 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3020 goto unmap_src; 3021 } 3022 3023 ret = copy_gma_to_hva(workload->vgpu, 3024 workload->vgpu->gtt.ggtt_mm, 3025 guest_gma, guest_gma + ctx_size, 3026 map); 3027 if (ret < 0) { 3028 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3029 goto unmap_src; 3030 } 3031 3032 wa_ctx->indirect_ctx.obj = obj; 3033 wa_ctx->indirect_ctx.shadow_va = map; 3034 return 0; 3035 3036 unmap_src: 3037 i915_gem_object_unpin_map(obj); 3038 put_obj: 3039 i915_gem_object_put(obj); 3040 return ret; 3041 } 3042 3043 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3044 { 3045 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3046 unsigned char *bb_start_sva; 3047 3048 if (!wa_ctx->per_ctx.valid) 3049 return 0; 3050 3051 per_ctx_start[0] = 0x18800001; 3052 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3053 3054 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3055 wa_ctx->indirect_ctx.size; 3056 3057 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3058 3059 return 0; 3060 } 3061 3062 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3063 { 3064 int ret; 3065 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3066 struct intel_vgpu_workload, 3067 wa_ctx); 3068 struct intel_vgpu *vgpu = workload->vgpu; 3069 3070 if (wa_ctx->indirect_ctx.size == 0) 3071 return 0; 3072 3073 ret = shadow_indirect_ctx(wa_ctx); 3074 if (ret) { 3075 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3076 return ret; 3077 } 3078 3079 combine_wa_ctx(wa_ctx); 3080 3081 ret = scan_wa_ctx(wa_ctx); 3082 if (ret) { 3083 gvt_vgpu_err("scan wa ctx error\n"); 3084 return ret; 3085 } 3086 3087 return 0; 3088 } 3089 3090 /* generate dummy contexts by sending empty requests to HW, and let 3091 * the HW to fill Engine Contexts. This dummy contexts are used for 3092 * initialization purpose (update reg whitelist), so referred to as 3093 * init context here 3094 */ 3095 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3096 { 3097 struct intel_gvt *gvt = vgpu->gvt; 3098 struct drm_i915_private *dev_priv = gvt->gt->i915; 3099 struct intel_engine_cs *engine; 3100 enum intel_engine_id id; 3101 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3102 struct i915_request *rq; 3103 struct intel_vgpu_submission *s = &vgpu->submission; 3104 struct i915_request *requests[I915_NUM_ENGINES] = {}; 3105 bool is_ctx_pinned[I915_NUM_ENGINES] = {}; 3106 int ret; 3107 3108 if (gvt->is_reg_whitelist_updated) 3109 return; 3110 3111 for_each_engine(engine, &dev_priv->gt, id) { 3112 ret = intel_context_pin(s->shadow[id]); 3113 if (ret) { 3114 gvt_vgpu_err("fail to pin shadow ctx\n"); 3115 goto out; 3116 } 3117 is_ctx_pinned[id] = true; 3118 3119 rq = i915_request_create(s->shadow[id]); 3120 if (IS_ERR(rq)) { 3121 gvt_vgpu_err("fail to alloc default request\n"); 3122 ret = -EIO; 3123 goto out; 3124 } 3125 requests[id] = i915_request_get(rq); 3126 i915_request_add(rq); 3127 } 3128 3129 if (intel_gt_wait_for_idle(&dev_priv->gt, 3130 I915_GEM_IDLE_TIMEOUT) == -ETIME) { 3131 ret = -EIO; 3132 goto out; 3133 } 3134 3135 /* scan init ctx to update cmd accessible list */ 3136 for_each_engine(engine, &dev_priv->gt, id) { 3137 int size = engine->context_size - PAGE_SIZE; 3138 void *vaddr; 3139 struct parser_exec_state s; 3140 struct drm_i915_gem_object *obj; 3141 struct i915_request *rq; 3142 3143 rq = requests[id]; 3144 GEM_BUG_ON(!i915_request_completed(rq)); 3145 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3146 obj = rq->context->state->obj; 3147 3148 if (!obj) { 3149 ret = -EIO; 3150 goto out; 3151 } 3152 3153 i915_gem_object_set_cache_coherency(obj, 3154 I915_CACHE_LLC); 3155 3156 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 3157 if (IS_ERR(vaddr)) { 3158 gvt_err("failed to pin init ctx obj, ring=%d, err=%lx\n", 3159 id, PTR_ERR(vaddr)); 3160 goto out; 3161 } 3162 3163 s.buf_type = RING_BUFFER_CTX; 3164 s.buf_addr_type = GTT_BUFFER; 3165 s.vgpu = vgpu; 3166 s.engine = engine; 3167 s.ring_start = 0; 3168 s.ring_size = size; 3169 s.ring_head = 0; 3170 s.ring_tail = size; 3171 s.rb_va = vaddr + start; 3172 s.workload = NULL; 3173 s.is_ctx_wa = false; 3174 s.is_init_ctx = true; 3175 3176 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3177 ret = ip_gma_set(&s, RING_CTX_SIZE); 3178 if (ret) { 3179 i915_gem_object_unpin_map(obj); 3180 goto out; 3181 } 3182 3183 ret = command_scan(&s, 0, size, 0, size); 3184 if (ret) 3185 gvt_err("Scan init ctx error\n"); 3186 3187 i915_gem_object_unpin_map(obj); 3188 } 3189 3190 out: 3191 if (!ret) 3192 gvt->is_reg_whitelist_updated = true; 3193 3194 for (id = 0; id < I915_NUM_ENGINES ; id++) { 3195 if (requests[id]) 3196 i915_request_put(requests[id]); 3197 3198 if (is_ctx_pinned[id]) 3199 intel_context_unpin(s->shadow[id]); 3200 } 3201 } 3202 3203 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3204 { 3205 struct intel_vgpu *vgpu = workload->vgpu; 3206 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3207 struct parser_exec_state s; 3208 int ring_id = workload->engine->id; 3209 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3210 int ret; 3211 3212 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3213 3214 ctx_size = workload->engine->context_size - PAGE_SIZE; 3215 3216 /* Only ring contxt is loaded to HW for inhibit context, no need to 3217 * scan engine context 3218 */ 3219 if (is_inhibit_context(ce)) 3220 return 0; 3221 3222 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3223 gma_head = 0; 3224 gma_tail = ctx_size; 3225 3226 s.buf_type = RING_BUFFER_CTX; 3227 s.buf_addr_type = GTT_BUFFER; 3228 s.vgpu = workload->vgpu; 3229 s.engine = workload->engine; 3230 s.ring_start = gma_start; 3231 s.ring_size = ctx_size; 3232 s.ring_head = gma_start + gma_head; 3233 s.ring_tail = gma_start + gma_tail; 3234 s.rb_va = ce->lrc_reg_state; 3235 s.workload = workload; 3236 s.is_ctx_wa = false; 3237 s.is_init_ctx = false; 3238 3239 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3240 * context 3241 */ 3242 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3243 if (ret) 3244 goto out; 3245 3246 ret = command_scan(&s, gma_head, gma_tail, 3247 gma_start, ctx_size); 3248 out: 3249 if (ret) 3250 gvt_vgpu_err("scan shadow ctx error\n"); 3251 3252 return ret; 3253 } 3254 3255 static int init_cmd_table(struct intel_gvt *gvt) 3256 { 3257 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3258 int i; 3259 3260 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3261 struct cmd_entry *e; 3262 3263 if (!(cmd_info[i].devices & gen_type)) 3264 continue; 3265 3266 e = kzalloc(sizeof(*e), GFP_KERNEL); 3267 if (!e) 3268 return -ENOMEM; 3269 3270 e->info = &cmd_info[i]; 3271 if (cmd_info[i].opcode == OP_MI_NOOP) 3272 mi_noop_index = i; 3273 3274 INIT_HLIST_NODE(&e->hlist); 3275 add_cmd_entry(gvt, e); 3276 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3277 e->info->name, e->info->opcode, e->info->flag, 3278 e->info->devices, e->info->rings); 3279 } 3280 3281 return 0; 3282 } 3283 3284 static void clean_cmd_table(struct intel_gvt *gvt) 3285 { 3286 struct hlist_node *tmp; 3287 struct cmd_entry *e; 3288 int i; 3289 3290 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3291 kfree(e); 3292 3293 hash_init(gvt->cmd_table); 3294 } 3295 3296 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3297 { 3298 clean_cmd_table(gvt); 3299 } 3300 3301 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3302 { 3303 int ret; 3304 3305 ret = init_cmd_table(gvt); 3306 if (ret) { 3307 intel_gvt_clean_cmd_parser(gvt); 3308 return ret; 3309 } 3310 return 0; 3311 } 3312