xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision b9dd2add)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_gt_requests.h"
44 #include "gvt.h"
45 #include "i915_pvinfo.h"
46 #include "trace.h"
47 
48 #include "gem/i915_gem_context.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gt/intel_context.h"
51 
52 #define INVALID_OP    (~0U)
53 
54 #define OP_LEN_MI           9
55 #define OP_LEN_2D           10
56 #define OP_LEN_3D_MEDIA     16
57 #define OP_LEN_MFX_VC       16
58 #define OP_LEN_VEBOX	    16
59 
60 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
61 
62 struct sub_op_bits {
63 	int hi;
64 	int low;
65 };
66 struct decode_info {
67 	const char *name;
68 	int op_len;
69 	int nr_sub_op;
70 	const struct sub_op_bits *sub_op;
71 };
72 
73 #define   MAX_CMD_BUDGET			0x7fffffff
74 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
75 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
76 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
77 
78 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
79 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
80 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
81 
82 /* Render Command Map */
83 
84 /* MI_* command Opcode (28:23) */
85 #define OP_MI_NOOP                          0x0
86 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
87 #define OP_MI_USER_INTERRUPT                0x2
88 #define OP_MI_WAIT_FOR_EVENT                0x3
89 #define OP_MI_FLUSH                         0x4
90 #define OP_MI_ARB_CHECK                     0x5
91 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
92 #define OP_MI_REPORT_HEAD                   0x7
93 #define OP_MI_ARB_ON_OFF                    0x8
94 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
95 #define OP_MI_BATCH_BUFFER_END              0xA
96 #define OP_MI_SUSPEND_FLUSH                 0xB
97 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
98 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
99 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
100 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
101 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
102 #define OP_MI_DISPLAY_FLIP                  0x14
103 #define OP_MI_SEMAPHORE_MBOX                0x16
104 #define OP_MI_SET_CONTEXT                   0x18
105 #define OP_MI_MATH                          0x1A
106 #define OP_MI_URB_CLEAR                     0x19
107 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
108 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
109 
110 #define OP_MI_STORE_DATA_IMM                0x20
111 #define OP_MI_STORE_DATA_INDEX              0x21
112 #define OP_MI_LOAD_REGISTER_IMM             0x22
113 #define OP_MI_UPDATE_GTT                    0x23
114 #define OP_MI_STORE_REGISTER_MEM            0x24
115 #define OP_MI_FLUSH_DW                      0x26
116 #define OP_MI_CLFLUSH                       0x27
117 #define OP_MI_REPORT_PERF_COUNT             0x28
118 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
119 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
120 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
121 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
122 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
123 #define OP_MI_2E			    0x2E  /* BDW+ */
124 #define OP_MI_2F			    0x2F  /* BDW+ */
125 #define OP_MI_BATCH_BUFFER_START            0x31
126 
127 /* Bit definition for dword 0 */
128 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
129 
130 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
131 
132 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
133 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
134 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
135 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
136 
137 /* 2D command: Opcode (28:22) */
138 #define OP_2D(x)    ((2<<7) | x)
139 
140 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
141 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
142 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
143 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
144 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
145 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
146 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
147 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
148 #define OP_XY_PAT_BLT                               OP_2D(0x51)
149 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
150 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
151 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
152 #define OP_XY_FULL_BLT                              OP_2D(0x55)
153 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
154 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
155 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
156 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
157 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
158 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
159 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
160 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
161 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
162 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
163 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
164 
165 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
166 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
167 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
168 
169 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
170 
171 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
172 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
173 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
174 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
175 
176 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
177 
178 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
179 
180 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
181 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
182 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
183 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
184 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
185 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
186 
187 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
188 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
189 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
190 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
191 
192 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
193 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
194 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
195 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
196 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
197 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
198 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
199 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
200 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
201 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
202 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
203 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
204 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
205 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
206 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
207 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
208 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
209 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
210 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
211 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
212 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
213 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
214 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
215 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
216 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
217 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
218 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
219 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
220 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
222 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
223 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
224 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
229 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
234 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
235 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
236 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
237 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
238 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
240 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
243 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
249 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
250 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
251 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
253 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
255 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
258 
259 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
260 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
261 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
262 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
263 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
264 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
265 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
266 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
267 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
268 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
269 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
270 
271 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
273 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
274 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
275 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
276 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
277 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
278 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
279 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
280 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
281 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
282 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
283 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
284 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
285 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
286 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
291 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
292 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
293 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
294 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
295 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
296 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
297 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
298 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
299 
300 /* VCCP Command Parser */
301 
302 /*
303  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
304  * git://anongit.freedesktop.org/vaapi/intel-driver
305  * src/i965_defines.h
306  *
307  */
308 
309 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
310 	(3 << 13 | \
311 	 (pipeline) << 11 | \
312 	 (op) << 8 | \
313 	 (sub_opa) << 5 | \
314 	 (sub_opb))
315 
316 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
317 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
318 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
319 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
320 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
321 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
322 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
323 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
324 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
325 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
326 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
327 
328 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
329 
330 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
331 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
332 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
333 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
334 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
335 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
336 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
337 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
338 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
339 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
340 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
341 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
342 
343 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
344 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
345 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
346 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
347 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
348 
349 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
350 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
351 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
352 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
353 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
354 
355 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
356 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
357 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
358 
359 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
360 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
361 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
362 
363 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
364 	(3 << 13 | \
365 	 (pipeline) << 11 | \
366 	 (op) << 8 | \
367 	 (sub_opa) << 5 | \
368 	 (sub_opb))
369 
370 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
371 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
372 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
373 
374 struct parser_exec_state;
375 
376 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
377 
378 #define GVT_CMD_HASH_BITS   7
379 
380 /* which DWords need address fix */
381 #define ADDR_FIX_1(x1)			(1 << (x1))
382 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
383 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
384 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
385 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
386 
387 #define DWORD_FIELD(dword, end, start) \
388 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
389 
390 #define OP_LENGTH_BIAS 2
391 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
392 
393 static int gvt_check_valid_cmd_length(int len, int valid_len)
394 {
395 	if (valid_len != len) {
396 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
397 			len, valid_len);
398 		return -EFAULT;
399 	}
400 	return 0;
401 }
402 
403 struct cmd_info {
404 	const char *name;
405 	u32 opcode;
406 
407 #define F_LEN_MASK	3U
408 #define F_LEN_CONST  1U
409 #define F_LEN_VAR    0U
410 /* value is const although LEN maybe variable */
411 #define F_LEN_VAR_FIXED    (1<<1)
412 
413 /*
414  * command has its own ip advance logic
415  * e.g. MI_BATCH_START, MI_BATCH_END
416  */
417 #define F_IP_ADVANCE_CUSTOM (1<<2)
418 	u32 flag;
419 
420 #define R_RCS	BIT(RCS0)
421 #define R_VCS1  BIT(VCS0)
422 #define R_VCS2  BIT(VCS1)
423 #define R_VCS	(R_VCS1 | R_VCS2)
424 #define R_BCS	BIT(BCS0)
425 #define R_VECS	BIT(VECS0)
426 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
427 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
428 	u16 rings;
429 
430 	/* devices that support this cmd: SNB/IVB/HSW/... */
431 	u16 devices;
432 
433 	/* which DWords are address that need fix up.
434 	 * bit 0 means a 32-bit non address operand in command
435 	 * bit 1 means address operand, which could be 32-bit
436 	 * or 64-bit depending on different architectures.(
437 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
438 	 * No matter the address length, each address only takes
439 	 * one bit in the bitmap.
440 	 */
441 	u16 addr_bitmap;
442 
443 	/* flag == F_LEN_CONST : command length
444 	 * flag == F_LEN_VAR : length bias bits
445 	 * Note: length is in DWord
446 	 */
447 	u32 len;
448 
449 	parser_cmd_handler handler;
450 
451 	/* valid length in DWord */
452 	u32 valid_len;
453 };
454 
455 struct cmd_entry {
456 	struct hlist_node hlist;
457 	const struct cmd_info *info;
458 };
459 
460 enum {
461 	RING_BUFFER_INSTRUCTION,
462 	BATCH_BUFFER_INSTRUCTION,
463 	BATCH_BUFFER_2ND_LEVEL,
464 	RING_BUFFER_CTX,
465 };
466 
467 enum {
468 	GTT_BUFFER,
469 	PPGTT_BUFFER
470 };
471 
472 struct parser_exec_state {
473 	struct intel_vgpu *vgpu;
474 	const struct intel_engine_cs *engine;
475 
476 	int buf_type;
477 
478 	/* batch buffer address type */
479 	int buf_addr_type;
480 
481 	/* graphics memory address of ring buffer start */
482 	unsigned long ring_start;
483 	unsigned long ring_size;
484 	unsigned long ring_head;
485 	unsigned long ring_tail;
486 
487 	/* instruction graphics memory address */
488 	unsigned long ip_gma;
489 
490 	/* mapped va of the instr_gma */
491 	void *ip_va;
492 	void *rb_va;
493 
494 	void *ret_bb_va;
495 	/* next instruction when return from  batch buffer to ring buffer */
496 	unsigned long ret_ip_gma_ring;
497 
498 	/* next instruction when return from 2nd batch buffer to batch buffer */
499 	unsigned long ret_ip_gma_bb;
500 
501 	/* batch buffer address type (GTT or PPGTT)
502 	 * used when ret from 2nd level batch buffer
503 	 */
504 	int saved_buf_addr_type;
505 	bool is_ctx_wa;
506 	bool is_init_ctx;
507 
508 	const struct cmd_info *info;
509 
510 	struct intel_vgpu_workload *workload;
511 };
512 
513 #define gmadr_dw_number(s)	\
514 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
515 
516 static unsigned long bypass_scan_mask = 0;
517 
518 /* ring ALL, type = 0 */
519 static const struct sub_op_bits sub_op_mi[] = {
520 	{31, 29},
521 	{28, 23},
522 };
523 
524 static const struct decode_info decode_info_mi = {
525 	"MI",
526 	OP_LEN_MI,
527 	ARRAY_SIZE(sub_op_mi),
528 	sub_op_mi,
529 };
530 
531 /* ring RCS, command type 2 */
532 static const struct sub_op_bits sub_op_2d[] = {
533 	{31, 29},
534 	{28, 22},
535 };
536 
537 static const struct decode_info decode_info_2d = {
538 	"2D",
539 	OP_LEN_2D,
540 	ARRAY_SIZE(sub_op_2d),
541 	sub_op_2d,
542 };
543 
544 /* ring RCS, command type 3 */
545 static const struct sub_op_bits sub_op_3d_media[] = {
546 	{31, 29},
547 	{28, 27},
548 	{26, 24},
549 	{23, 16},
550 };
551 
552 static const struct decode_info decode_info_3d_media = {
553 	"3D_Media",
554 	OP_LEN_3D_MEDIA,
555 	ARRAY_SIZE(sub_op_3d_media),
556 	sub_op_3d_media,
557 };
558 
559 /* ring VCS, command type 3 */
560 static const struct sub_op_bits sub_op_mfx_vc[] = {
561 	{31, 29},
562 	{28, 27},
563 	{26, 24},
564 	{23, 21},
565 	{20, 16},
566 };
567 
568 static const struct decode_info decode_info_mfx_vc = {
569 	"MFX_VC",
570 	OP_LEN_MFX_VC,
571 	ARRAY_SIZE(sub_op_mfx_vc),
572 	sub_op_mfx_vc,
573 };
574 
575 /* ring VECS, command type 3 */
576 static const struct sub_op_bits sub_op_vebox[] = {
577 	{31, 29},
578 	{28, 27},
579 	{26, 24},
580 	{23, 21},
581 	{20, 16},
582 };
583 
584 static const struct decode_info decode_info_vebox = {
585 	"VEBOX",
586 	OP_LEN_VEBOX,
587 	ARRAY_SIZE(sub_op_vebox),
588 	sub_op_vebox,
589 };
590 
591 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
592 	[RCS0] = {
593 		&decode_info_mi,
594 		NULL,
595 		NULL,
596 		&decode_info_3d_media,
597 		NULL,
598 		NULL,
599 		NULL,
600 		NULL,
601 	},
602 
603 	[VCS0] = {
604 		&decode_info_mi,
605 		NULL,
606 		NULL,
607 		&decode_info_mfx_vc,
608 		NULL,
609 		NULL,
610 		NULL,
611 		NULL,
612 	},
613 
614 	[BCS0] = {
615 		&decode_info_mi,
616 		NULL,
617 		&decode_info_2d,
618 		NULL,
619 		NULL,
620 		NULL,
621 		NULL,
622 		NULL,
623 	},
624 
625 	[VECS0] = {
626 		&decode_info_mi,
627 		NULL,
628 		NULL,
629 		&decode_info_vebox,
630 		NULL,
631 		NULL,
632 		NULL,
633 		NULL,
634 	},
635 
636 	[VCS1] = {
637 		&decode_info_mi,
638 		NULL,
639 		NULL,
640 		&decode_info_mfx_vc,
641 		NULL,
642 		NULL,
643 		NULL,
644 		NULL,
645 	},
646 };
647 
648 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
649 {
650 	const struct decode_info *d_info;
651 
652 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
653 	if (d_info == NULL)
654 		return INVALID_OP;
655 
656 	return cmd >> (32 - d_info->op_len);
657 }
658 
659 static inline const struct cmd_info *
660 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
661 	       const struct intel_engine_cs *engine)
662 {
663 	struct cmd_entry *e;
664 
665 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
666 		if (opcode == e->info->opcode &&
667 		    e->info->rings & engine->mask)
668 			return e->info;
669 	}
670 	return NULL;
671 }
672 
673 static inline const struct cmd_info *
674 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
675 	     const struct intel_engine_cs *engine)
676 {
677 	u32 opcode;
678 
679 	opcode = get_opcode(cmd, engine);
680 	if (opcode == INVALID_OP)
681 		return NULL;
682 
683 	return find_cmd_entry(gvt, opcode, engine);
684 }
685 
686 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
687 {
688 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
689 }
690 
691 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
692 {
693 	const struct decode_info *d_info;
694 	int i;
695 
696 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
697 	if (d_info == NULL)
698 		return;
699 
700 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
701 			cmd >> (32 - d_info->op_len), d_info->name);
702 
703 	for (i = 0; i < d_info->nr_sub_op; i++)
704 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
705 					d_info->sub_op[i].low));
706 
707 	pr_err("\n");
708 }
709 
710 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
711 {
712 	return s->ip_va + (index << 2);
713 }
714 
715 static inline u32 cmd_val(struct parser_exec_state *s, int index)
716 {
717 	return *cmd_ptr(s, index);
718 }
719 
720 static inline bool is_init_ctx(struct parser_exec_state *s)
721 {
722 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
723 }
724 
725 static void parser_exec_state_dump(struct parser_exec_state *s)
726 {
727 	int cnt = 0;
728 	int i;
729 
730 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
731 		    " ring_head(%08lx) ring_tail(%08lx)\n",
732 		    s->vgpu->id, s->engine->name,
733 		    s->ring_start, s->ring_start + s->ring_size,
734 		    s->ring_head, s->ring_tail);
735 
736 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
737 			s->buf_type == RING_BUFFER_INSTRUCTION ?
738 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
739 				"CTX_BUFFER" : "BATCH_BUFFER"),
740 			s->buf_addr_type == GTT_BUFFER ?
741 			"GTT" : "PPGTT", s->ip_gma);
742 
743 	if (s->ip_va == NULL) {
744 		gvt_dbg_cmd(" ip_va(NULL)");
745 		return;
746 	}
747 
748 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
749 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
750 			cmd_val(s, 2), cmd_val(s, 3));
751 
752 	print_opcode(cmd_val(s, 0), s->engine);
753 
754 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
755 
756 	while (cnt < 1024) {
757 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
758 		for (i = 0; i < 8; i++)
759 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
760 		gvt_dbg_cmd("\n");
761 
762 		s->ip_va += 8 * sizeof(u32);
763 		cnt += 8;
764 	}
765 }
766 
767 static inline void update_ip_va(struct parser_exec_state *s)
768 {
769 	unsigned long len = 0;
770 
771 	if (WARN_ON(s->ring_head == s->ring_tail))
772 		return;
773 
774 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
775 			s->buf_type == RING_BUFFER_CTX) {
776 		unsigned long ring_top = s->ring_start + s->ring_size;
777 
778 		if (s->ring_head > s->ring_tail) {
779 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
780 				len = (s->ip_gma - s->ring_head);
781 			else if (s->ip_gma >= s->ring_start &&
782 					s->ip_gma <= s->ring_tail)
783 				len = (ring_top - s->ring_head) +
784 					(s->ip_gma - s->ring_start);
785 		} else
786 			len = (s->ip_gma - s->ring_head);
787 
788 		s->ip_va = s->rb_va + len;
789 	} else {/* shadow batch buffer */
790 		s->ip_va = s->ret_bb_va;
791 	}
792 }
793 
794 static inline int ip_gma_set(struct parser_exec_state *s,
795 		unsigned long ip_gma)
796 {
797 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
798 
799 	s->ip_gma = ip_gma;
800 	update_ip_va(s);
801 	return 0;
802 }
803 
804 static inline int ip_gma_advance(struct parser_exec_state *s,
805 		unsigned int dw_len)
806 {
807 	s->ip_gma += (dw_len << 2);
808 
809 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
810 		if (s->ip_gma >= s->ring_start + s->ring_size)
811 			s->ip_gma -= s->ring_size;
812 		update_ip_va(s);
813 	} else {
814 		s->ip_va += (dw_len << 2);
815 	}
816 
817 	return 0;
818 }
819 
820 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
821 {
822 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
823 		return info->len;
824 	else
825 		return (cmd & ((1U << info->len) - 1)) + 2;
826 	return 0;
827 }
828 
829 static inline int cmd_length(struct parser_exec_state *s)
830 {
831 	return get_cmd_length(s->info, cmd_val(s, 0));
832 }
833 
834 /* do not remove this, some platform may need clflush here */
835 #define patch_value(s, addr, val) do { \
836 	*addr = val; \
837 } while (0)
838 
839 static inline bool is_mocs_mmio(unsigned int offset)
840 {
841 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
842 		((offset >= 0xb020) && (offset <= 0xb0a0));
843 }
844 
845 static int is_cmd_update_pdps(unsigned int offset,
846 			      struct parser_exec_state *s)
847 {
848 	u32 base = s->workload->engine->mmio_base;
849 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
850 }
851 
852 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
853 				       unsigned int offset, unsigned int index)
854 {
855 	struct intel_vgpu *vgpu = s->vgpu;
856 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
857 	struct intel_vgpu_mm *mm;
858 	u64 pdps[GEN8_3LVL_PDPES];
859 
860 	if (shadow_mm->ppgtt_mm.root_entry_type ==
861 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
862 		pdps[0] = (u64)cmd_val(s, 2) << 32;
863 		pdps[0] |= cmd_val(s, 4);
864 
865 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
866 		if (!mm) {
867 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
868 			return -EINVAL;
869 		}
870 		intel_vgpu_mm_get(mm);
871 		list_add_tail(&mm->ppgtt_mm.link,
872 			      &s->workload->lri_shadow_mm);
873 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
874 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
875 	} else {
876 		/* Currently all guests use PML4 table and now can't
877 		 * have a guest with 3-level table but uses LRI for
878 		 * PPGTT update. So this is simply un-testable. */
879 		GEM_BUG_ON(1);
880 		gvt_vgpu_err("invalid shared shadow vm type\n");
881 		return -EINVAL;
882 	}
883 	return 0;
884 }
885 
886 static int cmd_reg_handler(struct parser_exec_state *s,
887 	unsigned int offset, unsigned int index, char *cmd)
888 {
889 	struct intel_vgpu *vgpu = s->vgpu;
890 	struct intel_gvt *gvt = vgpu->gvt;
891 	u32 ctx_sr_ctl;
892 	u32 *vreg, vreg_old;
893 
894 	if (offset + 4 > gvt->device_info.mmio_size) {
895 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
896 				cmd, offset);
897 		return -EFAULT;
898 	}
899 
900 	if (is_init_ctx(s)) {
901 		struct intel_gvt_mmio_info *mmio_info;
902 
903 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
904 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
905 		if (mmio_info && mmio_info->write)
906 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
907 		return 0;
908 	}
909 
910 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
911 		gvt_vgpu_err("%s access to non-render register (%x)\n",
912 				cmd, offset);
913 		return -EBADRQC;
914 	}
915 
916 	if (!strncmp(cmd, "srm", 3) ||
917 			!strncmp(cmd, "lrm", 3)) {
918 		if (offset != i915_mmio_reg_offset(GEN8_L3SQCREG4) &&
919 				offset != 0x21f0) {
920 			gvt_vgpu_err("%s access to register (%x)\n",
921 					cmd, offset);
922 			return -EPERM;
923 		} else
924 			return 0;
925 	}
926 
927 	if (!strncmp(cmd, "lrr-src", 7) ||
928 			!strncmp(cmd, "lrr-dst", 7)) {
929 		gvt_vgpu_err("not allowed cmd %s\n", cmd);
930 		return -EPERM;
931 	}
932 
933 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
934 		/* TODO: add LRI POST logic here */
935 		return 0;
936 	}
937 
938 	if (strncmp(cmd, "lri", 3))
939 		return -EPERM;
940 
941 	/* below are all lri handlers */
942 	vreg = &vgpu_vreg(s->vgpu, offset);
943 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
944 		gvt_vgpu_err("%s access to non-render register (%x)\n",
945 				cmd, offset);
946 		return -EBADRQC;
947 	}
948 
949 	if (is_cmd_update_pdps(offset, s) &&
950 	    cmd_pdp_mmio_update_handler(s, offset, index))
951 		return -EINVAL;
952 
953 	if (offset == i915_mmio_reg_offset(DERRMR) ||
954 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
955 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
956 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
957 	}
958 
959 	if (is_mocs_mmio(offset))
960 		*vreg = cmd_val(s, index + 1);
961 
962 	vreg_old = *vreg;
963 
964 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
965 		u32 cmdval_new, cmdval;
966 		struct intel_gvt_mmio_info *mmio_info;
967 
968 		cmdval = cmd_val(s, index + 1);
969 
970 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
971 		if (!mmio_info) {
972 			cmdval_new = cmdval;
973 		} else {
974 			u64 ro_mask = mmio_info->ro_mask;
975 			int ret;
976 
977 			if (likely(!ro_mask))
978 				ret = mmio_info->write(s->vgpu, offset,
979 						&cmdval, 4);
980 			else {
981 				gvt_vgpu_err("try to write RO reg %x\n",
982 						offset);
983 				ret = -EBADRQC;
984 			}
985 			if (ret)
986 				return ret;
987 			cmdval_new = *vreg;
988 		}
989 		if (cmdval_new != cmdval)
990 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
991 	}
992 
993 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
994 	*vreg = vreg_old;
995 
996 	/* TODO
997 	 * In order to let workload with inhibit context to generate
998 	 * correct image data into memory, vregs values will be loaded to
999 	 * hw via LRIs in the workload with inhibit context. But as
1000 	 * indirect context is loaded prior to LRIs in workload, we don't
1001 	 * want reg values specified in indirect context overwritten by
1002 	 * LRIs in workloads. So, when scanning an indirect context, we
1003 	 * update reg values in it into vregs, so LRIs in workload with
1004 	 * inhibit context will restore with correct values
1005 	 */
1006 	if (IS_GEN(s->engine->i915, 9) &&
1007 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1008 	    !strncmp(cmd, "lri", 3)) {
1009 		intel_gvt_hypervisor_read_gpa(s->vgpu,
1010 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1011 		/* check inhibit context */
1012 		if (ctx_sr_ctl & 1) {
1013 			u32 data = cmd_val(s, index + 1);
1014 
1015 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1016 				intel_vgpu_mask_mmio_write(vgpu,
1017 							offset, &data, 4);
1018 			else
1019 				vgpu_vreg(vgpu, offset) = data;
1020 		}
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 #define cmd_reg(s, i) \
1027 	(cmd_val(s, i) & GENMASK(22, 2))
1028 
1029 #define cmd_reg_inhibit(s, i) \
1030 	(cmd_val(s, i) & GENMASK(22, 18))
1031 
1032 #define cmd_gma(s, i) \
1033 	(cmd_val(s, i) & GENMASK(31, 2))
1034 
1035 #define cmd_gma_hi(s, i) \
1036 	(cmd_val(s, i) & GENMASK(15, 0))
1037 
1038 static int cmd_handler_lri(struct parser_exec_state *s)
1039 {
1040 	int i, ret = 0;
1041 	int cmd_len = cmd_length(s);
1042 
1043 	for (i = 1; i < cmd_len; i += 2) {
1044 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1045 			if (s->engine->id == BCS0 &&
1046 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1047 				ret |= 0;
1048 			else
1049 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1050 		}
1051 		if (ret)
1052 			break;
1053 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1054 		if (ret)
1055 			break;
1056 	}
1057 	return ret;
1058 }
1059 
1060 static int cmd_handler_lrr(struct parser_exec_state *s)
1061 {
1062 	int i, ret = 0;
1063 	int cmd_len = cmd_length(s);
1064 
1065 	for (i = 1; i < cmd_len; i += 2) {
1066 		if (IS_BROADWELL(s->engine->i915))
1067 			ret |= ((cmd_reg_inhibit(s, i) ||
1068 				 (cmd_reg_inhibit(s, i + 1)))) ?
1069 				-EBADRQC : 0;
1070 		if (ret)
1071 			break;
1072 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1073 		if (ret)
1074 			break;
1075 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1076 		if (ret)
1077 			break;
1078 	}
1079 	return ret;
1080 }
1081 
1082 static inline int cmd_address_audit(struct parser_exec_state *s,
1083 		unsigned long guest_gma, int op_size, bool index_mode);
1084 
1085 static int cmd_handler_lrm(struct parser_exec_state *s)
1086 {
1087 	struct intel_gvt *gvt = s->vgpu->gvt;
1088 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1089 	unsigned long gma;
1090 	int i, ret = 0;
1091 	int cmd_len = cmd_length(s);
1092 
1093 	for (i = 1; i < cmd_len;) {
1094 		if (IS_BROADWELL(s->engine->i915))
1095 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1096 		if (ret)
1097 			break;
1098 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1099 		if (ret)
1100 			break;
1101 		if (cmd_val(s, 0) & (1 << 22)) {
1102 			gma = cmd_gma(s, i + 1);
1103 			if (gmadr_bytes == 8)
1104 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1105 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1106 			if (ret)
1107 				break;
1108 		}
1109 		i += gmadr_dw_number(s) + 1;
1110 	}
1111 	return ret;
1112 }
1113 
1114 static int cmd_handler_srm(struct parser_exec_state *s)
1115 {
1116 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1117 	unsigned long gma;
1118 	int i, ret = 0;
1119 	int cmd_len = cmd_length(s);
1120 
1121 	for (i = 1; i < cmd_len;) {
1122 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1123 		if (ret)
1124 			break;
1125 		if (cmd_val(s, 0) & (1 << 22)) {
1126 			gma = cmd_gma(s, i + 1);
1127 			if (gmadr_bytes == 8)
1128 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1129 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1130 			if (ret)
1131 				break;
1132 		}
1133 		i += gmadr_dw_number(s) + 1;
1134 	}
1135 	return ret;
1136 }
1137 
1138 struct cmd_interrupt_event {
1139 	int pipe_control_notify;
1140 	int mi_flush_dw;
1141 	int mi_user_interrupt;
1142 };
1143 
1144 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1145 	[RCS0] = {
1146 		.pipe_control_notify = RCS_PIPE_CONTROL,
1147 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1148 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1149 	},
1150 	[BCS0] = {
1151 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1152 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1153 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1154 	},
1155 	[VCS0] = {
1156 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1157 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1158 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1159 	},
1160 	[VCS1] = {
1161 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1162 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1163 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1164 	},
1165 	[VECS0] = {
1166 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1167 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1168 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1169 	},
1170 };
1171 
1172 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1173 {
1174 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1175 	unsigned long gma;
1176 	bool index_mode = false;
1177 	unsigned int post_sync;
1178 	int ret = 0;
1179 	u32 hws_pga, val;
1180 
1181 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1182 
1183 	/* LRI post sync */
1184 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1185 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1186 	/* post sync */
1187 	else if (post_sync) {
1188 		if (post_sync == 2)
1189 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1190 		else if (post_sync == 3)
1191 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1192 		else if (post_sync == 1) {
1193 			/* check ggtt*/
1194 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1195 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1196 				if (gmadr_bytes == 8)
1197 					gma |= (cmd_gma_hi(s, 3)) << 32;
1198 				/* Store Data Index */
1199 				if (cmd_val(s, 1) & (1 << 21))
1200 					index_mode = true;
1201 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1202 						index_mode);
1203 				if (ret)
1204 					return ret;
1205 				if (index_mode) {
1206 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1207 					gma = hws_pga + gma;
1208 					patch_value(s, cmd_ptr(s, 2), gma);
1209 					val = cmd_val(s, 1) & (~(1 << 21));
1210 					patch_value(s, cmd_ptr(s, 1), val);
1211 				}
1212 			}
1213 		}
1214 	}
1215 
1216 	if (ret)
1217 		return ret;
1218 
1219 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1220 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1221 			s->workload->pending_events);
1222 	return 0;
1223 }
1224 
1225 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1226 {
1227 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1228 		s->workload->pending_events);
1229 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1230 	return 0;
1231 }
1232 
1233 static int cmd_advance_default(struct parser_exec_state *s)
1234 {
1235 	return ip_gma_advance(s, cmd_length(s));
1236 }
1237 
1238 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1239 {
1240 	int ret;
1241 
1242 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1243 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1244 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1245 		s->buf_addr_type = s->saved_buf_addr_type;
1246 	} else if (s->buf_type == RING_BUFFER_CTX) {
1247 		ret = ip_gma_set(s, s->ring_tail);
1248 	} else {
1249 		s->buf_type = RING_BUFFER_INSTRUCTION;
1250 		s->buf_addr_type = GTT_BUFFER;
1251 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1252 			s->ret_ip_gma_ring -= s->ring_size;
1253 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1254 	}
1255 	return ret;
1256 }
1257 
1258 struct mi_display_flip_command_info {
1259 	int pipe;
1260 	int plane;
1261 	int event;
1262 	i915_reg_t stride_reg;
1263 	i915_reg_t ctrl_reg;
1264 	i915_reg_t surf_reg;
1265 	u64 stride_val;
1266 	u64 tile_val;
1267 	u64 surf_val;
1268 	bool async_flip;
1269 };
1270 
1271 struct plane_code_mapping {
1272 	int pipe;
1273 	int plane;
1274 	int event;
1275 };
1276 
1277 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1278 		struct mi_display_flip_command_info *info)
1279 {
1280 	struct drm_i915_private *dev_priv = s->engine->i915;
1281 	struct plane_code_mapping gen8_plane_code[] = {
1282 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1283 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1284 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1285 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1286 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1287 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1288 	};
1289 	u32 dword0, dword1, dword2;
1290 	u32 v;
1291 
1292 	dword0 = cmd_val(s, 0);
1293 	dword1 = cmd_val(s, 1);
1294 	dword2 = cmd_val(s, 2);
1295 
1296 	v = (dword0 & GENMASK(21, 19)) >> 19;
1297 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1298 		return -EBADRQC;
1299 
1300 	info->pipe = gen8_plane_code[v].pipe;
1301 	info->plane = gen8_plane_code[v].plane;
1302 	info->event = gen8_plane_code[v].event;
1303 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1304 	info->tile_val = (dword1 & 0x1);
1305 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1306 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1307 
1308 	if (info->plane == PLANE_A) {
1309 		info->ctrl_reg = DSPCNTR(info->pipe);
1310 		info->stride_reg = DSPSTRIDE(info->pipe);
1311 		info->surf_reg = DSPSURF(info->pipe);
1312 	} else if (info->plane == PLANE_B) {
1313 		info->ctrl_reg = SPRCTL(info->pipe);
1314 		info->stride_reg = SPRSTRIDE(info->pipe);
1315 		info->surf_reg = SPRSURF(info->pipe);
1316 	} else {
1317 		drm_WARN_ON(&dev_priv->drm, 1);
1318 		return -EBADRQC;
1319 	}
1320 	return 0;
1321 }
1322 
1323 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1324 		struct mi_display_flip_command_info *info)
1325 {
1326 	struct drm_i915_private *dev_priv = s->engine->i915;
1327 	struct intel_vgpu *vgpu = s->vgpu;
1328 	u32 dword0 = cmd_val(s, 0);
1329 	u32 dword1 = cmd_val(s, 1);
1330 	u32 dword2 = cmd_val(s, 2);
1331 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1332 
1333 	info->plane = PRIMARY_PLANE;
1334 
1335 	switch (plane) {
1336 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1337 		info->pipe = PIPE_A;
1338 		info->event = PRIMARY_A_FLIP_DONE;
1339 		break;
1340 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1341 		info->pipe = PIPE_B;
1342 		info->event = PRIMARY_B_FLIP_DONE;
1343 		break;
1344 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1345 		info->pipe = PIPE_C;
1346 		info->event = PRIMARY_C_FLIP_DONE;
1347 		break;
1348 
1349 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1350 		info->pipe = PIPE_A;
1351 		info->event = SPRITE_A_FLIP_DONE;
1352 		info->plane = SPRITE_PLANE;
1353 		break;
1354 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1355 		info->pipe = PIPE_B;
1356 		info->event = SPRITE_B_FLIP_DONE;
1357 		info->plane = SPRITE_PLANE;
1358 		break;
1359 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1360 		info->pipe = PIPE_C;
1361 		info->event = SPRITE_C_FLIP_DONE;
1362 		info->plane = SPRITE_PLANE;
1363 		break;
1364 
1365 	default:
1366 		gvt_vgpu_err("unknown plane code %d\n", plane);
1367 		return -EBADRQC;
1368 	}
1369 
1370 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1371 	info->tile_val = (dword1 & GENMASK(2, 0));
1372 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1373 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1374 
1375 	info->ctrl_reg = DSPCNTR(info->pipe);
1376 	info->stride_reg = DSPSTRIDE(info->pipe);
1377 	info->surf_reg = DSPSURF(info->pipe);
1378 
1379 	return 0;
1380 }
1381 
1382 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1383 		struct mi_display_flip_command_info *info)
1384 {
1385 	u32 stride, tile;
1386 
1387 	if (!info->async_flip)
1388 		return 0;
1389 
1390 	if (INTEL_GEN(s->engine->i915) >= 9) {
1391 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1392 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1393 				GENMASK(12, 10)) >> 10;
1394 	} else {
1395 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1396 				GENMASK(15, 6)) >> 6;
1397 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1398 	}
1399 
1400 	if (stride != info->stride_val)
1401 		gvt_dbg_cmd("cannot change stride during async flip\n");
1402 
1403 	if (tile != info->tile_val)
1404 		gvt_dbg_cmd("cannot change tile during async flip\n");
1405 
1406 	return 0;
1407 }
1408 
1409 static int gen8_update_plane_mmio_from_mi_display_flip(
1410 		struct parser_exec_state *s,
1411 		struct mi_display_flip_command_info *info)
1412 {
1413 	struct drm_i915_private *dev_priv = s->engine->i915;
1414 	struct intel_vgpu *vgpu = s->vgpu;
1415 
1416 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1417 		      info->surf_val << 12);
1418 	if (INTEL_GEN(dev_priv) >= 9) {
1419 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1420 			      info->stride_val);
1421 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1422 			      info->tile_val << 10);
1423 	} else {
1424 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1425 			      info->stride_val << 6);
1426 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1427 			      info->tile_val << 10);
1428 	}
1429 
1430 	if (info->plane == PLANE_PRIMARY)
1431 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1432 
1433 	if (info->async_flip)
1434 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1435 	else
1436 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1437 
1438 	return 0;
1439 }
1440 
1441 static int decode_mi_display_flip(struct parser_exec_state *s,
1442 		struct mi_display_flip_command_info *info)
1443 {
1444 	if (IS_BROADWELL(s->engine->i915))
1445 		return gen8_decode_mi_display_flip(s, info);
1446 	if (INTEL_GEN(s->engine->i915) >= 9)
1447 		return skl_decode_mi_display_flip(s, info);
1448 
1449 	return -ENODEV;
1450 }
1451 
1452 static int check_mi_display_flip(struct parser_exec_state *s,
1453 		struct mi_display_flip_command_info *info)
1454 {
1455 	return gen8_check_mi_display_flip(s, info);
1456 }
1457 
1458 static int update_plane_mmio_from_mi_display_flip(
1459 		struct parser_exec_state *s,
1460 		struct mi_display_flip_command_info *info)
1461 {
1462 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1463 }
1464 
1465 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1466 {
1467 	struct mi_display_flip_command_info info;
1468 	struct intel_vgpu *vgpu = s->vgpu;
1469 	int ret;
1470 	int i;
1471 	int len = cmd_length(s);
1472 	u32 valid_len = CMD_LEN(1);
1473 
1474 	/* Flip Type == Stereo 3D Flip */
1475 	if (DWORD_FIELD(2, 1, 0) == 2)
1476 		valid_len++;
1477 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1478 			valid_len);
1479 	if (ret)
1480 		return ret;
1481 
1482 	ret = decode_mi_display_flip(s, &info);
1483 	if (ret) {
1484 		gvt_vgpu_err("fail to decode MI display flip command\n");
1485 		return ret;
1486 	}
1487 
1488 	ret = check_mi_display_flip(s, &info);
1489 	if (ret) {
1490 		gvt_vgpu_err("invalid MI display flip command\n");
1491 		return ret;
1492 	}
1493 
1494 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1495 	if (ret) {
1496 		gvt_vgpu_err("fail to update plane mmio\n");
1497 		return ret;
1498 	}
1499 
1500 	for (i = 0; i < len; i++)
1501 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1502 	return 0;
1503 }
1504 
1505 static bool is_wait_for_flip_pending(u32 cmd)
1506 {
1507 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1508 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1509 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1510 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1511 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1512 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1513 }
1514 
1515 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1516 {
1517 	u32 cmd = cmd_val(s, 0);
1518 
1519 	if (!is_wait_for_flip_pending(cmd))
1520 		return 0;
1521 
1522 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1523 	return 0;
1524 }
1525 
1526 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1527 {
1528 	unsigned long addr;
1529 	unsigned long gma_high, gma_low;
1530 	struct intel_vgpu *vgpu = s->vgpu;
1531 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1532 
1533 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1534 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1535 		return INTEL_GVT_INVALID_ADDR;
1536 	}
1537 
1538 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1539 	if (gmadr_bytes == 4) {
1540 		addr = gma_low;
1541 	} else {
1542 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1543 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1544 	}
1545 	return addr;
1546 }
1547 
1548 static inline int cmd_address_audit(struct parser_exec_state *s,
1549 		unsigned long guest_gma, int op_size, bool index_mode)
1550 {
1551 	struct intel_vgpu *vgpu = s->vgpu;
1552 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1553 	int i;
1554 	int ret;
1555 
1556 	if (op_size > max_surface_size) {
1557 		gvt_vgpu_err("command address audit fail name %s\n",
1558 			s->info->name);
1559 		return -EFAULT;
1560 	}
1561 
1562 	if (index_mode)	{
1563 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1564 			ret = -EFAULT;
1565 			goto err;
1566 		}
1567 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1568 		ret = -EFAULT;
1569 		goto err;
1570 	}
1571 
1572 	return 0;
1573 
1574 err:
1575 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1576 			s->info->name, guest_gma, op_size);
1577 
1578 	pr_err("cmd dump: ");
1579 	for (i = 0; i < cmd_length(s); i++) {
1580 		if (!(i % 4))
1581 			pr_err("\n%08x ", cmd_val(s, i));
1582 		else
1583 			pr_err("%08x ", cmd_val(s, i));
1584 	}
1585 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1586 			vgpu->id,
1587 			vgpu_aperture_gmadr_base(vgpu),
1588 			vgpu_aperture_gmadr_end(vgpu),
1589 			vgpu_hidden_gmadr_base(vgpu),
1590 			vgpu_hidden_gmadr_end(vgpu));
1591 	return ret;
1592 }
1593 
1594 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1595 {
1596 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1597 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1598 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1599 	unsigned long gma, gma_low, gma_high;
1600 	u32 valid_len = CMD_LEN(2);
1601 	int ret = 0;
1602 
1603 	/* check ppggt */
1604 	if (!(cmd_val(s, 0) & (1 << 22)))
1605 		return 0;
1606 
1607 	/* check if QWORD */
1608 	if (DWORD_FIELD(0, 21, 21))
1609 		valid_len++;
1610 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1611 			valid_len);
1612 	if (ret)
1613 		return ret;
1614 
1615 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1616 
1617 	if (gmadr_bytes == 8) {
1618 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1619 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1620 		gma = (gma_high << 32) | gma_low;
1621 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1622 	}
1623 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1624 	return ret;
1625 }
1626 
1627 static inline int unexpected_cmd(struct parser_exec_state *s)
1628 {
1629 	struct intel_vgpu *vgpu = s->vgpu;
1630 
1631 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1632 
1633 	return -EBADRQC;
1634 }
1635 
1636 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1637 {
1638 	return unexpected_cmd(s);
1639 }
1640 
1641 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1642 {
1643 	return unexpected_cmd(s);
1644 }
1645 
1646 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1647 {
1648 	return unexpected_cmd(s);
1649 }
1650 
1651 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1652 {
1653 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1654 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1655 			sizeof(u32);
1656 	unsigned long gma, gma_high;
1657 	u32 valid_len = CMD_LEN(1);
1658 	int ret = 0;
1659 
1660 	if (!(cmd_val(s, 0) & (1 << 22)))
1661 		return ret;
1662 
1663 	/* check inline data */
1664 	if (cmd_val(s, 0) & BIT(18))
1665 		valid_len = CMD_LEN(9);
1666 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1667 			valid_len);
1668 	if (ret)
1669 		return ret;
1670 
1671 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1672 	if (gmadr_bytes == 8) {
1673 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1674 		gma = (gma_high << 32) | gma;
1675 	}
1676 	ret = cmd_address_audit(s, gma, op_size, false);
1677 	return ret;
1678 }
1679 
1680 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1681 {
1682 	return unexpected_cmd(s);
1683 }
1684 
1685 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1686 {
1687 	return unexpected_cmd(s);
1688 }
1689 
1690 static int cmd_handler_mi_conditional_batch_buffer_end(
1691 		struct parser_exec_state *s)
1692 {
1693 	return unexpected_cmd(s);
1694 }
1695 
1696 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1697 {
1698 	return unexpected_cmd(s);
1699 }
1700 
1701 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1702 {
1703 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1704 	unsigned long gma;
1705 	bool index_mode = false;
1706 	int ret = 0;
1707 	u32 hws_pga, val;
1708 	u32 valid_len = CMD_LEN(2);
1709 
1710 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1711 			valid_len);
1712 	if (ret) {
1713 		/* Check again for Qword */
1714 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1715 			++valid_len);
1716 		return ret;
1717 	}
1718 
1719 	/* Check post-sync and ppgtt bit */
1720 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1721 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1722 		if (gmadr_bytes == 8)
1723 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1724 		/* Store Data Index */
1725 		if (cmd_val(s, 0) & (1 << 21))
1726 			index_mode = true;
1727 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1728 		if (ret)
1729 			return ret;
1730 		if (index_mode) {
1731 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1732 			gma = hws_pga + gma;
1733 			patch_value(s, cmd_ptr(s, 1), gma);
1734 			val = cmd_val(s, 0) & (~(1 << 21));
1735 			patch_value(s, cmd_ptr(s, 0), val);
1736 		}
1737 	}
1738 	/* Check notify bit */
1739 	if ((cmd_val(s, 0) & (1 << 8)))
1740 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1741 			s->workload->pending_events);
1742 	return ret;
1743 }
1744 
1745 static void addr_type_update_snb(struct parser_exec_state *s)
1746 {
1747 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1748 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1749 		s->buf_addr_type = PPGTT_BUFFER;
1750 	}
1751 }
1752 
1753 
1754 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1755 		unsigned long gma, unsigned long end_gma, void *va)
1756 {
1757 	unsigned long copy_len, offset;
1758 	unsigned long len = 0;
1759 	unsigned long gpa;
1760 
1761 	while (gma != end_gma) {
1762 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1763 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1764 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1765 			return -EFAULT;
1766 		}
1767 
1768 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1769 
1770 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1771 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1772 
1773 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1774 
1775 		len += copy_len;
1776 		gma += copy_len;
1777 	}
1778 	return len;
1779 }
1780 
1781 
1782 /*
1783  * Check whether a batch buffer needs to be scanned. Currently
1784  * the only criteria is based on privilege.
1785  */
1786 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1787 {
1788 	/* Decide privilege based on address space */
1789 	if (cmd_val(s, 0) & BIT(8) &&
1790 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1791 		return 0;
1792 
1793 	return 1;
1794 }
1795 
1796 static const char *repr_addr_type(unsigned int type)
1797 {
1798 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1799 }
1800 
1801 static int find_bb_size(struct parser_exec_state *s,
1802 			unsigned long *bb_size,
1803 			unsigned long *bb_end_cmd_offset)
1804 {
1805 	unsigned long gma = 0;
1806 	const struct cmd_info *info;
1807 	u32 cmd_len = 0;
1808 	bool bb_end = false;
1809 	struct intel_vgpu *vgpu = s->vgpu;
1810 	u32 cmd;
1811 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1812 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1813 
1814 	*bb_size = 0;
1815 	*bb_end_cmd_offset = 0;
1816 
1817 	/* get the start gm address of the batch buffer */
1818 	gma = get_gma_bb_from_cmd(s, 1);
1819 	if (gma == INTEL_GVT_INVALID_ADDR)
1820 		return -EFAULT;
1821 
1822 	cmd = cmd_val(s, 0);
1823 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1824 	if (info == NULL) {
1825 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1826 			     cmd, get_opcode(cmd, s->engine),
1827 			     repr_addr_type(s->buf_addr_type),
1828 			     s->engine->name, s->workload);
1829 		return -EBADRQC;
1830 	}
1831 	do {
1832 		if (copy_gma_to_hva(s->vgpu, mm,
1833 				    gma, gma + 4, &cmd) < 0)
1834 			return -EFAULT;
1835 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1836 		if (info == NULL) {
1837 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1838 				     cmd, get_opcode(cmd, s->engine),
1839 				     repr_addr_type(s->buf_addr_type),
1840 				     s->engine->name, s->workload);
1841 			return -EBADRQC;
1842 		}
1843 
1844 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1845 			bb_end = true;
1846 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1847 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1848 				/* chained batch buffer */
1849 				bb_end = true;
1850 		}
1851 
1852 		if (bb_end)
1853 			*bb_end_cmd_offset = *bb_size;
1854 
1855 		cmd_len = get_cmd_length(info, cmd) << 2;
1856 		*bb_size += cmd_len;
1857 		gma += cmd_len;
1858 	} while (!bb_end);
1859 
1860 	return 0;
1861 }
1862 
1863 static int audit_bb_end(struct parser_exec_state *s, void *va)
1864 {
1865 	struct intel_vgpu *vgpu = s->vgpu;
1866 	u32 cmd = *(u32 *)va;
1867 	const struct cmd_info *info;
1868 
1869 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1870 	if (info == NULL) {
1871 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1872 			     cmd, get_opcode(cmd, s->engine),
1873 			     repr_addr_type(s->buf_addr_type),
1874 			     s->engine->name, s->workload);
1875 		return -EBADRQC;
1876 	}
1877 
1878 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1879 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1880 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1881 		return 0;
1882 
1883 	return -EBADRQC;
1884 }
1885 
1886 static int perform_bb_shadow(struct parser_exec_state *s)
1887 {
1888 	struct intel_vgpu *vgpu = s->vgpu;
1889 	struct intel_vgpu_shadow_bb *bb;
1890 	unsigned long gma = 0;
1891 	unsigned long bb_size;
1892 	unsigned long bb_end_cmd_offset;
1893 	int ret = 0;
1894 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1895 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1896 	unsigned long start_offset = 0;
1897 
1898 	/* get the start gm address of the batch buffer */
1899 	gma = get_gma_bb_from_cmd(s, 1);
1900 	if (gma == INTEL_GVT_INVALID_ADDR)
1901 		return -EFAULT;
1902 
1903 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1904 	if (ret)
1905 		return ret;
1906 
1907 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1908 	if (!bb)
1909 		return -ENOMEM;
1910 
1911 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1912 
1913 	/* the start_offset stores the batch buffer's start gma's
1914 	 * offset relative to page boundary. so for non-privileged batch
1915 	 * buffer, the shadowed gem object holds exactly the same page
1916 	 * layout as original gem object. This is for the convience of
1917 	 * replacing the whole non-privilged batch buffer page to this
1918 	 * shadowed one in PPGTT at the same gma address. (this replacing
1919 	 * action is not implemented yet now, but may be necessary in
1920 	 * future).
1921 	 * for prileged batch buffer, we just change start gma address to
1922 	 * that of shadowed page.
1923 	 */
1924 	if (bb->ppgtt)
1925 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1926 
1927 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1928 					       round_up(bb_size + start_offset,
1929 							PAGE_SIZE));
1930 	if (IS_ERR(bb->obj)) {
1931 		ret = PTR_ERR(bb->obj);
1932 		goto err_free_bb;
1933 	}
1934 
1935 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1936 	if (IS_ERR(bb->va)) {
1937 		ret = PTR_ERR(bb->va);
1938 		goto err_free_obj;
1939 	}
1940 
1941 	ret = copy_gma_to_hva(s->vgpu, mm,
1942 			      gma, gma + bb_size,
1943 			      bb->va + start_offset);
1944 	if (ret < 0) {
1945 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1946 		ret = -EFAULT;
1947 		goto err_unmap;
1948 	}
1949 
1950 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1951 	if (ret)
1952 		goto err_unmap;
1953 
1954 	i915_gem_object_unlock(bb->obj);
1955 	INIT_LIST_HEAD(&bb->list);
1956 	list_add(&bb->list, &s->workload->shadow_bb);
1957 
1958 	bb->bb_start_cmd_va = s->ip_va;
1959 
1960 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1961 		bb->bb_offset = s->ip_va - s->rb_va;
1962 	else
1963 		bb->bb_offset = 0;
1964 
1965 	/*
1966 	 * ip_va saves the virtual address of the shadow batch buffer, while
1967 	 * ip_gma saves the graphics address of the original batch buffer.
1968 	 * As the shadow batch buffer is just a copy from the originial one,
1969 	 * it should be right to use shadow batch buffer'va and original batch
1970 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1971 	 * buffer here (too early).
1972 	 */
1973 	s->ip_va = bb->va + start_offset;
1974 	s->ip_gma = gma;
1975 	return 0;
1976 err_unmap:
1977 	i915_gem_object_unpin_map(bb->obj);
1978 err_free_obj:
1979 	i915_gem_object_put(bb->obj);
1980 err_free_bb:
1981 	kfree(bb);
1982 	return ret;
1983 }
1984 
1985 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1986 {
1987 	bool second_level;
1988 	int ret = 0;
1989 	struct intel_vgpu *vgpu = s->vgpu;
1990 
1991 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1992 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1993 		return -EFAULT;
1994 	}
1995 
1996 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1997 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1998 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1999 		return -EFAULT;
2000 	}
2001 
2002 	s->saved_buf_addr_type = s->buf_addr_type;
2003 	addr_type_update_snb(s);
2004 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2005 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2006 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2007 	} else if (second_level) {
2008 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2009 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2010 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2011 	}
2012 
2013 	if (batch_buffer_needs_scan(s)) {
2014 		ret = perform_bb_shadow(s);
2015 		if (ret < 0)
2016 			gvt_vgpu_err("invalid shadow batch buffer\n");
2017 	} else {
2018 		/* emulate a batch buffer end to do return right */
2019 		ret = cmd_handler_mi_batch_buffer_end(s);
2020 		if (ret < 0)
2021 			return ret;
2022 	}
2023 	return ret;
2024 }
2025 
2026 static int mi_noop_index;
2027 
2028 static const struct cmd_info cmd_info[] = {
2029 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2030 
2031 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2032 		0, 1, NULL},
2033 
2034 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2035 		0, 1, cmd_handler_mi_user_interrupt},
2036 
2037 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2038 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2039 
2040 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2041 
2042 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2043 		NULL},
2044 
2045 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2046 		NULL},
2047 
2048 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2049 		NULL},
2050 
2051 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2052 		NULL},
2053 
2054 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2055 		D_ALL, 0, 1, NULL},
2056 
2057 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2058 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2059 		cmd_handler_mi_batch_buffer_end},
2060 
2061 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2062 		0, 1, NULL},
2063 
2064 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2065 		NULL},
2066 
2067 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2068 		D_ALL, 0, 1, NULL},
2069 
2070 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2071 		NULL},
2072 
2073 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2074 		NULL},
2075 
2076 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2077 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2078 
2079 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2080 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2081 
2082 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2083 
2084 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2085 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2086 
2087 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2088 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2089 		NULL, CMD_LEN(0)},
2090 
2091 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2092 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2093 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2094 
2095 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2096 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2097 
2098 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2099 		0, 8, cmd_handler_mi_store_data_index},
2100 
2101 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2102 		D_ALL, 0, 8, cmd_handler_lri},
2103 
2104 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2105 		cmd_handler_mi_update_gtt},
2106 
2107 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2108 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2109 		cmd_handler_srm, CMD_LEN(2)},
2110 
2111 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2112 		cmd_handler_mi_flush_dw},
2113 
2114 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2115 		10, cmd_handler_mi_clflush},
2116 
2117 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2118 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2119 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2120 
2121 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2122 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2123 		cmd_handler_lrm, CMD_LEN(2)},
2124 
2125 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2126 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2127 		cmd_handler_lrr, CMD_LEN(1)},
2128 
2129 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2130 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2131 		8, NULL, CMD_LEN(2)},
2132 
2133 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2134 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2135 
2136 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2137 		ADDR_FIX_1(2), 8, NULL},
2138 
2139 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2140 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2141 
2142 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2143 		8, cmd_handler_mi_op_2f},
2144 
2145 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2146 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2147 		cmd_handler_mi_batch_buffer_start},
2148 
2149 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2150 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2151 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2152 
2153 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2154 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2155 
2156 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2157 		ADDR_FIX_2(4, 7), 8, NULL},
2158 
2159 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2160 		0, 8, NULL},
2161 
2162 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2163 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2164 
2165 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2166 
2167 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2168 		0, 8, NULL},
2169 
2170 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171 		ADDR_FIX_1(3), 8, NULL},
2172 
2173 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2174 		D_ALL, 0, 8, NULL},
2175 
2176 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2177 		ADDR_FIX_1(4), 8, NULL},
2178 
2179 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2180 		ADDR_FIX_2(4, 5), 8, NULL},
2181 
2182 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2183 		ADDR_FIX_1(4), 8, NULL},
2184 
2185 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2186 		ADDR_FIX_2(4, 7), 8, NULL},
2187 
2188 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2189 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2190 
2191 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2192 
2193 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2194 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2195 
2196 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2197 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2198 
2199 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2200 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2201 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2202 
2203 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2204 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2205 
2206 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2207 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2208 
2209 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2210 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2211 
2212 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2213 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2214 
2215 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2216 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2217 
2218 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2219 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2220 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2221 
2222 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2223 		ADDR_FIX_2(4, 5), 8, NULL},
2224 
2225 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2226 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2227 
2228 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2229 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2230 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2231 
2232 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2233 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2234 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2235 
2236 	{"3DSTATE_BLEND_STATE_POINTERS",
2237 		OP_3DSTATE_BLEND_STATE_POINTERS,
2238 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2239 
2240 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2241 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2242 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2243 
2244 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2245 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2246 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2247 
2248 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2249 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2250 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2251 
2252 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2253 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2254 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2255 
2256 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2257 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2258 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2259 
2260 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2261 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2262 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263 
2264 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2265 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2266 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2267 
2268 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2269 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2270 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271 
2272 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2273 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2274 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2277 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2278 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2279 
2280 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2281 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2282 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2283 
2284 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2285 		0, 8, NULL},
2286 
2287 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2288 		0, 8, NULL},
2289 
2290 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2291 		0, 8, NULL},
2292 
2293 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2294 		0, 8, NULL},
2295 
2296 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2297 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2298 
2299 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2300 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301 
2302 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2303 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304 
2305 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2306 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307 
2308 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2309 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310 
2311 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2312 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2313 
2314 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2315 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2316 
2317 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2318 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2319 
2320 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2321 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322 
2323 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2324 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325 
2326 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2327 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328 
2329 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2330 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331 
2332 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2333 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334 
2335 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2336 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337 
2338 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2339 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340 
2341 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2342 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2343 
2344 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2345 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2346 
2347 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2348 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2349 
2350 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2351 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2352 
2353 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2354 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2355 
2356 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2357 		D_BDW_PLUS, 0, 8, NULL},
2358 
2359 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2360 		NULL},
2361 
2362 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2363 		D_BDW_PLUS, 0, 8, NULL},
2364 
2365 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2366 		D_BDW_PLUS, 0, 8, NULL},
2367 
2368 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2369 		8, NULL},
2370 
2371 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2372 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2373 
2374 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2375 		8, NULL},
2376 
2377 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2378 		NULL},
2379 
2380 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2381 		NULL},
2382 
2383 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2384 		NULL},
2385 
2386 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2387 		D_BDW_PLUS, 0, 8, NULL},
2388 
2389 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2390 		R_RCS, D_ALL, 0, 8, NULL},
2391 
2392 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2393 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2394 
2395 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2396 		R_RCS, D_ALL, 0, 1, NULL},
2397 
2398 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2399 
2400 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2401 		R_RCS, D_ALL, 0, 8, NULL},
2402 
2403 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2404 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2405 
2406 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2407 
2408 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2409 
2410 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2411 
2412 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2413 		D_BDW_PLUS, 0, 8, NULL},
2414 
2415 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2416 		D_BDW_PLUS, 0, 8, NULL},
2417 
2418 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2419 		D_ALL, 0, 8, NULL},
2420 
2421 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2422 		D_BDW_PLUS, 0, 8, NULL},
2423 
2424 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2425 		D_BDW_PLUS, 0, 8, NULL},
2426 
2427 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2428 
2429 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2430 
2431 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2432 
2433 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2434 		D_ALL, 0, 8, NULL},
2435 
2436 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437 
2438 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439 
2440 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2441 		R_RCS, D_ALL, 0, 8, NULL},
2442 
2443 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2444 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2445 
2446 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2447 		0, 8, NULL},
2448 
2449 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2450 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2451 
2452 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2453 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2454 
2455 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2456 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457 
2458 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2459 		D_ALL, 0, 8, NULL},
2460 
2461 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2462 		D_ALL, 0, 8, NULL},
2463 
2464 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2465 		D_ALL, 0, 8, NULL},
2466 
2467 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2468 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2469 
2470 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2471 		D_BDW_PLUS, 0, 8, NULL},
2472 
2473 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2474 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2475 
2476 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2477 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2478 
2479 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2480 		R_RCS, D_ALL, 0, 8, NULL},
2481 
2482 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2483 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2484 
2485 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2486 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2487 
2488 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2489 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2490 
2491 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2492 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2493 
2494 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2495 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2496 
2497 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2498 		R_RCS, D_ALL, 0, 8, NULL},
2499 
2500 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2501 		D_ALL, 0, 9, NULL},
2502 
2503 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2504 		ADDR_FIX_2(2, 4), 8, NULL},
2505 
2506 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2507 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2508 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2509 
2510 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2511 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2512 
2513 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2514 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2515 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2516 
2517 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2518 		D_BDW_PLUS, 0, 8, NULL},
2519 
2520 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2521 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2522 
2523 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2524 
2525 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2526 		1, NULL},
2527 
2528 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2529 		ADDR_FIX_1(1), 8, NULL},
2530 
2531 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2532 
2533 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2534 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2535 
2536 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2537 		ADDR_FIX_1(1), 8, NULL},
2538 
2539 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2540 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2541 
2542 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2543 
2544 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2545 
2546 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2547 		0, 8, NULL},
2548 
2549 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2550 		D_SKL_PLUS, 0, 8, NULL},
2551 
2552 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2553 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2554 
2555 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2556 		0, 16, NULL},
2557 
2558 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2559 		0, 16, NULL},
2560 
2561 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2562 		0, 16, NULL},
2563 
2564 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2565 
2566 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2567 		0, 16, NULL},
2568 
2569 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2570 		0, 16, NULL},
2571 
2572 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2573 		0, 16, NULL},
2574 
2575 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2576 		0, 8, NULL},
2577 
2578 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2579 		NULL},
2580 
2581 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2582 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2583 
2584 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2585 		R_VCS, D_ALL, 0, 12, NULL},
2586 
2587 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2588 		R_VCS, D_ALL, 0, 12, NULL},
2589 
2590 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2591 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2592 
2593 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2594 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2595 
2596 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2597 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2598 
2599 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2600 
2601 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2602 		R_VCS, D_ALL, 0, 12, NULL},
2603 
2604 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2605 		R_VCS, D_ALL, 0, 12, NULL},
2606 
2607 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2608 		R_VCS, D_ALL, 0, 12, NULL},
2609 
2610 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2611 		R_VCS, D_ALL, 0, 12, NULL},
2612 
2613 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2614 		R_VCS, D_ALL, 0, 12, NULL},
2615 
2616 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2617 		R_VCS, D_ALL, 0, 12, NULL},
2618 
2619 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2620 		R_VCS, D_ALL, 0, 6, NULL},
2621 
2622 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2623 		R_VCS, D_ALL, 0, 12, NULL},
2624 
2625 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2626 		R_VCS, D_ALL, 0, 12, NULL},
2627 
2628 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2629 		R_VCS, D_ALL, 0, 12, NULL},
2630 
2631 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2632 		R_VCS, D_ALL, 0, 12, NULL},
2633 
2634 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2635 		R_VCS, D_ALL, 0, 12, NULL},
2636 
2637 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2638 		R_VCS, D_ALL, 0, 12, NULL},
2639 
2640 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2641 		R_VCS, D_ALL, 0, 12, NULL},
2642 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2643 		R_VCS, D_ALL, 0, 12, NULL},
2644 
2645 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2646 		R_VCS, D_ALL, 0, 12, NULL},
2647 
2648 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2649 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2650 
2651 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2652 		R_VCS, D_ALL, 0, 12, NULL},
2653 
2654 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2655 		R_VCS, D_ALL, 0, 12, NULL},
2656 
2657 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2658 		R_VCS, D_ALL, 0, 12, NULL},
2659 
2660 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2661 		R_VCS, D_ALL, 0, 12, NULL},
2662 
2663 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2664 		R_VCS, D_ALL, 0, 12, NULL},
2665 
2666 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2667 		R_VCS, D_ALL, 0, 12, NULL},
2668 
2669 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2670 		R_VCS, D_ALL, 0, 12, NULL},
2671 
2672 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2673 		R_VCS, D_ALL, 0, 12, NULL},
2674 
2675 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2676 		R_VCS, D_ALL, 0, 12, NULL},
2677 
2678 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2679 		R_VCS, D_ALL, 0, 12, NULL},
2680 
2681 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2682 		R_VCS, D_ALL, 0, 12, NULL},
2683 
2684 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2685 		0, 16, NULL},
2686 
2687 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2688 
2689 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2690 
2691 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2692 		R_VCS, D_ALL, 0, 12, NULL},
2693 
2694 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2695 		R_VCS, D_ALL, 0, 12, NULL},
2696 
2697 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2698 		R_VCS, D_ALL, 0, 12, NULL},
2699 
2700 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2701 
2702 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2703 		0, 12, NULL},
2704 
2705 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2706 		0, 12, NULL},
2707 };
2708 
2709 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2710 {
2711 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2712 }
2713 
2714 /* call the cmd handler, and advance ip */
2715 static int cmd_parser_exec(struct parser_exec_state *s)
2716 {
2717 	struct intel_vgpu *vgpu = s->vgpu;
2718 	const struct cmd_info *info;
2719 	u32 cmd;
2720 	int ret = 0;
2721 
2722 	cmd = cmd_val(s, 0);
2723 
2724 	/* fastpath for MI_NOOP */
2725 	if (cmd == MI_NOOP)
2726 		info = &cmd_info[mi_noop_index];
2727 	else
2728 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2729 
2730 	if (info == NULL) {
2731 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2732 			     cmd, get_opcode(cmd, s->engine),
2733 			     repr_addr_type(s->buf_addr_type),
2734 			     s->engine->name, s->workload);
2735 		return -EBADRQC;
2736 	}
2737 
2738 	s->info = info;
2739 
2740 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2741 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2742 			  s->workload, info->name);
2743 
2744 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2745 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2746 						 info->valid_len);
2747 		if (ret)
2748 			return ret;
2749 	}
2750 
2751 	if (info->handler) {
2752 		ret = info->handler(s);
2753 		if (ret < 0) {
2754 			gvt_vgpu_err("%s handler error\n", info->name);
2755 			return ret;
2756 		}
2757 	}
2758 
2759 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2760 		ret = cmd_advance_default(s);
2761 		if (ret) {
2762 			gvt_vgpu_err("%s IP advance error\n", info->name);
2763 			return ret;
2764 		}
2765 	}
2766 	return 0;
2767 }
2768 
2769 static inline bool gma_out_of_range(unsigned long gma,
2770 		unsigned long gma_head, unsigned int gma_tail)
2771 {
2772 	if (gma_tail >= gma_head)
2773 		return (gma < gma_head) || (gma > gma_tail);
2774 	else
2775 		return (gma > gma_tail) && (gma < gma_head);
2776 }
2777 
2778 /* Keep the consistent return type, e.g EBADRQC for unknown
2779  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2780  * works as the input of VM healthy status.
2781  */
2782 static int command_scan(struct parser_exec_state *s,
2783 		unsigned long rb_head, unsigned long rb_tail,
2784 		unsigned long rb_start, unsigned long rb_len)
2785 {
2786 
2787 	unsigned long gma_head, gma_tail, gma_bottom;
2788 	int ret = 0;
2789 	struct intel_vgpu *vgpu = s->vgpu;
2790 
2791 	gma_head = rb_start + rb_head;
2792 	gma_tail = rb_start + rb_tail;
2793 	gma_bottom = rb_start +  rb_len;
2794 
2795 	while (s->ip_gma != gma_tail) {
2796 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2797 				s->buf_type == RING_BUFFER_CTX) {
2798 			if (!(s->ip_gma >= rb_start) ||
2799 				!(s->ip_gma < gma_bottom)) {
2800 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2801 					"(base:0x%lx, bottom: 0x%lx)\n",
2802 					s->ip_gma, rb_start,
2803 					gma_bottom);
2804 				parser_exec_state_dump(s);
2805 				return -EFAULT;
2806 			}
2807 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2808 				gvt_vgpu_err("ip_gma %lx out of range."
2809 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2810 					s->ip_gma, rb_start,
2811 					rb_head, rb_tail);
2812 				parser_exec_state_dump(s);
2813 				break;
2814 			}
2815 		}
2816 		ret = cmd_parser_exec(s);
2817 		if (ret) {
2818 			gvt_vgpu_err("cmd parser error\n");
2819 			parser_exec_state_dump(s);
2820 			break;
2821 		}
2822 	}
2823 
2824 	return ret;
2825 }
2826 
2827 static int scan_workload(struct intel_vgpu_workload *workload)
2828 {
2829 	unsigned long gma_head, gma_tail, gma_bottom;
2830 	struct parser_exec_state s;
2831 	int ret = 0;
2832 
2833 	/* ring base is page aligned */
2834 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2835 		return -EINVAL;
2836 
2837 	gma_head = workload->rb_start + workload->rb_head;
2838 	gma_tail = workload->rb_start + workload->rb_tail;
2839 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2840 
2841 	s.buf_type = RING_BUFFER_INSTRUCTION;
2842 	s.buf_addr_type = GTT_BUFFER;
2843 	s.vgpu = workload->vgpu;
2844 	s.engine = workload->engine;
2845 	s.ring_start = workload->rb_start;
2846 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2847 	s.ring_head = gma_head;
2848 	s.ring_tail = gma_tail;
2849 	s.rb_va = workload->shadow_ring_buffer_va;
2850 	s.workload = workload;
2851 	s.is_ctx_wa = false;
2852 
2853 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2854 		return 0;
2855 
2856 	ret = ip_gma_set(&s, gma_head);
2857 	if (ret)
2858 		goto out;
2859 
2860 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2861 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2862 
2863 out:
2864 	return ret;
2865 }
2866 
2867 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2868 {
2869 
2870 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2871 	struct parser_exec_state s;
2872 	int ret = 0;
2873 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2874 				struct intel_vgpu_workload,
2875 				wa_ctx);
2876 
2877 	/* ring base is page aligned */
2878 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2879 					I915_GTT_PAGE_SIZE)))
2880 		return -EINVAL;
2881 
2882 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2883 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2884 			PAGE_SIZE);
2885 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2886 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2887 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2888 
2889 	s.buf_type = RING_BUFFER_INSTRUCTION;
2890 	s.buf_addr_type = GTT_BUFFER;
2891 	s.vgpu = workload->vgpu;
2892 	s.engine = workload->engine;
2893 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2894 	s.ring_size = ring_size;
2895 	s.ring_head = gma_head;
2896 	s.ring_tail = gma_tail;
2897 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2898 	s.workload = workload;
2899 	s.is_ctx_wa = true;
2900 
2901 	ret = ip_gma_set(&s, gma_head);
2902 	if (ret)
2903 		goto out;
2904 
2905 	ret = command_scan(&s, 0, ring_tail,
2906 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2907 out:
2908 	return ret;
2909 }
2910 
2911 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2912 {
2913 	struct intel_vgpu *vgpu = workload->vgpu;
2914 	struct intel_vgpu_submission *s = &vgpu->submission;
2915 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2916 	void *shadow_ring_buffer_va;
2917 	int ret;
2918 
2919 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2920 
2921 	/* calculate workload ring buffer size */
2922 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2923 			workload->rb_head) % guest_rb_size;
2924 
2925 	gma_head = workload->rb_start + workload->rb_head;
2926 	gma_tail = workload->rb_start + workload->rb_tail;
2927 	gma_top = workload->rb_start + guest_rb_size;
2928 
2929 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2930 		void *p;
2931 
2932 		/* realloc the new ring buffer if needed */
2933 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2934 			     workload->rb_len, GFP_KERNEL);
2935 		if (!p) {
2936 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2937 			return -ENOMEM;
2938 		}
2939 		s->ring_scan_buffer[workload->engine->id] = p;
2940 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2941 	}
2942 
2943 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2944 
2945 	/* get shadow ring buffer va */
2946 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2947 
2948 	/* head > tail --> copy head <-> top */
2949 	if (gma_head > gma_tail) {
2950 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2951 				      gma_head, gma_top, shadow_ring_buffer_va);
2952 		if (ret < 0) {
2953 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2954 			return ret;
2955 		}
2956 		shadow_ring_buffer_va += ret;
2957 		gma_head = workload->rb_start;
2958 	}
2959 
2960 	/* copy head or start <-> tail */
2961 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2962 				shadow_ring_buffer_va);
2963 	if (ret < 0) {
2964 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2965 		return ret;
2966 	}
2967 	return 0;
2968 }
2969 
2970 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2971 {
2972 	int ret;
2973 	struct intel_vgpu *vgpu = workload->vgpu;
2974 
2975 	ret = shadow_workload_ring_buffer(workload);
2976 	if (ret) {
2977 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2978 		return ret;
2979 	}
2980 
2981 	ret = scan_workload(workload);
2982 	if (ret) {
2983 		gvt_vgpu_err("scan workload error\n");
2984 		return ret;
2985 	}
2986 	return 0;
2987 }
2988 
2989 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2990 {
2991 	int ctx_size = wa_ctx->indirect_ctx.size;
2992 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2993 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2994 					struct intel_vgpu_workload,
2995 					wa_ctx);
2996 	struct intel_vgpu *vgpu = workload->vgpu;
2997 	struct drm_i915_gem_object *obj;
2998 	int ret = 0;
2999 	void *map;
3000 
3001 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3002 					   roundup(ctx_size + CACHELINE_BYTES,
3003 						   PAGE_SIZE));
3004 	if (IS_ERR(obj))
3005 		return PTR_ERR(obj);
3006 
3007 	/* get the va of the shadow batch buffer */
3008 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3009 	if (IS_ERR(map)) {
3010 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3011 		ret = PTR_ERR(map);
3012 		goto put_obj;
3013 	}
3014 
3015 	i915_gem_object_lock(obj, NULL);
3016 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3017 	i915_gem_object_unlock(obj);
3018 	if (ret) {
3019 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3020 		goto unmap_src;
3021 	}
3022 
3023 	ret = copy_gma_to_hva(workload->vgpu,
3024 				workload->vgpu->gtt.ggtt_mm,
3025 				guest_gma, guest_gma + ctx_size,
3026 				map);
3027 	if (ret < 0) {
3028 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3029 		goto unmap_src;
3030 	}
3031 
3032 	wa_ctx->indirect_ctx.obj = obj;
3033 	wa_ctx->indirect_ctx.shadow_va = map;
3034 	return 0;
3035 
3036 unmap_src:
3037 	i915_gem_object_unpin_map(obj);
3038 put_obj:
3039 	i915_gem_object_put(obj);
3040 	return ret;
3041 }
3042 
3043 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3044 {
3045 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3046 	unsigned char *bb_start_sva;
3047 
3048 	if (!wa_ctx->per_ctx.valid)
3049 		return 0;
3050 
3051 	per_ctx_start[0] = 0x18800001;
3052 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3053 
3054 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3055 				wa_ctx->indirect_ctx.size;
3056 
3057 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3058 
3059 	return 0;
3060 }
3061 
3062 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3063 {
3064 	int ret;
3065 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3066 					struct intel_vgpu_workload,
3067 					wa_ctx);
3068 	struct intel_vgpu *vgpu = workload->vgpu;
3069 
3070 	if (wa_ctx->indirect_ctx.size == 0)
3071 		return 0;
3072 
3073 	ret = shadow_indirect_ctx(wa_ctx);
3074 	if (ret) {
3075 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3076 		return ret;
3077 	}
3078 
3079 	combine_wa_ctx(wa_ctx);
3080 
3081 	ret = scan_wa_ctx(wa_ctx);
3082 	if (ret) {
3083 		gvt_vgpu_err("scan wa ctx error\n");
3084 		return ret;
3085 	}
3086 
3087 	return 0;
3088 }
3089 
3090 /* generate dummy contexts by sending empty requests to HW, and let
3091  * the HW to fill Engine Contexts. This dummy contexts are used for
3092  * initialization purpose (update reg whitelist), so referred to as
3093  * init context here
3094  */
3095 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3096 {
3097 	struct intel_gvt *gvt = vgpu->gvt;
3098 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3099 	struct intel_engine_cs *engine;
3100 	enum intel_engine_id id;
3101 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3102 	struct i915_request *rq;
3103 	struct intel_vgpu_submission *s = &vgpu->submission;
3104 	struct i915_request *requests[I915_NUM_ENGINES] = {};
3105 	bool is_ctx_pinned[I915_NUM_ENGINES] = {};
3106 	int ret;
3107 
3108 	if (gvt->is_reg_whitelist_updated)
3109 		return;
3110 
3111 	for_each_engine(engine, &dev_priv->gt, id) {
3112 		ret = intel_context_pin(s->shadow[id]);
3113 		if (ret) {
3114 			gvt_vgpu_err("fail to pin shadow ctx\n");
3115 			goto out;
3116 		}
3117 		is_ctx_pinned[id] = true;
3118 
3119 		rq = i915_request_create(s->shadow[id]);
3120 		if (IS_ERR(rq)) {
3121 			gvt_vgpu_err("fail to alloc default request\n");
3122 			ret = -EIO;
3123 			goto out;
3124 		}
3125 		requests[id] = i915_request_get(rq);
3126 		i915_request_add(rq);
3127 	}
3128 
3129 	if (intel_gt_wait_for_idle(&dev_priv->gt,
3130 				I915_GEM_IDLE_TIMEOUT) == -ETIME) {
3131 		ret = -EIO;
3132 		goto out;
3133 	}
3134 
3135 	/* scan init ctx to update cmd accessible list */
3136 	for_each_engine(engine, &dev_priv->gt, id) {
3137 		int size = engine->context_size - PAGE_SIZE;
3138 		void *vaddr;
3139 		struct parser_exec_state s;
3140 		struct drm_i915_gem_object *obj;
3141 		struct i915_request *rq;
3142 
3143 		rq = requests[id];
3144 		GEM_BUG_ON(!i915_request_completed(rq));
3145 		GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3146 		obj = rq->context->state->obj;
3147 
3148 		if (!obj) {
3149 			ret = -EIO;
3150 			goto out;
3151 		}
3152 
3153 		i915_gem_object_set_cache_coherency(obj,
3154 						    I915_CACHE_LLC);
3155 
3156 		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
3157 		if (IS_ERR(vaddr)) {
3158 			gvt_err("failed to pin init ctx obj, ring=%d, err=%lx\n",
3159 				id, PTR_ERR(vaddr));
3160 			goto out;
3161 		}
3162 
3163 		s.buf_type = RING_BUFFER_CTX;
3164 		s.buf_addr_type = GTT_BUFFER;
3165 		s.vgpu = vgpu;
3166 		s.engine = engine;
3167 		s.ring_start = 0;
3168 		s.ring_size = size;
3169 		s.ring_head = 0;
3170 		s.ring_tail = size;
3171 		s.rb_va = vaddr + start;
3172 		s.workload = NULL;
3173 		s.is_ctx_wa = false;
3174 		s.is_init_ctx = true;
3175 
3176 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3177 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3178 		if (ret) {
3179 			i915_gem_object_unpin_map(obj);
3180 			goto out;
3181 		}
3182 
3183 		ret = command_scan(&s, 0, size, 0, size);
3184 		if (ret)
3185 			gvt_err("Scan init ctx error\n");
3186 
3187 		i915_gem_object_unpin_map(obj);
3188 	}
3189 
3190 out:
3191 	if (!ret)
3192 		gvt->is_reg_whitelist_updated = true;
3193 
3194 	for (id = 0; id < I915_NUM_ENGINES ; id++) {
3195 		if (requests[id])
3196 			i915_request_put(requests[id]);
3197 
3198 		if (is_ctx_pinned[id])
3199 			intel_context_unpin(s->shadow[id]);
3200 	}
3201 }
3202 
3203 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3204 {
3205 	struct intel_vgpu *vgpu = workload->vgpu;
3206 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3207 	struct parser_exec_state s;
3208 	int ring_id = workload->engine->id;
3209 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3210 	int ret;
3211 
3212 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3213 
3214 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3215 
3216 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3217 	 * scan engine context
3218 	 */
3219 	if (is_inhibit_context(ce))
3220 		return 0;
3221 
3222 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3223 	gma_head = 0;
3224 	gma_tail = ctx_size;
3225 
3226 	s.buf_type = RING_BUFFER_CTX;
3227 	s.buf_addr_type = GTT_BUFFER;
3228 	s.vgpu = workload->vgpu;
3229 	s.engine = workload->engine;
3230 	s.ring_start = gma_start;
3231 	s.ring_size = ctx_size;
3232 	s.ring_head = gma_start + gma_head;
3233 	s.ring_tail = gma_start + gma_tail;
3234 	s.rb_va = ce->lrc_reg_state;
3235 	s.workload = workload;
3236 	s.is_ctx_wa = false;
3237 	s.is_init_ctx = false;
3238 
3239 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3240 	 * context
3241 	 */
3242 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3243 	if (ret)
3244 		goto out;
3245 
3246 	ret = command_scan(&s, gma_head, gma_tail,
3247 		gma_start, ctx_size);
3248 out:
3249 	if (ret)
3250 		gvt_vgpu_err("scan shadow ctx error\n");
3251 
3252 	return ret;
3253 }
3254 
3255 static int init_cmd_table(struct intel_gvt *gvt)
3256 {
3257 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3258 	int i;
3259 
3260 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3261 		struct cmd_entry *e;
3262 
3263 		if (!(cmd_info[i].devices & gen_type))
3264 			continue;
3265 
3266 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3267 		if (!e)
3268 			return -ENOMEM;
3269 
3270 		e->info = &cmd_info[i];
3271 		if (cmd_info[i].opcode == OP_MI_NOOP)
3272 			mi_noop_index = i;
3273 
3274 		INIT_HLIST_NODE(&e->hlist);
3275 		add_cmd_entry(gvt, e);
3276 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3277 			    e->info->name, e->info->opcode, e->info->flag,
3278 			    e->info->devices, e->info->rings);
3279 	}
3280 
3281 	return 0;
3282 }
3283 
3284 static void clean_cmd_table(struct intel_gvt *gvt)
3285 {
3286 	struct hlist_node *tmp;
3287 	struct cmd_entry *e;
3288 	int i;
3289 
3290 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3291 		kfree(e);
3292 
3293 	hash_init(gvt->cmd_table);
3294 }
3295 
3296 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3297 {
3298 	clean_cmd_table(gvt);
3299 }
3300 
3301 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3302 {
3303 	int ret;
3304 
3305 	ret = init_cmd_table(gvt);
3306 	if (ret) {
3307 		intel_gvt_clean_cmd_parser(gvt);
3308 		return ret;
3309 	}
3310 	return 0;
3311 }
3312