xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44 
45 #define INVALID_OP    (~0U)
46 
47 #define OP_LEN_MI           9
48 #define OP_LEN_2D           10
49 #define OP_LEN_3D_MEDIA     16
50 #define OP_LEN_MFX_VC       16
51 #define OP_LEN_VEBOX	    16
52 
53 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
54 
55 struct sub_op_bits {
56 	int hi;
57 	int low;
58 };
59 struct decode_info {
60 	const char *name;
61 	int op_len;
62 	int nr_sub_op;
63 	const struct sub_op_bits *sub_op;
64 };
65 
66 #define   MAX_CMD_BUDGET			0x7fffffff
67 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
68 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
69 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
70 
71 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
72 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
73 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
74 
75 /* Render Command Map */
76 
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP                          0x0
79 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
80 #define OP_MI_USER_INTERRUPT                0x2
81 #define OP_MI_WAIT_FOR_EVENT                0x3
82 #define OP_MI_FLUSH                         0x4
83 #define OP_MI_ARB_CHECK                     0x5
84 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
85 #define OP_MI_REPORT_HEAD                   0x7
86 #define OP_MI_ARB_ON_OFF                    0x8
87 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END              0xA
89 #define OP_MI_SUSPEND_FLUSH                 0xB
90 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
92 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
93 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP                  0x14
96 #define OP_MI_SEMAPHORE_MBOX                0x16
97 #define OP_MI_SET_CONTEXT                   0x18
98 #define OP_MI_MATH                          0x1A
99 #define OP_MI_URB_CLEAR                     0x19
100 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
102 
103 #define OP_MI_STORE_DATA_IMM                0x20
104 #define OP_MI_STORE_DATA_INDEX              0x21
105 #define OP_MI_LOAD_REGISTER_IMM             0x22
106 #define OP_MI_UPDATE_GTT                    0x23
107 #define OP_MI_STORE_REGISTER_MEM            0x24
108 #define OP_MI_FLUSH_DW                      0x26
109 #define OP_MI_CLFLUSH                       0x27
110 #define OP_MI_REPORT_PERF_COUNT             0x28
111 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
115 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
116 #define OP_MI_2E			    0x2E  /* BDW+ */
117 #define OP_MI_2F			    0x2F  /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START            0x31
119 
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
122 
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
124 
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
129 
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x)    ((2<<7) | x)
132 
133 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
138 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
140 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
141 #define OP_XY_PAT_BLT                               OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
145 #define OP_XY_FULL_BLT                              OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
157 
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161 
162 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
163 
164 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
167 
168 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
169 
170 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
171 
172 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
173 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
175 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
176 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
177 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
178 
179 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
180 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
181 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
182 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
183 
184 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
185 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
186 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
187 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
188 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
189 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
190 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
191 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
192 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
193 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
195 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
196 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
197 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
198 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
199 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
200 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
201 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
202 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
203 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
204 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
205 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
206 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
207 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
208 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
209 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
210 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
211 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
214 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
226 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
227 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
228 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
229 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
250 
251 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
252 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
253 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
254 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
255 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
256 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
257 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
258 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
259 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
260 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
261 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
262 
263 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
265 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
266 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
269 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
270 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
271 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
273 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
274 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
276 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
277 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
283 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
284 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
286 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
288 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
289 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
290 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
291 
292 /* VCCP Command Parser */
293 
294 /*
295  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
296  * git://anongit.freedesktop.org/vaapi/intel-driver
297  * src/i965_defines.h
298  *
299  */
300 
301 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
302 	(3 << 13 | \
303 	 (pipeline) << 11 | \
304 	 (op) << 8 | \
305 	 (sub_opa) << 5 | \
306 	 (sub_opb))
307 
308 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
309 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
310 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
313 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
314 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
315 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
316 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
317 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
318 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
319 
320 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
321 
322 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
323 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
324 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
325 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
326 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
327 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
329 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
330 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
331 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
332 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
333 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
334 
335 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
336 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
337 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
338 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
339 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
340 
341 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
342 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
343 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
344 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
345 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
346 
347 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
348 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
349 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
350 
351 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
352 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
353 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
354 
355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
356 	(3 << 13 | \
357 	 (pipeline) << 11 | \
358 	 (op) << 8 | \
359 	 (sub_opa) << 5 | \
360 	 (sub_opb))
361 
362 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
363 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
364 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
365 
366 struct parser_exec_state;
367 
368 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
369 
370 #define GVT_CMD_HASH_BITS   7
371 
372 /* which DWords need address fix */
373 #define ADDR_FIX_1(x1)			(1 << (x1))
374 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
375 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
376 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
377 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
378 
379 #define DWORD_FIELD(dword, end, start) \
380 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
381 
382 #define OP_LENGTH_BIAS 2
383 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
384 
385 static int gvt_check_valid_cmd_length(int len, int valid_len)
386 {
387 	if (valid_len != len) {
388 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
389 			len, valid_len);
390 		return -EFAULT;
391 	}
392 	return 0;
393 }
394 
395 struct cmd_info {
396 	const char *name;
397 	u32 opcode;
398 
399 #define F_LEN_MASK	3U
400 #define F_LEN_CONST  1U
401 #define F_LEN_VAR    0U
402 /* value is const although LEN maybe variable */
403 #define F_LEN_VAR_FIXED    (1<<1)
404 
405 /*
406  * command has its own ip advance logic
407  * e.g. MI_BATCH_START, MI_BATCH_END
408  */
409 #define F_IP_ADVANCE_CUSTOM (1<<2)
410 	u32 flag;
411 
412 #define R_RCS	BIT(RCS0)
413 #define R_VCS1  BIT(VCS0)
414 #define R_VCS2  BIT(VCS1)
415 #define R_VCS	(R_VCS1 | R_VCS2)
416 #define R_BCS	BIT(BCS0)
417 #define R_VECS	BIT(VECS0)
418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
419 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
420 	u16 rings;
421 
422 	/* devices that support this cmd: SNB/IVB/HSW/... */
423 	u16 devices;
424 
425 	/* which DWords are address that need fix up.
426 	 * bit 0 means a 32-bit non address operand in command
427 	 * bit 1 means address operand, which could be 32-bit
428 	 * or 64-bit depending on different architectures.(
429 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
430 	 * No matter the address length, each address only takes
431 	 * one bit in the bitmap.
432 	 */
433 	u16 addr_bitmap;
434 
435 	/* flag == F_LEN_CONST : command length
436 	 * flag == F_LEN_VAR : length bias bits
437 	 * Note: length is in DWord
438 	 */
439 	u32 len;
440 
441 	parser_cmd_handler handler;
442 
443 	/* valid length in DWord */
444 	u32 valid_len;
445 };
446 
447 struct cmd_entry {
448 	struct hlist_node hlist;
449 	const struct cmd_info *info;
450 };
451 
452 enum {
453 	RING_BUFFER_INSTRUCTION,
454 	BATCH_BUFFER_INSTRUCTION,
455 	BATCH_BUFFER_2ND_LEVEL,
456 };
457 
458 enum {
459 	GTT_BUFFER,
460 	PPGTT_BUFFER
461 };
462 
463 struct parser_exec_state {
464 	struct intel_vgpu *vgpu;
465 	int ring_id;
466 
467 	int buf_type;
468 
469 	/* batch buffer address type */
470 	int buf_addr_type;
471 
472 	/* graphics memory address of ring buffer start */
473 	unsigned long ring_start;
474 	unsigned long ring_size;
475 	unsigned long ring_head;
476 	unsigned long ring_tail;
477 
478 	/* instruction graphics memory address */
479 	unsigned long ip_gma;
480 
481 	/* mapped va of the instr_gma */
482 	void *ip_va;
483 	void *rb_va;
484 
485 	void *ret_bb_va;
486 	/* next instruction when return from  batch buffer to ring buffer */
487 	unsigned long ret_ip_gma_ring;
488 
489 	/* next instruction when return from 2nd batch buffer to batch buffer */
490 	unsigned long ret_ip_gma_bb;
491 
492 	/* batch buffer address type (GTT or PPGTT)
493 	 * used when ret from 2nd level batch buffer
494 	 */
495 	int saved_buf_addr_type;
496 	bool is_ctx_wa;
497 
498 	const struct cmd_info *info;
499 
500 	struct intel_vgpu_workload *workload;
501 };
502 
503 #define gmadr_dw_number(s)	\
504 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
505 
506 static unsigned long bypass_scan_mask = 0;
507 
508 /* ring ALL, type = 0 */
509 static const struct sub_op_bits sub_op_mi[] = {
510 	{31, 29},
511 	{28, 23},
512 };
513 
514 static const struct decode_info decode_info_mi = {
515 	"MI",
516 	OP_LEN_MI,
517 	ARRAY_SIZE(sub_op_mi),
518 	sub_op_mi,
519 };
520 
521 /* ring RCS, command type 2 */
522 static const struct sub_op_bits sub_op_2d[] = {
523 	{31, 29},
524 	{28, 22},
525 };
526 
527 static const struct decode_info decode_info_2d = {
528 	"2D",
529 	OP_LEN_2D,
530 	ARRAY_SIZE(sub_op_2d),
531 	sub_op_2d,
532 };
533 
534 /* ring RCS, command type 3 */
535 static const struct sub_op_bits sub_op_3d_media[] = {
536 	{31, 29},
537 	{28, 27},
538 	{26, 24},
539 	{23, 16},
540 };
541 
542 static const struct decode_info decode_info_3d_media = {
543 	"3D_Media",
544 	OP_LEN_3D_MEDIA,
545 	ARRAY_SIZE(sub_op_3d_media),
546 	sub_op_3d_media,
547 };
548 
549 /* ring VCS, command type 3 */
550 static const struct sub_op_bits sub_op_mfx_vc[] = {
551 	{31, 29},
552 	{28, 27},
553 	{26, 24},
554 	{23, 21},
555 	{20, 16},
556 };
557 
558 static const struct decode_info decode_info_mfx_vc = {
559 	"MFX_VC",
560 	OP_LEN_MFX_VC,
561 	ARRAY_SIZE(sub_op_mfx_vc),
562 	sub_op_mfx_vc,
563 };
564 
565 /* ring VECS, command type 3 */
566 static const struct sub_op_bits sub_op_vebox[] = {
567 	{31, 29},
568 	{28, 27},
569 	{26, 24},
570 	{23, 21},
571 	{20, 16},
572 };
573 
574 static const struct decode_info decode_info_vebox = {
575 	"VEBOX",
576 	OP_LEN_VEBOX,
577 	ARRAY_SIZE(sub_op_vebox),
578 	sub_op_vebox,
579 };
580 
581 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
582 	[RCS0] = {
583 		&decode_info_mi,
584 		NULL,
585 		NULL,
586 		&decode_info_3d_media,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 	},
592 
593 	[VCS0] = {
594 		&decode_info_mi,
595 		NULL,
596 		NULL,
597 		&decode_info_mfx_vc,
598 		NULL,
599 		NULL,
600 		NULL,
601 		NULL,
602 	},
603 
604 	[BCS0] = {
605 		&decode_info_mi,
606 		NULL,
607 		&decode_info_2d,
608 		NULL,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 
615 	[VECS0] = {
616 		&decode_info_mi,
617 		NULL,
618 		NULL,
619 		&decode_info_vebox,
620 		NULL,
621 		NULL,
622 		NULL,
623 		NULL,
624 	},
625 
626 	[VCS1] = {
627 		&decode_info_mi,
628 		NULL,
629 		NULL,
630 		&decode_info_mfx_vc,
631 		NULL,
632 		NULL,
633 		NULL,
634 		NULL,
635 	},
636 };
637 
638 static inline u32 get_opcode(u32 cmd, int ring_id)
639 {
640 	const struct decode_info *d_info;
641 
642 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
643 	if (d_info == NULL)
644 		return INVALID_OP;
645 
646 	return cmd >> (32 - d_info->op_len);
647 }
648 
649 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
650 		unsigned int opcode, int ring_id)
651 {
652 	struct cmd_entry *e;
653 
654 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
655 		if (opcode == e->info->opcode && e->info->rings & BIT(ring_id))
656 			return e->info;
657 	}
658 	return NULL;
659 }
660 
661 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
662 		u32 cmd, int ring_id)
663 {
664 	u32 opcode;
665 
666 	opcode = get_opcode(cmd, ring_id);
667 	if (opcode == INVALID_OP)
668 		return NULL;
669 
670 	return find_cmd_entry(gvt, opcode, ring_id);
671 }
672 
673 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
674 {
675 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
676 }
677 
678 static inline void print_opcode(u32 cmd, int ring_id)
679 {
680 	const struct decode_info *d_info;
681 	int i;
682 
683 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
684 	if (d_info == NULL)
685 		return;
686 
687 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
688 			cmd >> (32 - d_info->op_len), d_info->name);
689 
690 	for (i = 0; i < d_info->nr_sub_op; i++)
691 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
692 					d_info->sub_op[i].low));
693 
694 	pr_err("\n");
695 }
696 
697 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
698 {
699 	return s->ip_va + (index << 2);
700 }
701 
702 static inline u32 cmd_val(struct parser_exec_state *s, int index)
703 {
704 	return *cmd_ptr(s, index);
705 }
706 
707 static void parser_exec_state_dump(struct parser_exec_state *s)
708 {
709 	int cnt = 0;
710 	int i;
711 
712 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
713 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
714 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
715 			s->ring_head, s->ring_tail);
716 
717 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
718 			s->buf_type == RING_BUFFER_INSTRUCTION ?
719 			"RING_BUFFER" : "BATCH_BUFFER",
720 			s->buf_addr_type == GTT_BUFFER ?
721 			"GTT" : "PPGTT", s->ip_gma);
722 
723 	if (s->ip_va == NULL) {
724 		gvt_dbg_cmd(" ip_va(NULL)");
725 		return;
726 	}
727 
728 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
729 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
730 			cmd_val(s, 2), cmd_val(s, 3));
731 
732 	print_opcode(cmd_val(s, 0), s->ring_id);
733 
734 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
735 
736 	while (cnt < 1024) {
737 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
738 		for (i = 0; i < 8; i++)
739 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
740 		gvt_dbg_cmd("\n");
741 
742 		s->ip_va += 8 * sizeof(u32);
743 		cnt += 8;
744 	}
745 }
746 
747 static inline void update_ip_va(struct parser_exec_state *s)
748 {
749 	unsigned long len = 0;
750 
751 	if (WARN_ON(s->ring_head == s->ring_tail))
752 		return;
753 
754 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
755 		unsigned long ring_top = s->ring_start + s->ring_size;
756 
757 		if (s->ring_head > s->ring_tail) {
758 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
759 				len = (s->ip_gma - s->ring_head);
760 			else if (s->ip_gma >= s->ring_start &&
761 					s->ip_gma <= s->ring_tail)
762 				len = (ring_top - s->ring_head) +
763 					(s->ip_gma - s->ring_start);
764 		} else
765 			len = (s->ip_gma - s->ring_head);
766 
767 		s->ip_va = s->rb_va + len;
768 	} else {/* shadow batch buffer */
769 		s->ip_va = s->ret_bb_va;
770 	}
771 }
772 
773 static inline int ip_gma_set(struct parser_exec_state *s,
774 		unsigned long ip_gma)
775 {
776 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
777 
778 	s->ip_gma = ip_gma;
779 	update_ip_va(s);
780 	return 0;
781 }
782 
783 static inline int ip_gma_advance(struct parser_exec_state *s,
784 		unsigned int dw_len)
785 {
786 	s->ip_gma += (dw_len << 2);
787 
788 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
789 		if (s->ip_gma >= s->ring_start + s->ring_size)
790 			s->ip_gma -= s->ring_size;
791 		update_ip_va(s);
792 	} else {
793 		s->ip_va += (dw_len << 2);
794 	}
795 
796 	return 0;
797 }
798 
799 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
800 {
801 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
802 		return info->len;
803 	else
804 		return (cmd & ((1U << info->len) - 1)) + 2;
805 	return 0;
806 }
807 
808 static inline int cmd_length(struct parser_exec_state *s)
809 {
810 	return get_cmd_length(s->info, cmd_val(s, 0));
811 }
812 
813 /* do not remove this, some platform may need clflush here */
814 #define patch_value(s, addr, val) do { \
815 	*addr = val; \
816 } while (0)
817 
818 static bool is_shadowed_mmio(unsigned int offset)
819 {
820 	bool ret = false;
821 
822 	if ((offset == 0x2168) || /*BB current head register UDW */
823 	    (offset == 0x2140) || /*BB current header register */
824 	    (offset == 0x211c) || /*second BB header register UDW */
825 	    (offset == 0x2114)) { /*second BB header register UDW */
826 		ret = true;
827 	}
828 	return ret;
829 }
830 
831 static inline bool is_force_nonpriv_mmio(unsigned int offset)
832 {
833 	return (offset >= 0x24d0 && offset < 0x2500);
834 }
835 
836 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
837 		unsigned int offset, unsigned int index, char *cmd)
838 {
839 	struct intel_gvt *gvt = s->vgpu->gvt;
840 	unsigned int data;
841 	u32 ring_base;
842 	u32 nopid;
843 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
844 
845 	if (!strcmp(cmd, "lri"))
846 		data = cmd_val(s, index + 1);
847 	else {
848 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
849 			offset, cmd);
850 		return -EINVAL;
851 	}
852 
853 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
854 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
855 
856 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
857 			data != nopid) {
858 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
859 			offset, data);
860 		patch_value(s, cmd_ptr(s, index), nopid);
861 		return 0;
862 	}
863 	return 0;
864 }
865 
866 static inline bool is_mocs_mmio(unsigned int offset)
867 {
868 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
869 		((offset >= 0xb020) && (offset <= 0xb0a0));
870 }
871 
872 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
873 				unsigned int offset, unsigned int index)
874 {
875 	if (!is_mocs_mmio(offset))
876 		return -EINVAL;
877 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
878 	return 0;
879 }
880 
881 static int cmd_reg_handler(struct parser_exec_state *s,
882 	unsigned int offset, unsigned int index, char *cmd)
883 {
884 	struct intel_vgpu *vgpu = s->vgpu;
885 	struct intel_gvt *gvt = vgpu->gvt;
886 	u32 ctx_sr_ctl;
887 
888 	if (offset + 4 > gvt->device_info.mmio_size) {
889 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
890 				cmd, offset);
891 		return -EFAULT;
892 	}
893 
894 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
895 		gvt_vgpu_err("%s access to non-render register (%x)\n",
896 				cmd, offset);
897 		return -EBADRQC;
898 	}
899 
900 	if (is_shadowed_mmio(offset)) {
901 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
902 		return 0;
903 	}
904 
905 	if (is_mocs_mmio(offset) &&
906 	    mocs_cmd_reg_handler(s, offset, index))
907 		return -EINVAL;
908 
909 	if (is_force_nonpriv_mmio(offset) &&
910 		force_nonpriv_reg_handler(s, offset, index, cmd))
911 		return -EPERM;
912 
913 	if (offset == i915_mmio_reg_offset(DERRMR) ||
914 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
915 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
916 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
917 	}
918 
919 	/* TODO
920 	 * In order to let workload with inhibit context to generate
921 	 * correct image data into memory, vregs values will be loaded to
922 	 * hw via LRIs in the workload with inhibit context. But as
923 	 * indirect context is loaded prior to LRIs in workload, we don't
924 	 * want reg values specified in indirect context overwritten by
925 	 * LRIs in workloads. So, when scanning an indirect context, we
926 	 * update reg values in it into vregs, so LRIs in workload with
927 	 * inhibit context will restore with correct values
928 	 */
929 	if (IS_GEN(gvt->dev_priv, 9) &&
930 			intel_gvt_mmio_is_in_ctx(gvt, offset) &&
931 			!strncmp(cmd, "lri", 3)) {
932 		intel_gvt_hypervisor_read_gpa(s->vgpu,
933 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
934 		/* check inhibit context */
935 		if (ctx_sr_ctl & 1) {
936 			u32 data = cmd_val(s, index + 1);
937 
938 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
939 				intel_vgpu_mask_mmio_write(vgpu,
940 							offset, &data, 4);
941 			else
942 				vgpu_vreg(vgpu, offset) = data;
943 		}
944 	}
945 
946 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
947 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
948 	return 0;
949 }
950 
951 #define cmd_reg(s, i) \
952 	(cmd_val(s, i) & GENMASK(22, 2))
953 
954 #define cmd_reg_inhibit(s, i) \
955 	(cmd_val(s, i) & GENMASK(22, 18))
956 
957 #define cmd_gma(s, i) \
958 	(cmd_val(s, i) & GENMASK(31, 2))
959 
960 #define cmd_gma_hi(s, i) \
961 	(cmd_val(s, i) & GENMASK(15, 0))
962 
963 static int cmd_handler_lri(struct parser_exec_state *s)
964 {
965 	int i, ret = 0;
966 	int cmd_len = cmd_length(s);
967 	struct intel_gvt *gvt = s->vgpu->gvt;
968 	u32 valid_len = CMD_LEN(1);
969 
970 	/*
971 	 * Official intel docs are somewhat sloppy , check the definition of
972 	 * MI_LOAD_REGISTER_IMM.
973 	 */
974 	#define MAX_VALID_LEN 127
975 	if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) {
976 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
977 			cmd_len, valid_len);
978 		return -EFAULT;
979 	}
980 
981 	for (i = 1; i < cmd_len; i += 2) {
982 		if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) {
983 			if (s->ring_id == BCS0 &&
984 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
985 				ret |= 0;
986 			else
987 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
988 		}
989 		if (ret)
990 			break;
991 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
992 		if (ret)
993 			break;
994 	}
995 	return ret;
996 }
997 
998 static int cmd_handler_lrr(struct parser_exec_state *s)
999 {
1000 	int i, ret = 0;
1001 	int cmd_len = cmd_length(s);
1002 
1003 	for (i = 1; i < cmd_len; i += 2) {
1004 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
1005 			ret |= ((cmd_reg_inhibit(s, i) ||
1006 					(cmd_reg_inhibit(s, i + 1)))) ?
1007 				-EBADRQC : 0;
1008 		if (ret)
1009 			break;
1010 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1011 		if (ret)
1012 			break;
1013 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1014 		if (ret)
1015 			break;
1016 	}
1017 	return ret;
1018 }
1019 
1020 static inline int cmd_address_audit(struct parser_exec_state *s,
1021 		unsigned long guest_gma, int op_size, bool index_mode);
1022 
1023 static int cmd_handler_lrm(struct parser_exec_state *s)
1024 {
1025 	struct intel_gvt *gvt = s->vgpu->gvt;
1026 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1027 	unsigned long gma;
1028 	int i, ret = 0;
1029 	int cmd_len = cmd_length(s);
1030 
1031 	for (i = 1; i < cmd_len;) {
1032 		if (IS_BROADWELL(gvt->dev_priv))
1033 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1034 		if (ret)
1035 			break;
1036 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1037 		if (ret)
1038 			break;
1039 		if (cmd_val(s, 0) & (1 << 22)) {
1040 			gma = cmd_gma(s, i + 1);
1041 			if (gmadr_bytes == 8)
1042 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1043 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1044 			if (ret)
1045 				break;
1046 		}
1047 		i += gmadr_dw_number(s) + 1;
1048 	}
1049 	return ret;
1050 }
1051 
1052 static int cmd_handler_srm(struct parser_exec_state *s)
1053 {
1054 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1055 	unsigned long gma;
1056 	int i, ret = 0;
1057 	int cmd_len = cmd_length(s);
1058 
1059 	for (i = 1; i < cmd_len;) {
1060 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1061 		if (ret)
1062 			break;
1063 		if (cmd_val(s, 0) & (1 << 22)) {
1064 			gma = cmd_gma(s, i + 1);
1065 			if (gmadr_bytes == 8)
1066 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1067 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1068 			if (ret)
1069 				break;
1070 		}
1071 		i += gmadr_dw_number(s) + 1;
1072 	}
1073 	return ret;
1074 }
1075 
1076 struct cmd_interrupt_event {
1077 	int pipe_control_notify;
1078 	int mi_flush_dw;
1079 	int mi_user_interrupt;
1080 };
1081 
1082 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1083 	[RCS0] = {
1084 		.pipe_control_notify = RCS_PIPE_CONTROL,
1085 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1086 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1087 	},
1088 	[BCS0] = {
1089 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1090 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1091 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1092 	},
1093 	[VCS0] = {
1094 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1095 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1096 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1097 	},
1098 	[VCS1] = {
1099 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1100 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1101 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1102 	},
1103 	[VECS0] = {
1104 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1105 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1106 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1107 	},
1108 };
1109 
1110 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1111 {
1112 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1113 	unsigned long gma;
1114 	bool index_mode = false;
1115 	unsigned int post_sync;
1116 	int ret = 0;
1117 	u32 hws_pga, val;
1118 
1119 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1120 
1121 	/* LRI post sync */
1122 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1123 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1124 	/* post sync */
1125 	else if (post_sync) {
1126 		if (post_sync == 2)
1127 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1128 		else if (post_sync == 3)
1129 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1130 		else if (post_sync == 1) {
1131 			/* check ggtt*/
1132 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1133 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1134 				if (gmadr_bytes == 8)
1135 					gma |= (cmd_gma_hi(s, 3)) << 32;
1136 				/* Store Data Index */
1137 				if (cmd_val(s, 1) & (1 << 21))
1138 					index_mode = true;
1139 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1140 						index_mode);
1141 				if (ret)
1142 					return ret;
1143 				if (index_mode) {
1144 					hws_pga = s->vgpu->hws_pga[s->ring_id];
1145 					gma = hws_pga + gma;
1146 					patch_value(s, cmd_ptr(s, 2), gma);
1147 					val = cmd_val(s, 1) & (~(1 << 21));
1148 					patch_value(s, cmd_ptr(s, 1), val);
1149 				}
1150 			}
1151 		}
1152 	}
1153 
1154 	if (ret)
1155 		return ret;
1156 
1157 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1158 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1159 				s->workload->pending_events);
1160 	return 0;
1161 }
1162 
1163 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1164 {
1165 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1166 			s->workload->pending_events);
1167 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1168 	return 0;
1169 }
1170 
1171 static int cmd_advance_default(struct parser_exec_state *s)
1172 {
1173 	return ip_gma_advance(s, cmd_length(s));
1174 }
1175 
1176 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1177 {
1178 	int ret;
1179 
1180 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1181 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1182 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1183 		s->buf_addr_type = s->saved_buf_addr_type;
1184 	} else {
1185 		s->buf_type = RING_BUFFER_INSTRUCTION;
1186 		s->buf_addr_type = GTT_BUFFER;
1187 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1188 			s->ret_ip_gma_ring -= s->ring_size;
1189 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1190 	}
1191 	return ret;
1192 }
1193 
1194 struct mi_display_flip_command_info {
1195 	int pipe;
1196 	int plane;
1197 	int event;
1198 	i915_reg_t stride_reg;
1199 	i915_reg_t ctrl_reg;
1200 	i915_reg_t surf_reg;
1201 	u64 stride_val;
1202 	u64 tile_val;
1203 	u64 surf_val;
1204 	bool async_flip;
1205 };
1206 
1207 struct plane_code_mapping {
1208 	int pipe;
1209 	int plane;
1210 	int event;
1211 };
1212 
1213 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1214 		struct mi_display_flip_command_info *info)
1215 {
1216 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1217 	struct plane_code_mapping gen8_plane_code[] = {
1218 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1219 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1220 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1221 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1222 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1223 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1224 	};
1225 	u32 dword0, dword1, dword2;
1226 	u32 v;
1227 
1228 	dword0 = cmd_val(s, 0);
1229 	dword1 = cmd_val(s, 1);
1230 	dword2 = cmd_val(s, 2);
1231 
1232 	v = (dword0 & GENMASK(21, 19)) >> 19;
1233 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1234 		return -EBADRQC;
1235 
1236 	info->pipe = gen8_plane_code[v].pipe;
1237 	info->plane = gen8_plane_code[v].plane;
1238 	info->event = gen8_plane_code[v].event;
1239 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1240 	info->tile_val = (dword1 & 0x1);
1241 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1242 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1243 
1244 	if (info->plane == PLANE_A) {
1245 		info->ctrl_reg = DSPCNTR(info->pipe);
1246 		info->stride_reg = DSPSTRIDE(info->pipe);
1247 		info->surf_reg = DSPSURF(info->pipe);
1248 	} else if (info->plane == PLANE_B) {
1249 		info->ctrl_reg = SPRCTL(info->pipe);
1250 		info->stride_reg = SPRSTRIDE(info->pipe);
1251 		info->surf_reg = SPRSURF(info->pipe);
1252 	} else {
1253 		WARN_ON(1);
1254 		return -EBADRQC;
1255 	}
1256 	return 0;
1257 }
1258 
1259 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1260 		struct mi_display_flip_command_info *info)
1261 {
1262 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1263 	struct intel_vgpu *vgpu = s->vgpu;
1264 	u32 dword0 = cmd_val(s, 0);
1265 	u32 dword1 = cmd_val(s, 1);
1266 	u32 dword2 = cmd_val(s, 2);
1267 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1268 
1269 	info->plane = PRIMARY_PLANE;
1270 
1271 	switch (plane) {
1272 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1273 		info->pipe = PIPE_A;
1274 		info->event = PRIMARY_A_FLIP_DONE;
1275 		break;
1276 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1277 		info->pipe = PIPE_B;
1278 		info->event = PRIMARY_B_FLIP_DONE;
1279 		break;
1280 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1281 		info->pipe = PIPE_C;
1282 		info->event = PRIMARY_C_FLIP_DONE;
1283 		break;
1284 
1285 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1286 		info->pipe = PIPE_A;
1287 		info->event = SPRITE_A_FLIP_DONE;
1288 		info->plane = SPRITE_PLANE;
1289 		break;
1290 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1291 		info->pipe = PIPE_B;
1292 		info->event = SPRITE_B_FLIP_DONE;
1293 		info->plane = SPRITE_PLANE;
1294 		break;
1295 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1296 		info->pipe = PIPE_C;
1297 		info->event = SPRITE_C_FLIP_DONE;
1298 		info->plane = SPRITE_PLANE;
1299 		break;
1300 
1301 	default:
1302 		gvt_vgpu_err("unknown plane code %d\n", plane);
1303 		return -EBADRQC;
1304 	}
1305 
1306 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1307 	info->tile_val = (dword1 & GENMASK(2, 0));
1308 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1309 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1310 
1311 	info->ctrl_reg = DSPCNTR(info->pipe);
1312 	info->stride_reg = DSPSTRIDE(info->pipe);
1313 	info->surf_reg = DSPSURF(info->pipe);
1314 
1315 	return 0;
1316 }
1317 
1318 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1319 		struct mi_display_flip_command_info *info)
1320 {
1321 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1322 	u32 stride, tile;
1323 
1324 	if (!info->async_flip)
1325 		return 0;
1326 
1327 	if (INTEL_GEN(dev_priv) >= 9) {
1328 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1329 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1330 				GENMASK(12, 10)) >> 10;
1331 	} else {
1332 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1333 				GENMASK(15, 6)) >> 6;
1334 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1335 	}
1336 
1337 	if (stride != info->stride_val)
1338 		gvt_dbg_cmd("cannot change stride during async flip\n");
1339 
1340 	if (tile != info->tile_val)
1341 		gvt_dbg_cmd("cannot change tile during async flip\n");
1342 
1343 	return 0;
1344 }
1345 
1346 static int gen8_update_plane_mmio_from_mi_display_flip(
1347 		struct parser_exec_state *s,
1348 		struct mi_display_flip_command_info *info)
1349 {
1350 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1351 	struct intel_vgpu *vgpu = s->vgpu;
1352 
1353 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1354 		      info->surf_val << 12);
1355 	if (INTEL_GEN(dev_priv) >= 9) {
1356 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1357 			      info->stride_val);
1358 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1359 			      info->tile_val << 10);
1360 	} else {
1361 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1362 			      info->stride_val << 6);
1363 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1364 			      info->tile_val << 10);
1365 	}
1366 
1367 	if (info->plane == PLANE_PRIMARY)
1368 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1369 
1370 	if (info->async_flip)
1371 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1372 	else
1373 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1374 
1375 	return 0;
1376 }
1377 
1378 static int decode_mi_display_flip(struct parser_exec_state *s,
1379 		struct mi_display_flip_command_info *info)
1380 {
1381 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1382 
1383 	if (IS_BROADWELL(dev_priv))
1384 		return gen8_decode_mi_display_flip(s, info);
1385 	if (INTEL_GEN(dev_priv) >= 9)
1386 		return skl_decode_mi_display_flip(s, info);
1387 
1388 	return -ENODEV;
1389 }
1390 
1391 static int check_mi_display_flip(struct parser_exec_state *s,
1392 		struct mi_display_flip_command_info *info)
1393 {
1394 	return gen8_check_mi_display_flip(s, info);
1395 }
1396 
1397 static int update_plane_mmio_from_mi_display_flip(
1398 		struct parser_exec_state *s,
1399 		struct mi_display_flip_command_info *info)
1400 {
1401 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1402 }
1403 
1404 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1405 {
1406 	struct mi_display_flip_command_info info;
1407 	struct intel_vgpu *vgpu = s->vgpu;
1408 	int ret;
1409 	int i;
1410 	int len = cmd_length(s);
1411 	u32 valid_len = CMD_LEN(1);
1412 
1413 	/* Flip Type == Stereo 3D Flip */
1414 	if (DWORD_FIELD(2, 1, 0) == 2)
1415 		valid_len++;
1416 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1417 			valid_len);
1418 	if (ret)
1419 		return ret;
1420 
1421 	ret = decode_mi_display_flip(s, &info);
1422 	if (ret) {
1423 		gvt_vgpu_err("fail to decode MI display flip command\n");
1424 		return ret;
1425 	}
1426 
1427 	ret = check_mi_display_flip(s, &info);
1428 	if (ret) {
1429 		gvt_vgpu_err("invalid MI display flip command\n");
1430 		return ret;
1431 	}
1432 
1433 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1434 	if (ret) {
1435 		gvt_vgpu_err("fail to update plane mmio\n");
1436 		return ret;
1437 	}
1438 
1439 	for (i = 0; i < len; i++)
1440 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1441 	return 0;
1442 }
1443 
1444 static bool is_wait_for_flip_pending(u32 cmd)
1445 {
1446 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1447 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1448 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1449 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1450 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1451 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1452 }
1453 
1454 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1455 {
1456 	u32 cmd = cmd_val(s, 0);
1457 
1458 	if (!is_wait_for_flip_pending(cmd))
1459 		return 0;
1460 
1461 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1462 	return 0;
1463 }
1464 
1465 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1466 {
1467 	unsigned long addr;
1468 	unsigned long gma_high, gma_low;
1469 	struct intel_vgpu *vgpu = s->vgpu;
1470 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1471 
1472 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1473 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1474 		return INTEL_GVT_INVALID_ADDR;
1475 	}
1476 
1477 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1478 	if (gmadr_bytes == 4) {
1479 		addr = gma_low;
1480 	} else {
1481 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1482 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1483 	}
1484 	return addr;
1485 }
1486 
1487 static inline int cmd_address_audit(struct parser_exec_state *s,
1488 		unsigned long guest_gma, int op_size, bool index_mode)
1489 {
1490 	struct intel_vgpu *vgpu = s->vgpu;
1491 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1492 	int i;
1493 	int ret;
1494 
1495 	if (op_size > max_surface_size) {
1496 		gvt_vgpu_err("command address audit fail name %s\n",
1497 			s->info->name);
1498 		return -EFAULT;
1499 	}
1500 
1501 	if (index_mode)	{
1502 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1503 			ret = -EFAULT;
1504 			goto err;
1505 		}
1506 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1507 		ret = -EFAULT;
1508 		goto err;
1509 	}
1510 
1511 	return 0;
1512 
1513 err:
1514 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1515 			s->info->name, guest_gma, op_size);
1516 
1517 	pr_err("cmd dump: ");
1518 	for (i = 0; i < cmd_length(s); i++) {
1519 		if (!(i % 4))
1520 			pr_err("\n%08x ", cmd_val(s, i));
1521 		else
1522 			pr_err("%08x ", cmd_val(s, i));
1523 	}
1524 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1525 			vgpu->id,
1526 			vgpu_aperture_gmadr_base(vgpu),
1527 			vgpu_aperture_gmadr_end(vgpu),
1528 			vgpu_hidden_gmadr_base(vgpu),
1529 			vgpu_hidden_gmadr_end(vgpu));
1530 	return ret;
1531 }
1532 
1533 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1534 {
1535 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1536 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1537 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1538 	unsigned long gma, gma_low, gma_high;
1539 	u32 valid_len = CMD_LEN(2);
1540 	int ret = 0;
1541 
1542 	/* check ppggt */
1543 	if (!(cmd_val(s, 0) & (1 << 22)))
1544 		return 0;
1545 
1546 	/* check if QWORD */
1547 	if (DWORD_FIELD(0, 21, 21))
1548 		valid_len++;
1549 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1550 			valid_len);
1551 	if (ret)
1552 		return ret;
1553 
1554 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1555 
1556 	if (gmadr_bytes == 8) {
1557 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1558 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1559 		gma = (gma_high << 32) | gma_low;
1560 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1561 	}
1562 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1563 	return ret;
1564 }
1565 
1566 static inline int unexpected_cmd(struct parser_exec_state *s)
1567 {
1568 	struct intel_vgpu *vgpu = s->vgpu;
1569 
1570 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1571 
1572 	return -EBADRQC;
1573 }
1574 
1575 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1576 {
1577 	return unexpected_cmd(s);
1578 }
1579 
1580 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1581 {
1582 	return unexpected_cmd(s);
1583 }
1584 
1585 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1586 {
1587 	return unexpected_cmd(s);
1588 }
1589 
1590 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1591 {
1592 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1593 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1594 			sizeof(u32);
1595 	unsigned long gma, gma_high;
1596 	u32 valid_len = CMD_LEN(1);
1597 	int ret = 0;
1598 
1599 	if (!(cmd_val(s, 0) & (1 << 22)))
1600 		return ret;
1601 
1602 	/* check inline data */
1603 	if (cmd_val(s, 0) & BIT(18))
1604 		valid_len = CMD_LEN(9);
1605 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1606 			valid_len);
1607 	if (ret)
1608 		return ret;
1609 
1610 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1611 	if (gmadr_bytes == 8) {
1612 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1613 		gma = (gma_high << 32) | gma;
1614 	}
1615 	ret = cmd_address_audit(s, gma, op_size, false);
1616 	return ret;
1617 }
1618 
1619 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1620 {
1621 	return unexpected_cmd(s);
1622 }
1623 
1624 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1625 {
1626 	return unexpected_cmd(s);
1627 }
1628 
1629 static int cmd_handler_mi_conditional_batch_buffer_end(
1630 		struct parser_exec_state *s)
1631 {
1632 	return unexpected_cmd(s);
1633 }
1634 
1635 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1636 {
1637 	return unexpected_cmd(s);
1638 }
1639 
1640 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1641 {
1642 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1643 	unsigned long gma;
1644 	bool index_mode = false;
1645 	int ret = 0;
1646 	u32 hws_pga, val;
1647 	u32 valid_len = CMD_LEN(2);
1648 
1649 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1650 			valid_len);
1651 	if (ret) {
1652 		/* Check again for Qword */
1653 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1654 			++valid_len);
1655 		return ret;
1656 	}
1657 
1658 	/* Check post-sync and ppgtt bit */
1659 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1660 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1661 		if (gmadr_bytes == 8)
1662 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1663 		/* Store Data Index */
1664 		if (cmd_val(s, 0) & (1 << 21))
1665 			index_mode = true;
1666 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1667 		if (ret)
1668 			return ret;
1669 		if (index_mode) {
1670 			hws_pga = s->vgpu->hws_pga[s->ring_id];
1671 			gma = hws_pga + gma;
1672 			patch_value(s, cmd_ptr(s, 1), gma);
1673 			val = cmd_val(s, 0) & (~(1 << 21));
1674 			patch_value(s, cmd_ptr(s, 0), val);
1675 		}
1676 	}
1677 	/* Check notify bit */
1678 	if ((cmd_val(s, 0) & (1 << 8)))
1679 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1680 				s->workload->pending_events);
1681 	return ret;
1682 }
1683 
1684 static void addr_type_update_snb(struct parser_exec_state *s)
1685 {
1686 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1687 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1688 		s->buf_addr_type = PPGTT_BUFFER;
1689 	}
1690 }
1691 
1692 
1693 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1694 		unsigned long gma, unsigned long end_gma, void *va)
1695 {
1696 	unsigned long copy_len, offset;
1697 	unsigned long len = 0;
1698 	unsigned long gpa;
1699 
1700 	while (gma != end_gma) {
1701 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1702 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1703 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1704 			return -EFAULT;
1705 		}
1706 
1707 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1708 
1709 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1710 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1711 
1712 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1713 
1714 		len += copy_len;
1715 		gma += copy_len;
1716 	}
1717 	return len;
1718 }
1719 
1720 
1721 /*
1722  * Check whether a batch buffer needs to be scanned. Currently
1723  * the only criteria is based on privilege.
1724  */
1725 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1726 {
1727 	/* Decide privilege based on address space */
1728 	if (cmd_val(s, 0) & (1 << 8) &&
1729 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1730 		return 0;
1731 	return 1;
1732 }
1733 
1734 static int find_bb_size(struct parser_exec_state *s,
1735 			unsigned long *bb_size,
1736 			unsigned long *bb_end_cmd_offset)
1737 {
1738 	unsigned long gma = 0;
1739 	const struct cmd_info *info;
1740 	u32 cmd_len = 0;
1741 	bool bb_end = false;
1742 	struct intel_vgpu *vgpu = s->vgpu;
1743 	u32 cmd;
1744 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1745 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1746 
1747 	*bb_size = 0;
1748 	*bb_end_cmd_offset = 0;
1749 
1750 	/* get the start gm address of the batch buffer */
1751 	gma = get_gma_bb_from_cmd(s, 1);
1752 	if (gma == INTEL_GVT_INVALID_ADDR)
1753 		return -EFAULT;
1754 
1755 	cmd = cmd_val(s, 0);
1756 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1757 	if (info == NULL) {
1758 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1759 				cmd, get_opcode(cmd, s->ring_id),
1760 				(s->buf_addr_type == PPGTT_BUFFER) ?
1761 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1762 		return -EBADRQC;
1763 	}
1764 	do {
1765 		if (copy_gma_to_hva(s->vgpu, mm,
1766 				gma, gma + 4, &cmd) < 0)
1767 			return -EFAULT;
1768 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1769 		if (info == NULL) {
1770 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1771 				cmd, get_opcode(cmd, s->ring_id),
1772 				(s->buf_addr_type == PPGTT_BUFFER) ?
1773 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1774 			return -EBADRQC;
1775 		}
1776 
1777 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1778 			bb_end = true;
1779 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1780 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1781 				/* chained batch buffer */
1782 				bb_end = true;
1783 		}
1784 
1785 		if (bb_end)
1786 			*bb_end_cmd_offset = *bb_size;
1787 
1788 		cmd_len = get_cmd_length(info, cmd) << 2;
1789 		*bb_size += cmd_len;
1790 		gma += cmd_len;
1791 	} while (!bb_end);
1792 
1793 	return 0;
1794 }
1795 
1796 static int audit_bb_end(struct parser_exec_state *s, void *va)
1797 {
1798 	struct intel_vgpu *vgpu = s->vgpu;
1799 	u32 cmd = *(u32 *)va;
1800 	const struct cmd_info *info;
1801 
1802 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1803 	if (info == NULL) {
1804 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1805 			cmd, get_opcode(cmd, s->ring_id),
1806 			(s->buf_addr_type == PPGTT_BUFFER) ?
1807 			"ppgtt" : "ggtt", s->ring_id, s->workload);
1808 		return -EBADRQC;
1809 	}
1810 
1811 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1812 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1813 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1814 		return 0;
1815 
1816 	return -EBADRQC;
1817 }
1818 
1819 static int perform_bb_shadow(struct parser_exec_state *s)
1820 {
1821 	struct intel_vgpu *vgpu = s->vgpu;
1822 	struct intel_vgpu_shadow_bb *bb;
1823 	unsigned long gma = 0;
1824 	unsigned long bb_size;
1825 	unsigned long bb_end_cmd_offset;
1826 	int ret = 0;
1827 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1828 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1829 	unsigned long start_offset = 0;
1830 
1831 	/* get the start gm address of the batch buffer */
1832 	gma = get_gma_bb_from_cmd(s, 1);
1833 	if (gma == INTEL_GVT_INVALID_ADDR)
1834 		return -EFAULT;
1835 
1836 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1837 	if (ret)
1838 		return ret;
1839 
1840 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1841 	if (!bb)
1842 		return -ENOMEM;
1843 
1844 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1845 
1846 	/* the start_offset stores the batch buffer's start gma's
1847 	 * offset relative to page boundary. so for non-privileged batch
1848 	 * buffer, the shadowed gem object holds exactly the same page
1849 	 * layout as original gem object. This is for the convience of
1850 	 * replacing the whole non-privilged batch buffer page to this
1851 	 * shadowed one in PPGTT at the same gma address. (this replacing
1852 	 * action is not implemented yet now, but may be necessary in
1853 	 * future).
1854 	 * for prileged batch buffer, we just change start gma address to
1855 	 * that of shadowed page.
1856 	 */
1857 	if (bb->ppgtt)
1858 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1859 
1860 	bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv,
1861 					       round_up(bb_size + start_offset,
1862 							PAGE_SIZE));
1863 	if (IS_ERR(bb->obj)) {
1864 		ret = PTR_ERR(bb->obj);
1865 		goto err_free_bb;
1866 	}
1867 
1868 	ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush);
1869 	if (ret)
1870 		goto err_free_obj;
1871 
1872 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1873 	if (IS_ERR(bb->va)) {
1874 		ret = PTR_ERR(bb->va);
1875 		goto err_finish_shmem_access;
1876 	}
1877 
1878 	if (bb->clflush & CLFLUSH_BEFORE) {
1879 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1880 		bb->clflush &= ~CLFLUSH_BEFORE;
1881 	}
1882 
1883 	ret = copy_gma_to_hva(s->vgpu, mm,
1884 			      gma, gma + bb_size,
1885 			      bb->va + start_offset);
1886 	if (ret < 0) {
1887 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1888 		ret = -EFAULT;
1889 		goto err_unmap;
1890 	}
1891 
1892 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1893 	if (ret)
1894 		goto err_unmap;
1895 
1896 	INIT_LIST_HEAD(&bb->list);
1897 	list_add(&bb->list, &s->workload->shadow_bb);
1898 
1899 	bb->accessing = true;
1900 	bb->bb_start_cmd_va = s->ip_va;
1901 
1902 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1903 		bb->bb_offset = s->ip_va - s->rb_va;
1904 	else
1905 		bb->bb_offset = 0;
1906 
1907 	/*
1908 	 * ip_va saves the virtual address of the shadow batch buffer, while
1909 	 * ip_gma saves the graphics address of the original batch buffer.
1910 	 * As the shadow batch buffer is just a copy from the originial one,
1911 	 * it should be right to use shadow batch buffer'va and original batch
1912 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1913 	 * buffer here (too early).
1914 	 */
1915 	s->ip_va = bb->va + start_offset;
1916 	s->ip_gma = gma;
1917 	return 0;
1918 err_unmap:
1919 	i915_gem_object_unpin_map(bb->obj);
1920 err_finish_shmem_access:
1921 	i915_gem_object_finish_access(bb->obj);
1922 err_free_obj:
1923 	i915_gem_object_put(bb->obj);
1924 err_free_bb:
1925 	kfree(bb);
1926 	return ret;
1927 }
1928 
1929 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1930 {
1931 	bool second_level;
1932 	int ret = 0;
1933 	struct intel_vgpu *vgpu = s->vgpu;
1934 
1935 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1936 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1937 		return -EFAULT;
1938 	}
1939 
1940 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1941 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1942 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1943 		return -EFAULT;
1944 	}
1945 
1946 	s->saved_buf_addr_type = s->buf_addr_type;
1947 	addr_type_update_snb(s);
1948 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1949 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1950 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1951 	} else if (second_level) {
1952 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1953 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1954 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1955 	}
1956 
1957 	if (batch_buffer_needs_scan(s)) {
1958 		ret = perform_bb_shadow(s);
1959 		if (ret < 0)
1960 			gvt_vgpu_err("invalid shadow batch buffer\n");
1961 	} else {
1962 		/* emulate a batch buffer end to do return right */
1963 		ret = cmd_handler_mi_batch_buffer_end(s);
1964 		if (ret < 0)
1965 			return ret;
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int mi_noop_index;
1971 
1972 static const struct cmd_info cmd_info[] = {
1973 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1974 
1975 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1976 		0, 1, NULL},
1977 
1978 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1979 		0, 1, cmd_handler_mi_user_interrupt},
1980 
1981 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1982 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1983 
1984 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1985 
1986 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1987 		NULL},
1988 
1989 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1990 		NULL},
1991 
1992 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1993 		NULL},
1994 
1995 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1996 		NULL},
1997 
1998 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1999 		D_ALL, 0, 1, NULL},
2000 
2001 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2002 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2003 		cmd_handler_mi_batch_buffer_end},
2004 
2005 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2006 		0, 1, NULL},
2007 
2008 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2009 		NULL},
2010 
2011 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2012 		D_ALL, 0, 1, NULL},
2013 
2014 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2015 		NULL},
2016 
2017 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2018 		NULL},
2019 
2020 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2021 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2022 
2023 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2024 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2025 
2026 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2027 
2028 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2029 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2030 
2031 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2032 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2033 		NULL, CMD_LEN(0)},
2034 
2035 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2036 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2037 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2038 
2039 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2040 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2041 
2042 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2043 		0, 8, cmd_handler_mi_store_data_index},
2044 
2045 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2046 		D_ALL, 0, 8, cmd_handler_lri},
2047 
2048 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2049 		cmd_handler_mi_update_gtt},
2050 
2051 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2052 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2053 		cmd_handler_srm, CMD_LEN(2)},
2054 
2055 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2056 		cmd_handler_mi_flush_dw},
2057 
2058 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2059 		10, cmd_handler_mi_clflush},
2060 
2061 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2062 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2063 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2064 
2065 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2066 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2067 		cmd_handler_lrm, CMD_LEN(2)},
2068 
2069 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2070 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2071 		cmd_handler_lrr, CMD_LEN(1)},
2072 
2073 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2074 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2075 		8, NULL, CMD_LEN(2)},
2076 
2077 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2078 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2079 
2080 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2081 		ADDR_FIX_1(2), 8, NULL},
2082 
2083 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2084 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2085 
2086 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2087 		8, cmd_handler_mi_op_2f},
2088 
2089 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2090 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2091 		cmd_handler_mi_batch_buffer_start},
2092 
2093 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2094 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2095 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2096 
2097 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2098 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2099 
2100 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2101 		ADDR_FIX_2(4, 7), 8, NULL},
2102 
2103 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2104 		0, 8, NULL},
2105 
2106 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2107 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2108 
2109 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2110 
2111 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2112 		0, 8, NULL},
2113 
2114 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2115 		ADDR_FIX_1(3), 8, NULL},
2116 
2117 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2118 		D_ALL, 0, 8, NULL},
2119 
2120 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2121 		ADDR_FIX_1(4), 8, NULL},
2122 
2123 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2124 		ADDR_FIX_2(4, 5), 8, NULL},
2125 
2126 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2127 		ADDR_FIX_1(4), 8, NULL},
2128 
2129 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2130 		ADDR_FIX_2(4, 7), 8, NULL},
2131 
2132 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2133 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2134 
2135 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2136 
2137 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2138 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2139 
2140 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2141 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2142 
2143 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2144 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2145 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2146 
2147 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2148 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2149 
2150 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2151 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2152 
2153 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2154 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2155 
2156 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2157 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2158 
2159 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2160 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2161 
2162 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2163 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2164 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2165 
2166 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2167 		ADDR_FIX_2(4, 5), 8, NULL},
2168 
2169 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2170 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2171 
2172 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2173 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2174 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2175 
2176 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2177 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2178 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2179 
2180 	{"3DSTATE_BLEND_STATE_POINTERS",
2181 		OP_3DSTATE_BLEND_STATE_POINTERS,
2182 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2183 
2184 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2185 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2186 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2187 
2188 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2189 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2190 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2191 
2192 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2193 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2194 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2195 
2196 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2197 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2198 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2199 
2200 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2201 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2202 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203 
2204 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2205 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2206 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2207 
2208 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2209 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2210 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2211 
2212 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2213 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2214 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2215 
2216 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2217 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2218 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2219 
2220 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2221 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2222 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2223 
2224 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2225 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2226 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2227 
2228 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2229 		0, 8, NULL},
2230 
2231 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2232 		0, 8, NULL},
2233 
2234 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2235 		0, 8, NULL},
2236 
2237 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2238 		0, 8, NULL},
2239 
2240 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2241 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242 
2243 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2244 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245 
2246 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2247 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248 
2249 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2250 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2251 
2252 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2253 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254 
2255 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2256 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2257 
2258 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2259 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2260 
2261 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2262 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263 
2264 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2265 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266 
2267 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2268 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2271 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272 
2273 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2274 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2277 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278 
2279 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2280 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 
2282 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2283 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284 
2285 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2286 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2287 
2288 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2289 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2290 
2291 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2292 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2293 
2294 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2295 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2296 
2297 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2298 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2299 
2300 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2301 		D_BDW_PLUS, 0, 8, NULL},
2302 
2303 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2304 		NULL},
2305 
2306 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2307 		D_BDW_PLUS, 0, 8, NULL},
2308 
2309 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2310 		D_BDW_PLUS, 0, 8, NULL},
2311 
2312 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2313 		8, NULL},
2314 
2315 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2316 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2317 
2318 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2319 		8, NULL},
2320 
2321 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2322 		NULL},
2323 
2324 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2325 		NULL},
2326 
2327 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2328 		NULL},
2329 
2330 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2331 		D_BDW_PLUS, 0, 8, NULL},
2332 
2333 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2334 		R_RCS, D_ALL, 0, 8, NULL},
2335 
2336 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2337 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2338 
2339 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2340 		R_RCS, D_ALL, 0, 1, NULL},
2341 
2342 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343 
2344 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2345 		R_RCS, D_ALL, 0, 8, NULL},
2346 
2347 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2348 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2349 
2350 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2351 
2352 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2353 
2354 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2355 
2356 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2357 		D_BDW_PLUS, 0, 8, NULL},
2358 
2359 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2360 		D_BDW_PLUS, 0, 8, NULL},
2361 
2362 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2363 		D_ALL, 0, 8, NULL},
2364 
2365 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2366 		D_BDW_PLUS, 0, 8, NULL},
2367 
2368 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2369 		D_BDW_PLUS, 0, 8, NULL},
2370 
2371 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2372 
2373 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2374 
2375 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2376 
2377 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2378 		D_ALL, 0, 8, NULL},
2379 
2380 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2381 
2382 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2383 
2384 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2385 		R_RCS, D_ALL, 0, 8, NULL},
2386 
2387 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2388 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2389 
2390 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2391 		0, 8, NULL},
2392 
2393 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2394 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2395 
2396 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2397 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2398 
2399 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2400 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2401 
2402 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2403 		D_ALL, 0, 8, NULL},
2404 
2405 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2406 		D_ALL, 0, 8, NULL},
2407 
2408 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2409 		D_ALL, 0, 8, NULL},
2410 
2411 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2412 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2413 
2414 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2415 		D_BDW_PLUS, 0, 8, NULL},
2416 
2417 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2418 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2419 
2420 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2421 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2422 
2423 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2424 		R_RCS, D_ALL, 0, 8, NULL},
2425 
2426 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2427 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2428 
2429 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2430 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2431 
2432 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2433 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2434 
2435 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2436 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437 
2438 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2439 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440 
2441 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2442 		R_RCS, D_ALL, 0, 8, NULL},
2443 
2444 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2445 		D_ALL, 0, 9, NULL},
2446 
2447 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2448 		ADDR_FIX_2(2, 4), 8, NULL},
2449 
2450 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2451 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2452 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2453 
2454 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2455 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2456 
2457 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2458 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2459 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2460 
2461 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2462 		D_BDW_PLUS, 0, 8, NULL},
2463 
2464 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2465 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2466 
2467 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2468 
2469 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2470 		1, NULL},
2471 
2472 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2473 		ADDR_FIX_1(1), 8, NULL},
2474 
2475 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2476 
2477 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2478 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2479 
2480 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2481 		ADDR_FIX_1(1), 8, NULL},
2482 
2483 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2484 
2485 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2486 
2487 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2488 		0, 8, NULL},
2489 
2490 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2491 		D_SKL_PLUS, 0, 8, NULL},
2492 
2493 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2494 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2495 
2496 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2497 		0, 16, NULL},
2498 
2499 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2500 		0, 16, NULL},
2501 
2502 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2503 		0, 16, NULL},
2504 
2505 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2506 
2507 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2508 		0, 16, NULL},
2509 
2510 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2511 		0, 16, NULL},
2512 
2513 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2514 		0, 16, NULL},
2515 
2516 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2517 		0, 8, NULL},
2518 
2519 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2520 		NULL},
2521 
2522 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2523 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2524 
2525 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2526 		R_VCS, D_ALL, 0, 12, NULL},
2527 
2528 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2529 		R_VCS, D_ALL, 0, 12, NULL},
2530 
2531 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2532 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2533 
2534 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2535 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2536 
2537 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2538 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2539 
2540 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2541 
2542 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2543 		R_VCS, D_ALL, 0, 12, NULL},
2544 
2545 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2546 		R_VCS, D_ALL, 0, 12, NULL},
2547 
2548 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2549 		R_VCS, D_ALL, 0, 12, NULL},
2550 
2551 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2552 		R_VCS, D_ALL, 0, 12, NULL},
2553 
2554 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2555 		R_VCS, D_ALL, 0, 12, NULL},
2556 
2557 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2558 		R_VCS, D_ALL, 0, 12, NULL},
2559 
2560 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2561 		R_VCS, D_ALL, 0, 6, NULL},
2562 
2563 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2564 		R_VCS, D_ALL, 0, 12, NULL},
2565 
2566 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2567 		R_VCS, D_ALL, 0, 12, NULL},
2568 
2569 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2570 		R_VCS, D_ALL, 0, 12, NULL},
2571 
2572 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2573 		R_VCS, D_ALL, 0, 12, NULL},
2574 
2575 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2576 		R_VCS, D_ALL, 0, 12, NULL},
2577 
2578 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2579 		R_VCS, D_ALL, 0, 12, NULL},
2580 
2581 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2582 		R_VCS, D_ALL, 0, 12, NULL},
2583 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2584 		R_VCS, D_ALL, 0, 12, NULL},
2585 
2586 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2587 		R_VCS, D_ALL, 0, 12, NULL},
2588 
2589 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2590 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2591 
2592 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2593 		R_VCS, D_ALL, 0, 12, NULL},
2594 
2595 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2596 		R_VCS, D_ALL, 0, 12, NULL},
2597 
2598 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2599 		R_VCS, D_ALL, 0, 12, NULL},
2600 
2601 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2602 		R_VCS, D_ALL, 0, 12, NULL},
2603 
2604 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2605 		R_VCS, D_ALL, 0, 12, NULL},
2606 
2607 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2608 		R_VCS, D_ALL, 0, 12, NULL},
2609 
2610 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2611 		R_VCS, D_ALL, 0, 12, NULL},
2612 
2613 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2614 		R_VCS, D_ALL, 0, 12, NULL},
2615 
2616 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2617 		R_VCS, D_ALL, 0, 12, NULL},
2618 
2619 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2620 		R_VCS, D_ALL, 0, 12, NULL},
2621 
2622 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2623 		R_VCS, D_ALL, 0, 12, NULL},
2624 
2625 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2626 		0, 16, NULL},
2627 
2628 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2629 
2630 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2631 
2632 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2633 		R_VCS, D_ALL, 0, 12, NULL},
2634 
2635 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2636 		R_VCS, D_ALL, 0, 12, NULL},
2637 
2638 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2639 		R_VCS, D_ALL, 0, 12, NULL},
2640 
2641 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2642 
2643 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2644 		0, 12, NULL},
2645 
2646 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2647 		0, 12, NULL},
2648 };
2649 
2650 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2651 {
2652 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2653 }
2654 
2655 /* call the cmd handler, and advance ip */
2656 static int cmd_parser_exec(struct parser_exec_state *s)
2657 {
2658 	struct intel_vgpu *vgpu = s->vgpu;
2659 	const struct cmd_info *info;
2660 	u32 cmd;
2661 	int ret = 0;
2662 
2663 	cmd = cmd_val(s, 0);
2664 
2665 	/* fastpath for MI_NOOP */
2666 	if (cmd == MI_NOOP)
2667 		info = &cmd_info[mi_noop_index];
2668 	else
2669 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2670 
2671 	if (info == NULL) {
2672 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2673 				cmd, get_opcode(cmd, s->ring_id),
2674 				(s->buf_addr_type == PPGTT_BUFFER) ?
2675 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2676 		return -EBADRQC;
2677 	}
2678 
2679 	s->info = info;
2680 
2681 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2682 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2683 			  s->workload, info->name);
2684 
2685 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2686 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2687 			info->valid_len);
2688 		if (ret)
2689 			return ret;
2690 	}
2691 
2692 	if (info->handler) {
2693 		ret = info->handler(s);
2694 		if (ret < 0) {
2695 			gvt_vgpu_err("%s handler error\n", info->name);
2696 			return ret;
2697 		}
2698 	}
2699 
2700 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2701 		ret = cmd_advance_default(s);
2702 		if (ret) {
2703 			gvt_vgpu_err("%s IP advance error\n", info->name);
2704 			return ret;
2705 		}
2706 	}
2707 	return 0;
2708 }
2709 
2710 static inline bool gma_out_of_range(unsigned long gma,
2711 		unsigned long gma_head, unsigned int gma_tail)
2712 {
2713 	if (gma_tail >= gma_head)
2714 		return (gma < gma_head) || (gma > gma_tail);
2715 	else
2716 		return (gma > gma_tail) && (gma < gma_head);
2717 }
2718 
2719 /* Keep the consistent return type, e.g EBADRQC for unknown
2720  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2721  * works as the input of VM healthy status.
2722  */
2723 static int command_scan(struct parser_exec_state *s,
2724 		unsigned long rb_head, unsigned long rb_tail,
2725 		unsigned long rb_start, unsigned long rb_len)
2726 {
2727 
2728 	unsigned long gma_head, gma_tail, gma_bottom;
2729 	int ret = 0;
2730 	struct intel_vgpu *vgpu = s->vgpu;
2731 
2732 	gma_head = rb_start + rb_head;
2733 	gma_tail = rb_start + rb_tail;
2734 	gma_bottom = rb_start +  rb_len;
2735 
2736 	while (s->ip_gma != gma_tail) {
2737 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2738 			if (!(s->ip_gma >= rb_start) ||
2739 				!(s->ip_gma < gma_bottom)) {
2740 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2741 					"(base:0x%lx, bottom: 0x%lx)\n",
2742 					s->ip_gma, rb_start,
2743 					gma_bottom);
2744 				parser_exec_state_dump(s);
2745 				return -EFAULT;
2746 			}
2747 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2748 				gvt_vgpu_err("ip_gma %lx out of range."
2749 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2750 					s->ip_gma, rb_start,
2751 					rb_head, rb_tail);
2752 				parser_exec_state_dump(s);
2753 				break;
2754 			}
2755 		}
2756 		ret = cmd_parser_exec(s);
2757 		if (ret) {
2758 			gvt_vgpu_err("cmd parser error\n");
2759 			parser_exec_state_dump(s);
2760 			break;
2761 		}
2762 	}
2763 
2764 	return ret;
2765 }
2766 
2767 static int scan_workload(struct intel_vgpu_workload *workload)
2768 {
2769 	unsigned long gma_head, gma_tail, gma_bottom;
2770 	struct parser_exec_state s;
2771 	int ret = 0;
2772 
2773 	/* ring base is page aligned */
2774 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2775 		return -EINVAL;
2776 
2777 	gma_head = workload->rb_start + workload->rb_head;
2778 	gma_tail = workload->rb_start + workload->rb_tail;
2779 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2780 
2781 	s.buf_type = RING_BUFFER_INSTRUCTION;
2782 	s.buf_addr_type = GTT_BUFFER;
2783 	s.vgpu = workload->vgpu;
2784 	s.ring_id = workload->ring_id;
2785 	s.ring_start = workload->rb_start;
2786 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2787 	s.ring_head = gma_head;
2788 	s.ring_tail = gma_tail;
2789 	s.rb_va = workload->shadow_ring_buffer_va;
2790 	s.workload = workload;
2791 	s.is_ctx_wa = false;
2792 
2793 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2794 		gma_head == gma_tail)
2795 		return 0;
2796 
2797 	ret = ip_gma_set(&s, gma_head);
2798 	if (ret)
2799 		goto out;
2800 
2801 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2802 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2803 
2804 out:
2805 	return ret;
2806 }
2807 
2808 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2809 {
2810 
2811 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2812 	struct parser_exec_state s;
2813 	int ret = 0;
2814 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2815 				struct intel_vgpu_workload,
2816 				wa_ctx);
2817 
2818 	/* ring base is page aligned */
2819 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2820 					I915_GTT_PAGE_SIZE)))
2821 		return -EINVAL;
2822 
2823 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2824 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2825 			PAGE_SIZE);
2826 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2827 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2828 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2829 
2830 	s.buf_type = RING_BUFFER_INSTRUCTION;
2831 	s.buf_addr_type = GTT_BUFFER;
2832 	s.vgpu = workload->vgpu;
2833 	s.ring_id = workload->ring_id;
2834 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2835 	s.ring_size = ring_size;
2836 	s.ring_head = gma_head;
2837 	s.ring_tail = gma_tail;
2838 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2839 	s.workload = workload;
2840 	s.is_ctx_wa = true;
2841 
2842 	ret = ip_gma_set(&s, gma_head);
2843 	if (ret)
2844 		goto out;
2845 
2846 	ret = command_scan(&s, 0, ring_tail,
2847 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2848 out:
2849 	return ret;
2850 }
2851 
2852 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2853 {
2854 	struct intel_vgpu *vgpu = workload->vgpu;
2855 	struct intel_vgpu_submission *s = &vgpu->submission;
2856 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2857 	void *shadow_ring_buffer_va;
2858 	int ring_id = workload->ring_id;
2859 	int ret;
2860 
2861 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2862 
2863 	/* calculate workload ring buffer size */
2864 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2865 			workload->rb_head) % guest_rb_size;
2866 
2867 	gma_head = workload->rb_start + workload->rb_head;
2868 	gma_tail = workload->rb_start + workload->rb_tail;
2869 	gma_top = workload->rb_start + guest_rb_size;
2870 
2871 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2872 		void *p;
2873 
2874 		/* realloc the new ring buffer if needed */
2875 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2876 				GFP_KERNEL);
2877 		if (!p) {
2878 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2879 			return -ENOMEM;
2880 		}
2881 		s->ring_scan_buffer[ring_id] = p;
2882 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2883 	}
2884 
2885 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2886 
2887 	/* get shadow ring buffer va */
2888 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2889 
2890 	/* head > tail --> copy head <-> top */
2891 	if (gma_head > gma_tail) {
2892 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2893 				      gma_head, gma_top, shadow_ring_buffer_va);
2894 		if (ret < 0) {
2895 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2896 			return ret;
2897 		}
2898 		shadow_ring_buffer_va += ret;
2899 		gma_head = workload->rb_start;
2900 	}
2901 
2902 	/* copy head or start <-> tail */
2903 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2904 				shadow_ring_buffer_va);
2905 	if (ret < 0) {
2906 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2907 		return ret;
2908 	}
2909 	return 0;
2910 }
2911 
2912 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2913 {
2914 	int ret;
2915 	struct intel_vgpu *vgpu = workload->vgpu;
2916 
2917 	ret = shadow_workload_ring_buffer(workload);
2918 	if (ret) {
2919 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2920 		return ret;
2921 	}
2922 
2923 	ret = scan_workload(workload);
2924 	if (ret) {
2925 		gvt_vgpu_err("scan workload error\n");
2926 		return ret;
2927 	}
2928 	return 0;
2929 }
2930 
2931 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2932 {
2933 	int ctx_size = wa_ctx->indirect_ctx.size;
2934 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2935 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2936 					struct intel_vgpu_workload,
2937 					wa_ctx);
2938 	struct intel_vgpu *vgpu = workload->vgpu;
2939 	struct drm_i915_gem_object *obj;
2940 	int ret = 0;
2941 	void *map;
2942 
2943 	obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv,
2944 					   roundup(ctx_size + CACHELINE_BYTES,
2945 						   PAGE_SIZE));
2946 	if (IS_ERR(obj))
2947 		return PTR_ERR(obj);
2948 
2949 	/* get the va of the shadow batch buffer */
2950 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2951 	if (IS_ERR(map)) {
2952 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2953 		ret = PTR_ERR(map);
2954 		goto put_obj;
2955 	}
2956 
2957 	i915_gem_object_lock(obj);
2958 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2959 	i915_gem_object_unlock(obj);
2960 	if (ret) {
2961 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2962 		goto unmap_src;
2963 	}
2964 
2965 	ret = copy_gma_to_hva(workload->vgpu,
2966 				workload->vgpu->gtt.ggtt_mm,
2967 				guest_gma, guest_gma + ctx_size,
2968 				map);
2969 	if (ret < 0) {
2970 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2971 		goto unmap_src;
2972 	}
2973 
2974 	wa_ctx->indirect_ctx.obj = obj;
2975 	wa_ctx->indirect_ctx.shadow_va = map;
2976 	return 0;
2977 
2978 unmap_src:
2979 	i915_gem_object_unpin_map(obj);
2980 put_obj:
2981 	i915_gem_object_put(obj);
2982 	return ret;
2983 }
2984 
2985 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2986 {
2987 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2988 	unsigned char *bb_start_sva;
2989 
2990 	if (!wa_ctx->per_ctx.valid)
2991 		return 0;
2992 
2993 	per_ctx_start[0] = 0x18800001;
2994 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2995 
2996 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2997 				wa_ctx->indirect_ctx.size;
2998 
2999 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3000 
3001 	return 0;
3002 }
3003 
3004 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3005 {
3006 	int ret;
3007 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3008 					struct intel_vgpu_workload,
3009 					wa_ctx);
3010 	struct intel_vgpu *vgpu = workload->vgpu;
3011 
3012 	if (wa_ctx->indirect_ctx.size == 0)
3013 		return 0;
3014 
3015 	ret = shadow_indirect_ctx(wa_ctx);
3016 	if (ret) {
3017 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3018 		return ret;
3019 	}
3020 
3021 	combine_wa_ctx(wa_ctx);
3022 
3023 	ret = scan_wa_ctx(wa_ctx);
3024 	if (ret) {
3025 		gvt_vgpu_err("scan wa ctx error\n");
3026 		return ret;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
3033 		unsigned int opcode, unsigned long rings)
3034 {
3035 	const struct cmd_info *info = NULL;
3036 	unsigned int ring;
3037 
3038 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
3039 		info = find_cmd_entry(gvt, opcode, ring);
3040 		if (info)
3041 			break;
3042 	}
3043 	return info;
3044 }
3045 
3046 static int init_cmd_table(struct intel_gvt *gvt)
3047 {
3048 	int i;
3049 	struct cmd_entry *e;
3050 	const struct cmd_info *info;
3051 	unsigned int gen_type;
3052 
3053 	gen_type = intel_gvt_get_device_type(gvt);
3054 
3055 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3056 		if (!(cmd_info[i].devices & gen_type))
3057 			continue;
3058 
3059 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3060 		if (!e)
3061 			return -ENOMEM;
3062 
3063 		e->info = &cmd_info[i];
3064 		info = find_cmd_entry_any_ring(gvt,
3065 				e->info->opcode, e->info->rings);
3066 		if (info) {
3067 			gvt_err("%s %s duplicated\n", e->info->name,
3068 					info->name);
3069 			kfree(e);
3070 			return -EEXIST;
3071 		}
3072 		if (cmd_info[i].opcode == OP_MI_NOOP)
3073 			mi_noop_index = i;
3074 
3075 		INIT_HLIST_NODE(&e->hlist);
3076 		add_cmd_entry(gvt, e);
3077 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3078 				e->info->name, e->info->opcode, e->info->flag,
3079 				e->info->devices, e->info->rings);
3080 	}
3081 	return 0;
3082 }
3083 
3084 static void clean_cmd_table(struct intel_gvt *gvt)
3085 {
3086 	struct hlist_node *tmp;
3087 	struct cmd_entry *e;
3088 	int i;
3089 
3090 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3091 		kfree(e);
3092 
3093 	hash_init(gvt->cmd_table);
3094 }
3095 
3096 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3097 {
3098 	clean_cmd_table(gvt);
3099 }
3100 
3101 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3102 {
3103 	int ret;
3104 
3105 	ret = init_cmd_table(gvt);
3106 	if (ret) {
3107 		intel_gvt_clean_cmd_parser(gvt);
3108 		return ret;
3109 	}
3110 	return 0;
3111 }
3112