1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_ring.h" 41 #include "gvt.h" 42 #include "i915_pvinfo.h" 43 #include "trace.h" 44 45 #define INVALID_OP (~0U) 46 47 #define OP_LEN_MI 9 48 #define OP_LEN_2D 10 49 #define OP_LEN_3D_MEDIA 16 50 #define OP_LEN_MFX_VC 16 51 #define OP_LEN_VEBOX 16 52 53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 54 55 struct sub_op_bits { 56 int hi; 57 int low; 58 }; 59 struct decode_info { 60 const char *name; 61 int op_len; 62 int nr_sub_op; 63 const struct sub_op_bits *sub_op; 64 }; 65 66 #define MAX_CMD_BUDGET 0x7fffffff 67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 70 71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 74 75 /* Render Command Map */ 76 77 /* MI_* command Opcode (28:23) */ 78 #define OP_MI_NOOP 0x0 79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 80 #define OP_MI_USER_INTERRUPT 0x2 81 #define OP_MI_WAIT_FOR_EVENT 0x3 82 #define OP_MI_FLUSH 0x4 83 #define OP_MI_ARB_CHECK 0x5 84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 85 #define OP_MI_REPORT_HEAD 0x7 86 #define OP_MI_ARB_ON_OFF 0x8 87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 88 #define OP_MI_BATCH_BUFFER_END 0xA 89 #define OP_MI_SUSPEND_FLUSH 0xB 90 #define OP_MI_PREDICATE 0xC /* IVB+ */ 91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 92 #define OP_MI_SET_APPID 0xE /* IVB+ */ 93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 95 #define OP_MI_DISPLAY_FLIP 0x14 96 #define OP_MI_SEMAPHORE_MBOX 0x16 97 #define OP_MI_SET_CONTEXT 0x18 98 #define OP_MI_MATH 0x1A 99 #define OP_MI_URB_CLEAR 0x19 100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 102 103 #define OP_MI_STORE_DATA_IMM 0x20 104 #define OP_MI_STORE_DATA_INDEX 0x21 105 #define OP_MI_LOAD_REGISTER_IMM 0x22 106 #define OP_MI_UPDATE_GTT 0x23 107 #define OP_MI_STORE_REGISTER_MEM 0x24 108 #define OP_MI_FLUSH_DW 0x26 109 #define OP_MI_CLFLUSH 0x27 110 #define OP_MI_REPORT_PERF_COUNT 0x28 111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 116 #define OP_MI_2E 0x2E /* BDW+ */ 117 #define OP_MI_2F 0x2F /* BDW+ */ 118 #define OP_MI_BATCH_BUFFER_START 0x31 119 120 /* Bit definition for dword 0 */ 121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 122 123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 124 125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 129 130 /* 2D command: Opcode (28:22) */ 131 #define OP_2D(x) ((2<<7) | x) 132 133 #define OP_XY_SETUP_BLT OP_2D(0x1) 134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 136 #define OP_XY_PIXEL_BLT OP_2D(0x24) 137 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 138 #define OP_XY_TEXT_BLT OP_2D(0x26) 139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 140 #define OP_XY_COLOR_BLT OP_2D(0x50) 141 #define OP_XY_PAT_BLT OP_2D(0x51) 142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 145 #define OP_XY_FULL_BLT OP_2D(0x55) 146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 157 158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 161 162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 163 164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 167 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 168 169 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 170 171 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 172 173 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 174 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 176 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 177 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 178 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 179 180 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 181 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 182 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 183 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 184 185 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 186 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 187 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 188 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 189 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 190 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 191 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 192 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 193 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 194 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 196 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 197 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 198 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 199 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 200 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 201 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 202 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 203 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 204 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 205 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 206 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 207 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 208 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 209 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 210 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 211 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 212 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 215 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 227 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 228 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 229 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 230 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 233 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 234 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 235 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 239 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 240 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 241 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 251 252 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 253 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 254 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 255 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 256 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 257 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 258 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 259 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 260 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 261 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 262 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 263 264 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 266 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 267 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 270 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 271 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 272 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 274 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 275 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 277 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 278 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 284 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 285 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 287 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 289 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 290 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 291 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 292 293 /* VCCP Command Parser */ 294 295 /* 296 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 297 * git://anongit.freedesktop.org/vaapi/intel-driver 298 * src/i965_defines.h 299 * 300 */ 301 302 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 303 (3 << 13 | \ 304 (pipeline) << 11 | \ 305 (op) << 8 | \ 306 (sub_opa) << 5 | \ 307 (sub_opb)) 308 309 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 310 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 311 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 314 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 315 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 316 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 317 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 318 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 319 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 320 321 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 322 323 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 324 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 325 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 326 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 327 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 328 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 330 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 331 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 332 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 333 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 334 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 335 336 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 337 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 338 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 339 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 340 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 341 342 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 343 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 344 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 345 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 346 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 347 348 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 349 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 350 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 351 352 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 353 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 354 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 355 356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 357 (3 << 13 | \ 358 (pipeline) << 11 | \ 359 (op) << 8 | \ 360 (sub_opa) << 5 | \ 361 (sub_opb)) 362 363 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 364 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 365 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 366 367 struct parser_exec_state; 368 369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 370 371 #define GVT_CMD_HASH_BITS 7 372 373 /* which DWords need address fix */ 374 #define ADDR_FIX_1(x1) (1 << (x1)) 375 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 376 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 377 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 378 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 379 380 #define DWORD_FIELD(dword, end, start) \ 381 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 382 383 #define OP_LENGTH_BIAS 2 384 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 385 386 static int gvt_check_valid_cmd_length(int len, int valid_len) 387 { 388 if (valid_len != len) { 389 gvt_err("len is not valid: len=%u valid_len=%u\n", 390 len, valid_len); 391 return -EFAULT; 392 } 393 return 0; 394 } 395 396 struct cmd_info { 397 const char *name; 398 u32 opcode; 399 400 #define F_LEN_MASK 3U 401 #define F_LEN_CONST 1U 402 #define F_LEN_VAR 0U 403 /* value is const although LEN maybe variable */ 404 #define F_LEN_VAR_FIXED (1<<1) 405 406 /* 407 * command has its own ip advance logic 408 * e.g. MI_BATCH_START, MI_BATCH_END 409 */ 410 #define F_IP_ADVANCE_CUSTOM (1<<2) 411 u32 flag; 412 413 #define R_RCS BIT(RCS0) 414 #define R_VCS1 BIT(VCS0) 415 #define R_VCS2 BIT(VCS1) 416 #define R_VCS (R_VCS1 | R_VCS2) 417 #define R_BCS BIT(BCS0) 418 #define R_VECS BIT(VECS0) 419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 420 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 421 u16 rings; 422 423 /* devices that support this cmd: SNB/IVB/HSW/... */ 424 u16 devices; 425 426 /* which DWords are address that need fix up. 427 * bit 0 means a 32-bit non address operand in command 428 * bit 1 means address operand, which could be 32-bit 429 * or 64-bit depending on different architectures.( 430 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 431 * No matter the address length, each address only takes 432 * one bit in the bitmap. 433 */ 434 u16 addr_bitmap; 435 436 /* flag == F_LEN_CONST : command length 437 * flag == F_LEN_VAR : length bias bits 438 * Note: length is in DWord 439 */ 440 u32 len; 441 442 parser_cmd_handler handler; 443 444 /* valid length in DWord */ 445 u32 valid_len; 446 }; 447 448 struct cmd_entry { 449 struct hlist_node hlist; 450 const struct cmd_info *info; 451 }; 452 453 enum { 454 RING_BUFFER_INSTRUCTION, 455 BATCH_BUFFER_INSTRUCTION, 456 BATCH_BUFFER_2ND_LEVEL, 457 }; 458 459 enum { 460 GTT_BUFFER, 461 PPGTT_BUFFER 462 }; 463 464 struct parser_exec_state { 465 struct intel_vgpu *vgpu; 466 const struct intel_engine_cs *engine; 467 468 int buf_type; 469 470 /* batch buffer address type */ 471 int buf_addr_type; 472 473 /* graphics memory address of ring buffer start */ 474 unsigned long ring_start; 475 unsigned long ring_size; 476 unsigned long ring_head; 477 unsigned long ring_tail; 478 479 /* instruction graphics memory address */ 480 unsigned long ip_gma; 481 482 /* mapped va of the instr_gma */ 483 void *ip_va; 484 void *rb_va; 485 486 void *ret_bb_va; 487 /* next instruction when return from batch buffer to ring buffer */ 488 unsigned long ret_ip_gma_ring; 489 490 /* next instruction when return from 2nd batch buffer to batch buffer */ 491 unsigned long ret_ip_gma_bb; 492 493 /* batch buffer address type (GTT or PPGTT) 494 * used when ret from 2nd level batch buffer 495 */ 496 int saved_buf_addr_type; 497 bool is_ctx_wa; 498 499 const struct cmd_info *info; 500 501 struct intel_vgpu_workload *workload; 502 }; 503 504 #define gmadr_dw_number(s) \ 505 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 506 507 static unsigned long bypass_scan_mask = 0; 508 509 /* ring ALL, type = 0 */ 510 static const struct sub_op_bits sub_op_mi[] = { 511 {31, 29}, 512 {28, 23}, 513 }; 514 515 static const struct decode_info decode_info_mi = { 516 "MI", 517 OP_LEN_MI, 518 ARRAY_SIZE(sub_op_mi), 519 sub_op_mi, 520 }; 521 522 /* ring RCS, command type 2 */ 523 static const struct sub_op_bits sub_op_2d[] = { 524 {31, 29}, 525 {28, 22}, 526 }; 527 528 static const struct decode_info decode_info_2d = { 529 "2D", 530 OP_LEN_2D, 531 ARRAY_SIZE(sub_op_2d), 532 sub_op_2d, 533 }; 534 535 /* ring RCS, command type 3 */ 536 static const struct sub_op_bits sub_op_3d_media[] = { 537 {31, 29}, 538 {28, 27}, 539 {26, 24}, 540 {23, 16}, 541 }; 542 543 static const struct decode_info decode_info_3d_media = { 544 "3D_Media", 545 OP_LEN_3D_MEDIA, 546 ARRAY_SIZE(sub_op_3d_media), 547 sub_op_3d_media, 548 }; 549 550 /* ring VCS, command type 3 */ 551 static const struct sub_op_bits sub_op_mfx_vc[] = { 552 {31, 29}, 553 {28, 27}, 554 {26, 24}, 555 {23, 21}, 556 {20, 16}, 557 }; 558 559 static const struct decode_info decode_info_mfx_vc = { 560 "MFX_VC", 561 OP_LEN_MFX_VC, 562 ARRAY_SIZE(sub_op_mfx_vc), 563 sub_op_mfx_vc, 564 }; 565 566 /* ring VECS, command type 3 */ 567 static const struct sub_op_bits sub_op_vebox[] = { 568 {31, 29}, 569 {28, 27}, 570 {26, 24}, 571 {23, 21}, 572 {20, 16}, 573 }; 574 575 static const struct decode_info decode_info_vebox = { 576 "VEBOX", 577 OP_LEN_VEBOX, 578 ARRAY_SIZE(sub_op_vebox), 579 sub_op_vebox, 580 }; 581 582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 583 [RCS0] = { 584 &decode_info_mi, 585 NULL, 586 NULL, 587 &decode_info_3d_media, 588 NULL, 589 NULL, 590 NULL, 591 NULL, 592 }, 593 594 [VCS0] = { 595 &decode_info_mi, 596 NULL, 597 NULL, 598 &decode_info_mfx_vc, 599 NULL, 600 NULL, 601 NULL, 602 NULL, 603 }, 604 605 [BCS0] = { 606 &decode_info_mi, 607 NULL, 608 &decode_info_2d, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 }, 615 616 [VECS0] = { 617 &decode_info_mi, 618 NULL, 619 NULL, 620 &decode_info_vebox, 621 NULL, 622 NULL, 623 NULL, 624 NULL, 625 }, 626 627 [VCS1] = { 628 &decode_info_mi, 629 NULL, 630 NULL, 631 &decode_info_mfx_vc, 632 NULL, 633 NULL, 634 NULL, 635 NULL, 636 }, 637 }; 638 639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 640 { 641 const struct decode_info *d_info; 642 643 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 644 if (d_info == NULL) 645 return INVALID_OP; 646 647 return cmd >> (32 - d_info->op_len); 648 } 649 650 static inline const struct cmd_info * 651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 652 const struct intel_engine_cs *engine) 653 { 654 struct cmd_entry *e; 655 656 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 657 if (opcode == e->info->opcode && 658 e->info->rings & engine->mask) 659 return e->info; 660 } 661 return NULL; 662 } 663 664 static inline const struct cmd_info * 665 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 666 const struct intel_engine_cs *engine) 667 { 668 u32 opcode; 669 670 opcode = get_opcode(cmd, engine); 671 if (opcode == INVALID_OP) 672 return NULL; 673 674 return find_cmd_entry(gvt, opcode, engine); 675 } 676 677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 678 { 679 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 680 } 681 682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 683 { 684 const struct decode_info *d_info; 685 int i; 686 687 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 688 if (d_info == NULL) 689 return; 690 691 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 692 cmd >> (32 - d_info->op_len), d_info->name); 693 694 for (i = 0; i < d_info->nr_sub_op; i++) 695 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 696 d_info->sub_op[i].low)); 697 698 pr_err("\n"); 699 } 700 701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 702 { 703 return s->ip_va + (index << 2); 704 } 705 706 static inline u32 cmd_val(struct parser_exec_state *s, int index) 707 { 708 return *cmd_ptr(s, index); 709 } 710 711 static void parser_exec_state_dump(struct parser_exec_state *s) 712 { 713 int cnt = 0; 714 int i; 715 716 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 717 " ring_head(%08lx) ring_tail(%08lx)\n", 718 s->vgpu->id, s->engine->name, 719 s->ring_start, s->ring_start + s->ring_size, 720 s->ring_head, s->ring_tail); 721 722 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 723 s->buf_type == RING_BUFFER_INSTRUCTION ? 724 "RING_BUFFER" : "BATCH_BUFFER", 725 s->buf_addr_type == GTT_BUFFER ? 726 "GTT" : "PPGTT", s->ip_gma); 727 728 if (s->ip_va == NULL) { 729 gvt_dbg_cmd(" ip_va(NULL)"); 730 return; 731 } 732 733 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 734 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 735 cmd_val(s, 2), cmd_val(s, 3)); 736 737 print_opcode(cmd_val(s, 0), s->engine); 738 739 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 740 741 while (cnt < 1024) { 742 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 743 for (i = 0; i < 8; i++) 744 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 745 gvt_dbg_cmd("\n"); 746 747 s->ip_va += 8 * sizeof(u32); 748 cnt += 8; 749 } 750 } 751 752 static inline void update_ip_va(struct parser_exec_state *s) 753 { 754 unsigned long len = 0; 755 756 if (WARN_ON(s->ring_head == s->ring_tail)) 757 return; 758 759 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 760 unsigned long ring_top = s->ring_start + s->ring_size; 761 762 if (s->ring_head > s->ring_tail) { 763 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 764 len = (s->ip_gma - s->ring_head); 765 else if (s->ip_gma >= s->ring_start && 766 s->ip_gma <= s->ring_tail) 767 len = (ring_top - s->ring_head) + 768 (s->ip_gma - s->ring_start); 769 } else 770 len = (s->ip_gma - s->ring_head); 771 772 s->ip_va = s->rb_va + len; 773 } else {/* shadow batch buffer */ 774 s->ip_va = s->ret_bb_va; 775 } 776 } 777 778 static inline int ip_gma_set(struct parser_exec_state *s, 779 unsigned long ip_gma) 780 { 781 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 782 783 s->ip_gma = ip_gma; 784 update_ip_va(s); 785 return 0; 786 } 787 788 static inline int ip_gma_advance(struct parser_exec_state *s, 789 unsigned int dw_len) 790 { 791 s->ip_gma += (dw_len << 2); 792 793 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 794 if (s->ip_gma >= s->ring_start + s->ring_size) 795 s->ip_gma -= s->ring_size; 796 update_ip_va(s); 797 } else { 798 s->ip_va += (dw_len << 2); 799 } 800 801 return 0; 802 } 803 804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 805 { 806 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 807 return info->len; 808 else 809 return (cmd & ((1U << info->len) - 1)) + 2; 810 return 0; 811 } 812 813 static inline int cmd_length(struct parser_exec_state *s) 814 { 815 return get_cmd_length(s->info, cmd_val(s, 0)); 816 } 817 818 /* do not remove this, some platform may need clflush here */ 819 #define patch_value(s, addr, val) do { \ 820 *addr = val; \ 821 } while (0) 822 823 static bool is_shadowed_mmio(unsigned int offset) 824 { 825 bool ret = false; 826 827 if ((offset == 0x2168) || /*BB current head register UDW */ 828 (offset == 0x2140) || /*BB current header register */ 829 (offset == 0x211c) || /*second BB header register UDW */ 830 (offset == 0x2114)) { /*second BB header register UDW */ 831 ret = true; 832 } 833 return ret; 834 } 835 836 static inline bool is_force_nonpriv_mmio(unsigned int offset) 837 { 838 return (offset >= 0x24d0 && offset < 0x2500); 839 } 840 841 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 842 unsigned int offset, unsigned int index, char *cmd) 843 { 844 struct intel_gvt *gvt = s->vgpu->gvt; 845 unsigned int data; 846 u32 ring_base; 847 u32 nopid; 848 849 if (!strcmp(cmd, "lri")) 850 data = cmd_val(s, index + 1); 851 else { 852 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 853 offset, cmd); 854 return -EINVAL; 855 } 856 857 ring_base = s->engine->mmio_base; 858 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 859 860 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 861 data != nopid) { 862 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 863 offset, data); 864 patch_value(s, cmd_ptr(s, index), nopid); 865 return 0; 866 } 867 return 0; 868 } 869 870 static inline bool is_mocs_mmio(unsigned int offset) 871 { 872 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 873 ((offset >= 0xb020) && (offset <= 0xb0a0)); 874 } 875 876 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 877 unsigned int offset, unsigned int index) 878 { 879 if (!is_mocs_mmio(offset)) 880 return -EINVAL; 881 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 882 return 0; 883 } 884 885 static int cmd_reg_handler(struct parser_exec_state *s, 886 unsigned int offset, unsigned int index, char *cmd) 887 { 888 struct intel_vgpu *vgpu = s->vgpu; 889 struct intel_gvt *gvt = vgpu->gvt; 890 u32 ctx_sr_ctl; 891 892 if (offset + 4 > gvt->device_info.mmio_size) { 893 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 894 cmd, offset); 895 return -EFAULT; 896 } 897 898 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 899 gvt_vgpu_err("%s access to non-render register (%x)\n", 900 cmd, offset); 901 return -EBADRQC; 902 } 903 904 if (is_shadowed_mmio(offset)) { 905 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 906 return 0; 907 } 908 909 if (is_mocs_mmio(offset) && 910 mocs_cmd_reg_handler(s, offset, index)) 911 return -EINVAL; 912 913 if (is_force_nonpriv_mmio(offset) && 914 force_nonpriv_reg_handler(s, offset, index, cmd)) 915 return -EPERM; 916 917 if (offset == i915_mmio_reg_offset(DERRMR) || 918 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 919 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 920 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 921 } 922 923 /* TODO 924 * In order to let workload with inhibit context to generate 925 * correct image data into memory, vregs values will be loaded to 926 * hw via LRIs in the workload with inhibit context. But as 927 * indirect context is loaded prior to LRIs in workload, we don't 928 * want reg values specified in indirect context overwritten by 929 * LRIs in workloads. So, when scanning an indirect context, we 930 * update reg values in it into vregs, so LRIs in workload with 931 * inhibit context will restore with correct values 932 */ 933 if (IS_GEN(s->engine->i915, 9) && 934 intel_gvt_mmio_is_in_ctx(gvt, offset) && 935 !strncmp(cmd, "lri", 3)) { 936 intel_gvt_hypervisor_read_gpa(s->vgpu, 937 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 938 /* check inhibit context */ 939 if (ctx_sr_ctl & 1) { 940 u32 data = cmd_val(s, index + 1); 941 942 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 943 intel_vgpu_mask_mmio_write(vgpu, 944 offset, &data, 4); 945 else 946 vgpu_vreg(vgpu, offset) = data; 947 } 948 } 949 950 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 951 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 952 return 0; 953 } 954 955 #define cmd_reg(s, i) \ 956 (cmd_val(s, i) & GENMASK(22, 2)) 957 958 #define cmd_reg_inhibit(s, i) \ 959 (cmd_val(s, i) & GENMASK(22, 18)) 960 961 #define cmd_gma(s, i) \ 962 (cmd_val(s, i) & GENMASK(31, 2)) 963 964 #define cmd_gma_hi(s, i) \ 965 (cmd_val(s, i) & GENMASK(15, 0)) 966 967 static int cmd_handler_lri(struct parser_exec_state *s) 968 { 969 int i, ret = 0; 970 int cmd_len = cmd_length(s); 971 972 for (i = 1; i < cmd_len; i += 2) { 973 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 974 if (s->engine->id == BCS0 && 975 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 976 ret |= 0; 977 else 978 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 979 } 980 if (ret) 981 break; 982 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 983 if (ret) 984 break; 985 } 986 return ret; 987 } 988 989 static int cmd_handler_lrr(struct parser_exec_state *s) 990 { 991 int i, ret = 0; 992 int cmd_len = cmd_length(s); 993 994 for (i = 1; i < cmd_len; i += 2) { 995 if (IS_BROADWELL(s->engine->i915)) 996 ret |= ((cmd_reg_inhibit(s, i) || 997 (cmd_reg_inhibit(s, i + 1)))) ? 998 -EBADRQC : 0; 999 if (ret) 1000 break; 1001 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1002 if (ret) 1003 break; 1004 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1005 if (ret) 1006 break; 1007 } 1008 return ret; 1009 } 1010 1011 static inline int cmd_address_audit(struct parser_exec_state *s, 1012 unsigned long guest_gma, int op_size, bool index_mode); 1013 1014 static int cmd_handler_lrm(struct parser_exec_state *s) 1015 { 1016 struct intel_gvt *gvt = s->vgpu->gvt; 1017 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1018 unsigned long gma; 1019 int i, ret = 0; 1020 int cmd_len = cmd_length(s); 1021 1022 for (i = 1; i < cmd_len;) { 1023 if (IS_BROADWELL(s->engine->i915)) 1024 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1025 if (ret) 1026 break; 1027 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1028 if (ret) 1029 break; 1030 if (cmd_val(s, 0) & (1 << 22)) { 1031 gma = cmd_gma(s, i + 1); 1032 if (gmadr_bytes == 8) 1033 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1034 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1035 if (ret) 1036 break; 1037 } 1038 i += gmadr_dw_number(s) + 1; 1039 } 1040 return ret; 1041 } 1042 1043 static int cmd_handler_srm(struct parser_exec_state *s) 1044 { 1045 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1046 unsigned long gma; 1047 int i, ret = 0; 1048 int cmd_len = cmd_length(s); 1049 1050 for (i = 1; i < cmd_len;) { 1051 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1052 if (ret) 1053 break; 1054 if (cmd_val(s, 0) & (1 << 22)) { 1055 gma = cmd_gma(s, i + 1); 1056 if (gmadr_bytes == 8) 1057 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1058 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1059 if (ret) 1060 break; 1061 } 1062 i += gmadr_dw_number(s) + 1; 1063 } 1064 return ret; 1065 } 1066 1067 struct cmd_interrupt_event { 1068 int pipe_control_notify; 1069 int mi_flush_dw; 1070 int mi_user_interrupt; 1071 }; 1072 1073 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1074 [RCS0] = { 1075 .pipe_control_notify = RCS_PIPE_CONTROL, 1076 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1077 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1078 }, 1079 [BCS0] = { 1080 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1081 .mi_flush_dw = BCS_MI_FLUSH_DW, 1082 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1083 }, 1084 [VCS0] = { 1085 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1086 .mi_flush_dw = VCS_MI_FLUSH_DW, 1087 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1088 }, 1089 [VCS1] = { 1090 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1091 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1092 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1093 }, 1094 [VECS0] = { 1095 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1096 .mi_flush_dw = VECS_MI_FLUSH_DW, 1097 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1098 }, 1099 }; 1100 1101 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1102 { 1103 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1104 unsigned long gma; 1105 bool index_mode = false; 1106 unsigned int post_sync; 1107 int ret = 0; 1108 u32 hws_pga, val; 1109 1110 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1111 1112 /* LRI post sync */ 1113 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1114 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1115 /* post sync */ 1116 else if (post_sync) { 1117 if (post_sync == 2) 1118 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1119 else if (post_sync == 3) 1120 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1121 else if (post_sync == 1) { 1122 /* check ggtt*/ 1123 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1124 gma = cmd_val(s, 2) & GENMASK(31, 3); 1125 if (gmadr_bytes == 8) 1126 gma |= (cmd_gma_hi(s, 3)) << 32; 1127 /* Store Data Index */ 1128 if (cmd_val(s, 1) & (1 << 21)) 1129 index_mode = true; 1130 ret |= cmd_address_audit(s, gma, sizeof(u64), 1131 index_mode); 1132 if (ret) 1133 return ret; 1134 if (index_mode) { 1135 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1136 gma = hws_pga + gma; 1137 patch_value(s, cmd_ptr(s, 2), gma); 1138 val = cmd_val(s, 1) & (~(1 << 21)); 1139 patch_value(s, cmd_ptr(s, 1), val); 1140 } 1141 } 1142 } 1143 } 1144 1145 if (ret) 1146 return ret; 1147 1148 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1149 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1150 s->workload->pending_events); 1151 return 0; 1152 } 1153 1154 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1155 { 1156 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1157 s->workload->pending_events); 1158 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1159 return 0; 1160 } 1161 1162 static int cmd_advance_default(struct parser_exec_state *s) 1163 { 1164 return ip_gma_advance(s, cmd_length(s)); 1165 } 1166 1167 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1168 { 1169 int ret; 1170 1171 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1172 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1173 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1174 s->buf_addr_type = s->saved_buf_addr_type; 1175 } else { 1176 s->buf_type = RING_BUFFER_INSTRUCTION; 1177 s->buf_addr_type = GTT_BUFFER; 1178 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1179 s->ret_ip_gma_ring -= s->ring_size; 1180 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1181 } 1182 return ret; 1183 } 1184 1185 struct mi_display_flip_command_info { 1186 int pipe; 1187 int plane; 1188 int event; 1189 i915_reg_t stride_reg; 1190 i915_reg_t ctrl_reg; 1191 i915_reg_t surf_reg; 1192 u64 stride_val; 1193 u64 tile_val; 1194 u64 surf_val; 1195 bool async_flip; 1196 }; 1197 1198 struct plane_code_mapping { 1199 int pipe; 1200 int plane; 1201 int event; 1202 }; 1203 1204 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1205 struct mi_display_flip_command_info *info) 1206 { 1207 struct drm_i915_private *dev_priv = s->engine->i915; 1208 struct plane_code_mapping gen8_plane_code[] = { 1209 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1210 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1211 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1212 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1213 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1214 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1215 }; 1216 u32 dword0, dword1, dword2; 1217 u32 v; 1218 1219 dword0 = cmd_val(s, 0); 1220 dword1 = cmd_val(s, 1); 1221 dword2 = cmd_val(s, 2); 1222 1223 v = (dword0 & GENMASK(21, 19)) >> 19; 1224 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1225 return -EBADRQC; 1226 1227 info->pipe = gen8_plane_code[v].pipe; 1228 info->plane = gen8_plane_code[v].plane; 1229 info->event = gen8_plane_code[v].event; 1230 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1231 info->tile_val = (dword1 & 0x1); 1232 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1233 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1234 1235 if (info->plane == PLANE_A) { 1236 info->ctrl_reg = DSPCNTR(info->pipe); 1237 info->stride_reg = DSPSTRIDE(info->pipe); 1238 info->surf_reg = DSPSURF(info->pipe); 1239 } else if (info->plane == PLANE_B) { 1240 info->ctrl_reg = SPRCTL(info->pipe); 1241 info->stride_reg = SPRSTRIDE(info->pipe); 1242 info->surf_reg = SPRSURF(info->pipe); 1243 } else { 1244 drm_WARN_ON(&dev_priv->drm, 1); 1245 return -EBADRQC; 1246 } 1247 return 0; 1248 } 1249 1250 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1251 struct mi_display_flip_command_info *info) 1252 { 1253 struct drm_i915_private *dev_priv = s->engine->i915; 1254 struct intel_vgpu *vgpu = s->vgpu; 1255 u32 dword0 = cmd_val(s, 0); 1256 u32 dword1 = cmd_val(s, 1); 1257 u32 dword2 = cmd_val(s, 2); 1258 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1259 1260 info->plane = PRIMARY_PLANE; 1261 1262 switch (plane) { 1263 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1264 info->pipe = PIPE_A; 1265 info->event = PRIMARY_A_FLIP_DONE; 1266 break; 1267 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1268 info->pipe = PIPE_B; 1269 info->event = PRIMARY_B_FLIP_DONE; 1270 break; 1271 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1272 info->pipe = PIPE_C; 1273 info->event = PRIMARY_C_FLIP_DONE; 1274 break; 1275 1276 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1277 info->pipe = PIPE_A; 1278 info->event = SPRITE_A_FLIP_DONE; 1279 info->plane = SPRITE_PLANE; 1280 break; 1281 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1282 info->pipe = PIPE_B; 1283 info->event = SPRITE_B_FLIP_DONE; 1284 info->plane = SPRITE_PLANE; 1285 break; 1286 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1287 info->pipe = PIPE_C; 1288 info->event = SPRITE_C_FLIP_DONE; 1289 info->plane = SPRITE_PLANE; 1290 break; 1291 1292 default: 1293 gvt_vgpu_err("unknown plane code %d\n", plane); 1294 return -EBADRQC; 1295 } 1296 1297 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1298 info->tile_val = (dword1 & GENMASK(2, 0)); 1299 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1300 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1301 1302 info->ctrl_reg = DSPCNTR(info->pipe); 1303 info->stride_reg = DSPSTRIDE(info->pipe); 1304 info->surf_reg = DSPSURF(info->pipe); 1305 1306 return 0; 1307 } 1308 1309 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1310 struct mi_display_flip_command_info *info) 1311 { 1312 u32 stride, tile; 1313 1314 if (!info->async_flip) 1315 return 0; 1316 1317 if (INTEL_GEN(s->engine->i915) >= 9) { 1318 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1319 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1320 GENMASK(12, 10)) >> 10; 1321 } else { 1322 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1323 GENMASK(15, 6)) >> 6; 1324 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1325 } 1326 1327 if (stride != info->stride_val) 1328 gvt_dbg_cmd("cannot change stride during async flip\n"); 1329 1330 if (tile != info->tile_val) 1331 gvt_dbg_cmd("cannot change tile during async flip\n"); 1332 1333 return 0; 1334 } 1335 1336 static int gen8_update_plane_mmio_from_mi_display_flip( 1337 struct parser_exec_state *s, 1338 struct mi_display_flip_command_info *info) 1339 { 1340 struct drm_i915_private *dev_priv = s->engine->i915; 1341 struct intel_vgpu *vgpu = s->vgpu; 1342 1343 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1344 info->surf_val << 12); 1345 if (INTEL_GEN(dev_priv) >= 9) { 1346 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1347 info->stride_val); 1348 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1349 info->tile_val << 10); 1350 } else { 1351 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1352 info->stride_val << 6); 1353 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1354 info->tile_val << 10); 1355 } 1356 1357 if (info->plane == PLANE_PRIMARY) 1358 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1359 1360 if (info->async_flip) 1361 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1362 else 1363 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1364 1365 return 0; 1366 } 1367 1368 static int decode_mi_display_flip(struct parser_exec_state *s, 1369 struct mi_display_flip_command_info *info) 1370 { 1371 if (IS_BROADWELL(s->engine->i915)) 1372 return gen8_decode_mi_display_flip(s, info); 1373 if (INTEL_GEN(s->engine->i915) >= 9) 1374 return skl_decode_mi_display_flip(s, info); 1375 1376 return -ENODEV; 1377 } 1378 1379 static int check_mi_display_flip(struct parser_exec_state *s, 1380 struct mi_display_flip_command_info *info) 1381 { 1382 return gen8_check_mi_display_flip(s, info); 1383 } 1384 1385 static int update_plane_mmio_from_mi_display_flip( 1386 struct parser_exec_state *s, 1387 struct mi_display_flip_command_info *info) 1388 { 1389 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1390 } 1391 1392 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1393 { 1394 struct mi_display_flip_command_info info; 1395 struct intel_vgpu *vgpu = s->vgpu; 1396 int ret; 1397 int i; 1398 int len = cmd_length(s); 1399 u32 valid_len = CMD_LEN(1); 1400 1401 /* Flip Type == Stereo 3D Flip */ 1402 if (DWORD_FIELD(2, 1, 0) == 2) 1403 valid_len++; 1404 ret = gvt_check_valid_cmd_length(cmd_length(s), 1405 valid_len); 1406 if (ret) 1407 return ret; 1408 1409 ret = decode_mi_display_flip(s, &info); 1410 if (ret) { 1411 gvt_vgpu_err("fail to decode MI display flip command\n"); 1412 return ret; 1413 } 1414 1415 ret = check_mi_display_flip(s, &info); 1416 if (ret) { 1417 gvt_vgpu_err("invalid MI display flip command\n"); 1418 return ret; 1419 } 1420 1421 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1422 if (ret) { 1423 gvt_vgpu_err("fail to update plane mmio\n"); 1424 return ret; 1425 } 1426 1427 for (i = 0; i < len; i++) 1428 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1429 return 0; 1430 } 1431 1432 static bool is_wait_for_flip_pending(u32 cmd) 1433 { 1434 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1435 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1436 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1437 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1438 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1439 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1440 } 1441 1442 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1443 { 1444 u32 cmd = cmd_val(s, 0); 1445 1446 if (!is_wait_for_flip_pending(cmd)) 1447 return 0; 1448 1449 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1450 return 0; 1451 } 1452 1453 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1454 { 1455 unsigned long addr; 1456 unsigned long gma_high, gma_low; 1457 struct intel_vgpu *vgpu = s->vgpu; 1458 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1459 1460 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1461 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1462 return INTEL_GVT_INVALID_ADDR; 1463 } 1464 1465 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1466 if (gmadr_bytes == 4) { 1467 addr = gma_low; 1468 } else { 1469 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1470 addr = (((unsigned long)gma_high) << 32) | gma_low; 1471 } 1472 return addr; 1473 } 1474 1475 static inline int cmd_address_audit(struct parser_exec_state *s, 1476 unsigned long guest_gma, int op_size, bool index_mode) 1477 { 1478 struct intel_vgpu *vgpu = s->vgpu; 1479 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1480 int i; 1481 int ret; 1482 1483 if (op_size > max_surface_size) { 1484 gvt_vgpu_err("command address audit fail name %s\n", 1485 s->info->name); 1486 return -EFAULT; 1487 } 1488 1489 if (index_mode) { 1490 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1491 ret = -EFAULT; 1492 goto err; 1493 } 1494 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1495 ret = -EFAULT; 1496 goto err; 1497 } 1498 1499 return 0; 1500 1501 err: 1502 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1503 s->info->name, guest_gma, op_size); 1504 1505 pr_err("cmd dump: "); 1506 for (i = 0; i < cmd_length(s); i++) { 1507 if (!(i % 4)) 1508 pr_err("\n%08x ", cmd_val(s, i)); 1509 else 1510 pr_err("%08x ", cmd_val(s, i)); 1511 } 1512 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1513 vgpu->id, 1514 vgpu_aperture_gmadr_base(vgpu), 1515 vgpu_aperture_gmadr_end(vgpu), 1516 vgpu_hidden_gmadr_base(vgpu), 1517 vgpu_hidden_gmadr_end(vgpu)); 1518 return ret; 1519 } 1520 1521 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1522 { 1523 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1524 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1525 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1526 unsigned long gma, gma_low, gma_high; 1527 u32 valid_len = CMD_LEN(2); 1528 int ret = 0; 1529 1530 /* check ppggt */ 1531 if (!(cmd_val(s, 0) & (1 << 22))) 1532 return 0; 1533 1534 /* check if QWORD */ 1535 if (DWORD_FIELD(0, 21, 21)) 1536 valid_len++; 1537 ret = gvt_check_valid_cmd_length(cmd_length(s), 1538 valid_len); 1539 if (ret) 1540 return ret; 1541 1542 gma = cmd_val(s, 2) & GENMASK(31, 2); 1543 1544 if (gmadr_bytes == 8) { 1545 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1546 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1547 gma = (gma_high << 32) | gma_low; 1548 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1549 } 1550 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1551 return ret; 1552 } 1553 1554 static inline int unexpected_cmd(struct parser_exec_state *s) 1555 { 1556 struct intel_vgpu *vgpu = s->vgpu; 1557 1558 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1559 1560 return -EBADRQC; 1561 } 1562 1563 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1564 { 1565 return unexpected_cmd(s); 1566 } 1567 1568 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1569 { 1570 return unexpected_cmd(s); 1571 } 1572 1573 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1574 { 1575 return unexpected_cmd(s); 1576 } 1577 1578 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1579 { 1580 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1581 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1582 sizeof(u32); 1583 unsigned long gma, gma_high; 1584 u32 valid_len = CMD_LEN(1); 1585 int ret = 0; 1586 1587 if (!(cmd_val(s, 0) & (1 << 22))) 1588 return ret; 1589 1590 /* check inline data */ 1591 if (cmd_val(s, 0) & BIT(18)) 1592 valid_len = CMD_LEN(9); 1593 ret = gvt_check_valid_cmd_length(cmd_length(s), 1594 valid_len); 1595 if (ret) 1596 return ret; 1597 1598 gma = cmd_val(s, 1) & GENMASK(31, 2); 1599 if (gmadr_bytes == 8) { 1600 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1601 gma = (gma_high << 32) | gma; 1602 } 1603 ret = cmd_address_audit(s, gma, op_size, false); 1604 return ret; 1605 } 1606 1607 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1608 { 1609 return unexpected_cmd(s); 1610 } 1611 1612 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1613 { 1614 return unexpected_cmd(s); 1615 } 1616 1617 static int cmd_handler_mi_conditional_batch_buffer_end( 1618 struct parser_exec_state *s) 1619 { 1620 return unexpected_cmd(s); 1621 } 1622 1623 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1624 { 1625 return unexpected_cmd(s); 1626 } 1627 1628 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1629 { 1630 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1631 unsigned long gma; 1632 bool index_mode = false; 1633 int ret = 0; 1634 u32 hws_pga, val; 1635 u32 valid_len = CMD_LEN(2); 1636 1637 ret = gvt_check_valid_cmd_length(cmd_length(s), 1638 valid_len); 1639 if (ret) { 1640 /* Check again for Qword */ 1641 ret = gvt_check_valid_cmd_length(cmd_length(s), 1642 ++valid_len); 1643 return ret; 1644 } 1645 1646 /* Check post-sync and ppgtt bit */ 1647 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1648 gma = cmd_val(s, 1) & GENMASK(31, 3); 1649 if (gmadr_bytes == 8) 1650 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1651 /* Store Data Index */ 1652 if (cmd_val(s, 0) & (1 << 21)) 1653 index_mode = true; 1654 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1655 if (ret) 1656 return ret; 1657 if (index_mode) { 1658 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1659 gma = hws_pga + gma; 1660 patch_value(s, cmd_ptr(s, 1), gma); 1661 val = cmd_val(s, 0) & (~(1 << 21)); 1662 patch_value(s, cmd_ptr(s, 0), val); 1663 } 1664 } 1665 /* Check notify bit */ 1666 if ((cmd_val(s, 0) & (1 << 8))) 1667 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1668 s->workload->pending_events); 1669 return ret; 1670 } 1671 1672 static void addr_type_update_snb(struct parser_exec_state *s) 1673 { 1674 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1675 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1676 s->buf_addr_type = PPGTT_BUFFER; 1677 } 1678 } 1679 1680 1681 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1682 unsigned long gma, unsigned long end_gma, void *va) 1683 { 1684 unsigned long copy_len, offset; 1685 unsigned long len = 0; 1686 unsigned long gpa; 1687 1688 while (gma != end_gma) { 1689 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1690 if (gpa == INTEL_GVT_INVALID_ADDR) { 1691 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1692 return -EFAULT; 1693 } 1694 1695 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1696 1697 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1698 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1699 1700 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1701 1702 len += copy_len; 1703 gma += copy_len; 1704 } 1705 return len; 1706 } 1707 1708 1709 /* 1710 * Check whether a batch buffer needs to be scanned. Currently 1711 * the only criteria is based on privilege. 1712 */ 1713 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1714 { 1715 /* Decide privilege based on address space */ 1716 if (cmd_val(s, 0) & BIT(8) && 1717 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1718 return 0; 1719 1720 return 1; 1721 } 1722 1723 static const char *repr_addr_type(unsigned int type) 1724 { 1725 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1726 } 1727 1728 static int find_bb_size(struct parser_exec_state *s, 1729 unsigned long *bb_size, 1730 unsigned long *bb_end_cmd_offset) 1731 { 1732 unsigned long gma = 0; 1733 const struct cmd_info *info; 1734 u32 cmd_len = 0; 1735 bool bb_end = false; 1736 struct intel_vgpu *vgpu = s->vgpu; 1737 u32 cmd; 1738 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1739 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1740 1741 *bb_size = 0; 1742 *bb_end_cmd_offset = 0; 1743 1744 /* get the start gm address of the batch buffer */ 1745 gma = get_gma_bb_from_cmd(s, 1); 1746 if (gma == INTEL_GVT_INVALID_ADDR) 1747 return -EFAULT; 1748 1749 cmd = cmd_val(s, 0); 1750 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1751 if (info == NULL) { 1752 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1753 cmd, get_opcode(cmd, s->engine), 1754 repr_addr_type(s->buf_addr_type), 1755 s->engine->name, s->workload); 1756 return -EBADRQC; 1757 } 1758 do { 1759 if (copy_gma_to_hva(s->vgpu, mm, 1760 gma, gma + 4, &cmd) < 0) 1761 return -EFAULT; 1762 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1763 if (info == NULL) { 1764 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1765 cmd, get_opcode(cmd, s->engine), 1766 repr_addr_type(s->buf_addr_type), 1767 s->engine->name, s->workload); 1768 return -EBADRQC; 1769 } 1770 1771 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1772 bb_end = true; 1773 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1774 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1775 /* chained batch buffer */ 1776 bb_end = true; 1777 } 1778 1779 if (bb_end) 1780 *bb_end_cmd_offset = *bb_size; 1781 1782 cmd_len = get_cmd_length(info, cmd) << 2; 1783 *bb_size += cmd_len; 1784 gma += cmd_len; 1785 } while (!bb_end); 1786 1787 return 0; 1788 } 1789 1790 static int audit_bb_end(struct parser_exec_state *s, void *va) 1791 { 1792 struct intel_vgpu *vgpu = s->vgpu; 1793 u32 cmd = *(u32 *)va; 1794 const struct cmd_info *info; 1795 1796 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1797 if (info == NULL) { 1798 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1799 cmd, get_opcode(cmd, s->engine), 1800 repr_addr_type(s->buf_addr_type), 1801 s->engine->name, s->workload); 1802 return -EBADRQC; 1803 } 1804 1805 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1806 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1807 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1808 return 0; 1809 1810 return -EBADRQC; 1811 } 1812 1813 static int perform_bb_shadow(struct parser_exec_state *s) 1814 { 1815 struct intel_vgpu *vgpu = s->vgpu; 1816 struct intel_vgpu_shadow_bb *bb; 1817 unsigned long gma = 0; 1818 unsigned long bb_size; 1819 unsigned long bb_end_cmd_offset; 1820 int ret = 0; 1821 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1822 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1823 unsigned long start_offset = 0; 1824 1825 /* get the start gm address of the batch buffer */ 1826 gma = get_gma_bb_from_cmd(s, 1); 1827 if (gma == INTEL_GVT_INVALID_ADDR) 1828 return -EFAULT; 1829 1830 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1831 if (ret) 1832 return ret; 1833 1834 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1835 if (!bb) 1836 return -ENOMEM; 1837 1838 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1839 1840 /* the start_offset stores the batch buffer's start gma's 1841 * offset relative to page boundary. so for non-privileged batch 1842 * buffer, the shadowed gem object holds exactly the same page 1843 * layout as original gem object. This is for the convience of 1844 * replacing the whole non-privilged batch buffer page to this 1845 * shadowed one in PPGTT at the same gma address. (this replacing 1846 * action is not implemented yet now, but may be necessary in 1847 * future). 1848 * for prileged batch buffer, we just change start gma address to 1849 * that of shadowed page. 1850 */ 1851 if (bb->ppgtt) 1852 start_offset = gma & ~I915_GTT_PAGE_MASK; 1853 1854 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1855 round_up(bb_size + start_offset, 1856 PAGE_SIZE)); 1857 if (IS_ERR(bb->obj)) { 1858 ret = PTR_ERR(bb->obj); 1859 goto err_free_bb; 1860 } 1861 1862 ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush); 1863 if (ret) 1864 goto err_free_obj; 1865 1866 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1867 if (IS_ERR(bb->va)) { 1868 ret = PTR_ERR(bb->va); 1869 goto err_finish_shmem_access; 1870 } 1871 1872 if (bb->clflush & CLFLUSH_BEFORE) { 1873 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1874 bb->clflush &= ~CLFLUSH_BEFORE; 1875 } 1876 1877 ret = copy_gma_to_hva(s->vgpu, mm, 1878 gma, gma + bb_size, 1879 bb->va + start_offset); 1880 if (ret < 0) { 1881 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1882 ret = -EFAULT; 1883 goto err_unmap; 1884 } 1885 1886 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1887 if (ret) 1888 goto err_unmap; 1889 1890 INIT_LIST_HEAD(&bb->list); 1891 list_add(&bb->list, &s->workload->shadow_bb); 1892 1893 bb->accessing = true; 1894 bb->bb_start_cmd_va = s->ip_va; 1895 1896 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1897 bb->bb_offset = s->ip_va - s->rb_va; 1898 else 1899 bb->bb_offset = 0; 1900 1901 /* 1902 * ip_va saves the virtual address of the shadow batch buffer, while 1903 * ip_gma saves the graphics address of the original batch buffer. 1904 * As the shadow batch buffer is just a copy from the originial one, 1905 * it should be right to use shadow batch buffer'va and original batch 1906 * buffer's gma in pair. After all, we don't want to pin the shadow 1907 * buffer here (too early). 1908 */ 1909 s->ip_va = bb->va + start_offset; 1910 s->ip_gma = gma; 1911 return 0; 1912 err_unmap: 1913 i915_gem_object_unpin_map(bb->obj); 1914 err_finish_shmem_access: 1915 i915_gem_object_finish_access(bb->obj); 1916 err_free_obj: 1917 i915_gem_object_put(bb->obj); 1918 err_free_bb: 1919 kfree(bb); 1920 return ret; 1921 } 1922 1923 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1924 { 1925 bool second_level; 1926 int ret = 0; 1927 struct intel_vgpu *vgpu = s->vgpu; 1928 1929 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1930 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1931 return -EFAULT; 1932 } 1933 1934 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1935 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1936 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1937 return -EFAULT; 1938 } 1939 1940 s->saved_buf_addr_type = s->buf_addr_type; 1941 addr_type_update_snb(s); 1942 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1943 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1944 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1945 } else if (second_level) { 1946 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1947 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1948 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1949 } 1950 1951 if (batch_buffer_needs_scan(s)) { 1952 ret = perform_bb_shadow(s); 1953 if (ret < 0) 1954 gvt_vgpu_err("invalid shadow batch buffer\n"); 1955 } else { 1956 /* emulate a batch buffer end to do return right */ 1957 ret = cmd_handler_mi_batch_buffer_end(s); 1958 if (ret < 0) 1959 return ret; 1960 } 1961 return ret; 1962 } 1963 1964 static int mi_noop_index; 1965 1966 static const struct cmd_info cmd_info[] = { 1967 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1968 1969 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1970 0, 1, NULL}, 1971 1972 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1973 0, 1, cmd_handler_mi_user_interrupt}, 1974 1975 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1976 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1977 1978 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1979 1980 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1981 NULL}, 1982 1983 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1984 NULL}, 1985 1986 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1987 NULL}, 1988 1989 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1990 NULL}, 1991 1992 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1993 D_ALL, 0, 1, NULL}, 1994 1995 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1996 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1997 cmd_handler_mi_batch_buffer_end}, 1998 1999 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2000 0, 1, NULL}, 2001 2002 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2003 NULL}, 2004 2005 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2006 D_ALL, 0, 1, NULL}, 2007 2008 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2009 NULL}, 2010 2011 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2012 NULL}, 2013 2014 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2015 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2016 2017 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2018 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2019 2020 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2021 2022 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2023 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2024 2025 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2026 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2027 NULL, CMD_LEN(0)}, 2028 2029 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2030 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2031 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2032 2033 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2034 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2035 2036 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2037 0, 8, cmd_handler_mi_store_data_index}, 2038 2039 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2040 D_ALL, 0, 8, cmd_handler_lri}, 2041 2042 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2043 cmd_handler_mi_update_gtt}, 2044 2045 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2046 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2047 cmd_handler_srm, CMD_LEN(2)}, 2048 2049 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2050 cmd_handler_mi_flush_dw}, 2051 2052 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2053 10, cmd_handler_mi_clflush}, 2054 2055 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2056 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2057 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2058 2059 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2060 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2061 cmd_handler_lrm, CMD_LEN(2)}, 2062 2063 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2064 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2065 cmd_handler_lrr, CMD_LEN(1)}, 2066 2067 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2068 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2069 8, NULL, CMD_LEN(2)}, 2070 2071 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2072 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2073 2074 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2075 ADDR_FIX_1(2), 8, NULL}, 2076 2077 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2078 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2079 2080 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2081 8, cmd_handler_mi_op_2f}, 2082 2083 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2084 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2085 cmd_handler_mi_batch_buffer_start}, 2086 2087 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2088 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2089 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2090 2091 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2092 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2093 2094 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2095 ADDR_FIX_2(4, 7), 8, NULL}, 2096 2097 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2098 0, 8, NULL}, 2099 2100 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2101 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2102 2103 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2104 2105 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2106 0, 8, NULL}, 2107 2108 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2109 ADDR_FIX_1(3), 8, NULL}, 2110 2111 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2112 D_ALL, 0, 8, NULL}, 2113 2114 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2115 ADDR_FIX_1(4), 8, NULL}, 2116 2117 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2118 ADDR_FIX_2(4, 5), 8, NULL}, 2119 2120 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2121 ADDR_FIX_1(4), 8, NULL}, 2122 2123 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2124 ADDR_FIX_2(4, 7), 8, NULL}, 2125 2126 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2127 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2128 2129 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2130 2131 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2132 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2133 2134 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2135 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2136 2137 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2138 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2139 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2140 2141 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2142 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2143 2144 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2145 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2146 2147 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2148 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2149 2150 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2151 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2152 2153 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2154 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2155 2156 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2157 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2158 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2159 2160 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2161 ADDR_FIX_2(4, 5), 8, NULL}, 2162 2163 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2164 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2165 2166 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2167 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2168 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2169 2170 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2171 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2172 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2173 2174 {"3DSTATE_BLEND_STATE_POINTERS", 2175 OP_3DSTATE_BLEND_STATE_POINTERS, 2176 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2177 2178 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2179 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2180 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2181 2182 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2183 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2184 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2185 2186 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2187 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2188 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2189 2190 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2191 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2192 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2193 2194 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2195 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2196 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2197 2198 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2199 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2200 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2201 2202 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2203 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2204 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2205 2206 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2207 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2208 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2209 2210 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2211 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2212 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2213 2214 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2215 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2216 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2217 2218 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2219 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2220 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2221 2222 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2223 0, 8, NULL}, 2224 2225 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2226 0, 8, NULL}, 2227 2228 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2229 0, 8, NULL}, 2230 2231 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2232 0, 8, NULL}, 2233 2234 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2235 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2236 2237 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2238 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2239 2240 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2248 2249 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2250 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2251 2252 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2253 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2254 2255 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2256 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2257 2258 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2259 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2260 2261 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2266 2267 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2272 2273 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2281 2282 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2284 2285 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2287 2288 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2289 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2290 2291 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2292 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2293 2294 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2295 D_BDW_PLUS, 0, 8, NULL}, 2296 2297 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2298 NULL}, 2299 2300 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2301 D_BDW_PLUS, 0, 8, NULL}, 2302 2303 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2304 D_BDW_PLUS, 0, 8, NULL}, 2305 2306 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2307 8, NULL}, 2308 2309 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2310 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2311 2312 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2313 8, NULL}, 2314 2315 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2316 NULL}, 2317 2318 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2319 NULL}, 2320 2321 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2322 NULL}, 2323 2324 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2325 D_BDW_PLUS, 0, 8, NULL}, 2326 2327 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2328 R_RCS, D_ALL, 0, 8, NULL}, 2329 2330 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2331 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2332 2333 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2334 R_RCS, D_ALL, 0, 1, NULL}, 2335 2336 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2337 2338 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2339 R_RCS, D_ALL, 0, 8, NULL}, 2340 2341 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2342 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2343 2344 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2345 2346 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2347 2348 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2349 2350 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2351 D_BDW_PLUS, 0, 8, NULL}, 2352 2353 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2354 D_BDW_PLUS, 0, 8, NULL}, 2355 2356 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2357 D_ALL, 0, 8, NULL}, 2358 2359 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2360 D_BDW_PLUS, 0, 8, NULL}, 2361 2362 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2363 D_BDW_PLUS, 0, 8, NULL}, 2364 2365 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2366 2367 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2368 2369 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2370 2371 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2372 D_ALL, 0, 8, NULL}, 2373 2374 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2375 2376 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2377 2378 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2379 R_RCS, D_ALL, 0, 8, NULL}, 2380 2381 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2382 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2383 2384 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2385 0, 8, NULL}, 2386 2387 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2388 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2389 2390 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2391 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2392 2393 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2394 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2395 2396 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2397 D_ALL, 0, 8, NULL}, 2398 2399 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2400 D_ALL, 0, 8, NULL}, 2401 2402 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2403 D_ALL, 0, 8, NULL}, 2404 2405 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2406 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2409 D_BDW_PLUS, 0, 8, NULL}, 2410 2411 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2412 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2413 2414 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2415 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2416 2417 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2418 R_RCS, D_ALL, 0, 8, NULL}, 2419 2420 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2421 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2422 2423 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2424 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2427 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2428 2429 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2430 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2431 2432 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2433 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2434 2435 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2436 R_RCS, D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2439 D_ALL, 0, 9, NULL}, 2440 2441 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2442 ADDR_FIX_2(2, 4), 8, NULL}, 2443 2444 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2445 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2446 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2447 2448 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2449 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2450 2451 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2452 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2453 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2454 2455 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2456 D_BDW_PLUS, 0, 8, NULL}, 2457 2458 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2459 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2460 2461 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2462 2463 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2464 1, NULL}, 2465 2466 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2467 ADDR_FIX_1(1), 8, NULL}, 2468 2469 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2470 2471 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2472 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2473 2474 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2475 ADDR_FIX_1(1), 8, NULL}, 2476 2477 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2478 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2479 2480 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2481 2482 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2483 2484 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2485 0, 8, NULL}, 2486 2487 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2488 D_SKL_PLUS, 0, 8, NULL}, 2489 2490 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2491 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2492 2493 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2494 0, 16, NULL}, 2495 2496 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2497 0, 16, NULL}, 2498 2499 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2500 0, 16, NULL}, 2501 2502 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2503 2504 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2505 0, 16, NULL}, 2506 2507 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2508 0, 16, NULL}, 2509 2510 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2511 0, 16, NULL}, 2512 2513 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2514 0, 8, NULL}, 2515 2516 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2517 NULL}, 2518 2519 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2520 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2521 2522 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2523 R_VCS, D_ALL, 0, 12, NULL}, 2524 2525 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2526 R_VCS, D_ALL, 0, 12, NULL}, 2527 2528 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2529 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2530 2531 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2532 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2533 2534 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2535 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2536 2537 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2538 2539 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2540 R_VCS, D_ALL, 0, 12, NULL}, 2541 2542 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2543 R_VCS, D_ALL, 0, 12, NULL}, 2544 2545 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2546 R_VCS, D_ALL, 0, 12, NULL}, 2547 2548 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2549 R_VCS, D_ALL, 0, 12, NULL}, 2550 2551 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2552 R_VCS, D_ALL, 0, 12, NULL}, 2553 2554 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2555 R_VCS, D_ALL, 0, 12, NULL}, 2556 2557 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2558 R_VCS, D_ALL, 0, 6, NULL}, 2559 2560 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2561 R_VCS, D_ALL, 0, 12, NULL}, 2562 2563 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2564 R_VCS, D_ALL, 0, 12, NULL}, 2565 2566 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2567 R_VCS, D_ALL, 0, 12, NULL}, 2568 2569 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2570 R_VCS, D_ALL, 0, 12, NULL}, 2571 2572 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2573 R_VCS, D_ALL, 0, 12, NULL}, 2574 2575 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2576 R_VCS, D_ALL, 0, 12, NULL}, 2577 2578 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2579 R_VCS, D_ALL, 0, 12, NULL}, 2580 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2581 R_VCS, D_ALL, 0, 12, NULL}, 2582 2583 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2584 R_VCS, D_ALL, 0, 12, NULL}, 2585 2586 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2587 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2588 2589 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2590 R_VCS, D_ALL, 0, 12, NULL}, 2591 2592 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2593 R_VCS, D_ALL, 0, 12, NULL}, 2594 2595 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2596 R_VCS, D_ALL, 0, 12, NULL}, 2597 2598 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2599 R_VCS, D_ALL, 0, 12, NULL}, 2600 2601 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2602 R_VCS, D_ALL, 0, 12, NULL}, 2603 2604 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2605 R_VCS, D_ALL, 0, 12, NULL}, 2606 2607 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2608 R_VCS, D_ALL, 0, 12, NULL}, 2609 2610 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 2613 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2620 R_VCS, D_ALL, 0, 12, NULL}, 2621 2622 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2623 0, 16, NULL}, 2624 2625 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2626 2627 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2628 2629 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2630 R_VCS, D_ALL, 0, 12, NULL}, 2631 2632 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2633 R_VCS, D_ALL, 0, 12, NULL}, 2634 2635 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2636 R_VCS, D_ALL, 0, 12, NULL}, 2637 2638 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2639 2640 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2641 0, 12, NULL}, 2642 2643 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2644 0, 12, NULL}, 2645 }; 2646 2647 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2648 { 2649 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2650 } 2651 2652 /* call the cmd handler, and advance ip */ 2653 static int cmd_parser_exec(struct parser_exec_state *s) 2654 { 2655 struct intel_vgpu *vgpu = s->vgpu; 2656 const struct cmd_info *info; 2657 u32 cmd; 2658 int ret = 0; 2659 2660 cmd = cmd_val(s, 0); 2661 2662 /* fastpath for MI_NOOP */ 2663 if (cmd == MI_NOOP) 2664 info = &cmd_info[mi_noop_index]; 2665 else 2666 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2667 2668 if (info == NULL) { 2669 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2670 cmd, get_opcode(cmd, s->engine), 2671 repr_addr_type(s->buf_addr_type), 2672 s->engine->name, s->workload); 2673 return -EBADRQC; 2674 } 2675 2676 s->info = info; 2677 2678 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2679 cmd_length(s), s->buf_type, s->buf_addr_type, 2680 s->workload, info->name); 2681 2682 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2683 ret = gvt_check_valid_cmd_length(cmd_length(s), 2684 info->valid_len); 2685 if (ret) 2686 return ret; 2687 } 2688 2689 if (info->handler) { 2690 ret = info->handler(s); 2691 if (ret < 0) { 2692 gvt_vgpu_err("%s handler error\n", info->name); 2693 return ret; 2694 } 2695 } 2696 2697 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2698 ret = cmd_advance_default(s); 2699 if (ret) { 2700 gvt_vgpu_err("%s IP advance error\n", info->name); 2701 return ret; 2702 } 2703 } 2704 return 0; 2705 } 2706 2707 static inline bool gma_out_of_range(unsigned long gma, 2708 unsigned long gma_head, unsigned int gma_tail) 2709 { 2710 if (gma_tail >= gma_head) 2711 return (gma < gma_head) || (gma > gma_tail); 2712 else 2713 return (gma > gma_tail) && (gma < gma_head); 2714 } 2715 2716 /* Keep the consistent return type, e.g EBADRQC for unknown 2717 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2718 * works as the input of VM healthy status. 2719 */ 2720 static int command_scan(struct parser_exec_state *s, 2721 unsigned long rb_head, unsigned long rb_tail, 2722 unsigned long rb_start, unsigned long rb_len) 2723 { 2724 2725 unsigned long gma_head, gma_tail, gma_bottom; 2726 int ret = 0; 2727 struct intel_vgpu *vgpu = s->vgpu; 2728 2729 gma_head = rb_start + rb_head; 2730 gma_tail = rb_start + rb_tail; 2731 gma_bottom = rb_start + rb_len; 2732 2733 while (s->ip_gma != gma_tail) { 2734 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2735 if (!(s->ip_gma >= rb_start) || 2736 !(s->ip_gma < gma_bottom)) { 2737 gvt_vgpu_err("ip_gma %lx out of ring scope." 2738 "(base:0x%lx, bottom: 0x%lx)\n", 2739 s->ip_gma, rb_start, 2740 gma_bottom); 2741 parser_exec_state_dump(s); 2742 return -EFAULT; 2743 } 2744 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2745 gvt_vgpu_err("ip_gma %lx out of range." 2746 "base 0x%lx head 0x%lx tail 0x%lx\n", 2747 s->ip_gma, rb_start, 2748 rb_head, rb_tail); 2749 parser_exec_state_dump(s); 2750 break; 2751 } 2752 } 2753 ret = cmd_parser_exec(s); 2754 if (ret) { 2755 gvt_vgpu_err("cmd parser error\n"); 2756 parser_exec_state_dump(s); 2757 break; 2758 } 2759 } 2760 2761 return ret; 2762 } 2763 2764 static int scan_workload(struct intel_vgpu_workload *workload) 2765 { 2766 unsigned long gma_head, gma_tail, gma_bottom; 2767 struct parser_exec_state s; 2768 int ret = 0; 2769 2770 /* ring base is page aligned */ 2771 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2772 return -EINVAL; 2773 2774 gma_head = workload->rb_start + workload->rb_head; 2775 gma_tail = workload->rb_start + workload->rb_tail; 2776 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2777 2778 s.buf_type = RING_BUFFER_INSTRUCTION; 2779 s.buf_addr_type = GTT_BUFFER; 2780 s.vgpu = workload->vgpu; 2781 s.engine = workload->engine; 2782 s.ring_start = workload->rb_start; 2783 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2784 s.ring_head = gma_head; 2785 s.ring_tail = gma_tail; 2786 s.rb_va = workload->shadow_ring_buffer_va; 2787 s.workload = workload; 2788 s.is_ctx_wa = false; 2789 2790 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2791 return 0; 2792 2793 ret = ip_gma_set(&s, gma_head); 2794 if (ret) 2795 goto out; 2796 2797 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2798 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2799 2800 out: 2801 return ret; 2802 } 2803 2804 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2805 { 2806 2807 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2808 struct parser_exec_state s; 2809 int ret = 0; 2810 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2811 struct intel_vgpu_workload, 2812 wa_ctx); 2813 2814 /* ring base is page aligned */ 2815 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2816 I915_GTT_PAGE_SIZE))) 2817 return -EINVAL; 2818 2819 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2820 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2821 PAGE_SIZE); 2822 gma_head = wa_ctx->indirect_ctx.guest_gma; 2823 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2824 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2825 2826 s.buf_type = RING_BUFFER_INSTRUCTION; 2827 s.buf_addr_type = GTT_BUFFER; 2828 s.vgpu = workload->vgpu; 2829 s.engine = workload->engine; 2830 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2831 s.ring_size = ring_size; 2832 s.ring_head = gma_head; 2833 s.ring_tail = gma_tail; 2834 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2835 s.workload = workload; 2836 s.is_ctx_wa = true; 2837 2838 ret = ip_gma_set(&s, gma_head); 2839 if (ret) 2840 goto out; 2841 2842 ret = command_scan(&s, 0, ring_tail, 2843 wa_ctx->indirect_ctx.guest_gma, ring_size); 2844 out: 2845 return ret; 2846 } 2847 2848 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2849 { 2850 struct intel_vgpu *vgpu = workload->vgpu; 2851 struct intel_vgpu_submission *s = &vgpu->submission; 2852 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2853 void *shadow_ring_buffer_va; 2854 int ret; 2855 2856 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2857 2858 /* calculate workload ring buffer size */ 2859 workload->rb_len = (workload->rb_tail + guest_rb_size - 2860 workload->rb_head) % guest_rb_size; 2861 2862 gma_head = workload->rb_start + workload->rb_head; 2863 gma_tail = workload->rb_start + workload->rb_tail; 2864 gma_top = workload->rb_start + guest_rb_size; 2865 2866 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2867 void *p; 2868 2869 /* realloc the new ring buffer if needed */ 2870 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2871 workload->rb_len, GFP_KERNEL); 2872 if (!p) { 2873 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2874 return -ENOMEM; 2875 } 2876 s->ring_scan_buffer[workload->engine->id] = p; 2877 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2878 } 2879 2880 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2881 2882 /* get shadow ring buffer va */ 2883 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2884 2885 /* head > tail --> copy head <-> top */ 2886 if (gma_head > gma_tail) { 2887 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2888 gma_head, gma_top, shadow_ring_buffer_va); 2889 if (ret < 0) { 2890 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2891 return ret; 2892 } 2893 shadow_ring_buffer_va += ret; 2894 gma_head = workload->rb_start; 2895 } 2896 2897 /* copy head or start <-> tail */ 2898 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2899 shadow_ring_buffer_va); 2900 if (ret < 0) { 2901 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2902 return ret; 2903 } 2904 return 0; 2905 } 2906 2907 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2908 { 2909 int ret; 2910 struct intel_vgpu *vgpu = workload->vgpu; 2911 2912 ret = shadow_workload_ring_buffer(workload); 2913 if (ret) { 2914 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2915 return ret; 2916 } 2917 2918 ret = scan_workload(workload); 2919 if (ret) { 2920 gvt_vgpu_err("scan workload error\n"); 2921 return ret; 2922 } 2923 return 0; 2924 } 2925 2926 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2927 { 2928 int ctx_size = wa_ctx->indirect_ctx.size; 2929 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2930 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2931 struct intel_vgpu_workload, 2932 wa_ctx); 2933 struct intel_vgpu *vgpu = workload->vgpu; 2934 struct drm_i915_gem_object *obj; 2935 int ret = 0; 2936 void *map; 2937 2938 obj = i915_gem_object_create_shmem(workload->engine->i915, 2939 roundup(ctx_size + CACHELINE_BYTES, 2940 PAGE_SIZE)); 2941 if (IS_ERR(obj)) 2942 return PTR_ERR(obj); 2943 2944 /* get the va of the shadow batch buffer */ 2945 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2946 if (IS_ERR(map)) { 2947 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2948 ret = PTR_ERR(map); 2949 goto put_obj; 2950 } 2951 2952 i915_gem_object_lock(obj); 2953 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2954 i915_gem_object_unlock(obj); 2955 if (ret) { 2956 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2957 goto unmap_src; 2958 } 2959 2960 ret = copy_gma_to_hva(workload->vgpu, 2961 workload->vgpu->gtt.ggtt_mm, 2962 guest_gma, guest_gma + ctx_size, 2963 map); 2964 if (ret < 0) { 2965 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2966 goto unmap_src; 2967 } 2968 2969 wa_ctx->indirect_ctx.obj = obj; 2970 wa_ctx->indirect_ctx.shadow_va = map; 2971 return 0; 2972 2973 unmap_src: 2974 i915_gem_object_unpin_map(obj); 2975 put_obj: 2976 i915_gem_object_put(obj); 2977 return ret; 2978 } 2979 2980 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2981 { 2982 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 2983 unsigned char *bb_start_sva; 2984 2985 if (!wa_ctx->per_ctx.valid) 2986 return 0; 2987 2988 per_ctx_start[0] = 0x18800001; 2989 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2990 2991 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2992 wa_ctx->indirect_ctx.size; 2993 2994 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2995 2996 return 0; 2997 } 2998 2999 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3000 { 3001 int ret; 3002 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3003 struct intel_vgpu_workload, 3004 wa_ctx); 3005 struct intel_vgpu *vgpu = workload->vgpu; 3006 3007 if (wa_ctx->indirect_ctx.size == 0) 3008 return 0; 3009 3010 ret = shadow_indirect_ctx(wa_ctx); 3011 if (ret) { 3012 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3013 return ret; 3014 } 3015 3016 combine_wa_ctx(wa_ctx); 3017 3018 ret = scan_wa_ctx(wa_ctx); 3019 if (ret) { 3020 gvt_vgpu_err("scan wa ctx error\n"); 3021 return ret; 3022 } 3023 3024 return 0; 3025 } 3026 3027 static int init_cmd_table(struct intel_gvt *gvt) 3028 { 3029 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3030 int i; 3031 3032 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3033 struct cmd_entry *e; 3034 3035 if (!(cmd_info[i].devices & gen_type)) 3036 continue; 3037 3038 e = kzalloc(sizeof(*e), GFP_KERNEL); 3039 if (!e) 3040 return -ENOMEM; 3041 3042 e->info = &cmd_info[i]; 3043 if (cmd_info[i].opcode == OP_MI_NOOP) 3044 mi_noop_index = i; 3045 3046 INIT_HLIST_NODE(&e->hlist); 3047 add_cmd_entry(gvt, e); 3048 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3049 e->info->name, e->info->opcode, e->info->flag, 3050 e->info->devices, e->info->rings); 3051 } 3052 3053 return 0; 3054 } 3055 3056 static void clean_cmd_table(struct intel_gvt *gvt) 3057 { 3058 struct hlist_node *tmp; 3059 struct cmd_entry *e; 3060 int i; 3061 3062 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3063 kfree(e); 3064 3065 hash_init(gvt->cmd_table); 3066 } 3067 3068 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3069 { 3070 clean_cmd_table(gvt); 3071 } 3072 3073 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3074 { 3075 int ret; 3076 3077 ret = init_cmd_table(gvt); 3078 if (ret) { 3079 intel_gvt_clean_cmd_parser(gvt); 3080 return ret; 3081 } 3082 return 0; 3083 } 3084