xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 
176 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
180 
181 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247 
248 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259 
260 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
288 
289 /* VCCP Command Parser */
290 
291 /*
292  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293  * git://anongit.freedesktop.org/vaapi/intel-driver
294  * src/i965_defines.h
295  *
296  */
297 
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
299 	(3 << 13 | \
300 	 (pipeline) << 11 | \
301 	 (op) << 8 | \
302 	 (sub_opa) << 5 | \
303 	 (sub_opb))
304 
305 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
306 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
310 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
311 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
312 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
313 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
316 
317 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
318 
319 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
331 
332 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
337 
338 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
343 
344 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
347 
348 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
351 
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353 	(3 << 13 | \
354 	 (pipeline) << 11 | \
355 	 (op) << 8 | \
356 	 (sub_opa) << 5 | \
357 	 (sub_opb))
358 
359 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
362 
363 struct parser_exec_state;
364 
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366 
367 #define GVT_CMD_HASH_BITS   7
368 
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1)			(1 << (x1))
371 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375 
376 struct cmd_info {
377 	char *name;
378 	u32 opcode;
379 
380 #define F_LEN_MASK	(1U<<0)
381 #define F_LEN_CONST  1U
382 #define F_LEN_VAR    0U
383 
384 /*
385  * command has its own ip advance logic
386  * e.g. MI_BATCH_START, MI_BATCH_END
387  */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389 
390 #define F_POST_HANDLE	(1<<2)
391 	u32 flag;
392 
393 #define R_RCS	(1 << RCS)
394 #define R_VCS1  (1 << VCS)
395 #define R_VCS2  (1 << VCS2)
396 #define R_VCS	(R_VCS1 | R_VCS2)
397 #define R_BCS	(1 << BCS)
398 #define R_VECS	(1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
401 	uint16_t rings;
402 
403 	/* devices that support this cmd: SNB/IVB/HSW/... */
404 	uint16_t devices;
405 
406 	/* which DWords are address that need fix up.
407 	 * bit 0 means a 32-bit non address operand in command
408 	 * bit 1 means address operand, which could be 32-bit
409 	 * or 64-bit depending on different architectures.(
410 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411 	 * No matter the address length, each address only takes
412 	 * one bit in the bitmap.
413 	 */
414 	uint16_t addr_bitmap;
415 
416 	/* flag == F_LEN_CONST : command length
417 	 * flag == F_LEN_VAR : length bias bits
418 	 * Note: length is in DWord
419 	 */
420 	uint8_t	len;
421 
422 	parser_cmd_handler handler;
423 };
424 
425 struct cmd_entry {
426 	struct hlist_node hlist;
427 	struct cmd_info *info;
428 };
429 
430 enum {
431 	RING_BUFFER_INSTRUCTION,
432 	BATCH_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_2ND_LEVEL,
434 };
435 
436 enum {
437 	GTT_BUFFER,
438 	PPGTT_BUFFER
439 };
440 
441 struct parser_exec_state {
442 	struct intel_vgpu *vgpu;
443 	int ring_id;
444 
445 	int buf_type;
446 
447 	/* batch buffer address type */
448 	int buf_addr_type;
449 
450 	/* graphics memory address of ring buffer start */
451 	unsigned long ring_start;
452 	unsigned long ring_size;
453 	unsigned long ring_head;
454 	unsigned long ring_tail;
455 
456 	/* instruction graphics memory address */
457 	unsigned long ip_gma;
458 
459 	/* mapped va of the instr_gma */
460 	void *ip_va;
461 	void *rb_va;
462 
463 	void *ret_bb_va;
464 	/* next instruction when return from  batch buffer to ring buffer */
465 	unsigned long ret_ip_gma_ring;
466 
467 	/* next instruction when return from 2nd batch buffer to batch buffer */
468 	unsigned long ret_ip_gma_bb;
469 
470 	/* batch buffer address type (GTT or PPGTT)
471 	 * used when ret from 2nd level batch buffer
472 	 */
473 	int saved_buf_addr_type;
474 	bool is_ctx_wa;
475 
476 	struct cmd_info *info;
477 
478 	struct intel_vgpu_workload *workload;
479 };
480 
481 #define gmadr_dw_number(s)	\
482 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
483 
484 static unsigned long bypass_scan_mask = 0;
485 
486 /* ring ALL, type = 0 */
487 static struct sub_op_bits sub_op_mi[] = {
488 	{31, 29},
489 	{28, 23},
490 };
491 
492 static struct decode_info decode_info_mi = {
493 	"MI",
494 	OP_LEN_MI,
495 	ARRAY_SIZE(sub_op_mi),
496 	sub_op_mi,
497 };
498 
499 /* ring RCS, command type 2 */
500 static struct sub_op_bits sub_op_2d[] = {
501 	{31, 29},
502 	{28, 22},
503 };
504 
505 static struct decode_info decode_info_2d = {
506 	"2D",
507 	OP_LEN_2D,
508 	ARRAY_SIZE(sub_op_2d),
509 	sub_op_2d,
510 };
511 
512 /* ring RCS, command type 3 */
513 static struct sub_op_bits sub_op_3d_media[] = {
514 	{31, 29},
515 	{28, 27},
516 	{26, 24},
517 	{23, 16},
518 };
519 
520 static struct decode_info decode_info_3d_media = {
521 	"3D_Media",
522 	OP_LEN_3D_MEDIA,
523 	ARRAY_SIZE(sub_op_3d_media),
524 	sub_op_3d_media,
525 };
526 
527 /* ring VCS, command type 3 */
528 static struct sub_op_bits sub_op_mfx_vc[] = {
529 	{31, 29},
530 	{28, 27},
531 	{26, 24},
532 	{23, 21},
533 	{20, 16},
534 };
535 
536 static struct decode_info decode_info_mfx_vc = {
537 	"MFX_VC",
538 	OP_LEN_MFX_VC,
539 	ARRAY_SIZE(sub_op_mfx_vc),
540 	sub_op_mfx_vc,
541 };
542 
543 /* ring VECS, command type 3 */
544 static struct sub_op_bits sub_op_vebox[] = {
545 	{31, 29},
546 	{28, 27},
547 	{26, 24},
548 	{23, 21},
549 	{20, 16},
550 };
551 
552 static struct decode_info decode_info_vebox = {
553 	"VEBOX",
554 	OP_LEN_VEBOX,
555 	ARRAY_SIZE(sub_op_vebox),
556 	sub_op_vebox,
557 };
558 
559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
560 	[RCS] = {
561 		&decode_info_mi,
562 		NULL,
563 		NULL,
564 		&decode_info_3d_media,
565 		NULL,
566 		NULL,
567 		NULL,
568 		NULL,
569 	},
570 
571 	[VCS] = {
572 		&decode_info_mi,
573 		NULL,
574 		NULL,
575 		&decode_info_mfx_vc,
576 		NULL,
577 		NULL,
578 		NULL,
579 		NULL,
580 	},
581 
582 	[BCS] = {
583 		&decode_info_mi,
584 		NULL,
585 		&decode_info_2d,
586 		NULL,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 	},
592 
593 	[VECS] = {
594 		&decode_info_mi,
595 		NULL,
596 		NULL,
597 		&decode_info_vebox,
598 		NULL,
599 		NULL,
600 		NULL,
601 		NULL,
602 	},
603 
604 	[VCS2] = {
605 		&decode_info_mi,
606 		NULL,
607 		NULL,
608 		&decode_info_mfx_vc,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 };
615 
616 static inline u32 get_opcode(u32 cmd, int ring_id)
617 {
618 	struct decode_info *d_info;
619 
620 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
621 	if (d_info == NULL)
622 		return INVALID_OP;
623 
624 	return cmd >> (32 - d_info->op_len);
625 }
626 
627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
628 		unsigned int opcode, int ring_id)
629 {
630 	struct cmd_entry *e;
631 
632 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
633 		if ((opcode == e->info->opcode) &&
634 				(e->info->rings & (1 << ring_id)))
635 			return e->info;
636 	}
637 	return NULL;
638 }
639 
640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641 		u32 cmd, int ring_id)
642 {
643 	u32 opcode;
644 
645 	opcode = get_opcode(cmd, ring_id);
646 	if (opcode == INVALID_OP)
647 		return NULL;
648 
649 	return find_cmd_entry(gvt, opcode, ring_id);
650 }
651 
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656 
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659 	struct decode_info *d_info;
660 	int i;
661 
662 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663 	if (d_info == NULL)
664 		return;
665 
666 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667 			cmd >> (32 - d_info->op_len), d_info->name);
668 
669 	for (i = 0; i < d_info->nr_sub_op; i++)
670 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671 					d_info->sub_op[i].low));
672 
673 	pr_err("\n");
674 }
675 
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678 	return s->ip_va + (index << 2);
679 }
680 
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683 	return *cmd_ptr(s, index);
684 }
685 
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688 	int cnt = 0;
689 	int i;
690 
691 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694 			s->ring_head, s->ring_tail);
695 
696 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
697 			s->buf_type == RING_BUFFER_INSTRUCTION ?
698 			"RING_BUFFER" : "BATCH_BUFFER",
699 			s->buf_addr_type == GTT_BUFFER ?
700 			"GTT" : "PPGTT", s->ip_gma);
701 
702 	if (s->ip_va == NULL) {
703 		gvt_dbg_cmd(" ip_va(NULL)");
704 		return;
705 	}
706 
707 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
708 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709 			cmd_val(s, 2), cmd_val(s, 3));
710 
711 	print_opcode(cmd_val(s, 0), s->ring_id);
712 
713 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714 
715 	while (cnt < 1024) {
716 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717 		for (i = 0; i < 8; i++)
718 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
719 		gvt_dbg_cmd("\n");
720 
721 		s->ip_va += 8 * sizeof(u32);
722 		cnt += 8;
723 	}
724 }
725 
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728 	unsigned long len = 0;
729 
730 	if (WARN_ON(s->ring_head == s->ring_tail))
731 		return;
732 
733 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734 		unsigned long ring_top = s->ring_start + s->ring_size;
735 
736 		if (s->ring_head > s->ring_tail) {
737 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738 				len = (s->ip_gma - s->ring_head);
739 			else if (s->ip_gma >= s->ring_start &&
740 					s->ip_gma <= s->ring_tail)
741 				len = (ring_top - s->ring_head) +
742 					(s->ip_gma - s->ring_start);
743 		} else
744 			len = (s->ip_gma - s->ring_head);
745 
746 		s->ip_va = s->rb_va + len;
747 	} else {/* shadow batch buffer */
748 		s->ip_va = s->ret_bb_va;
749 	}
750 }
751 
752 static inline int ip_gma_set(struct parser_exec_state *s,
753 		unsigned long ip_gma)
754 {
755 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
756 
757 	s->ip_gma = ip_gma;
758 	update_ip_va(s);
759 	return 0;
760 }
761 
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763 		unsigned int dw_len)
764 {
765 	s->ip_gma += (dw_len << 2);
766 
767 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768 		if (s->ip_gma >= s->ring_start + s->ring_size)
769 			s->ip_gma -= s->ring_size;
770 		update_ip_va(s);
771 	} else {
772 		s->ip_va += (dw_len << 2);
773 	}
774 
775 	return 0;
776 }
777 
778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
779 {
780 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781 		return info->len;
782 	else
783 		return (cmd & ((1U << info->len) - 1)) + 2;
784 	return 0;
785 }
786 
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789 	return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791 
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794 	*addr = val; \
795 } while (0)
796 
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799 	bool ret = false;
800 
801 	if ((offset == 0x2168) || /*BB current head register UDW */
802 	    (offset == 0x2140) || /*BB current header register */
803 	    (offset == 0x211c) || /*second BB header register UDW */
804 	    (offset == 0x2114)) { /*second BB header register UDW */
805 		ret = true;
806 	}
807 	return ret;
808 }
809 
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812 	return (offset >= 0x24d0 && offset < 0x2500);
813 }
814 
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816 		unsigned int offset, unsigned int index, char *cmd)
817 {
818 	struct intel_gvt *gvt = s->vgpu->gvt;
819 	unsigned int data;
820 	u32 ring_base;
821 	u32 nopid;
822 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
823 
824 	if (!strcmp(cmd, "lri"))
825 		data = cmd_val(s, index + 1);
826 	else {
827 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
828 			offset, cmd);
829 		return -EINVAL;
830 	}
831 
832 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
833 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
834 
835 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
836 			data != nopid) {
837 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
838 			offset, data);
839 		patch_value(s, cmd_ptr(s, index), nopid);
840 		return 0;
841 	}
842 	return 0;
843 }
844 
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848 		((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850 
851 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
852 				unsigned int offset, unsigned int index)
853 {
854 	if (!is_mocs_mmio(offset))
855 		return -EINVAL;
856 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
857 	return 0;
858 }
859 
860 static int cmd_reg_handler(struct parser_exec_state *s,
861 	unsigned int offset, unsigned int index, char *cmd)
862 {
863 	struct intel_vgpu *vgpu = s->vgpu;
864 	struct intel_gvt *gvt = vgpu->gvt;
865 
866 	if (offset + 4 > gvt->device_info.mmio_size) {
867 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
868 				cmd, offset);
869 		return -EFAULT;
870 	}
871 
872 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
873 		gvt_vgpu_err("%s access to non-render register (%x)\n",
874 				cmd, offset);
875 		return 0;
876 	}
877 
878 	if (is_shadowed_mmio(offset)) {
879 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
880 		return 0;
881 	}
882 
883 	if (is_mocs_mmio(offset) &&
884 	    mocs_cmd_reg_handler(s, offset, index))
885 		return -EINVAL;
886 
887 	if (is_force_nonpriv_mmio(offset) &&
888 		force_nonpriv_reg_handler(s, offset, index, cmd))
889 		return -EPERM;
890 
891 	if (offset == i915_mmio_reg_offset(DERRMR) ||
892 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
893 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
894 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
895 	}
896 
897 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
898 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
899 	return 0;
900 }
901 
902 #define cmd_reg(s, i) \
903 	(cmd_val(s, i) & GENMASK(22, 2))
904 
905 #define cmd_reg_inhibit(s, i) \
906 	(cmd_val(s, i) & GENMASK(22, 18))
907 
908 #define cmd_gma(s, i) \
909 	(cmd_val(s, i) & GENMASK(31, 2))
910 
911 #define cmd_gma_hi(s, i) \
912 	(cmd_val(s, i) & GENMASK(15, 0))
913 
914 static int cmd_handler_lri(struct parser_exec_state *s)
915 {
916 	int i, ret = 0;
917 	int cmd_len = cmd_length(s);
918 	struct intel_gvt *gvt = s->vgpu->gvt;
919 
920 	for (i = 1; i < cmd_len; i += 2) {
921 		if (IS_BROADWELL(gvt->dev_priv) &&
922 				(s->ring_id != RCS)) {
923 			if (s->ring_id == BCS &&
924 					cmd_reg(s, i) ==
925 					i915_mmio_reg_offset(DERRMR))
926 				ret |= 0;
927 			else
928 				ret |= (cmd_reg_inhibit(s, i)) ?
929 					-EBADRQC : 0;
930 		}
931 		if (ret)
932 			break;
933 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
934 		if (ret)
935 			break;
936 	}
937 	return ret;
938 }
939 
940 static int cmd_handler_lrr(struct parser_exec_state *s)
941 {
942 	int i, ret = 0;
943 	int cmd_len = cmd_length(s);
944 
945 	for (i = 1; i < cmd_len; i += 2) {
946 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
947 			ret |= ((cmd_reg_inhibit(s, i) ||
948 					(cmd_reg_inhibit(s, i + 1)))) ?
949 				-EBADRQC : 0;
950 		if (ret)
951 			break;
952 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
953 		if (ret)
954 			break;
955 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
956 		if (ret)
957 			break;
958 	}
959 	return ret;
960 }
961 
962 static inline int cmd_address_audit(struct parser_exec_state *s,
963 		unsigned long guest_gma, int op_size, bool index_mode);
964 
965 static int cmd_handler_lrm(struct parser_exec_state *s)
966 {
967 	struct intel_gvt *gvt = s->vgpu->gvt;
968 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
969 	unsigned long gma;
970 	int i, ret = 0;
971 	int cmd_len = cmd_length(s);
972 
973 	for (i = 1; i < cmd_len;) {
974 		if (IS_BROADWELL(gvt->dev_priv))
975 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
976 		if (ret)
977 			break;
978 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
979 		if (ret)
980 			break;
981 		if (cmd_val(s, 0) & (1 << 22)) {
982 			gma = cmd_gma(s, i + 1);
983 			if (gmadr_bytes == 8)
984 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
985 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
986 			if (ret)
987 				break;
988 		}
989 		i += gmadr_dw_number(s) + 1;
990 	}
991 	return ret;
992 }
993 
994 static int cmd_handler_srm(struct parser_exec_state *s)
995 {
996 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
997 	unsigned long gma;
998 	int i, ret = 0;
999 	int cmd_len = cmd_length(s);
1000 
1001 	for (i = 1; i < cmd_len;) {
1002 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1003 		if (ret)
1004 			break;
1005 		if (cmd_val(s, 0) & (1 << 22)) {
1006 			gma = cmd_gma(s, i + 1);
1007 			if (gmadr_bytes == 8)
1008 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1009 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1010 			if (ret)
1011 				break;
1012 		}
1013 		i += gmadr_dw_number(s) + 1;
1014 	}
1015 	return ret;
1016 }
1017 
1018 struct cmd_interrupt_event {
1019 	int pipe_control_notify;
1020 	int mi_flush_dw;
1021 	int mi_user_interrupt;
1022 };
1023 
1024 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1025 	[RCS] = {
1026 		.pipe_control_notify = RCS_PIPE_CONTROL,
1027 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1028 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1029 	},
1030 	[BCS] = {
1031 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1032 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1033 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1034 	},
1035 	[VCS] = {
1036 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1037 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1038 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1039 	},
1040 	[VCS2] = {
1041 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1042 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1043 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1044 	},
1045 	[VECS] = {
1046 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1047 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1048 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1049 	},
1050 };
1051 
1052 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1053 {
1054 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1055 	unsigned long gma;
1056 	bool index_mode = false;
1057 	unsigned int post_sync;
1058 	int ret = 0;
1059 
1060 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1061 
1062 	/* LRI post sync */
1063 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1064 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1065 	/* post sync */
1066 	else if (post_sync) {
1067 		if (post_sync == 2)
1068 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1069 		else if (post_sync == 3)
1070 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1071 		else if (post_sync == 1) {
1072 			/* check ggtt*/
1073 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1074 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1075 				if (gmadr_bytes == 8)
1076 					gma |= (cmd_gma_hi(s, 3)) << 32;
1077 				/* Store Data Index */
1078 				if (cmd_val(s, 1) & (1 << 21))
1079 					index_mode = true;
1080 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1081 						index_mode);
1082 			}
1083 		}
1084 	}
1085 
1086 	if (ret)
1087 		return ret;
1088 
1089 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1090 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1091 				s->workload->pending_events);
1092 	return 0;
1093 }
1094 
1095 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1096 {
1097 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1098 			s->workload->pending_events);
1099 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1100 	return 0;
1101 }
1102 
1103 static int cmd_advance_default(struct parser_exec_state *s)
1104 {
1105 	return ip_gma_advance(s, cmd_length(s));
1106 }
1107 
1108 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1109 {
1110 	int ret;
1111 
1112 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1113 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1114 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1115 		s->buf_addr_type = s->saved_buf_addr_type;
1116 	} else {
1117 		s->buf_type = RING_BUFFER_INSTRUCTION;
1118 		s->buf_addr_type = GTT_BUFFER;
1119 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1120 			s->ret_ip_gma_ring -= s->ring_size;
1121 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1122 	}
1123 	return ret;
1124 }
1125 
1126 struct mi_display_flip_command_info {
1127 	int pipe;
1128 	int plane;
1129 	int event;
1130 	i915_reg_t stride_reg;
1131 	i915_reg_t ctrl_reg;
1132 	i915_reg_t surf_reg;
1133 	u64 stride_val;
1134 	u64 tile_val;
1135 	u64 surf_val;
1136 	bool async_flip;
1137 };
1138 
1139 struct plane_code_mapping {
1140 	int pipe;
1141 	int plane;
1142 	int event;
1143 };
1144 
1145 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1146 		struct mi_display_flip_command_info *info)
1147 {
1148 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1149 	struct plane_code_mapping gen8_plane_code[] = {
1150 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1151 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1152 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1153 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1154 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1155 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1156 	};
1157 	u32 dword0, dword1, dword2;
1158 	u32 v;
1159 
1160 	dword0 = cmd_val(s, 0);
1161 	dword1 = cmd_val(s, 1);
1162 	dword2 = cmd_val(s, 2);
1163 
1164 	v = (dword0 & GENMASK(21, 19)) >> 19;
1165 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1166 		return -EBADRQC;
1167 
1168 	info->pipe = gen8_plane_code[v].pipe;
1169 	info->plane = gen8_plane_code[v].plane;
1170 	info->event = gen8_plane_code[v].event;
1171 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1172 	info->tile_val = (dword1 & 0x1);
1173 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1174 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1175 
1176 	if (info->plane == PLANE_A) {
1177 		info->ctrl_reg = DSPCNTR(info->pipe);
1178 		info->stride_reg = DSPSTRIDE(info->pipe);
1179 		info->surf_reg = DSPSURF(info->pipe);
1180 	} else if (info->plane == PLANE_B) {
1181 		info->ctrl_reg = SPRCTL(info->pipe);
1182 		info->stride_reg = SPRSTRIDE(info->pipe);
1183 		info->surf_reg = SPRSURF(info->pipe);
1184 	} else {
1185 		WARN_ON(1);
1186 		return -EBADRQC;
1187 	}
1188 	return 0;
1189 }
1190 
1191 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1192 		struct mi_display_flip_command_info *info)
1193 {
1194 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1195 	struct intel_vgpu *vgpu = s->vgpu;
1196 	u32 dword0 = cmd_val(s, 0);
1197 	u32 dword1 = cmd_val(s, 1);
1198 	u32 dword2 = cmd_val(s, 2);
1199 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1200 
1201 	info->plane = PRIMARY_PLANE;
1202 
1203 	switch (plane) {
1204 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1205 		info->pipe = PIPE_A;
1206 		info->event = PRIMARY_A_FLIP_DONE;
1207 		break;
1208 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1209 		info->pipe = PIPE_B;
1210 		info->event = PRIMARY_B_FLIP_DONE;
1211 		break;
1212 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1213 		info->pipe = PIPE_C;
1214 		info->event = PRIMARY_C_FLIP_DONE;
1215 		break;
1216 
1217 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1218 		info->pipe = PIPE_A;
1219 		info->event = SPRITE_A_FLIP_DONE;
1220 		info->plane = SPRITE_PLANE;
1221 		break;
1222 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1223 		info->pipe = PIPE_B;
1224 		info->event = SPRITE_B_FLIP_DONE;
1225 		info->plane = SPRITE_PLANE;
1226 		break;
1227 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1228 		info->pipe = PIPE_C;
1229 		info->event = SPRITE_C_FLIP_DONE;
1230 		info->plane = SPRITE_PLANE;
1231 		break;
1232 
1233 	default:
1234 		gvt_vgpu_err("unknown plane code %d\n", plane);
1235 		return -EBADRQC;
1236 	}
1237 
1238 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1239 	info->tile_val = (dword1 & GENMASK(2, 0));
1240 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1241 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1242 
1243 	info->ctrl_reg = DSPCNTR(info->pipe);
1244 	info->stride_reg = DSPSTRIDE(info->pipe);
1245 	info->surf_reg = DSPSURF(info->pipe);
1246 
1247 	return 0;
1248 }
1249 
1250 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1251 		struct mi_display_flip_command_info *info)
1252 {
1253 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1254 	u32 stride, tile;
1255 
1256 	if (!info->async_flip)
1257 		return 0;
1258 
1259 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1260 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1261 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1262 				GENMASK(12, 10)) >> 10;
1263 	} else {
1264 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1265 				GENMASK(15, 6)) >> 6;
1266 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1267 	}
1268 
1269 	if (stride != info->stride_val)
1270 		gvt_dbg_cmd("cannot change stride during async flip\n");
1271 
1272 	if (tile != info->tile_val)
1273 		gvt_dbg_cmd("cannot change tile during async flip\n");
1274 
1275 	return 0;
1276 }
1277 
1278 static int gen8_update_plane_mmio_from_mi_display_flip(
1279 		struct parser_exec_state *s,
1280 		struct mi_display_flip_command_info *info)
1281 {
1282 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1283 	struct intel_vgpu *vgpu = s->vgpu;
1284 
1285 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1286 		      info->surf_val << 12);
1287 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1288 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1289 			      info->stride_val);
1290 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1291 			      info->tile_val << 10);
1292 	} else {
1293 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1294 			      info->stride_val << 6);
1295 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1296 			      info->tile_val << 10);
1297 	}
1298 
1299 	vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1300 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1301 	return 0;
1302 }
1303 
1304 static int decode_mi_display_flip(struct parser_exec_state *s,
1305 		struct mi_display_flip_command_info *info)
1306 {
1307 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1308 
1309 	if (IS_BROADWELL(dev_priv))
1310 		return gen8_decode_mi_display_flip(s, info);
1311 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1312 		return skl_decode_mi_display_flip(s, info);
1313 
1314 	return -ENODEV;
1315 }
1316 
1317 static int check_mi_display_flip(struct parser_exec_state *s,
1318 		struct mi_display_flip_command_info *info)
1319 {
1320 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1321 
1322 	if (IS_BROADWELL(dev_priv)
1323 		|| IS_SKYLAKE(dev_priv)
1324 		|| IS_KABYLAKE(dev_priv))
1325 		return gen8_check_mi_display_flip(s, info);
1326 	return -ENODEV;
1327 }
1328 
1329 static int update_plane_mmio_from_mi_display_flip(
1330 		struct parser_exec_state *s,
1331 		struct mi_display_flip_command_info *info)
1332 {
1333 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1334 
1335 	if (IS_BROADWELL(dev_priv)
1336 		|| IS_SKYLAKE(dev_priv)
1337 		|| IS_KABYLAKE(dev_priv))
1338 		return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1339 	return -ENODEV;
1340 }
1341 
1342 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1343 {
1344 	struct mi_display_flip_command_info info;
1345 	struct intel_vgpu *vgpu = s->vgpu;
1346 	int ret;
1347 	int i;
1348 	int len = cmd_length(s);
1349 
1350 	ret = decode_mi_display_flip(s, &info);
1351 	if (ret) {
1352 		gvt_vgpu_err("fail to decode MI display flip command\n");
1353 		return ret;
1354 	}
1355 
1356 	ret = check_mi_display_flip(s, &info);
1357 	if (ret) {
1358 		gvt_vgpu_err("invalid MI display flip command\n");
1359 		return ret;
1360 	}
1361 
1362 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1363 	if (ret) {
1364 		gvt_vgpu_err("fail to update plane mmio\n");
1365 		return ret;
1366 	}
1367 
1368 	for (i = 0; i < len; i++)
1369 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1370 	return 0;
1371 }
1372 
1373 static bool is_wait_for_flip_pending(u32 cmd)
1374 {
1375 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1376 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1377 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1378 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1379 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1380 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1381 }
1382 
1383 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1384 {
1385 	u32 cmd = cmd_val(s, 0);
1386 
1387 	if (!is_wait_for_flip_pending(cmd))
1388 		return 0;
1389 
1390 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1391 	return 0;
1392 }
1393 
1394 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1395 {
1396 	unsigned long addr;
1397 	unsigned long gma_high, gma_low;
1398 	struct intel_vgpu *vgpu = s->vgpu;
1399 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1400 
1401 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1402 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1403 		return INTEL_GVT_INVALID_ADDR;
1404 	}
1405 
1406 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1407 	if (gmadr_bytes == 4) {
1408 		addr = gma_low;
1409 	} else {
1410 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1411 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1412 	}
1413 	return addr;
1414 }
1415 
1416 static inline int cmd_address_audit(struct parser_exec_state *s,
1417 		unsigned long guest_gma, int op_size, bool index_mode)
1418 {
1419 	struct intel_vgpu *vgpu = s->vgpu;
1420 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1421 	int i;
1422 	int ret;
1423 
1424 	if (op_size > max_surface_size) {
1425 		gvt_vgpu_err("command address audit fail name %s\n",
1426 			s->info->name);
1427 		return -EFAULT;
1428 	}
1429 
1430 	if (index_mode)	{
1431 		if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
1432 			ret = -EFAULT;
1433 			goto err;
1434 		}
1435 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1436 		ret = -EFAULT;
1437 		goto err;
1438 	}
1439 
1440 	return 0;
1441 
1442 err:
1443 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1444 			s->info->name, guest_gma, op_size);
1445 
1446 	pr_err("cmd dump: ");
1447 	for (i = 0; i < cmd_length(s); i++) {
1448 		if (!(i % 4))
1449 			pr_err("\n%08x ", cmd_val(s, i));
1450 		else
1451 			pr_err("%08x ", cmd_val(s, i));
1452 	}
1453 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1454 			vgpu->id,
1455 			vgpu_aperture_gmadr_base(vgpu),
1456 			vgpu_aperture_gmadr_end(vgpu),
1457 			vgpu_hidden_gmadr_base(vgpu),
1458 			vgpu_hidden_gmadr_end(vgpu));
1459 	return ret;
1460 }
1461 
1462 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1463 {
1464 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1465 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1466 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1467 	unsigned long gma, gma_low, gma_high;
1468 	int ret = 0;
1469 
1470 	/* check ppggt */
1471 	if (!(cmd_val(s, 0) & (1 << 22)))
1472 		return 0;
1473 
1474 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1475 
1476 	if (gmadr_bytes == 8) {
1477 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1478 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1479 		gma = (gma_high << 32) | gma_low;
1480 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1481 	}
1482 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1483 	return ret;
1484 }
1485 
1486 static inline int unexpected_cmd(struct parser_exec_state *s)
1487 {
1488 	struct intel_vgpu *vgpu = s->vgpu;
1489 
1490 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1491 
1492 	return -EBADRQC;
1493 }
1494 
1495 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1496 {
1497 	return unexpected_cmd(s);
1498 }
1499 
1500 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1501 {
1502 	return unexpected_cmd(s);
1503 }
1504 
1505 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1506 {
1507 	return unexpected_cmd(s);
1508 }
1509 
1510 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1511 {
1512 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1513 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1514 			sizeof(u32);
1515 	unsigned long gma, gma_high;
1516 	int ret = 0;
1517 
1518 	if (!(cmd_val(s, 0) & (1 << 22)))
1519 		return ret;
1520 
1521 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1522 	if (gmadr_bytes == 8) {
1523 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1524 		gma = (gma_high << 32) | gma;
1525 	}
1526 	ret = cmd_address_audit(s, gma, op_size, false);
1527 	return ret;
1528 }
1529 
1530 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1531 {
1532 	return unexpected_cmd(s);
1533 }
1534 
1535 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1536 {
1537 	return unexpected_cmd(s);
1538 }
1539 
1540 static int cmd_handler_mi_conditional_batch_buffer_end(
1541 		struct parser_exec_state *s)
1542 {
1543 	return unexpected_cmd(s);
1544 }
1545 
1546 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1547 {
1548 	return unexpected_cmd(s);
1549 }
1550 
1551 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1552 {
1553 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1554 	unsigned long gma;
1555 	bool index_mode = false;
1556 	int ret = 0;
1557 
1558 	/* Check post-sync and ppgtt bit */
1559 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1560 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1561 		if (gmadr_bytes == 8)
1562 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1563 		/* Store Data Index */
1564 		if (cmd_val(s, 0) & (1 << 21))
1565 			index_mode = true;
1566 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1567 	}
1568 	/* Check notify bit */
1569 	if ((cmd_val(s, 0) & (1 << 8)))
1570 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1571 				s->workload->pending_events);
1572 	return ret;
1573 }
1574 
1575 static void addr_type_update_snb(struct parser_exec_state *s)
1576 {
1577 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1578 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1579 		s->buf_addr_type = PPGTT_BUFFER;
1580 	}
1581 }
1582 
1583 
1584 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1585 		unsigned long gma, unsigned long end_gma, void *va)
1586 {
1587 	unsigned long copy_len, offset;
1588 	unsigned long len = 0;
1589 	unsigned long gpa;
1590 
1591 	while (gma != end_gma) {
1592 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1593 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1594 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1595 			return -EFAULT;
1596 		}
1597 
1598 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1599 
1600 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1601 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1602 
1603 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1604 
1605 		len += copy_len;
1606 		gma += copy_len;
1607 	}
1608 	return len;
1609 }
1610 
1611 
1612 /*
1613  * Check whether a batch buffer needs to be scanned. Currently
1614  * the only criteria is based on privilege.
1615  */
1616 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1617 {
1618 	struct intel_gvt *gvt = s->vgpu->gvt;
1619 
1620 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
1621 		|| IS_KABYLAKE(gvt->dev_priv)) {
1622 		/* BDW decides privilege based on address space */
1623 		if (cmd_val(s, 0) & (1 << 8) &&
1624 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1625 			return 0;
1626 	}
1627 	return 1;
1628 }
1629 
1630 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1631 {
1632 	unsigned long gma = 0;
1633 	struct cmd_info *info;
1634 	uint32_t cmd_len = 0;
1635 	bool bb_end = false;
1636 	struct intel_vgpu *vgpu = s->vgpu;
1637 	u32 cmd;
1638 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1639 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1640 
1641 	*bb_size = 0;
1642 
1643 	/* get the start gm address of the batch buffer */
1644 	gma = get_gma_bb_from_cmd(s, 1);
1645 	if (gma == INTEL_GVT_INVALID_ADDR)
1646 		return -EFAULT;
1647 
1648 	cmd = cmd_val(s, 0);
1649 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1650 	if (info == NULL) {
1651 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1652 				cmd, get_opcode(cmd, s->ring_id),
1653 				(s->buf_addr_type == PPGTT_BUFFER) ?
1654 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1655 		return -EBADRQC;
1656 	}
1657 	do {
1658 		if (copy_gma_to_hva(s->vgpu, mm,
1659 				gma, gma + 4, &cmd) < 0)
1660 			return -EFAULT;
1661 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1662 		if (info == NULL) {
1663 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1664 				cmd, get_opcode(cmd, s->ring_id),
1665 				(s->buf_addr_type == PPGTT_BUFFER) ?
1666 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1667 			return -EBADRQC;
1668 		}
1669 
1670 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1671 			bb_end = true;
1672 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1673 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1674 				/* chained batch buffer */
1675 				bb_end = true;
1676 		}
1677 		cmd_len = get_cmd_length(info, cmd) << 2;
1678 		*bb_size += cmd_len;
1679 		gma += cmd_len;
1680 	} while (!bb_end);
1681 
1682 	return 0;
1683 }
1684 
1685 static int perform_bb_shadow(struct parser_exec_state *s)
1686 {
1687 	struct intel_vgpu *vgpu = s->vgpu;
1688 	struct intel_vgpu_shadow_bb *bb;
1689 	unsigned long gma = 0;
1690 	unsigned long bb_size;
1691 	int ret = 0;
1692 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1693 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1694 	unsigned long gma_start_offset = 0;
1695 
1696 	/* get the start gm address of the batch buffer */
1697 	gma = get_gma_bb_from_cmd(s, 1);
1698 	if (gma == INTEL_GVT_INVALID_ADDR)
1699 		return -EFAULT;
1700 
1701 	ret = find_bb_size(s, &bb_size);
1702 	if (ret)
1703 		return ret;
1704 
1705 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1706 	if (!bb)
1707 		return -ENOMEM;
1708 
1709 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1710 
1711 	/* the gma_start_offset stores the batch buffer's start gma's
1712 	 * offset relative to page boundary. so for non-privileged batch
1713 	 * buffer, the shadowed gem object holds exactly the same page
1714 	 * layout as original gem object. This is for the convience of
1715 	 * replacing the whole non-privilged batch buffer page to this
1716 	 * shadowed one in PPGTT at the same gma address. (this replacing
1717 	 * action is not implemented yet now, but may be necessary in
1718 	 * future).
1719 	 * for prileged batch buffer, we just change start gma address to
1720 	 * that of shadowed page.
1721 	 */
1722 	if (bb->ppgtt)
1723 		gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1724 
1725 	bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1726 			 roundup(bb_size + gma_start_offset, PAGE_SIZE));
1727 	if (IS_ERR(bb->obj)) {
1728 		ret = PTR_ERR(bb->obj);
1729 		goto err_free_bb;
1730 	}
1731 
1732 	ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1733 	if (ret)
1734 		goto err_free_obj;
1735 
1736 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1737 	if (IS_ERR(bb->va)) {
1738 		ret = PTR_ERR(bb->va);
1739 		goto err_finish_shmem_access;
1740 	}
1741 
1742 	if (bb->clflush & CLFLUSH_BEFORE) {
1743 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1744 		bb->clflush &= ~CLFLUSH_BEFORE;
1745 	}
1746 
1747 	ret = copy_gma_to_hva(s->vgpu, mm,
1748 			      gma, gma + bb_size,
1749 			      bb->va + gma_start_offset);
1750 	if (ret < 0) {
1751 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1752 		ret = -EFAULT;
1753 		goto err_unmap;
1754 	}
1755 
1756 	INIT_LIST_HEAD(&bb->list);
1757 	list_add(&bb->list, &s->workload->shadow_bb);
1758 
1759 	bb->accessing = true;
1760 	bb->bb_start_cmd_va = s->ip_va;
1761 
1762 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1763 		bb->bb_offset = s->ip_va - s->rb_va;
1764 	else
1765 		bb->bb_offset = 0;
1766 
1767 	/*
1768 	 * ip_va saves the virtual address of the shadow batch buffer, while
1769 	 * ip_gma saves the graphics address of the original batch buffer.
1770 	 * As the shadow batch buffer is just a copy from the originial one,
1771 	 * it should be right to use shadow batch buffer'va and original batch
1772 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1773 	 * buffer here (too early).
1774 	 */
1775 	s->ip_va = bb->va + gma_start_offset;
1776 	s->ip_gma = gma;
1777 	return 0;
1778 err_unmap:
1779 	i915_gem_object_unpin_map(bb->obj);
1780 err_finish_shmem_access:
1781 	i915_gem_obj_finish_shmem_access(bb->obj);
1782 err_free_obj:
1783 	i915_gem_object_put(bb->obj);
1784 err_free_bb:
1785 	kfree(bb);
1786 	return ret;
1787 }
1788 
1789 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1790 {
1791 	bool second_level;
1792 	int ret = 0;
1793 	struct intel_vgpu *vgpu = s->vgpu;
1794 
1795 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1796 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1797 		return -EFAULT;
1798 	}
1799 
1800 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1801 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1802 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1803 		return -EFAULT;
1804 	}
1805 
1806 	s->saved_buf_addr_type = s->buf_addr_type;
1807 	addr_type_update_snb(s);
1808 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1809 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1810 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1811 	} else if (second_level) {
1812 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1813 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1814 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1815 	}
1816 
1817 	if (batch_buffer_needs_scan(s)) {
1818 		ret = perform_bb_shadow(s);
1819 		if (ret < 0)
1820 			gvt_vgpu_err("invalid shadow batch buffer\n");
1821 	} else {
1822 		/* emulate a batch buffer end to do return right */
1823 		ret = cmd_handler_mi_batch_buffer_end(s);
1824 		if (ret < 0)
1825 			return ret;
1826 	}
1827 	return ret;
1828 }
1829 
1830 static struct cmd_info cmd_info[] = {
1831 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1832 
1833 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1834 		0, 1, NULL},
1835 
1836 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1837 		0, 1, cmd_handler_mi_user_interrupt},
1838 
1839 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1840 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1841 
1842 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1843 
1844 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1845 		NULL},
1846 
1847 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1848 		NULL},
1849 
1850 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1851 		NULL},
1852 
1853 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1854 		NULL},
1855 
1856 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1857 		D_ALL, 0, 1, NULL},
1858 
1859 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1860 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1861 		cmd_handler_mi_batch_buffer_end},
1862 
1863 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1864 		0, 1, NULL},
1865 
1866 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1867 		NULL},
1868 
1869 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1870 		D_ALL, 0, 1, NULL},
1871 
1872 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1873 		NULL},
1874 
1875 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1876 		NULL},
1877 
1878 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1879 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1880 
1881 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1882 		0, 8, NULL},
1883 
1884 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1885 
1886 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1887 
1888 	{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1889 		D_BDW_PLUS, 0, 8, NULL},
1890 
1891 	{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1892 		ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1893 
1894 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1895 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1896 
1897 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1898 		0, 8, cmd_handler_mi_store_data_index},
1899 
1900 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1901 		D_ALL, 0, 8, cmd_handler_lri},
1902 
1903 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1904 		cmd_handler_mi_update_gtt},
1905 
1906 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1907 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1908 
1909 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1910 		cmd_handler_mi_flush_dw},
1911 
1912 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1913 		10, cmd_handler_mi_clflush},
1914 
1915 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1916 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1917 
1918 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1919 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1920 
1921 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1922 		D_ALL, 0, 8, cmd_handler_lrr},
1923 
1924 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1925 		D_ALL, 0, 8, NULL},
1926 
1927 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1928 		ADDR_FIX_1(2), 8, NULL},
1929 
1930 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1931 		ADDR_FIX_1(2), 8, NULL},
1932 
1933 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1934 		8, cmd_handler_mi_op_2e},
1935 
1936 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1937 		8, cmd_handler_mi_op_2f},
1938 
1939 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1940 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1941 		cmd_handler_mi_batch_buffer_start},
1942 
1943 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1944 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1945 		cmd_handler_mi_conditional_batch_buffer_end},
1946 
1947 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1948 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1949 
1950 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1951 		ADDR_FIX_2(4, 7), 8, NULL},
1952 
1953 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1954 		0, 8, NULL},
1955 
1956 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1957 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1958 
1959 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1960 
1961 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1962 		0, 8, NULL},
1963 
1964 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1965 		ADDR_FIX_1(3), 8, NULL},
1966 
1967 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1968 		D_ALL, 0, 8, NULL},
1969 
1970 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1971 		ADDR_FIX_1(4), 8, NULL},
1972 
1973 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1974 		ADDR_FIX_2(4, 5), 8, NULL},
1975 
1976 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1977 		ADDR_FIX_1(4), 8, NULL},
1978 
1979 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1980 		ADDR_FIX_2(4, 7), 8, NULL},
1981 
1982 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1983 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1984 
1985 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1986 
1987 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1988 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1989 
1990 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1991 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1992 
1993 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1994 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1995 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1996 
1997 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1998 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1999 
2000 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2001 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2002 
2003 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2004 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2005 
2006 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2007 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2008 
2009 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2010 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2011 
2012 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2013 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2014 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2015 
2016 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2017 		ADDR_FIX_2(4, 5), 8, NULL},
2018 
2019 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2020 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2021 
2022 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2023 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2024 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2025 
2026 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2027 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2028 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2029 
2030 	{"3DSTATE_BLEND_STATE_POINTERS",
2031 		OP_3DSTATE_BLEND_STATE_POINTERS,
2032 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2033 
2034 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2035 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2036 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2037 
2038 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2039 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2040 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2041 
2042 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2043 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2044 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2045 
2046 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2047 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2048 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2049 
2050 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2051 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2052 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2053 
2054 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2055 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2056 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2057 
2058 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2059 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2060 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2061 
2062 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2063 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2064 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2065 
2066 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2067 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2068 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2069 
2070 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2071 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2072 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2073 
2074 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2075 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2076 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2077 
2078 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2079 		0, 8, NULL},
2080 
2081 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2082 		0, 8, NULL},
2083 
2084 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2085 		0, 8, NULL},
2086 
2087 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2088 		0, 8, NULL},
2089 
2090 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2091 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2092 
2093 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2094 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2095 
2096 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2097 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2098 
2099 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2100 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2101 
2102 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2103 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2104 
2105 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2106 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2107 
2108 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2109 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2110 
2111 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2112 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2113 
2114 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2115 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2116 
2117 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2118 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2119 
2120 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2121 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2122 
2123 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2124 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2125 
2126 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2127 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2128 
2129 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2130 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2131 
2132 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2133 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2134 
2135 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2136 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2137 
2138 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2139 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2140 
2141 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2142 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2143 
2144 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2145 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2146 
2147 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2148 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2149 
2150 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2151 		D_BDW_PLUS, 0, 8, NULL},
2152 
2153 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2154 		NULL},
2155 
2156 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2157 		D_BDW_PLUS, 0, 8, NULL},
2158 
2159 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2160 		D_BDW_PLUS, 0, 8, NULL},
2161 
2162 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2163 		8, NULL},
2164 
2165 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2166 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2167 
2168 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2169 		8, NULL},
2170 
2171 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2172 		NULL},
2173 
2174 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2175 		NULL},
2176 
2177 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2178 		NULL},
2179 
2180 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2181 		D_BDW_PLUS, 0, 8, NULL},
2182 
2183 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2184 		R_RCS, D_ALL, 0, 8, NULL},
2185 
2186 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2187 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2188 
2189 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2190 		R_RCS, D_ALL, 0, 1, NULL},
2191 
2192 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2193 
2194 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2195 		R_RCS, D_ALL, 0, 8, NULL},
2196 
2197 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2198 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2199 
2200 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2201 
2202 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203 
2204 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2205 
2206 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2207 		D_BDW_PLUS, 0, 8, NULL},
2208 
2209 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2210 		D_BDW_PLUS, 0, 8, NULL},
2211 
2212 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2213 		D_ALL, 0, 8, NULL},
2214 
2215 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2216 		D_BDW_PLUS, 0, 8, NULL},
2217 
2218 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2219 		D_BDW_PLUS, 0, 8, NULL},
2220 
2221 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2222 
2223 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2224 
2225 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2226 
2227 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2228 		D_ALL, 0, 8, NULL},
2229 
2230 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2231 
2232 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233 
2234 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2235 		R_RCS, D_ALL, 0, 8, NULL},
2236 
2237 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2238 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2239 
2240 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2241 		0, 8, NULL},
2242 
2243 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2244 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2245 
2246 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2247 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248 
2249 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2250 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2251 
2252 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2253 		D_ALL, 0, 8, NULL},
2254 
2255 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2256 		D_ALL, 0, 8, NULL},
2257 
2258 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2259 		D_ALL, 0, 8, NULL},
2260 
2261 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2262 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263 
2264 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2265 		D_BDW_PLUS, 0, 8, NULL},
2266 
2267 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2268 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2269 
2270 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2271 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2272 
2273 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2274 		R_RCS, D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2277 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278 
2279 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2280 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 
2282 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2283 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284 
2285 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2286 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2287 
2288 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2289 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290 
2291 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2292 		R_RCS, D_ALL, 0, 8, NULL},
2293 
2294 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2295 		D_ALL, 0, 9, NULL},
2296 
2297 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2298 		ADDR_FIX_2(2, 4), 8, NULL},
2299 
2300 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2301 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2302 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2303 
2304 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2305 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2306 
2307 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2308 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2309 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2310 
2311 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2312 		D_BDW_PLUS, 0, 8, NULL},
2313 
2314 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2315 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2316 
2317 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2318 
2319 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2320 		1, NULL},
2321 
2322 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2323 		ADDR_FIX_1(1), 8, NULL},
2324 
2325 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326 
2327 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2328 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2329 
2330 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2331 		ADDR_FIX_1(1), 8, NULL},
2332 
2333 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334 
2335 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336 
2337 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2338 		0, 8, NULL},
2339 
2340 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2341 		D_SKL_PLUS, 0, 8, NULL},
2342 
2343 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2344 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2345 
2346 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2347 		0, 16, NULL},
2348 
2349 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2350 		0, 16, NULL},
2351 
2352 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2353 
2354 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2355 		0, 16, NULL},
2356 
2357 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2358 		0, 16, NULL},
2359 
2360 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2361 		0, 16, NULL},
2362 
2363 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2364 		0, 8, NULL},
2365 
2366 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2367 		NULL},
2368 
2369 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2370 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2371 
2372 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2373 		R_VCS, D_ALL, 0, 12, NULL},
2374 
2375 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2376 		R_VCS, D_ALL, 0, 12, NULL},
2377 
2378 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2379 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2380 
2381 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2382 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2383 
2384 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2385 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2386 
2387 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2388 
2389 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2390 		R_VCS, D_ALL, 0, 12, NULL},
2391 
2392 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2393 		R_VCS, D_ALL, 0, 12, NULL},
2394 
2395 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2396 		R_VCS, D_ALL, 0, 12, NULL},
2397 
2398 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2399 		R_VCS, D_ALL, 0, 12, NULL},
2400 
2401 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2402 		R_VCS, D_ALL, 0, 12, NULL},
2403 
2404 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2405 		R_VCS, D_ALL, 0, 12, NULL},
2406 
2407 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2408 		R_VCS, D_ALL, 0, 6, NULL},
2409 
2410 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2411 		R_VCS, D_ALL, 0, 12, NULL},
2412 
2413 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2414 		R_VCS, D_ALL, 0, 12, NULL},
2415 
2416 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2417 		R_VCS, D_ALL, 0, 12, NULL},
2418 
2419 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2420 		R_VCS, D_ALL, 0, 12, NULL},
2421 
2422 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2423 		R_VCS, D_ALL, 0, 12, NULL},
2424 
2425 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2426 		R_VCS, D_ALL, 0, 12, NULL},
2427 
2428 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2429 		R_VCS, D_ALL, 0, 12, NULL},
2430 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2431 		R_VCS, D_ALL, 0, 12, NULL},
2432 
2433 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2434 		R_VCS, D_ALL, 0, 12, NULL},
2435 
2436 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2437 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2438 
2439 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2440 		R_VCS, D_ALL, 0, 12, NULL},
2441 
2442 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2443 		R_VCS, D_ALL, 0, 12, NULL},
2444 
2445 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2446 		R_VCS, D_ALL, 0, 12, NULL},
2447 
2448 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2449 		R_VCS, D_ALL, 0, 12, NULL},
2450 
2451 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2452 		R_VCS, D_ALL, 0, 12, NULL},
2453 
2454 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2455 		R_VCS, D_ALL, 0, 12, NULL},
2456 
2457 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2458 		R_VCS, D_ALL, 0, 12, NULL},
2459 
2460 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2461 		R_VCS, D_ALL, 0, 12, NULL},
2462 
2463 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2464 		R_VCS, D_ALL, 0, 12, NULL},
2465 
2466 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2467 		R_VCS, D_ALL, 0, 12, NULL},
2468 
2469 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2470 		R_VCS, D_ALL, 0, 12, NULL},
2471 
2472 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2473 		0, 16, NULL},
2474 
2475 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2476 
2477 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2478 
2479 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2480 		R_VCS, D_ALL, 0, 12, NULL},
2481 
2482 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2483 		R_VCS, D_ALL, 0, 12, NULL},
2484 
2485 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2486 		R_VCS, D_ALL, 0, 12, NULL},
2487 
2488 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2489 
2490 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2491 		0, 12, NULL},
2492 
2493 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2494 		0, 20, NULL},
2495 };
2496 
2497 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2498 {
2499 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2500 }
2501 
2502 /* call the cmd handler, and advance ip */
2503 static int cmd_parser_exec(struct parser_exec_state *s)
2504 {
2505 	struct intel_vgpu *vgpu = s->vgpu;
2506 	struct cmd_info *info;
2507 	u32 cmd;
2508 	int ret = 0;
2509 
2510 	cmd = cmd_val(s, 0);
2511 
2512 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2513 	if (info == NULL) {
2514 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2515 				cmd, get_opcode(cmd, s->ring_id),
2516 				(s->buf_addr_type == PPGTT_BUFFER) ?
2517 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2518 		return -EBADRQC;
2519 	}
2520 
2521 	s->info = info;
2522 
2523 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2524 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2525 			  s->workload, info->name);
2526 
2527 	if (info->handler) {
2528 		ret = info->handler(s);
2529 		if (ret < 0) {
2530 			gvt_vgpu_err("%s handler error\n", info->name);
2531 			return ret;
2532 		}
2533 	}
2534 
2535 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2536 		ret = cmd_advance_default(s);
2537 		if (ret) {
2538 			gvt_vgpu_err("%s IP advance error\n", info->name);
2539 			return ret;
2540 		}
2541 	}
2542 	return 0;
2543 }
2544 
2545 static inline bool gma_out_of_range(unsigned long gma,
2546 		unsigned long gma_head, unsigned int gma_tail)
2547 {
2548 	if (gma_tail >= gma_head)
2549 		return (gma < gma_head) || (gma > gma_tail);
2550 	else
2551 		return (gma > gma_tail) && (gma < gma_head);
2552 }
2553 
2554 /* Keep the consistent return type, e.g EBADRQC for unknown
2555  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2556  * works as the input of VM healthy status.
2557  */
2558 static int command_scan(struct parser_exec_state *s,
2559 		unsigned long rb_head, unsigned long rb_tail,
2560 		unsigned long rb_start, unsigned long rb_len)
2561 {
2562 
2563 	unsigned long gma_head, gma_tail, gma_bottom;
2564 	int ret = 0;
2565 	struct intel_vgpu *vgpu = s->vgpu;
2566 
2567 	gma_head = rb_start + rb_head;
2568 	gma_tail = rb_start + rb_tail;
2569 	gma_bottom = rb_start +  rb_len;
2570 
2571 	while (s->ip_gma != gma_tail) {
2572 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2573 			if (!(s->ip_gma >= rb_start) ||
2574 				!(s->ip_gma < gma_bottom)) {
2575 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2576 					"(base:0x%lx, bottom: 0x%lx)\n",
2577 					s->ip_gma, rb_start,
2578 					gma_bottom);
2579 				parser_exec_state_dump(s);
2580 				return -EFAULT;
2581 			}
2582 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2583 				gvt_vgpu_err("ip_gma %lx out of range."
2584 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2585 					s->ip_gma, rb_start,
2586 					rb_head, rb_tail);
2587 				parser_exec_state_dump(s);
2588 				break;
2589 			}
2590 		}
2591 		ret = cmd_parser_exec(s);
2592 		if (ret) {
2593 			gvt_vgpu_err("cmd parser error\n");
2594 			parser_exec_state_dump(s);
2595 			break;
2596 		}
2597 	}
2598 
2599 	return ret;
2600 }
2601 
2602 static int scan_workload(struct intel_vgpu_workload *workload)
2603 {
2604 	unsigned long gma_head, gma_tail, gma_bottom;
2605 	struct parser_exec_state s;
2606 	int ret = 0;
2607 
2608 	/* ring base is page aligned */
2609 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2610 		return -EINVAL;
2611 
2612 	gma_head = workload->rb_start + workload->rb_head;
2613 	gma_tail = workload->rb_start + workload->rb_tail;
2614 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2615 
2616 	s.buf_type = RING_BUFFER_INSTRUCTION;
2617 	s.buf_addr_type = GTT_BUFFER;
2618 	s.vgpu = workload->vgpu;
2619 	s.ring_id = workload->ring_id;
2620 	s.ring_start = workload->rb_start;
2621 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2622 	s.ring_head = gma_head;
2623 	s.ring_tail = gma_tail;
2624 	s.rb_va = workload->shadow_ring_buffer_va;
2625 	s.workload = workload;
2626 	s.is_ctx_wa = false;
2627 
2628 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2629 		gma_head == gma_tail)
2630 		return 0;
2631 
2632 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2633 		ret = -EINVAL;
2634 		goto out;
2635 	}
2636 
2637 	ret = ip_gma_set(&s, gma_head);
2638 	if (ret)
2639 		goto out;
2640 
2641 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2642 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2643 
2644 out:
2645 	return ret;
2646 }
2647 
2648 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2649 {
2650 
2651 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2652 	struct parser_exec_state s;
2653 	int ret = 0;
2654 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2655 				struct intel_vgpu_workload,
2656 				wa_ctx);
2657 
2658 	/* ring base is page aligned */
2659 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2660 					I915_GTT_PAGE_SIZE)))
2661 		return -EINVAL;
2662 
2663 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2664 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2665 			PAGE_SIZE);
2666 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2667 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2668 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2669 
2670 	s.buf_type = RING_BUFFER_INSTRUCTION;
2671 	s.buf_addr_type = GTT_BUFFER;
2672 	s.vgpu = workload->vgpu;
2673 	s.ring_id = workload->ring_id;
2674 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2675 	s.ring_size = ring_size;
2676 	s.ring_head = gma_head;
2677 	s.ring_tail = gma_tail;
2678 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2679 	s.workload = workload;
2680 	s.is_ctx_wa = true;
2681 
2682 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2683 		ret = -EINVAL;
2684 		goto out;
2685 	}
2686 
2687 	ret = ip_gma_set(&s, gma_head);
2688 	if (ret)
2689 		goto out;
2690 
2691 	ret = command_scan(&s, 0, ring_tail,
2692 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2693 out:
2694 	return ret;
2695 }
2696 
2697 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2698 {
2699 	struct intel_vgpu *vgpu = workload->vgpu;
2700 	struct intel_vgpu_submission *s = &vgpu->submission;
2701 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2702 	void *shadow_ring_buffer_va;
2703 	int ring_id = workload->ring_id;
2704 	int ret;
2705 
2706 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2707 
2708 	/* calculate workload ring buffer size */
2709 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2710 			workload->rb_head) % guest_rb_size;
2711 
2712 	gma_head = workload->rb_start + workload->rb_head;
2713 	gma_tail = workload->rb_start + workload->rb_tail;
2714 	gma_top = workload->rb_start + guest_rb_size;
2715 
2716 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2717 		void *p;
2718 
2719 		/* realloc the new ring buffer if needed */
2720 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2721 				GFP_KERNEL);
2722 		if (!p) {
2723 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2724 			return -ENOMEM;
2725 		}
2726 		s->ring_scan_buffer[ring_id] = p;
2727 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2728 	}
2729 
2730 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2731 
2732 	/* get shadow ring buffer va */
2733 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2734 
2735 	/* head > tail --> copy head <-> top */
2736 	if (gma_head > gma_tail) {
2737 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2738 				      gma_head, gma_top, shadow_ring_buffer_va);
2739 		if (ret < 0) {
2740 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2741 			return ret;
2742 		}
2743 		shadow_ring_buffer_va += ret;
2744 		gma_head = workload->rb_start;
2745 	}
2746 
2747 	/* copy head or start <-> tail */
2748 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2749 				shadow_ring_buffer_va);
2750 	if (ret < 0) {
2751 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2752 		return ret;
2753 	}
2754 	return 0;
2755 }
2756 
2757 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2758 {
2759 	int ret;
2760 	struct intel_vgpu *vgpu = workload->vgpu;
2761 
2762 	ret = shadow_workload_ring_buffer(workload);
2763 	if (ret) {
2764 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2765 		return ret;
2766 	}
2767 
2768 	ret = scan_workload(workload);
2769 	if (ret) {
2770 		gvt_vgpu_err("scan workload error\n");
2771 		return ret;
2772 	}
2773 	return 0;
2774 }
2775 
2776 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2777 {
2778 	int ctx_size = wa_ctx->indirect_ctx.size;
2779 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2780 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2781 					struct intel_vgpu_workload,
2782 					wa_ctx);
2783 	struct intel_vgpu *vgpu = workload->vgpu;
2784 	struct drm_i915_gem_object *obj;
2785 	int ret = 0;
2786 	void *map;
2787 
2788 	obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2789 				     roundup(ctx_size + CACHELINE_BYTES,
2790 					     PAGE_SIZE));
2791 	if (IS_ERR(obj))
2792 		return PTR_ERR(obj);
2793 
2794 	/* get the va of the shadow batch buffer */
2795 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2796 	if (IS_ERR(map)) {
2797 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2798 		ret = PTR_ERR(map);
2799 		goto put_obj;
2800 	}
2801 
2802 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2803 	if (ret) {
2804 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2805 		goto unmap_src;
2806 	}
2807 
2808 	ret = copy_gma_to_hva(workload->vgpu,
2809 				workload->vgpu->gtt.ggtt_mm,
2810 				guest_gma, guest_gma + ctx_size,
2811 				map);
2812 	if (ret < 0) {
2813 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2814 		goto unmap_src;
2815 	}
2816 
2817 	wa_ctx->indirect_ctx.obj = obj;
2818 	wa_ctx->indirect_ctx.shadow_va = map;
2819 	return 0;
2820 
2821 unmap_src:
2822 	i915_gem_object_unpin_map(obj);
2823 put_obj:
2824 	i915_gem_object_put(obj);
2825 	return ret;
2826 }
2827 
2828 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2829 {
2830 	uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2831 	unsigned char *bb_start_sva;
2832 
2833 	if (!wa_ctx->per_ctx.valid)
2834 		return 0;
2835 
2836 	per_ctx_start[0] = 0x18800001;
2837 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2838 
2839 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2840 				wa_ctx->indirect_ctx.size;
2841 
2842 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2843 
2844 	return 0;
2845 }
2846 
2847 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2848 {
2849 	int ret;
2850 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2851 					struct intel_vgpu_workload,
2852 					wa_ctx);
2853 	struct intel_vgpu *vgpu = workload->vgpu;
2854 
2855 	if (wa_ctx->indirect_ctx.size == 0)
2856 		return 0;
2857 
2858 	ret = shadow_indirect_ctx(wa_ctx);
2859 	if (ret) {
2860 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2861 		return ret;
2862 	}
2863 
2864 	combine_wa_ctx(wa_ctx);
2865 
2866 	ret = scan_wa_ctx(wa_ctx);
2867 	if (ret) {
2868 		gvt_vgpu_err("scan wa ctx error\n");
2869 		return ret;
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2876 		unsigned int opcode, unsigned long rings)
2877 {
2878 	struct cmd_info *info = NULL;
2879 	unsigned int ring;
2880 
2881 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2882 		info = find_cmd_entry(gvt, opcode, ring);
2883 		if (info)
2884 			break;
2885 	}
2886 	return info;
2887 }
2888 
2889 static int init_cmd_table(struct intel_gvt *gvt)
2890 {
2891 	int i;
2892 	struct cmd_entry *e;
2893 	struct cmd_info	*info;
2894 	unsigned int gen_type;
2895 
2896 	gen_type = intel_gvt_get_device_type(gvt);
2897 
2898 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2899 		if (!(cmd_info[i].devices & gen_type))
2900 			continue;
2901 
2902 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2903 		if (!e)
2904 			return -ENOMEM;
2905 
2906 		e->info = &cmd_info[i];
2907 		info = find_cmd_entry_any_ring(gvt,
2908 				e->info->opcode, e->info->rings);
2909 		if (info) {
2910 			gvt_err("%s %s duplicated\n", e->info->name,
2911 					info->name);
2912 			kfree(e);
2913 			return -EEXIST;
2914 		}
2915 
2916 		INIT_HLIST_NODE(&e->hlist);
2917 		add_cmd_entry(gvt, e);
2918 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2919 				e->info->name, e->info->opcode, e->info->flag,
2920 				e->info->devices, e->info->rings);
2921 	}
2922 	return 0;
2923 }
2924 
2925 static void clean_cmd_table(struct intel_gvt *gvt)
2926 {
2927 	struct hlist_node *tmp;
2928 	struct cmd_entry *e;
2929 	int i;
2930 
2931 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2932 		kfree(e);
2933 
2934 	hash_init(gvt->cmd_table);
2935 }
2936 
2937 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2938 {
2939 	clean_cmd_table(gvt);
2940 }
2941 
2942 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2943 {
2944 	int ret;
2945 
2946 	ret = init_cmd_table(gvt);
2947 	if (ret) {
2948 		intel_gvt_clean_cmd_parser(gvt);
2949 		return ret;
2950 	}
2951 	return 0;
2952 }
2953