1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 180 181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 247 248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 259 260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 288 289 /* VCCP Command Parser */ 290 291 /* 292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 293 * git://anongit.freedesktop.org/vaapi/intel-driver 294 * src/i965_defines.h 295 * 296 */ 297 298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 299 (3 << 13 | \ 300 (pipeline) << 11 | \ 301 (op) << 8 | \ 302 (sub_opa) << 5 | \ 303 (sub_opb)) 304 305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 316 317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 318 319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 331 332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 337 338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 343 344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 347 348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 351 352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 353 (3 << 13 | \ 354 (pipeline) << 11 | \ 355 (op) << 8 | \ 356 (sub_opa) << 5 | \ 357 (sub_opb)) 358 359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 362 363 struct parser_exec_state; 364 365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 366 367 #define GVT_CMD_HASH_BITS 7 368 369 /* which DWords need address fix */ 370 #define ADDR_FIX_1(x1) (1 << (x1)) 371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 375 376 struct cmd_info { 377 char *name; 378 u32 opcode; 379 380 #define F_LEN_MASK (1U<<0) 381 #define F_LEN_CONST 1U 382 #define F_LEN_VAR 0U 383 384 /* 385 * command has its own ip advance logic 386 * e.g. MI_BATCH_START, MI_BATCH_END 387 */ 388 #define F_IP_ADVANCE_CUSTOM (1<<1) 389 390 #define F_POST_HANDLE (1<<2) 391 u32 flag; 392 393 #define R_RCS (1 << RCS) 394 #define R_VCS1 (1 << VCS) 395 #define R_VCS2 (1 << VCS2) 396 #define R_VCS (R_VCS1 | R_VCS2) 397 #define R_BCS (1 << BCS) 398 #define R_VECS (1 << VECS) 399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 400 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 401 uint16_t rings; 402 403 /* devices that support this cmd: SNB/IVB/HSW/... */ 404 uint16_t devices; 405 406 /* which DWords are address that need fix up. 407 * bit 0 means a 32-bit non address operand in command 408 * bit 1 means address operand, which could be 32-bit 409 * or 64-bit depending on different architectures.( 410 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 411 * No matter the address length, each address only takes 412 * one bit in the bitmap. 413 */ 414 uint16_t addr_bitmap; 415 416 /* flag == F_LEN_CONST : command length 417 * flag == F_LEN_VAR : length bias bits 418 * Note: length is in DWord 419 */ 420 uint8_t len; 421 422 parser_cmd_handler handler; 423 }; 424 425 struct cmd_entry { 426 struct hlist_node hlist; 427 struct cmd_info *info; 428 }; 429 430 enum { 431 RING_BUFFER_INSTRUCTION, 432 BATCH_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_2ND_LEVEL, 434 }; 435 436 enum { 437 GTT_BUFFER, 438 PPGTT_BUFFER 439 }; 440 441 struct parser_exec_state { 442 struct intel_vgpu *vgpu; 443 int ring_id; 444 445 int buf_type; 446 447 /* batch buffer address type */ 448 int buf_addr_type; 449 450 /* graphics memory address of ring buffer start */ 451 unsigned long ring_start; 452 unsigned long ring_size; 453 unsigned long ring_head; 454 unsigned long ring_tail; 455 456 /* instruction graphics memory address */ 457 unsigned long ip_gma; 458 459 /* mapped va of the instr_gma */ 460 void *ip_va; 461 void *rb_va; 462 463 void *ret_bb_va; 464 /* next instruction when return from batch buffer to ring buffer */ 465 unsigned long ret_ip_gma_ring; 466 467 /* next instruction when return from 2nd batch buffer to batch buffer */ 468 unsigned long ret_ip_gma_bb; 469 470 /* batch buffer address type (GTT or PPGTT) 471 * used when ret from 2nd level batch buffer 472 */ 473 int saved_buf_addr_type; 474 bool is_ctx_wa; 475 476 struct cmd_info *info; 477 478 struct intel_vgpu_workload *workload; 479 }; 480 481 #define gmadr_dw_number(s) \ 482 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 483 484 static unsigned long bypass_scan_mask = 0; 485 486 /* ring ALL, type = 0 */ 487 static struct sub_op_bits sub_op_mi[] = { 488 {31, 29}, 489 {28, 23}, 490 }; 491 492 static struct decode_info decode_info_mi = { 493 "MI", 494 OP_LEN_MI, 495 ARRAY_SIZE(sub_op_mi), 496 sub_op_mi, 497 }; 498 499 /* ring RCS, command type 2 */ 500 static struct sub_op_bits sub_op_2d[] = { 501 {31, 29}, 502 {28, 22}, 503 }; 504 505 static struct decode_info decode_info_2d = { 506 "2D", 507 OP_LEN_2D, 508 ARRAY_SIZE(sub_op_2d), 509 sub_op_2d, 510 }; 511 512 /* ring RCS, command type 3 */ 513 static struct sub_op_bits sub_op_3d_media[] = { 514 {31, 29}, 515 {28, 27}, 516 {26, 24}, 517 {23, 16}, 518 }; 519 520 static struct decode_info decode_info_3d_media = { 521 "3D_Media", 522 OP_LEN_3D_MEDIA, 523 ARRAY_SIZE(sub_op_3d_media), 524 sub_op_3d_media, 525 }; 526 527 /* ring VCS, command type 3 */ 528 static struct sub_op_bits sub_op_mfx_vc[] = { 529 {31, 29}, 530 {28, 27}, 531 {26, 24}, 532 {23, 21}, 533 {20, 16}, 534 }; 535 536 static struct decode_info decode_info_mfx_vc = { 537 "MFX_VC", 538 OP_LEN_MFX_VC, 539 ARRAY_SIZE(sub_op_mfx_vc), 540 sub_op_mfx_vc, 541 }; 542 543 /* ring VECS, command type 3 */ 544 static struct sub_op_bits sub_op_vebox[] = { 545 {31, 29}, 546 {28, 27}, 547 {26, 24}, 548 {23, 21}, 549 {20, 16}, 550 }; 551 552 static struct decode_info decode_info_vebox = { 553 "VEBOX", 554 OP_LEN_VEBOX, 555 ARRAY_SIZE(sub_op_vebox), 556 sub_op_vebox, 557 }; 558 559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 560 [RCS] = { 561 &decode_info_mi, 562 NULL, 563 NULL, 564 &decode_info_3d_media, 565 NULL, 566 NULL, 567 NULL, 568 NULL, 569 }, 570 571 [VCS] = { 572 &decode_info_mi, 573 NULL, 574 NULL, 575 &decode_info_mfx_vc, 576 NULL, 577 NULL, 578 NULL, 579 NULL, 580 }, 581 582 [BCS] = { 583 &decode_info_mi, 584 NULL, 585 &decode_info_2d, 586 NULL, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 }, 592 593 [VECS] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_vebox, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [VCS2] = { 605 &decode_info_mi, 606 NULL, 607 NULL, 608 &decode_info_mfx_vc, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 }; 615 616 static inline u32 get_opcode(u32 cmd, int ring_id) 617 { 618 struct decode_info *d_info; 619 620 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 621 if (d_info == NULL) 622 return INVALID_OP; 623 624 return cmd >> (32 - d_info->op_len); 625 } 626 627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 628 unsigned int opcode, int ring_id) 629 { 630 struct cmd_entry *e; 631 632 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 633 if ((opcode == e->info->opcode) && 634 (e->info->rings & (1 << ring_id))) 635 return e->info; 636 } 637 return NULL; 638 } 639 640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 641 u32 cmd, int ring_id) 642 { 643 u32 opcode; 644 645 opcode = get_opcode(cmd, ring_id); 646 if (opcode == INVALID_OP) 647 return NULL; 648 649 return find_cmd_entry(gvt, opcode, ring_id); 650 } 651 652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 653 { 654 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 655 } 656 657 static inline void print_opcode(u32 cmd, int ring_id) 658 { 659 struct decode_info *d_info; 660 int i; 661 662 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 663 if (d_info == NULL) 664 return; 665 666 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 667 cmd >> (32 - d_info->op_len), d_info->name); 668 669 for (i = 0; i < d_info->nr_sub_op; i++) 670 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 671 d_info->sub_op[i].low)); 672 673 pr_err("\n"); 674 } 675 676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 677 { 678 return s->ip_va + (index << 2); 679 } 680 681 static inline u32 cmd_val(struct parser_exec_state *s, int index) 682 { 683 return *cmd_ptr(s, index); 684 } 685 686 static void parser_exec_state_dump(struct parser_exec_state *s) 687 { 688 int cnt = 0; 689 int i; 690 691 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 692 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 693 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 694 s->ring_head, s->ring_tail); 695 696 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 697 s->buf_type == RING_BUFFER_INSTRUCTION ? 698 "RING_BUFFER" : "BATCH_BUFFER", 699 s->buf_addr_type == GTT_BUFFER ? 700 "GTT" : "PPGTT", s->ip_gma); 701 702 if (s->ip_va == NULL) { 703 gvt_dbg_cmd(" ip_va(NULL)"); 704 return; 705 } 706 707 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 708 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 709 cmd_val(s, 2), cmd_val(s, 3)); 710 711 print_opcode(cmd_val(s, 0), s->ring_id); 712 713 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 714 715 while (cnt < 1024) { 716 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 717 for (i = 0; i < 8; i++) 718 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 719 gvt_dbg_cmd("\n"); 720 721 s->ip_va += 8 * sizeof(u32); 722 cnt += 8; 723 } 724 } 725 726 static inline void update_ip_va(struct parser_exec_state *s) 727 { 728 unsigned long len = 0; 729 730 if (WARN_ON(s->ring_head == s->ring_tail)) 731 return; 732 733 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 734 unsigned long ring_top = s->ring_start + s->ring_size; 735 736 if (s->ring_head > s->ring_tail) { 737 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 738 len = (s->ip_gma - s->ring_head); 739 else if (s->ip_gma >= s->ring_start && 740 s->ip_gma <= s->ring_tail) 741 len = (ring_top - s->ring_head) + 742 (s->ip_gma - s->ring_start); 743 } else 744 len = (s->ip_gma - s->ring_head); 745 746 s->ip_va = s->rb_va + len; 747 } else {/* shadow batch buffer */ 748 s->ip_va = s->ret_bb_va; 749 } 750 } 751 752 static inline int ip_gma_set(struct parser_exec_state *s, 753 unsigned long ip_gma) 754 { 755 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 756 757 s->ip_gma = ip_gma; 758 update_ip_va(s); 759 return 0; 760 } 761 762 static inline int ip_gma_advance(struct parser_exec_state *s, 763 unsigned int dw_len) 764 { 765 s->ip_gma += (dw_len << 2); 766 767 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 768 if (s->ip_gma >= s->ring_start + s->ring_size) 769 s->ip_gma -= s->ring_size; 770 update_ip_va(s); 771 } else { 772 s->ip_va += (dw_len << 2); 773 } 774 775 return 0; 776 } 777 778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 779 { 780 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 781 return info->len; 782 else 783 return (cmd & ((1U << info->len) - 1)) + 2; 784 return 0; 785 } 786 787 static inline int cmd_length(struct parser_exec_state *s) 788 { 789 return get_cmd_length(s->info, cmd_val(s, 0)); 790 } 791 792 /* do not remove this, some platform may need clflush here */ 793 #define patch_value(s, addr, val) do { \ 794 *addr = val; \ 795 } while (0) 796 797 static bool is_shadowed_mmio(unsigned int offset) 798 { 799 bool ret = false; 800 801 if ((offset == 0x2168) || /*BB current head register UDW */ 802 (offset == 0x2140) || /*BB current header register */ 803 (offset == 0x211c) || /*second BB header register UDW */ 804 (offset == 0x2114)) { /*second BB header register UDW */ 805 ret = true; 806 } 807 return ret; 808 } 809 810 static inline bool is_force_nonpriv_mmio(unsigned int offset) 811 { 812 return (offset >= 0x24d0 && offset < 0x2500); 813 } 814 815 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 816 unsigned int offset, unsigned int index, char *cmd) 817 { 818 struct intel_gvt *gvt = s->vgpu->gvt; 819 unsigned int data; 820 u32 ring_base; 821 u32 nopid; 822 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 823 824 if (!strcmp(cmd, "lri")) 825 data = cmd_val(s, index + 1); 826 else { 827 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 828 offset, cmd); 829 return -EINVAL; 830 } 831 832 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 833 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 834 835 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 836 data != nopid) { 837 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 838 offset, data); 839 patch_value(s, cmd_ptr(s, index), nopid); 840 return 0; 841 } 842 return 0; 843 } 844 845 static inline bool is_mocs_mmio(unsigned int offset) 846 { 847 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 848 ((offset >= 0xb020) && (offset <= 0xb0a0)); 849 } 850 851 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 852 unsigned int offset, unsigned int index) 853 { 854 if (!is_mocs_mmio(offset)) 855 return -EINVAL; 856 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 857 return 0; 858 } 859 860 static int cmd_reg_handler(struct parser_exec_state *s, 861 unsigned int offset, unsigned int index, char *cmd) 862 { 863 struct intel_vgpu *vgpu = s->vgpu; 864 struct intel_gvt *gvt = vgpu->gvt; 865 866 if (offset + 4 > gvt->device_info.mmio_size) { 867 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 868 cmd, offset); 869 return -EFAULT; 870 } 871 872 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 873 gvt_vgpu_err("%s access to non-render register (%x)\n", 874 cmd, offset); 875 return 0; 876 } 877 878 if (is_shadowed_mmio(offset)) { 879 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 880 return 0; 881 } 882 883 if (is_mocs_mmio(offset) && 884 mocs_cmd_reg_handler(s, offset, index)) 885 return -EINVAL; 886 887 if (is_force_nonpriv_mmio(offset) && 888 force_nonpriv_reg_handler(s, offset, index, cmd)) 889 return -EPERM; 890 891 if (offset == i915_mmio_reg_offset(DERRMR) || 892 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 893 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 894 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 895 } 896 897 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 898 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 899 return 0; 900 } 901 902 #define cmd_reg(s, i) \ 903 (cmd_val(s, i) & GENMASK(22, 2)) 904 905 #define cmd_reg_inhibit(s, i) \ 906 (cmd_val(s, i) & GENMASK(22, 18)) 907 908 #define cmd_gma(s, i) \ 909 (cmd_val(s, i) & GENMASK(31, 2)) 910 911 #define cmd_gma_hi(s, i) \ 912 (cmd_val(s, i) & GENMASK(15, 0)) 913 914 static int cmd_handler_lri(struct parser_exec_state *s) 915 { 916 int i, ret = 0; 917 int cmd_len = cmd_length(s); 918 struct intel_gvt *gvt = s->vgpu->gvt; 919 920 for (i = 1; i < cmd_len; i += 2) { 921 if (IS_BROADWELL(gvt->dev_priv) && 922 (s->ring_id != RCS)) { 923 if (s->ring_id == BCS && 924 cmd_reg(s, i) == 925 i915_mmio_reg_offset(DERRMR)) 926 ret |= 0; 927 else 928 ret |= (cmd_reg_inhibit(s, i)) ? 929 -EBADRQC : 0; 930 } 931 if (ret) 932 break; 933 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 934 if (ret) 935 break; 936 } 937 return ret; 938 } 939 940 static int cmd_handler_lrr(struct parser_exec_state *s) 941 { 942 int i, ret = 0; 943 int cmd_len = cmd_length(s); 944 945 for (i = 1; i < cmd_len; i += 2) { 946 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 947 ret |= ((cmd_reg_inhibit(s, i) || 948 (cmd_reg_inhibit(s, i + 1)))) ? 949 -EBADRQC : 0; 950 if (ret) 951 break; 952 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 953 if (ret) 954 break; 955 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 956 if (ret) 957 break; 958 } 959 return ret; 960 } 961 962 static inline int cmd_address_audit(struct parser_exec_state *s, 963 unsigned long guest_gma, int op_size, bool index_mode); 964 965 static int cmd_handler_lrm(struct parser_exec_state *s) 966 { 967 struct intel_gvt *gvt = s->vgpu->gvt; 968 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 969 unsigned long gma; 970 int i, ret = 0; 971 int cmd_len = cmd_length(s); 972 973 for (i = 1; i < cmd_len;) { 974 if (IS_BROADWELL(gvt->dev_priv)) 975 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 976 if (ret) 977 break; 978 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 979 if (ret) 980 break; 981 if (cmd_val(s, 0) & (1 << 22)) { 982 gma = cmd_gma(s, i + 1); 983 if (gmadr_bytes == 8) 984 gma |= (cmd_gma_hi(s, i + 2)) << 32; 985 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 986 if (ret) 987 break; 988 } 989 i += gmadr_dw_number(s) + 1; 990 } 991 return ret; 992 } 993 994 static int cmd_handler_srm(struct parser_exec_state *s) 995 { 996 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 997 unsigned long gma; 998 int i, ret = 0; 999 int cmd_len = cmd_length(s); 1000 1001 for (i = 1; i < cmd_len;) { 1002 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1003 if (ret) 1004 break; 1005 if (cmd_val(s, 0) & (1 << 22)) { 1006 gma = cmd_gma(s, i + 1); 1007 if (gmadr_bytes == 8) 1008 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1009 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1010 if (ret) 1011 break; 1012 } 1013 i += gmadr_dw_number(s) + 1; 1014 } 1015 return ret; 1016 } 1017 1018 struct cmd_interrupt_event { 1019 int pipe_control_notify; 1020 int mi_flush_dw; 1021 int mi_user_interrupt; 1022 }; 1023 1024 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1025 [RCS] = { 1026 .pipe_control_notify = RCS_PIPE_CONTROL, 1027 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1028 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1029 }, 1030 [BCS] = { 1031 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1032 .mi_flush_dw = BCS_MI_FLUSH_DW, 1033 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1034 }, 1035 [VCS] = { 1036 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1037 .mi_flush_dw = VCS_MI_FLUSH_DW, 1038 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1039 }, 1040 [VCS2] = { 1041 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1042 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1043 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1044 }, 1045 [VECS] = { 1046 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1047 .mi_flush_dw = VECS_MI_FLUSH_DW, 1048 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1049 }, 1050 }; 1051 1052 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1053 { 1054 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1055 unsigned long gma; 1056 bool index_mode = false; 1057 unsigned int post_sync; 1058 int ret = 0; 1059 1060 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1061 1062 /* LRI post sync */ 1063 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1064 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1065 /* post sync */ 1066 else if (post_sync) { 1067 if (post_sync == 2) 1068 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1069 else if (post_sync == 3) 1070 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1071 else if (post_sync == 1) { 1072 /* check ggtt*/ 1073 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1074 gma = cmd_val(s, 2) & GENMASK(31, 3); 1075 if (gmadr_bytes == 8) 1076 gma |= (cmd_gma_hi(s, 3)) << 32; 1077 /* Store Data Index */ 1078 if (cmd_val(s, 1) & (1 << 21)) 1079 index_mode = true; 1080 ret |= cmd_address_audit(s, gma, sizeof(u64), 1081 index_mode); 1082 } 1083 } 1084 } 1085 1086 if (ret) 1087 return ret; 1088 1089 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1090 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1091 s->workload->pending_events); 1092 return 0; 1093 } 1094 1095 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1096 { 1097 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1098 s->workload->pending_events); 1099 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1100 return 0; 1101 } 1102 1103 static int cmd_advance_default(struct parser_exec_state *s) 1104 { 1105 return ip_gma_advance(s, cmd_length(s)); 1106 } 1107 1108 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1109 { 1110 int ret; 1111 1112 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1113 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1114 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1115 s->buf_addr_type = s->saved_buf_addr_type; 1116 } else { 1117 s->buf_type = RING_BUFFER_INSTRUCTION; 1118 s->buf_addr_type = GTT_BUFFER; 1119 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1120 s->ret_ip_gma_ring -= s->ring_size; 1121 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1122 } 1123 return ret; 1124 } 1125 1126 struct mi_display_flip_command_info { 1127 int pipe; 1128 int plane; 1129 int event; 1130 i915_reg_t stride_reg; 1131 i915_reg_t ctrl_reg; 1132 i915_reg_t surf_reg; 1133 u64 stride_val; 1134 u64 tile_val; 1135 u64 surf_val; 1136 bool async_flip; 1137 }; 1138 1139 struct plane_code_mapping { 1140 int pipe; 1141 int plane; 1142 int event; 1143 }; 1144 1145 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1146 struct mi_display_flip_command_info *info) 1147 { 1148 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1149 struct plane_code_mapping gen8_plane_code[] = { 1150 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1151 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1152 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1153 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1154 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1155 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1156 }; 1157 u32 dword0, dword1, dword2; 1158 u32 v; 1159 1160 dword0 = cmd_val(s, 0); 1161 dword1 = cmd_val(s, 1); 1162 dword2 = cmd_val(s, 2); 1163 1164 v = (dword0 & GENMASK(21, 19)) >> 19; 1165 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1166 return -EBADRQC; 1167 1168 info->pipe = gen8_plane_code[v].pipe; 1169 info->plane = gen8_plane_code[v].plane; 1170 info->event = gen8_plane_code[v].event; 1171 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1172 info->tile_val = (dword1 & 0x1); 1173 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1174 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1175 1176 if (info->plane == PLANE_A) { 1177 info->ctrl_reg = DSPCNTR(info->pipe); 1178 info->stride_reg = DSPSTRIDE(info->pipe); 1179 info->surf_reg = DSPSURF(info->pipe); 1180 } else if (info->plane == PLANE_B) { 1181 info->ctrl_reg = SPRCTL(info->pipe); 1182 info->stride_reg = SPRSTRIDE(info->pipe); 1183 info->surf_reg = SPRSURF(info->pipe); 1184 } else { 1185 WARN_ON(1); 1186 return -EBADRQC; 1187 } 1188 return 0; 1189 } 1190 1191 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1192 struct mi_display_flip_command_info *info) 1193 { 1194 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1195 struct intel_vgpu *vgpu = s->vgpu; 1196 u32 dword0 = cmd_val(s, 0); 1197 u32 dword1 = cmd_val(s, 1); 1198 u32 dword2 = cmd_val(s, 2); 1199 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1200 1201 info->plane = PRIMARY_PLANE; 1202 1203 switch (plane) { 1204 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1205 info->pipe = PIPE_A; 1206 info->event = PRIMARY_A_FLIP_DONE; 1207 break; 1208 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1209 info->pipe = PIPE_B; 1210 info->event = PRIMARY_B_FLIP_DONE; 1211 break; 1212 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1213 info->pipe = PIPE_C; 1214 info->event = PRIMARY_C_FLIP_DONE; 1215 break; 1216 1217 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1218 info->pipe = PIPE_A; 1219 info->event = SPRITE_A_FLIP_DONE; 1220 info->plane = SPRITE_PLANE; 1221 break; 1222 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1223 info->pipe = PIPE_B; 1224 info->event = SPRITE_B_FLIP_DONE; 1225 info->plane = SPRITE_PLANE; 1226 break; 1227 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1228 info->pipe = PIPE_C; 1229 info->event = SPRITE_C_FLIP_DONE; 1230 info->plane = SPRITE_PLANE; 1231 break; 1232 1233 default: 1234 gvt_vgpu_err("unknown plane code %d\n", plane); 1235 return -EBADRQC; 1236 } 1237 1238 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1239 info->tile_val = (dword1 & GENMASK(2, 0)); 1240 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1241 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1242 1243 info->ctrl_reg = DSPCNTR(info->pipe); 1244 info->stride_reg = DSPSTRIDE(info->pipe); 1245 info->surf_reg = DSPSURF(info->pipe); 1246 1247 return 0; 1248 } 1249 1250 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1251 struct mi_display_flip_command_info *info) 1252 { 1253 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1254 u32 stride, tile; 1255 1256 if (!info->async_flip) 1257 return 0; 1258 1259 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1260 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1261 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1262 GENMASK(12, 10)) >> 10; 1263 } else { 1264 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1265 GENMASK(15, 6)) >> 6; 1266 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1267 } 1268 1269 if (stride != info->stride_val) 1270 gvt_dbg_cmd("cannot change stride during async flip\n"); 1271 1272 if (tile != info->tile_val) 1273 gvt_dbg_cmd("cannot change tile during async flip\n"); 1274 1275 return 0; 1276 } 1277 1278 static int gen8_update_plane_mmio_from_mi_display_flip( 1279 struct parser_exec_state *s, 1280 struct mi_display_flip_command_info *info) 1281 { 1282 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1283 struct intel_vgpu *vgpu = s->vgpu; 1284 1285 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1286 info->surf_val << 12); 1287 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1288 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1289 info->stride_val); 1290 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1291 info->tile_val << 10); 1292 } else { 1293 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1294 info->stride_val << 6); 1295 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1296 info->tile_val << 10); 1297 } 1298 1299 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1300 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1301 return 0; 1302 } 1303 1304 static int decode_mi_display_flip(struct parser_exec_state *s, 1305 struct mi_display_flip_command_info *info) 1306 { 1307 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1308 1309 if (IS_BROADWELL(dev_priv)) 1310 return gen8_decode_mi_display_flip(s, info); 1311 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) 1312 return skl_decode_mi_display_flip(s, info); 1313 1314 return -ENODEV; 1315 } 1316 1317 static int check_mi_display_flip(struct parser_exec_state *s, 1318 struct mi_display_flip_command_info *info) 1319 { 1320 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1321 1322 if (IS_BROADWELL(dev_priv) 1323 || IS_SKYLAKE(dev_priv) 1324 || IS_KABYLAKE(dev_priv)) 1325 return gen8_check_mi_display_flip(s, info); 1326 return -ENODEV; 1327 } 1328 1329 static int update_plane_mmio_from_mi_display_flip( 1330 struct parser_exec_state *s, 1331 struct mi_display_flip_command_info *info) 1332 { 1333 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1334 1335 if (IS_BROADWELL(dev_priv) 1336 || IS_SKYLAKE(dev_priv) 1337 || IS_KABYLAKE(dev_priv)) 1338 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1339 return -ENODEV; 1340 } 1341 1342 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1343 { 1344 struct mi_display_flip_command_info info; 1345 struct intel_vgpu *vgpu = s->vgpu; 1346 int ret; 1347 int i; 1348 int len = cmd_length(s); 1349 1350 ret = decode_mi_display_flip(s, &info); 1351 if (ret) { 1352 gvt_vgpu_err("fail to decode MI display flip command\n"); 1353 return ret; 1354 } 1355 1356 ret = check_mi_display_flip(s, &info); 1357 if (ret) { 1358 gvt_vgpu_err("invalid MI display flip command\n"); 1359 return ret; 1360 } 1361 1362 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1363 if (ret) { 1364 gvt_vgpu_err("fail to update plane mmio\n"); 1365 return ret; 1366 } 1367 1368 for (i = 0; i < len; i++) 1369 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1370 return 0; 1371 } 1372 1373 static bool is_wait_for_flip_pending(u32 cmd) 1374 { 1375 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1376 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1377 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1378 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1379 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1380 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1381 } 1382 1383 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1384 { 1385 u32 cmd = cmd_val(s, 0); 1386 1387 if (!is_wait_for_flip_pending(cmd)) 1388 return 0; 1389 1390 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1391 return 0; 1392 } 1393 1394 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1395 { 1396 unsigned long addr; 1397 unsigned long gma_high, gma_low; 1398 struct intel_vgpu *vgpu = s->vgpu; 1399 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1400 1401 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1402 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1403 return INTEL_GVT_INVALID_ADDR; 1404 } 1405 1406 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1407 if (gmadr_bytes == 4) { 1408 addr = gma_low; 1409 } else { 1410 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1411 addr = (((unsigned long)gma_high) << 32) | gma_low; 1412 } 1413 return addr; 1414 } 1415 1416 static inline int cmd_address_audit(struct parser_exec_state *s, 1417 unsigned long guest_gma, int op_size, bool index_mode) 1418 { 1419 struct intel_vgpu *vgpu = s->vgpu; 1420 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1421 int i; 1422 int ret; 1423 1424 if (op_size > max_surface_size) { 1425 gvt_vgpu_err("command address audit fail name %s\n", 1426 s->info->name); 1427 return -EFAULT; 1428 } 1429 1430 if (index_mode) { 1431 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) { 1432 ret = -EFAULT; 1433 goto err; 1434 } 1435 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1436 ret = -EFAULT; 1437 goto err; 1438 } 1439 1440 return 0; 1441 1442 err: 1443 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1444 s->info->name, guest_gma, op_size); 1445 1446 pr_err("cmd dump: "); 1447 for (i = 0; i < cmd_length(s); i++) { 1448 if (!(i % 4)) 1449 pr_err("\n%08x ", cmd_val(s, i)); 1450 else 1451 pr_err("%08x ", cmd_val(s, i)); 1452 } 1453 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1454 vgpu->id, 1455 vgpu_aperture_gmadr_base(vgpu), 1456 vgpu_aperture_gmadr_end(vgpu), 1457 vgpu_hidden_gmadr_base(vgpu), 1458 vgpu_hidden_gmadr_end(vgpu)); 1459 return ret; 1460 } 1461 1462 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1463 { 1464 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1465 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1466 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1467 unsigned long gma, gma_low, gma_high; 1468 int ret = 0; 1469 1470 /* check ppggt */ 1471 if (!(cmd_val(s, 0) & (1 << 22))) 1472 return 0; 1473 1474 gma = cmd_val(s, 2) & GENMASK(31, 2); 1475 1476 if (gmadr_bytes == 8) { 1477 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1478 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1479 gma = (gma_high << 32) | gma_low; 1480 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1481 } 1482 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1483 return ret; 1484 } 1485 1486 static inline int unexpected_cmd(struct parser_exec_state *s) 1487 { 1488 struct intel_vgpu *vgpu = s->vgpu; 1489 1490 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1491 1492 return -EBADRQC; 1493 } 1494 1495 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1496 { 1497 return unexpected_cmd(s); 1498 } 1499 1500 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1501 { 1502 return unexpected_cmd(s); 1503 } 1504 1505 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1506 { 1507 return unexpected_cmd(s); 1508 } 1509 1510 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1511 { 1512 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1513 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1514 sizeof(u32); 1515 unsigned long gma, gma_high; 1516 int ret = 0; 1517 1518 if (!(cmd_val(s, 0) & (1 << 22))) 1519 return ret; 1520 1521 gma = cmd_val(s, 1) & GENMASK(31, 2); 1522 if (gmadr_bytes == 8) { 1523 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1524 gma = (gma_high << 32) | gma; 1525 } 1526 ret = cmd_address_audit(s, gma, op_size, false); 1527 return ret; 1528 } 1529 1530 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1531 { 1532 return unexpected_cmd(s); 1533 } 1534 1535 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1536 { 1537 return unexpected_cmd(s); 1538 } 1539 1540 static int cmd_handler_mi_conditional_batch_buffer_end( 1541 struct parser_exec_state *s) 1542 { 1543 return unexpected_cmd(s); 1544 } 1545 1546 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1547 { 1548 return unexpected_cmd(s); 1549 } 1550 1551 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1552 { 1553 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1554 unsigned long gma; 1555 bool index_mode = false; 1556 int ret = 0; 1557 1558 /* Check post-sync and ppgtt bit */ 1559 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1560 gma = cmd_val(s, 1) & GENMASK(31, 3); 1561 if (gmadr_bytes == 8) 1562 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1563 /* Store Data Index */ 1564 if (cmd_val(s, 0) & (1 << 21)) 1565 index_mode = true; 1566 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1567 } 1568 /* Check notify bit */ 1569 if ((cmd_val(s, 0) & (1 << 8))) 1570 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1571 s->workload->pending_events); 1572 return ret; 1573 } 1574 1575 static void addr_type_update_snb(struct parser_exec_state *s) 1576 { 1577 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1578 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1579 s->buf_addr_type = PPGTT_BUFFER; 1580 } 1581 } 1582 1583 1584 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1585 unsigned long gma, unsigned long end_gma, void *va) 1586 { 1587 unsigned long copy_len, offset; 1588 unsigned long len = 0; 1589 unsigned long gpa; 1590 1591 while (gma != end_gma) { 1592 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1593 if (gpa == INTEL_GVT_INVALID_ADDR) { 1594 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1595 return -EFAULT; 1596 } 1597 1598 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1599 1600 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1601 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1602 1603 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1604 1605 len += copy_len; 1606 gma += copy_len; 1607 } 1608 return len; 1609 } 1610 1611 1612 /* 1613 * Check whether a batch buffer needs to be scanned. Currently 1614 * the only criteria is based on privilege. 1615 */ 1616 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1617 { 1618 struct intel_gvt *gvt = s->vgpu->gvt; 1619 1620 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv) 1621 || IS_KABYLAKE(gvt->dev_priv)) { 1622 /* BDW decides privilege based on address space */ 1623 if (cmd_val(s, 0) & (1 << 8) && 1624 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1625 return 0; 1626 } 1627 return 1; 1628 } 1629 1630 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1631 { 1632 unsigned long gma = 0; 1633 struct cmd_info *info; 1634 uint32_t cmd_len = 0; 1635 bool bb_end = false; 1636 struct intel_vgpu *vgpu = s->vgpu; 1637 u32 cmd; 1638 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1639 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1640 1641 *bb_size = 0; 1642 1643 /* get the start gm address of the batch buffer */ 1644 gma = get_gma_bb_from_cmd(s, 1); 1645 if (gma == INTEL_GVT_INVALID_ADDR) 1646 return -EFAULT; 1647 1648 cmd = cmd_val(s, 0); 1649 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1650 if (info == NULL) { 1651 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1652 cmd, get_opcode(cmd, s->ring_id), 1653 (s->buf_addr_type == PPGTT_BUFFER) ? 1654 "ppgtt" : "ggtt", s->ring_id, s->workload); 1655 return -EBADRQC; 1656 } 1657 do { 1658 if (copy_gma_to_hva(s->vgpu, mm, 1659 gma, gma + 4, &cmd) < 0) 1660 return -EFAULT; 1661 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1662 if (info == NULL) { 1663 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1664 cmd, get_opcode(cmd, s->ring_id), 1665 (s->buf_addr_type == PPGTT_BUFFER) ? 1666 "ppgtt" : "ggtt", s->ring_id, s->workload); 1667 return -EBADRQC; 1668 } 1669 1670 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1671 bb_end = true; 1672 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1673 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1674 /* chained batch buffer */ 1675 bb_end = true; 1676 } 1677 cmd_len = get_cmd_length(info, cmd) << 2; 1678 *bb_size += cmd_len; 1679 gma += cmd_len; 1680 } while (!bb_end); 1681 1682 return 0; 1683 } 1684 1685 static int perform_bb_shadow(struct parser_exec_state *s) 1686 { 1687 struct intel_vgpu *vgpu = s->vgpu; 1688 struct intel_vgpu_shadow_bb *bb; 1689 unsigned long gma = 0; 1690 unsigned long bb_size; 1691 int ret = 0; 1692 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1693 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1694 unsigned long gma_start_offset = 0; 1695 1696 /* get the start gm address of the batch buffer */ 1697 gma = get_gma_bb_from_cmd(s, 1); 1698 if (gma == INTEL_GVT_INVALID_ADDR) 1699 return -EFAULT; 1700 1701 ret = find_bb_size(s, &bb_size); 1702 if (ret) 1703 return ret; 1704 1705 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1706 if (!bb) 1707 return -ENOMEM; 1708 1709 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1710 1711 /* the gma_start_offset stores the batch buffer's start gma's 1712 * offset relative to page boundary. so for non-privileged batch 1713 * buffer, the shadowed gem object holds exactly the same page 1714 * layout as original gem object. This is for the convience of 1715 * replacing the whole non-privilged batch buffer page to this 1716 * shadowed one in PPGTT at the same gma address. (this replacing 1717 * action is not implemented yet now, but may be necessary in 1718 * future). 1719 * for prileged batch buffer, we just change start gma address to 1720 * that of shadowed page. 1721 */ 1722 if (bb->ppgtt) 1723 gma_start_offset = gma & ~I915_GTT_PAGE_MASK; 1724 1725 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv, 1726 roundup(bb_size + gma_start_offset, PAGE_SIZE)); 1727 if (IS_ERR(bb->obj)) { 1728 ret = PTR_ERR(bb->obj); 1729 goto err_free_bb; 1730 } 1731 1732 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush); 1733 if (ret) 1734 goto err_free_obj; 1735 1736 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1737 if (IS_ERR(bb->va)) { 1738 ret = PTR_ERR(bb->va); 1739 goto err_finish_shmem_access; 1740 } 1741 1742 if (bb->clflush & CLFLUSH_BEFORE) { 1743 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1744 bb->clflush &= ~CLFLUSH_BEFORE; 1745 } 1746 1747 ret = copy_gma_to_hva(s->vgpu, mm, 1748 gma, gma + bb_size, 1749 bb->va + gma_start_offset); 1750 if (ret < 0) { 1751 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1752 ret = -EFAULT; 1753 goto err_unmap; 1754 } 1755 1756 INIT_LIST_HEAD(&bb->list); 1757 list_add(&bb->list, &s->workload->shadow_bb); 1758 1759 bb->accessing = true; 1760 bb->bb_start_cmd_va = s->ip_va; 1761 1762 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1763 bb->bb_offset = s->ip_va - s->rb_va; 1764 else 1765 bb->bb_offset = 0; 1766 1767 /* 1768 * ip_va saves the virtual address of the shadow batch buffer, while 1769 * ip_gma saves the graphics address of the original batch buffer. 1770 * As the shadow batch buffer is just a copy from the originial one, 1771 * it should be right to use shadow batch buffer'va and original batch 1772 * buffer's gma in pair. After all, we don't want to pin the shadow 1773 * buffer here (too early). 1774 */ 1775 s->ip_va = bb->va + gma_start_offset; 1776 s->ip_gma = gma; 1777 return 0; 1778 err_unmap: 1779 i915_gem_object_unpin_map(bb->obj); 1780 err_finish_shmem_access: 1781 i915_gem_obj_finish_shmem_access(bb->obj); 1782 err_free_obj: 1783 i915_gem_object_put(bb->obj); 1784 err_free_bb: 1785 kfree(bb); 1786 return ret; 1787 } 1788 1789 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1790 { 1791 bool second_level; 1792 int ret = 0; 1793 struct intel_vgpu *vgpu = s->vgpu; 1794 1795 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1796 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1797 return -EFAULT; 1798 } 1799 1800 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1801 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1802 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1803 return -EFAULT; 1804 } 1805 1806 s->saved_buf_addr_type = s->buf_addr_type; 1807 addr_type_update_snb(s); 1808 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1809 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1810 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1811 } else if (second_level) { 1812 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1813 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1814 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1815 } 1816 1817 if (batch_buffer_needs_scan(s)) { 1818 ret = perform_bb_shadow(s); 1819 if (ret < 0) 1820 gvt_vgpu_err("invalid shadow batch buffer\n"); 1821 } else { 1822 /* emulate a batch buffer end to do return right */ 1823 ret = cmd_handler_mi_batch_buffer_end(s); 1824 if (ret < 0) 1825 return ret; 1826 } 1827 return ret; 1828 } 1829 1830 static struct cmd_info cmd_info[] = { 1831 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1832 1833 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1834 0, 1, NULL}, 1835 1836 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1837 0, 1, cmd_handler_mi_user_interrupt}, 1838 1839 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1840 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1841 1842 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1843 1844 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1845 NULL}, 1846 1847 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1848 NULL}, 1849 1850 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1851 NULL}, 1852 1853 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1854 NULL}, 1855 1856 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1857 D_ALL, 0, 1, NULL}, 1858 1859 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1860 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1861 cmd_handler_mi_batch_buffer_end}, 1862 1863 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1864 0, 1, NULL}, 1865 1866 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1867 NULL}, 1868 1869 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1870 D_ALL, 0, 1, NULL}, 1871 1872 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1873 NULL}, 1874 1875 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1876 NULL}, 1877 1878 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1879 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1880 1881 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1882 0, 8, NULL}, 1883 1884 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1885 1886 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1887 1888 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1889 D_BDW_PLUS, 0, 8, NULL}, 1890 1891 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1892 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1893 1894 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1895 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1896 1897 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1898 0, 8, cmd_handler_mi_store_data_index}, 1899 1900 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1901 D_ALL, 0, 8, cmd_handler_lri}, 1902 1903 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1904 cmd_handler_mi_update_gtt}, 1905 1906 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1907 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1908 1909 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1910 cmd_handler_mi_flush_dw}, 1911 1912 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1913 10, cmd_handler_mi_clflush}, 1914 1915 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1916 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1917 1918 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1919 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1920 1921 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1922 D_ALL, 0, 8, cmd_handler_lrr}, 1923 1924 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1925 D_ALL, 0, 8, NULL}, 1926 1927 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1928 ADDR_FIX_1(2), 8, NULL}, 1929 1930 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1931 ADDR_FIX_1(2), 8, NULL}, 1932 1933 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1934 8, cmd_handler_mi_op_2e}, 1935 1936 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1937 8, cmd_handler_mi_op_2f}, 1938 1939 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1940 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1941 cmd_handler_mi_batch_buffer_start}, 1942 1943 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1944 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1945 cmd_handler_mi_conditional_batch_buffer_end}, 1946 1947 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1948 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1949 1950 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1951 ADDR_FIX_2(4, 7), 8, NULL}, 1952 1953 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1954 0, 8, NULL}, 1955 1956 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1957 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1958 1959 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1960 1961 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1962 0, 8, NULL}, 1963 1964 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1965 ADDR_FIX_1(3), 8, NULL}, 1966 1967 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1968 D_ALL, 0, 8, NULL}, 1969 1970 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1971 ADDR_FIX_1(4), 8, NULL}, 1972 1973 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1974 ADDR_FIX_2(4, 5), 8, NULL}, 1975 1976 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1977 ADDR_FIX_1(4), 8, NULL}, 1978 1979 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1980 ADDR_FIX_2(4, 7), 8, NULL}, 1981 1982 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1983 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1984 1985 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1986 1987 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 1988 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 1989 1990 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 1991 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1992 1993 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 1994 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 1995 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1996 1997 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 1998 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1999 2000 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2001 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2002 2003 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2004 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2005 2006 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2007 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2008 2009 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2010 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2011 2012 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2013 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2014 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2015 2016 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2017 ADDR_FIX_2(4, 5), 8, NULL}, 2018 2019 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2020 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2021 2022 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2023 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2024 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2025 2026 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2027 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2028 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2029 2030 {"3DSTATE_BLEND_STATE_POINTERS", 2031 OP_3DSTATE_BLEND_STATE_POINTERS, 2032 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2033 2034 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2035 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2036 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2037 2038 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2039 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2040 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2041 2042 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2043 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2044 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2045 2046 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2047 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2048 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2049 2050 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2051 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2052 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2053 2054 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2055 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2056 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2057 2058 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2059 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2060 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2061 2062 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2063 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2064 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2065 2066 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2067 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2068 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2069 2070 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2071 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2072 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2073 2074 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2075 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2076 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2077 2078 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2079 0, 8, NULL}, 2080 2081 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2082 0, 8, NULL}, 2083 2084 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2085 0, 8, NULL}, 2086 2087 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2088 0, 8, NULL}, 2089 2090 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2091 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2092 2093 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2094 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2095 2096 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2097 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2098 2099 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2100 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2101 2102 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2103 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2104 2105 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2106 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2107 2108 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2109 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2110 2111 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2112 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2113 2114 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2115 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2116 2117 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2118 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2119 2120 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2121 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2122 2123 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2124 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2125 2126 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2127 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2128 2129 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2130 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2131 2132 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2133 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2134 2135 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2136 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2137 2138 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2139 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2140 2141 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2142 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2143 2144 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2145 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2146 2147 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2148 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2149 2150 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2151 D_BDW_PLUS, 0, 8, NULL}, 2152 2153 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2154 NULL}, 2155 2156 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2157 D_BDW_PLUS, 0, 8, NULL}, 2158 2159 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2160 D_BDW_PLUS, 0, 8, NULL}, 2161 2162 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2163 8, NULL}, 2164 2165 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2166 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2167 2168 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2169 8, NULL}, 2170 2171 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2172 NULL}, 2173 2174 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2175 NULL}, 2176 2177 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2178 NULL}, 2179 2180 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2181 D_BDW_PLUS, 0, 8, NULL}, 2182 2183 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2184 R_RCS, D_ALL, 0, 8, NULL}, 2185 2186 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2187 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2188 2189 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2190 R_RCS, D_ALL, 0, 1, NULL}, 2191 2192 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2193 2194 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2195 R_RCS, D_ALL, 0, 8, NULL}, 2196 2197 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2198 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2199 2200 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2201 2202 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2203 2204 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2205 2206 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2207 D_BDW_PLUS, 0, 8, NULL}, 2208 2209 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2210 D_BDW_PLUS, 0, 8, NULL}, 2211 2212 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2213 D_ALL, 0, 8, NULL}, 2214 2215 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2216 D_BDW_PLUS, 0, 8, NULL}, 2217 2218 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2219 D_BDW_PLUS, 0, 8, NULL}, 2220 2221 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2222 2223 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2224 2225 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2226 2227 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2228 D_ALL, 0, 8, NULL}, 2229 2230 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2231 2232 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2233 2234 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2235 R_RCS, D_ALL, 0, 8, NULL}, 2236 2237 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2238 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2239 2240 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2241 0, 8, NULL}, 2242 2243 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2244 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2245 2246 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2248 2249 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2253 D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2256 D_ALL, 0, 8, NULL}, 2257 2258 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2259 D_ALL, 0, 8, NULL}, 2260 2261 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2265 D_BDW_PLUS, 0, 8, NULL}, 2266 2267 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2268 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2269 2270 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2271 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2272 2273 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2274 R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2281 2282 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2284 2285 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2287 2288 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2289 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2290 2291 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2292 R_RCS, D_ALL, 0, 8, NULL}, 2293 2294 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2295 D_ALL, 0, 9, NULL}, 2296 2297 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2298 ADDR_FIX_2(2, 4), 8, NULL}, 2299 2300 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2301 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2302 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2303 2304 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2305 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2306 2307 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2308 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2309 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2310 2311 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2312 D_BDW_PLUS, 0, 8, NULL}, 2313 2314 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2315 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2316 2317 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2318 2319 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2320 1, NULL}, 2321 2322 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2323 ADDR_FIX_1(1), 8, NULL}, 2324 2325 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2326 2327 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2328 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2329 2330 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2331 ADDR_FIX_1(1), 8, NULL}, 2332 2333 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2334 2335 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2336 2337 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2338 0, 8, NULL}, 2339 2340 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2341 D_SKL_PLUS, 0, 8, NULL}, 2342 2343 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2344 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2345 2346 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2347 0, 16, NULL}, 2348 2349 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2350 0, 16, NULL}, 2351 2352 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2353 2354 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2355 0, 16, NULL}, 2356 2357 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2358 0, 16, NULL}, 2359 2360 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2361 0, 16, NULL}, 2362 2363 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2364 0, 8, NULL}, 2365 2366 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2367 NULL}, 2368 2369 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2370 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2371 2372 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2373 R_VCS, D_ALL, 0, 12, NULL}, 2374 2375 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2376 R_VCS, D_ALL, 0, 12, NULL}, 2377 2378 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2379 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2380 2381 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2382 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2383 2384 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2385 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2386 2387 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2388 2389 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2390 R_VCS, D_ALL, 0, 12, NULL}, 2391 2392 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2393 R_VCS, D_ALL, 0, 12, NULL}, 2394 2395 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2396 R_VCS, D_ALL, 0, 12, NULL}, 2397 2398 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2399 R_VCS, D_ALL, 0, 12, NULL}, 2400 2401 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2402 R_VCS, D_ALL, 0, 12, NULL}, 2403 2404 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2405 R_VCS, D_ALL, 0, 12, NULL}, 2406 2407 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2408 R_VCS, D_ALL, 0, 6, NULL}, 2409 2410 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2411 R_VCS, D_ALL, 0, 12, NULL}, 2412 2413 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2414 R_VCS, D_ALL, 0, 12, NULL}, 2415 2416 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2417 R_VCS, D_ALL, 0, 12, NULL}, 2418 2419 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2420 R_VCS, D_ALL, 0, 12, NULL}, 2421 2422 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2423 R_VCS, D_ALL, 0, 12, NULL}, 2424 2425 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2426 R_VCS, D_ALL, 0, 12, NULL}, 2427 2428 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2429 R_VCS, D_ALL, 0, 12, NULL}, 2430 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2431 R_VCS, D_ALL, 0, 12, NULL}, 2432 2433 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2434 R_VCS, D_ALL, 0, 12, NULL}, 2435 2436 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2437 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2438 2439 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2440 R_VCS, D_ALL, 0, 12, NULL}, 2441 2442 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2443 R_VCS, D_ALL, 0, 12, NULL}, 2444 2445 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2446 R_VCS, D_ALL, 0, 12, NULL}, 2447 2448 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2449 R_VCS, D_ALL, 0, 12, NULL}, 2450 2451 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2452 R_VCS, D_ALL, 0, 12, NULL}, 2453 2454 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2455 R_VCS, D_ALL, 0, 12, NULL}, 2456 2457 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2458 R_VCS, D_ALL, 0, 12, NULL}, 2459 2460 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2461 R_VCS, D_ALL, 0, 12, NULL}, 2462 2463 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2464 R_VCS, D_ALL, 0, 12, NULL}, 2465 2466 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2467 R_VCS, D_ALL, 0, 12, NULL}, 2468 2469 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2470 R_VCS, D_ALL, 0, 12, NULL}, 2471 2472 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2473 0, 16, NULL}, 2474 2475 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2476 2477 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2478 2479 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2480 R_VCS, D_ALL, 0, 12, NULL}, 2481 2482 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2483 R_VCS, D_ALL, 0, 12, NULL}, 2484 2485 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2486 R_VCS, D_ALL, 0, 12, NULL}, 2487 2488 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2489 2490 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2491 0, 12, NULL}, 2492 2493 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2494 0, 20, NULL}, 2495 }; 2496 2497 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2498 { 2499 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2500 } 2501 2502 /* call the cmd handler, and advance ip */ 2503 static int cmd_parser_exec(struct parser_exec_state *s) 2504 { 2505 struct intel_vgpu *vgpu = s->vgpu; 2506 struct cmd_info *info; 2507 u32 cmd; 2508 int ret = 0; 2509 2510 cmd = cmd_val(s, 0); 2511 2512 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2513 if (info == NULL) { 2514 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2515 cmd, get_opcode(cmd, s->ring_id), 2516 (s->buf_addr_type == PPGTT_BUFFER) ? 2517 "ppgtt" : "ggtt", s->ring_id, s->workload); 2518 return -EBADRQC; 2519 } 2520 2521 s->info = info; 2522 2523 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2524 cmd_length(s), s->buf_type, s->buf_addr_type, 2525 s->workload, info->name); 2526 2527 if (info->handler) { 2528 ret = info->handler(s); 2529 if (ret < 0) { 2530 gvt_vgpu_err("%s handler error\n", info->name); 2531 return ret; 2532 } 2533 } 2534 2535 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2536 ret = cmd_advance_default(s); 2537 if (ret) { 2538 gvt_vgpu_err("%s IP advance error\n", info->name); 2539 return ret; 2540 } 2541 } 2542 return 0; 2543 } 2544 2545 static inline bool gma_out_of_range(unsigned long gma, 2546 unsigned long gma_head, unsigned int gma_tail) 2547 { 2548 if (gma_tail >= gma_head) 2549 return (gma < gma_head) || (gma > gma_tail); 2550 else 2551 return (gma > gma_tail) && (gma < gma_head); 2552 } 2553 2554 /* Keep the consistent return type, e.g EBADRQC for unknown 2555 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2556 * works as the input of VM healthy status. 2557 */ 2558 static int command_scan(struct parser_exec_state *s, 2559 unsigned long rb_head, unsigned long rb_tail, 2560 unsigned long rb_start, unsigned long rb_len) 2561 { 2562 2563 unsigned long gma_head, gma_tail, gma_bottom; 2564 int ret = 0; 2565 struct intel_vgpu *vgpu = s->vgpu; 2566 2567 gma_head = rb_start + rb_head; 2568 gma_tail = rb_start + rb_tail; 2569 gma_bottom = rb_start + rb_len; 2570 2571 while (s->ip_gma != gma_tail) { 2572 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2573 if (!(s->ip_gma >= rb_start) || 2574 !(s->ip_gma < gma_bottom)) { 2575 gvt_vgpu_err("ip_gma %lx out of ring scope." 2576 "(base:0x%lx, bottom: 0x%lx)\n", 2577 s->ip_gma, rb_start, 2578 gma_bottom); 2579 parser_exec_state_dump(s); 2580 return -EFAULT; 2581 } 2582 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2583 gvt_vgpu_err("ip_gma %lx out of range." 2584 "base 0x%lx head 0x%lx tail 0x%lx\n", 2585 s->ip_gma, rb_start, 2586 rb_head, rb_tail); 2587 parser_exec_state_dump(s); 2588 break; 2589 } 2590 } 2591 ret = cmd_parser_exec(s); 2592 if (ret) { 2593 gvt_vgpu_err("cmd parser error\n"); 2594 parser_exec_state_dump(s); 2595 break; 2596 } 2597 } 2598 2599 return ret; 2600 } 2601 2602 static int scan_workload(struct intel_vgpu_workload *workload) 2603 { 2604 unsigned long gma_head, gma_tail, gma_bottom; 2605 struct parser_exec_state s; 2606 int ret = 0; 2607 2608 /* ring base is page aligned */ 2609 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2610 return -EINVAL; 2611 2612 gma_head = workload->rb_start + workload->rb_head; 2613 gma_tail = workload->rb_start + workload->rb_tail; 2614 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2615 2616 s.buf_type = RING_BUFFER_INSTRUCTION; 2617 s.buf_addr_type = GTT_BUFFER; 2618 s.vgpu = workload->vgpu; 2619 s.ring_id = workload->ring_id; 2620 s.ring_start = workload->rb_start; 2621 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2622 s.ring_head = gma_head; 2623 s.ring_tail = gma_tail; 2624 s.rb_va = workload->shadow_ring_buffer_va; 2625 s.workload = workload; 2626 s.is_ctx_wa = false; 2627 2628 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2629 gma_head == gma_tail) 2630 return 0; 2631 2632 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2633 ret = -EINVAL; 2634 goto out; 2635 } 2636 2637 ret = ip_gma_set(&s, gma_head); 2638 if (ret) 2639 goto out; 2640 2641 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2642 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2643 2644 out: 2645 return ret; 2646 } 2647 2648 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2649 { 2650 2651 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2652 struct parser_exec_state s; 2653 int ret = 0; 2654 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2655 struct intel_vgpu_workload, 2656 wa_ctx); 2657 2658 /* ring base is page aligned */ 2659 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2660 I915_GTT_PAGE_SIZE))) 2661 return -EINVAL; 2662 2663 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2664 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2665 PAGE_SIZE); 2666 gma_head = wa_ctx->indirect_ctx.guest_gma; 2667 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2668 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2669 2670 s.buf_type = RING_BUFFER_INSTRUCTION; 2671 s.buf_addr_type = GTT_BUFFER; 2672 s.vgpu = workload->vgpu; 2673 s.ring_id = workload->ring_id; 2674 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2675 s.ring_size = ring_size; 2676 s.ring_head = gma_head; 2677 s.ring_tail = gma_tail; 2678 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2679 s.workload = workload; 2680 s.is_ctx_wa = true; 2681 2682 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2683 ret = -EINVAL; 2684 goto out; 2685 } 2686 2687 ret = ip_gma_set(&s, gma_head); 2688 if (ret) 2689 goto out; 2690 2691 ret = command_scan(&s, 0, ring_tail, 2692 wa_ctx->indirect_ctx.guest_gma, ring_size); 2693 out: 2694 return ret; 2695 } 2696 2697 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2698 { 2699 struct intel_vgpu *vgpu = workload->vgpu; 2700 struct intel_vgpu_submission *s = &vgpu->submission; 2701 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2702 void *shadow_ring_buffer_va; 2703 int ring_id = workload->ring_id; 2704 int ret; 2705 2706 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2707 2708 /* calculate workload ring buffer size */ 2709 workload->rb_len = (workload->rb_tail + guest_rb_size - 2710 workload->rb_head) % guest_rb_size; 2711 2712 gma_head = workload->rb_start + workload->rb_head; 2713 gma_tail = workload->rb_start + workload->rb_tail; 2714 gma_top = workload->rb_start + guest_rb_size; 2715 2716 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2717 void *p; 2718 2719 /* realloc the new ring buffer if needed */ 2720 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2721 GFP_KERNEL); 2722 if (!p) { 2723 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2724 return -ENOMEM; 2725 } 2726 s->ring_scan_buffer[ring_id] = p; 2727 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2728 } 2729 2730 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2731 2732 /* get shadow ring buffer va */ 2733 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2734 2735 /* head > tail --> copy head <-> top */ 2736 if (gma_head > gma_tail) { 2737 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2738 gma_head, gma_top, shadow_ring_buffer_va); 2739 if (ret < 0) { 2740 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2741 return ret; 2742 } 2743 shadow_ring_buffer_va += ret; 2744 gma_head = workload->rb_start; 2745 } 2746 2747 /* copy head or start <-> tail */ 2748 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2749 shadow_ring_buffer_va); 2750 if (ret < 0) { 2751 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2752 return ret; 2753 } 2754 return 0; 2755 } 2756 2757 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2758 { 2759 int ret; 2760 struct intel_vgpu *vgpu = workload->vgpu; 2761 2762 ret = shadow_workload_ring_buffer(workload); 2763 if (ret) { 2764 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2765 return ret; 2766 } 2767 2768 ret = scan_workload(workload); 2769 if (ret) { 2770 gvt_vgpu_err("scan workload error\n"); 2771 return ret; 2772 } 2773 return 0; 2774 } 2775 2776 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2777 { 2778 int ctx_size = wa_ctx->indirect_ctx.size; 2779 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2780 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2781 struct intel_vgpu_workload, 2782 wa_ctx); 2783 struct intel_vgpu *vgpu = workload->vgpu; 2784 struct drm_i915_gem_object *obj; 2785 int ret = 0; 2786 void *map; 2787 2788 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv, 2789 roundup(ctx_size + CACHELINE_BYTES, 2790 PAGE_SIZE)); 2791 if (IS_ERR(obj)) 2792 return PTR_ERR(obj); 2793 2794 /* get the va of the shadow batch buffer */ 2795 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2796 if (IS_ERR(map)) { 2797 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2798 ret = PTR_ERR(map); 2799 goto put_obj; 2800 } 2801 2802 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2803 if (ret) { 2804 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2805 goto unmap_src; 2806 } 2807 2808 ret = copy_gma_to_hva(workload->vgpu, 2809 workload->vgpu->gtt.ggtt_mm, 2810 guest_gma, guest_gma + ctx_size, 2811 map); 2812 if (ret < 0) { 2813 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2814 goto unmap_src; 2815 } 2816 2817 wa_ctx->indirect_ctx.obj = obj; 2818 wa_ctx->indirect_ctx.shadow_va = map; 2819 return 0; 2820 2821 unmap_src: 2822 i915_gem_object_unpin_map(obj); 2823 put_obj: 2824 i915_gem_object_put(obj); 2825 return ret; 2826 } 2827 2828 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2829 { 2830 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2831 unsigned char *bb_start_sva; 2832 2833 if (!wa_ctx->per_ctx.valid) 2834 return 0; 2835 2836 per_ctx_start[0] = 0x18800001; 2837 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2838 2839 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2840 wa_ctx->indirect_ctx.size; 2841 2842 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2843 2844 return 0; 2845 } 2846 2847 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2848 { 2849 int ret; 2850 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2851 struct intel_vgpu_workload, 2852 wa_ctx); 2853 struct intel_vgpu *vgpu = workload->vgpu; 2854 2855 if (wa_ctx->indirect_ctx.size == 0) 2856 return 0; 2857 2858 ret = shadow_indirect_ctx(wa_ctx); 2859 if (ret) { 2860 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2861 return ret; 2862 } 2863 2864 combine_wa_ctx(wa_ctx); 2865 2866 ret = scan_wa_ctx(wa_ctx); 2867 if (ret) { 2868 gvt_vgpu_err("scan wa ctx error\n"); 2869 return ret; 2870 } 2871 2872 return 0; 2873 } 2874 2875 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2876 unsigned int opcode, unsigned long rings) 2877 { 2878 struct cmd_info *info = NULL; 2879 unsigned int ring; 2880 2881 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2882 info = find_cmd_entry(gvt, opcode, ring); 2883 if (info) 2884 break; 2885 } 2886 return info; 2887 } 2888 2889 static int init_cmd_table(struct intel_gvt *gvt) 2890 { 2891 int i; 2892 struct cmd_entry *e; 2893 struct cmd_info *info; 2894 unsigned int gen_type; 2895 2896 gen_type = intel_gvt_get_device_type(gvt); 2897 2898 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2899 if (!(cmd_info[i].devices & gen_type)) 2900 continue; 2901 2902 e = kzalloc(sizeof(*e), GFP_KERNEL); 2903 if (!e) 2904 return -ENOMEM; 2905 2906 e->info = &cmd_info[i]; 2907 info = find_cmd_entry_any_ring(gvt, 2908 e->info->opcode, e->info->rings); 2909 if (info) { 2910 gvt_err("%s %s duplicated\n", e->info->name, 2911 info->name); 2912 kfree(e); 2913 return -EEXIST; 2914 } 2915 2916 INIT_HLIST_NODE(&e->hlist); 2917 add_cmd_entry(gvt, e); 2918 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2919 e->info->name, e->info->opcode, e->info->flag, 2920 e->info->devices, e->info->rings); 2921 } 2922 return 0; 2923 } 2924 2925 static void clean_cmd_table(struct intel_gvt *gvt) 2926 { 2927 struct hlist_node *tmp; 2928 struct cmd_entry *e; 2929 int i; 2930 2931 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2932 kfree(e); 2933 2934 hash_init(gvt->cmd_table); 2935 } 2936 2937 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2938 { 2939 clean_cmd_table(gvt); 2940 } 2941 2942 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2943 { 2944 int ret; 2945 2946 ret = init_cmd_table(gvt); 2947 if (ret) { 2948 intel_gvt_clean_cmd_parser(gvt); 2949 return ret; 2950 } 2951 return 0; 2952 } 2953