1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_lrc.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_gt_requests.h" 44 #include "gt/shmem_utils.h" 45 #include "gvt.h" 46 #include "i915_pvinfo.h" 47 #include "trace.h" 48 49 #include "gem/i915_gem_context.h" 50 #include "gem/i915_gem_pm.h" 51 #include "gt/intel_context.h" 52 53 #define INVALID_OP (~0U) 54 55 #define OP_LEN_MI 9 56 #define OP_LEN_2D 10 57 #define OP_LEN_3D_MEDIA 16 58 #define OP_LEN_MFX_VC 16 59 #define OP_LEN_VEBOX 16 60 61 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 62 63 struct sub_op_bits { 64 int hi; 65 int low; 66 }; 67 struct decode_info { 68 const char *name; 69 int op_len; 70 int nr_sub_op; 71 const struct sub_op_bits *sub_op; 72 }; 73 74 #define MAX_CMD_BUDGET 0x7fffffff 75 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 76 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 77 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 78 79 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 80 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 81 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 82 83 /* Render Command Map */ 84 85 /* MI_* command Opcode (28:23) */ 86 #define OP_MI_NOOP 0x0 87 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 88 #define OP_MI_USER_INTERRUPT 0x2 89 #define OP_MI_WAIT_FOR_EVENT 0x3 90 #define OP_MI_FLUSH 0x4 91 #define OP_MI_ARB_CHECK 0x5 92 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 93 #define OP_MI_REPORT_HEAD 0x7 94 #define OP_MI_ARB_ON_OFF 0x8 95 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 96 #define OP_MI_BATCH_BUFFER_END 0xA 97 #define OP_MI_SUSPEND_FLUSH 0xB 98 #define OP_MI_PREDICATE 0xC /* IVB+ */ 99 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 100 #define OP_MI_SET_APPID 0xE /* IVB+ */ 101 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 102 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 103 #define OP_MI_DISPLAY_FLIP 0x14 104 #define OP_MI_SEMAPHORE_MBOX 0x16 105 #define OP_MI_SET_CONTEXT 0x18 106 #define OP_MI_MATH 0x1A 107 #define OP_MI_URB_CLEAR 0x19 108 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 109 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 110 111 #define OP_MI_STORE_DATA_IMM 0x20 112 #define OP_MI_STORE_DATA_INDEX 0x21 113 #define OP_MI_LOAD_REGISTER_IMM 0x22 114 #define OP_MI_UPDATE_GTT 0x23 115 #define OP_MI_STORE_REGISTER_MEM 0x24 116 #define OP_MI_FLUSH_DW 0x26 117 #define OP_MI_CLFLUSH 0x27 118 #define OP_MI_REPORT_PERF_COUNT 0x28 119 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 120 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 121 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 122 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 123 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 124 #define OP_MI_2E 0x2E /* BDW+ */ 125 #define OP_MI_2F 0x2F /* BDW+ */ 126 #define OP_MI_BATCH_BUFFER_START 0x31 127 128 /* Bit definition for dword 0 */ 129 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 130 131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 132 133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 135 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 137 138 /* 2D command: Opcode (28:22) */ 139 #define OP_2D(x) ((2<<7) | x) 140 141 #define OP_XY_SETUP_BLT OP_2D(0x1) 142 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 144 #define OP_XY_PIXEL_BLT OP_2D(0x24) 145 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 146 #define OP_XY_TEXT_BLT OP_2D(0x26) 147 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 148 #define OP_XY_COLOR_BLT OP_2D(0x50) 149 #define OP_XY_PAT_BLT OP_2D(0x51) 150 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 151 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 152 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 153 #define OP_XY_FULL_BLT OP_2D(0x55) 154 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 155 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 157 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 159 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 160 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 163 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 165 166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 168 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 169 170 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 171 172 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 173 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 174 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 175 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 176 177 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 178 179 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 180 181 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 182 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 184 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 185 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 186 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 187 188 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 189 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 190 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 191 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 192 193 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 194 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 195 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 196 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 197 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 198 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 199 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 200 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 201 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 202 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 204 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 205 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 206 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 207 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 208 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 209 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 210 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 211 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 212 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 213 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 214 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 215 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 216 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 217 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 218 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 219 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 220 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 223 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 235 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 236 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 237 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 238 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 239 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 240 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 241 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 242 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 243 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 244 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 245 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 246 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 247 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 248 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 249 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 259 260 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 261 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 262 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 263 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 264 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 265 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 266 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 267 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 268 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 269 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 270 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 271 272 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 274 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 275 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 278 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 279 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 280 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 282 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 283 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 285 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 286 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 292 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 293 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 295 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 297 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 298 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 299 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 300 301 /* VCCP Command Parser */ 302 303 /* 304 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 305 * git://anongit.freedesktop.org/vaapi/intel-driver 306 * src/i965_defines.h 307 * 308 */ 309 310 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 311 (3 << 13 | \ 312 (pipeline) << 11 | \ 313 (op) << 8 | \ 314 (sub_opa) << 5 | \ 315 (sub_opb)) 316 317 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 318 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 319 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 322 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 323 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 324 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 325 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 326 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 327 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 328 329 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 330 331 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 332 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 333 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 334 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 335 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 336 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 338 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 339 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 340 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 341 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 342 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 343 344 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 345 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 346 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 347 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 348 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 349 350 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 351 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 352 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 353 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 354 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 355 356 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 357 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 358 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 359 360 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 361 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 362 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 363 364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 365 (3 << 13 | \ 366 (pipeline) << 11 | \ 367 (op) << 8 | \ 368 (sub_opa) << 5 | \ 369 (sub_opb)) 370 371 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 372 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 373 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 374 375 struct parser_exec_state; 376 377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 378 379 #define GVT_CMD_HASH_BITS 7 380 381 /* which DWords need address fix */ 382 #define ADDR_FIX_1(x1) (1 << (x1)) 383 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 384 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 385 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 386 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 387 388 #define DWORD_FIELD(dword, end, start) \ 389 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 390 391 #define OP_LENGTH_BIAS 2 392 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 393 394 static int gvt_check_valid_cmd_length(int len, int valid_len) 395 { 396 if (valid_len != len) { 397 gvt_err("len is not valid: len=%u valid_len=%u\n", 398 len, valid_len); 399 return -EFAULT; 400 } 401 return 0; 402 } 403 404 struct cmd_info { 405 const char *name; 406 u32 opcode; 407 408 #define F_LEN_MASK 3U 409 #define F_LEN_CONST 1U 410 #define F_LEN_VAR 0U 411 /* value is const although LEN maybe variable */ 412 #define F_LEN_VAR_FIXED (1<<1) 413 414 /* 415 * command has its own ip advance logic 416 * e.g. MI_BATCH_START, MI_BATCH_END 417 */ 418 #define F_IP_ADVANCE_CUSTOM (1<<2) 419 u32 flag; 420 421 #define R_RCS BIT(RCS0) 422 #define R_VCS1 BIT(VCS0) 423 #define R_VCS2 BIT(VCS1) 424 #define R_VCS (R_VCS1 | R_VCS2) 425 #define R_BCS BIT(BCS0) 426 #define R_VECS BIT(VECS0) 427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 428 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 429 u16 rings; 430 431 /* devices that support this cmd: SNB/IVB/HSW/... */ 432 u16 devices; 433 434 /* which DWords are address that need fix up. 435 * bit 0 means a 32-bit non address operand in command 436 * bit 1 means address operand, which could be 32-bit 437 * or 64-bit depending on different architectures.( 438 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 439 * No matter the address length, each address only takes 440 * one bit in the bitmap. 441 */ 442 u16 addr_bitmap; 443 444 /* flag == F_LEN_CONST : command length 445 * flag == F_LEN_VAR : length bias bits 446 * Note: length is in DWord 447 */ 448 u32 len; 449 450 parser_cmd_handler handler; 451 452 /* valid length in DWord */ 453 u32 valid_len; 454 }; 455 456 struct cmd_entry { 457 struct hlist_node hlist; 458 const struct cmd_info *info; 459 }; 460 461 enum { 462 RING_BUFFER_INSTRUCTION, 463 BATCH_BUFFER_INSTRUCTION, 464 BATCH_BUFFER_2ND_LEVEL, 465 RING_BUFFER_CTX, 466 }; 467 468 enum { 469 GTT_BUFFER, 470 PPGTT_BUFFER 471 }; 472 473 struct parser_exec_state { 474 struct intel_vgpu *vgpu; 475 const struct intel_engine_cs *engine; 476 477 int buf_type; 478 479 /* batch buffer address type */ 480 int buf_addr_type; 481 482 /* graphics memory address of ring buffer start */ 483 unsigned long ring_start; 484 unsigned long ring_size; 485 unsigned long ring_head; 486 unsigned long ring_tail; 487 488 /* instruction graphics memory address */ 489 unsigned long ip_gma; 490 491 /* mapped va of the instr_gma */ 492 void *ip_va; 493 void *rb_va; 494 495 void *ret_bb_va; 496 /* next instruction when return from batch buffer to ring buffer */ 497 unsigned long ret_ip_gma_ring; 498 499 /* next instruction when return from 2nd batch buffer to batch buffer */ 500 unsigned long ret_ip_gma_bb; 501 502 /* batch buffer address type (GTT or PPGTT) 503 * used when ret from 2nd level batch buffer 504 */ 505 int saved_buf_addr_type; 506 bool is_ctx_wa; 507 bool is_init_ctx; 508 509 const struct cmd_info *info; 510 511 struct intel_vgpu_workload *workload; 512 }; 513 514 #define gmadr_dw_number(s) \ 515 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 516 517 static unsigned long bypass_scan_mask = 0; 518 519 /* ring ALL, type = 0 */ 520 static const struct sub_op_bits sub_op_mi[] = { 521 {31, 29}, 522 {28, 23}, 523 }; 524 525 static const struct decode_info decode_info_mi = { 526 "MI", 527 OP_LEN_MI, 528 ARRAY_SIZE(sub_op_mi), 529 sub_op_mi, 530 }; 531 532 /* ring RCS, command type 2 */ 533 static const struct sub_op_bits sub_op_2d[] = { 534 {31, 29}, 535 {28, 22}, 536 }; 537 538 static const struct decode_info decode_info_2d = { 539 "2D", 540 OP_LEN_2D, 541 ARRAY_SIZE(sub_op_2d), 542 sub_op_2d, 543 }; 544 545 /* ring RCS, command type 3 */ 546 static const struct sub_op_bits sub_op_3d_media[] = { 547 {31, 29}, 548 {28, 27}, 549 {26, 24}, 550 {23, 16}, 551 }; 552 553 static const struct decode_info decode_info_3d_media = { 554 "3D_Media", 555 OP_LEN_3D_MEDIA, 556 ARRAY_SIZE(sub_op_3d_media), 557 sub_op_3d_media, 558 }; 559 560 /* ring VCS, command type 3 */ 561 static const struct sub_op_bits sub_op_mfx_vc[] = { 562 {31, 29}, 563 {28, 27}, 564 {26, 24}, 565 {23, 21}, 566 {20, 16}, 567 }; 568 569 static const struct decode_info decode_info_mfx_vc = { 570 "MFX_VC", 571 OP_LEN_MFX_VC, 572 ARRAY_SIZE(sub_op_mfx_vc), 573 sub_op_mfx_vc, 574 }; 575 576 /* ring VECS, command type 3 */ 577 static const struct sub_op_bits sub_op_vebox[] = { 578 {31, 29}, 579 {28, 27}, 580 {26, 24}, 581 {23, 21}, 582 {20, 16}, 583 }; 584 585 static const struct decode_info decode_info_vebox = { 586 "VEBOX", 587 OP_LEN_VEBOX, 588 ARRAY_SIZE(sub_op_vebox), 589 sub_op_vebox, 590 }; 591 592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 593 [RCS0] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_3d_media, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [VCS0] = { 605 &decode_info_mi, 606 NULL, 607 NULL, 608 &decode_info_mfx_vc, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 615 [BCS0] = { 616 &decode_info_mi, 617 NULL, 618 &decode_info_2d, 619 NULL, 620 NULL, 621 NULL, 622 NULL, 623 NULL, 624 }, 625 626 [VECS0] = { 627 &decode_info_mi, 628 NULL, 629 NULL, 630 &decode_info_vebox, 631 NULL, 632 NULL, 633 NULL, 634 NULL, 635 }, 636 637 [VCS1] = { 638 &decode_info_mi, 639 NULL, 640 NULL, 641 &decode_info_mfx_vc, 642 NULL, 643 NULL, 644 NULL, 645 NULL, 646 }, 647 }; 648 649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 650 { 651 const struct decode_info *d_info; 652 653 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 654 if (d_info == NULL) 655 return INVALID_OP; 656 657 return cmd >> (32 - d_info->op_len); 658 } 659 660 static inline const struct cmd_info * 661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 662 const struct intel_engine_cs *engine) 663 { 664 struct cmd_entry *e; 665 666 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 667 if (opcode == e->info->opcode && 668 e->info->rings & engine->mask) 669 return e->info; 670 } 671 return NULL; 672 } 673 674 static inline const struct cmd_info * 675 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 676 const struct intel_engine_cs *engine) 677 { 678 u32 opcode; 679 680 opcode = get_opcode(cmd, engine); 681 if (opcode == INVALID_OP) 682 return NULL; 683 684 return find_cmd_entry(gvt, opcode, engine); 685 } 686 687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 688 { 689 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 690 } 691 692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 693 { 694 const struct decode_info *d_info; 695 int i; 696 697 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 698 if (d_info == NULL) 699 return; 700 701 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 702 cmd >> (32 - d_info->op_len), d_info->name); 703 704 for (i = 0; i < d_info->nr_sub_op; i++) 705 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 706 d_info->sub_op[i].low)); 707 708 pr_err("\n"); 709 } 710 711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 712 { 713 return s->ip_va + (index << 2); 714 } 715 716 static inline u32 cmd_val(struct parser_exec_state *s, int index) 717 { 718 return *cmd_ptr(s, index); 719 } 720 721 static inline bool is_init_ctx(struct parser_exec_state *s) 722 { 723 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 724 } 725 726 static void parser_exec_state_dump(struct parser_exec_state *s) 727 { 728 int cnt = 0; 729 int i; 730 731 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 732 " ring_head(%08lx) ring_tail(%08lx)\n", 733 s->vgpu->id, s->engine->name, 734 s->ring_start, s->ring_start + s->ring_size, 735 s->ring_head, s->ring_tail); 736 737 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 738 s->buf_type == RING_BUFFER_INSTRUCTION ? 739 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 740 "CTX_BUFFER" : "BATCH_BUFFER"), 741 s->buf_addr_type == GTT_BUFFER ? 742 "GTT" : "PPGTT", s->ip_gma); 743 744 if (s->ip_va == NULL) { 745 gvt_dbg_cmd(" ip_va(NULL)"); 746 return; 747 } 748 749 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 750 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 751 cmd_val(s, 2), cmd_val(s, 3)); 752 753 print_opcode(cmd_val(s, 0), s->engine); 754 755 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 756 757 while (cnt < 1024) { 758 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 759 for (i = 0; i < 8; i++) 760 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 761 gvt_dbg_cmd("\n"); 762 763 s->ip_va += 8 * sizeof(u32); 764 cnt += 8; 765 } 766 } 767 768 static inline void update_ip_va(struct parser_exec_state *s) 769 { 770 unsigned long len = 0; 771 772 if (WARN_ON(s->ring_head == s->ring_tail)) 773 return; 774 775 if (s->buf_type == RING_BUFFER_INSTRUCTION || 776 s->buf_type == RING_BUFFER_CTX) { 777 unsigned long ring_top = s->ring_start + s->ring_size; 778 779 if (s->ring_head > s->ring_tail) { 780 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 781 len = (s->ip_gma - s->ring_head); 782 else if (s->ip_gma >= s->ring_start && 783 s->ip_gma <= s->ring_tail) 784 len = (ring_top - s->ring_head) + 785 (s->ip_gma - s->ring_start); 786 } else 787 len = (s->ip_gma - s->ring_head); 788 789 s->ip_va = s->rb_va + len; 790 } else {/* shadow batch buffer */ 791 s->ip_va = s->ret_bb_va; 792 } 793 } 794 795 static inline int ip_gma_set(struct parser_exec_state *s, 796 unsigned long ip_gma) 797 { 798 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 799 800 s->ip_gma = ip_gma; 801 update_ip_va(s); 802 return 0; 803 } 804 805 static inline int ip_gma_advance(struct parser_exec_state *s, 806 unsigned int dw_len) 807 { 808 s->ip_gma += (dw_len << 2); 809 810 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 811 if (s->ip_gma >= s->ring_start + s->ring_size) 812 s->ip_gma -= s->ring_size; 813 update_ip_va(s); 814 } else { 815 s->ip_va += (dw_len << 2); 816 } 817 818 return 0; 819 } 820 821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 822 { 823 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 824 return info->len; 825 else 826 return (cmd & ((1U << info->len) - 1)) + 2; 827 return 0; 828 } 829 830 static inline int cmd_length(struct parser_exec_state *s) 831 { 832 return get_cmd_length(s->info, cmd_val(s, 0)); 833 } 834 835 /* do not remove this, some platform may need clflush here */ 836 #define patch_value(s, addr, val) do { \ 837 *addr = val; \ 838 } while (0) 839 840 static inline bool is_mocs_mmio(unsigned int offset) 841 { 842 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 843 ((offset >= 0xb020) && (offset <= 0xb0a0)); 844 } 845 846 static int is_cmd_update_pdps(unsigned int offset, 847 struct parser_exec_state *s) 848 { 849 u32 base = s->workload->engine->mmio_base; 850 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 851 } 852 853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 854 unsigned int offset, unsigned int index) 855 { 856 struct intel_vgpu *vgpu = s->vgpu; 857 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 858 struct intel_vgpu_mm *mm; 859 u64 pdps[GEN8_3LVL_PDPES]; 860 861 if (shadow_mm->ppgtt_mm.root_entry_type == 862 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 863 pdps[0] = (u64)cmd_val(s, 2) << 32; 864 pdps[0] |= cmd_val(s, 4); 865 866 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 867 if (!mm) { 868 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 869 return -EINVAL; 870 } 871 intel_vgpu_mm_get(mm); 872 list_add_tail(&mm->ppgtt_mm.link, 873 &s->workload->lri_shadow_mm); 874 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 875 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 876 } else { 877 /* Currently all guests use PML4 table and now can't 878 * have a guest with 3-level table but uses LRI for 879 * PPGTT update. So this is simply un-testable. */ 880 GEM_BUG_ON(1); 881 gvt_vgpu_err("invalid shared shadow vm type\n"); 882 return -EINVAL; 883 } 884 return 0; 885 } 886 887 static int cmd_reg_handler(struct parser_exec_state *s, 888 unsigned int offset, unsigned int index, char *cmd) 889 { 890 struct intel_vgpu *vgpu = s->vgpu; 891 struct intel_gvt *gvt = vgpu->gvt; 892 u32 ctx_sr_ctl; 893 u32 *vreg, vreg_old; 894 895 if (offset + 4 > gvt->device_info.mmio_size) { 896 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 897 cmd, offset); 898 return -EFAULT; 899 } 900 901 if (is_init_ctx(s)) { 902 struct intel_gvt_mmio_info *mmio_info; 903 904 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 905 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 906 if (mmio_info && mmio_info->write) 907 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 908 return 0; 909 } 910 911 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 912 gvt_vgpu_err("%s access to non-render register (%x)\n", 913 cmd, offset); 914 return -EBADRQC; 915 } 916 917 if (!strncmp(cmd, "srm", 3) || 918 !strncmp(cmd, "lrm", 3)) { 919 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 920 offset == 0x21f0 || 921 (IS_BROADWELL(gvt->gt->i915) && 922 offset == i915_mmio_reg_offset(INSTPM))) 923 return 0; 924 else { 925 gvt_vgpu_err("%s access to register (%x)\n", 926 cmd, offset); 927 return -EPERM; 928 } 929 } 930 931 if (!strncmp(cmd, "lrr-src", 7) || 932 !strncmp(cmd, "lrr-dst", 7)) { 933 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 934 return 0; 935 else { 936 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 937 return -EPERM; 938 } 939 } 940 941 if (!strncmp(cmd, "pipe_ctrl", 9)) { 942 /* TODO: add LRI POST logic here */ 943 return 0; 944 } 945 946 if (strncmp(cmd, "lri", 3)) 947 return -EPERM; 948 949 /* below are all lri handlers */ 950 vreg = &vgpu_vreg(s->vgpu, offset); 951 952 if (is_cmd_update_pdps(offset, s) && 953 cmd_pdp_mmio_update_handler(s, offset, index)) 954 return -EINVAL; 955 956 if (offset == i915_mmio_reg_offset(DERRMR) || 957 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 958 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 959 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 960 } 961 962 if (is_mocs_mmio(offset)) 963 *vreg = cmd_val(s, index + 1); 964 965 vreg_old = *vreg; 966 967 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 968 u32 cmdval_new, cmdval; 969 struct intel_gvt_mmio_info *mmio_info; 970 971 cmdval = cmd_val(s, index + 1); 972 973 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 974 if (!mmio_info) { 975 cmdval_new = cmdval; 976 } else { 977 u64 ro_mask = mmio_info->ro_mask; 978 int ret; 979 980 if (likely(!ro_mask)) 981 ret = mmio_info->write(s->vgpu, offset, 982 &cmdval, 4); 983 else { 984 gvt_vgpu_err("try to write RO reg %x\n", 985 offset); 986 ret = -EBADRQC; 987 } 988 if (ret) 989 return ret; 990 cmdval_new = *vreg; 991 } 992 if (cmdval_new != cmdval) 993 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 994 } 995 996 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 997 *vreg = vreg_old; 998 999 /* TODO 1000 * In order to let workload with inhibit context to generate 1001 * correct image data into memory, vregs values will be loaded to 1002 * hw via LRIs in the workload with inhibit context. But as 1003 * indirect context is loaded prior to LRIs in workload, we don't 1004 * want reg values specified in indirect context overwritten by 1005 * LRIs in workloads. So, when scanning an indirect context, we 1006 * update reg values in it into vregs, so LRIs in workload with 1007 * inhibit context will restore with correct values 1008 */ 1009 if (IS_GEN(s->engine->i915, 9) && 1010 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1011 !strncmp(cmd, "lri", 3)) { 1012 intel_gvt_hypervisor_read_gpa(s->vgpu, 1013 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1014 /* check inhibit context */ 1015 if (ctx_sr_ctl & 1) { 1016 u32 data = cmd_val(s, index + 1); 1017 1018 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1019 intel_vgpu_mask_mmio_write(vgpu, 1020 offset, &data, 4); 1021 else 1022 vgpu_vreg(vgpu, offset) = data; 1023 } 1024 } 1025 1026 return 0; 1027 } 1028 1029 #define cmd_reg(s, i) \ 1030 (cmd_val(s, i) & GENMASK(22, 2)) 1031 1032 #define cmd_reg_inhibit(s, i) \ 1033 (cmd_val(s, i) & GENMASK(22, 18)) 1034 1035 #define cmd_gma(s, i) \ 1036 (cmd_val(s, i) & GENMASK(31, 2)) 1037 1038 #define cmd_gma_hi(s, i) \ 1039 (cmd_val(s, i) & GENMASK(15, 0)) 1040 1041 static int cmd_handler_lri(struct parser_exec_state *s) 1042 { 1043 int i, ret = 0; 1044 int cmd_len = cmd_length(s); 1045 1046 for (i = 1; i < cmd_len; i += 2) { 1047 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1048 if (s->engine->id == BCS0 && 1049 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1050 ret |= 0; 1051 else 1052 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1053 } 1054 if (ret) 1055 break; 1056 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1057 if (ret) 1058 break; 1059 } 1060 return ret; 1061 } 1062 1063 static int cmd_handler_lrr(struct parser_exec_state *s) 1064 { 1065 int i, ret = 0; 1066 int cmd_len = cmd_length(s); 1067 1068 for (i = 1; i < cmd_len; i += 2) { 1069 if (IS_BROADWELL(s->engine->i915)) 1070 ret |= ((cmd_reg_inhibit(s, i) || 1071 (cmd_reg_inhibit(s, i + 1)))) ? 1072 -EBADRQC : 0; 1073 if (ret) 1074 break; 1075 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1076 if (ret) 1077 break; 1078 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1079 if (ret) 1080 break; 1081 } 1082 return ret; 1083 } 1084 1085 static inline int cmd_address_audit(struct parser_exec_state *s, 1086 unsigned long guest_gma, int op_size, bool index_mode); 1087 1088 static int cmd_handler_lrm(struct parser_exec_state *s) 1089 { 1090 struct intel_gvt *gvt = s->vgpu->gvt; 1091 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1092 unsigned long gma; 1093 int i, ret = 0; 1094 int cmd_len = cmd_length(s); 1095 1096 for (i = 1; i < cmd_len;) { 1097 if (IS_BROADWELL(s->engine->i915)) 1098 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1099 if (ret) 1100 break; 1101 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1102 if (ret) 1103 break; 1104 if (cmd_val(s, 0) & (1 << 22)) { 1105 gma = cmd_gma(s, i + 1); 1106 if (gmadr_bytes == 8) 1107 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1108 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1109 if (ret) 1110 break; 1111 } 1112 i += gmadr_dw_number(s) + 1; 1113 } 1114 return ret; 1115 } 1116 1117 static int cmd_handler_srm(struct parser_exec_state *s) 1118 { 1119 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1120 unsigned long gma; 1121 int i, ret = 0; 1122 int cmd_len = cmd_length(s); 1123 1124 for (i = 1; i < cmd_len;) { 1125 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1126 if (ret) 1127 break; 1128 if (cmd_val(s, 0) & (1 << 22)) { 1129 gma = cmd_gma(s, i + 1); 1130 if (gmadr_bytes == 8) 1131 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1132 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1133 if (ret) 1134 break; 1135 } 1136 i += gmadr_dw_number(s) + 1; 1137 } 1138 return ret; 1139 } 1140 1141 struct cmd_interrupt_event { 1142 int pipe_control_notify; 1143 int mi_flush_dw; 1144 int mi_user_interrupt; 1145 }; 1146 1147 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1148 [RCS0] = { 1149 .pipe_control_notify = RCS_PIPE_CONTROL, 1150 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1151 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1152 }, 1153 [BCS0] = { 1154 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1155 .mi_flush_dw = BCS_MI_FLUSH_DW, 1156 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1157 }, 1158 [VCS0] = { 1159 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1160 .mi_flush_dw = VCS_MI_FLUSH_DW, 1161 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1162 }, 1163 [VCS1] = { 1164 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1165 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1166 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1167 }, 1168 [VECS0] = { 1169 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1170 .mi_flush_dw = VECS_MI_FLUSH_DW, 1171 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1172 }, 1173 }; 1174 1175 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1176 { 1177 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1178 unsigned long gma; 1179 bool index_mode = false; 1180 unsigned int post_sync; 1181 int ret = 0; 1182 u32 hws_pga, val; 1183 1184 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1185 1186 /* LRI post sync */ 1187 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1188 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1189 /* post sync */ 1190 else if (post_sync) { 1191 if (post_sync == 2) 1192 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1193 else if (post_sync == 3) 1194 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1195 else if (post_sync == 1) { 1196 /* check ggtt*/ 1197 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1198 gma = cmd_val(s, 2) & GENMASK(31, 3); 1199 if (gmadr_bytes == 8) 1200 gma |= (cmd_gma_hi(s, 3)) << 32; 1201 /* Store Data Index */ 1202 if (cmd_val(s, 1) & (1 << 21)) 1203 index_mode = true; 1204 ret |= cmd_address_audit(s, gma, sizeof(u64), 1205 index_mode); 1206 if (ret) 1207 return ret; 1208 if (index_mode) { 1209 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1210 gma = hws_pga + gma; 1211 patch_value(s, cmd_ptr(s, 2), gma); 1212 val = cmd_val(s, 1) & (~(1 << 21)); 1213 patch_value(s, cmd_ptr(s, 1), val); 1214 } 1215 } 1216 } 1217 } 1218 1219 if (ret) 1220 return ret; 1221 1222 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1223 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1224 s->workload->pending_events); 1225 return 0; 1226 } 1227 1228 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1229 { 1230 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1231 s->workload->pending_events); 1232 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1233 return 0; 1234 } 1235 1236 static int cmd_advance_default(struct parser_exec_state *s) 1237 { 1238 return ip_gma_advance(s, cmd_length(s)); 1239 } 1240 1241 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1242 { 1243 int ret; 1244 1245 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1246 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1247 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1248 s->buf_addr_type = s->saved_buf_addr_type; 1249 } else if (s->buf_type == RING_BUFFER_CTX) { 1250 ret = ip_gma_set(s, s->ring_tail); 1251 } else { 1252 s->buf_type = RING_BUFFER_INSTRUCTION; 1253 s->buf_addr_type = GTT_BUFFER; 1254 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1255 s->ret_ip_gma_ring -= s->ring_size; 1256 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1257 } 1258 return ret; 1259 } 1260 1261 struct mi_display_flip_command_info { 1262 int pipe; 1263 int plane; 1264 int event; 1265 i915_reg_t stride_reg; 1266 i915_reg_t ctrl_reg; 1267 i915_reg_t surf_reg; 1268 u64 stride_val; 1269 u64 tile_val; 1270 u64 surf_val; 1271 bool async_flip; 1272 }; 1273 1274 struct plane_code_mapping { 1275 int pipe; 1276 int plane; 1277 int event; 1278 }; 1279 1280 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1281 struct mi_display_flip_command_info *info) 1282 { 1283 struct drm_i915_private *dev_priv = s->engine->i915; 1284 struct plane_code_mapping gen8_plane_code[] = { 1285 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1286 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1287 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1288 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1289 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1290 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1291 }; 1292 u32 dword0, dword1, dword2; 1293 u32 v; 1294 1295 dword0 = cmd_val(s, 0); 1296 dword1 = cmd_val(s, 1); 1297 dword2 = cmd_val(s, 2); 1298 1299 v = (dword0 & GENMASK(21, 19)) >> 19; 1300 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1301 return -EBADRQC; 1302 1303 info->pipe = gen8_plane_code[v].pipe; 1304 info->plane = gen8_plane_code[v].plane; 1305 info->event = gen8_plane_code[v].event; 1306 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1307 info->tile_val = (dword1 & 0x1); 1308 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1309 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1310 1311 if (info->plane == PLANE_A) { 1312 info->ctrl_reg = DSPCNTR(info->pipe); 1313 info->stride_reg = DSPSTRIDE(info->pipe); 1314 info->surf_reg = DSPSURF(info->pipe); 1315 } else if (info->plane == PLANE_B) { 1316 info->ctrl_reg = SPRCTL(info->pipe); 1317 info->stride_reg = SPRSTRIDE(info->pipe); 1318 info->surf_reg = SPRSURF(info->pipe); 1319 } else { 1320 drm_WARN_ON(&dev_priv->drm, 1); 1321 return -EBADRQC; 1322 } 1323 return 0; 1324 } 1325 1326 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1327 struct mi_display_flip_command_info *info) 1328 { 1329 struct drm_i915_private *dev_priv = s->engine->i915; 1330 struct intel_vgpu *vgpu = s->vgpu; 1331 u32 dword0 = cmd_val(s, 0); 1332 u32 dword1 = cmd_val(s, 1); 1333 u32 dword2 = cmd_val(s, 2); 1334 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1335 1336 info->plane = PRIMARY_PLANE; 1337 1338 switch (plane) { 1339 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1340 info->pipe = PIPE_A; 1341 info->event = PRIMARY_A_FLIP_DONE; 1342 break; 1343 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1344 info->pipe = PIPE_B; 1345 info->event = PRIMARY_B_FLIP_DONE; 1346 break; 1347 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1348 info->pipe = PIPE_C; 1349 info->event = PRIMARY_C_FLIP_DONE; 1350 break; 1351 1352 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1353 info->pipe = PIPE_A; 1354 info->event = SPRITE_A_FLIP_DONE; 1355 info->plane = SPRITE_PLANE; 1356 break; 1357 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1358 info->pipe = PIPE_B; 1359 info->event = SPRITE_B_FLIP_DONE; 1360 info->plane = SPRITE_PLANE; 1361 break; 1362 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1363 info->pipe = PIPE_C; 1364 info->event = SPRITE_C_FLIP_DONE; 1365 info->plane = SPRITE_PLANE; 1366 break; 1367 1368 default: 1369 gvt_vgpu_err("unknown plane code %d\n", plane); 1370 return -EBADRQC; 1371 } 1372 1373 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1374 info->tile_val = (dword1 & GENMASK(2, 0)); 1375 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1376 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1377 1378 info->ctrl_reg = DSPCNTR(info->pipe); 1379 info->stride_reg = DSPSTRIDE(info->pipe); 1380 info->surf_reg = DSPSURF(info->pipe); 1381 1382 return 0; 1383 } 1384 1385 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1386 struct mi_display_flip_command_info *info) 1387 { 1388 u32 stride, tile; 1389 1390 if (!info->async_flip) 1391 return 0; 1392 1393 if (INTEL_GEN(s->engine->i915) >= 9) { 1394 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1395 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1396 GENMASK(12, 10)) >> 10; 1397 } else { 1398 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1399 GENMASK(15, 6)) >> 6; 1400 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1401 } 1402 1403 if (stride != info->stride_val) 1404 gvt_dbg_cmd("cannot change stride during async flip\n"); 1405 1406 if (tile != info->tile_val) 1407 gvt_dbg_cmd("cannot change tile during async flip\n"); 1408 1409 return 0; 1410 } 1411 1412 static int gen8_update_plane_mmio_from_mi_display_flip( 1413 struct parser_exec_state *s, 1414 struct mi_display_flip_command_info *info) 1415 { 1416 struct drm_i915_private *dev_priv = s->engine->i915; 1417 struct intel_vgpu *vgpu = s->vgpu; 1418 1419 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1420 info->surf_val << 12); 1421 if (INTEL_GEN(dev_priv) >= 9) { 1422 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1423 info->stride_val); 1424 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1425 info->tile_val << 10); 1426 } else { 1427 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1428 info->stride_val << 6); 1429 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1430 info->tile_val << 10); 1431 } 1432 1433 if (info->plane == PLANE_PRIMARY) 1434 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1435 1436 if (info->async_flip) 1437 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1438 else 1439 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1440 1441 return 0; 1442 } 1443 1444 static int decode_mi_display_flip(struct parser_exec_state *s, 1445 struct mi_display_flip_command_info *info) 1446 { 1447 if (IS_BROADWELL(s->engine->i915)) 1448 return gen8_decode_mi_display_flip(s, info); 1449 if (INTEL_GEN(s->engine->i915) >= 9) 1450 return skl_decode_mi_display_flip(s, info); 1451 1452 return -ENODEV; 1453 } 1454 1455 static int check_mi_display_flip(struct parser_exec_state *s, 1456 struct mi_display_flip_command_info *info) 1457 { 1458 return gen8_check_mi_display_flip(s, info); 1459 } 1460 1461 static int update_plane_mmio_from_mi_display_flip( 1462 struct parser_exec_state *s, 1463 struct mi_display_flip_command_info *info) 1464 { 1465 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1466 } 1467 1468 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1469 { 1470 struct mi_display_flip_command_info info; 1471 struct intel_vgpu *vgpu = s->vgpu; 1472 int ret; 1473 int i; 1474 int len = cmd_length(s); 1475 u32 valid_len = CMD_LEN(1); 1476 1477 /* Flip Type == Stereo 3D Flip */ 1478 if (DWORD_FIELD(2, 1, 0) == 2) 1479 valid_len++; 1480 ret = gvt_check_valid_cmd_length(cmd_length(s), 1481 valid_len); 1482 if (ret) 1483 return ret; 1484 1485 ret = decode_mi_display_flip(s, &info); 1486 if (ret) { 1487 gvt_vgpu_err("fail to decode MI display flip command\n"); 1488 return ret; 1489 } 1490 1491 ret = check_mi_display_flip(s, &info); 1492 if (ret) { 1493 gvt_vgpu_err("invalid MI display flip command\n"); 1494 return ret; 1495 } 1496 1497 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1498 if (ret) { 1499 gvt_vgpu_err("fail to update plane mmio\n"); 1500 return ret; 1501 } 1502 1503 for (i = 0; i < len; i++) 1504 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1505 return 0; 1506 } 1507 1508 static bool is_wait_for_flip_pending(u32 cmd) 1509 { 1510 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1511 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1512 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1513 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1514 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1515 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1516 } 1517 1518 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1519 { 1520 u32 cmd = cmd_val(s, 0); 1521 1522 if (!is_wait_for_flip_pending(cmd)) 1523 return 0; 1524 1525 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1526 return 0; 1527 } 1528 1529 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1530 { 1531 unsigned long addr; 1532 unsigned long gma_high, gma_low; 1533 struct intel_vgpu *vgpu = s->vgpu; 1534 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1535 1536 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1537 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1538 return INTEL_GVT_INVALID_ADDR; 1539 } 1540 1541 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1542 if (gmadr_bytes == 4) { 1543 addr = gma_low; 1544 } else { 1545 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1546 addr = (((unsigned long)gma_high) << 32) | gma_low; 1547 } 1548 return addr; 1549 } 1550 1551 static inline int cmd_address_audit(struct parser_exec_state *s, 1552 unsigned long guest_gma, int op_size, bool index_mode) 1553 { 1554 struct intel_vgpu *vgpu = s->vgpu; 1555 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1556 int i; 1557 int ret; 1558 1559 if (op_size > max_surface_size) { 1560 gvt_vgpu_err("command address audit fail name %s\n", 1561 s->info->name); 1562 return -EFAULT; 1563 } 1564 1565 if (index_mode) { 1566 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1567 ret = -EFAULT; 1568 goto err; 1569 } 1570 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1571 ret = -EFAULT; 1572 goto err; 1573 } 1574 1575 return 0; 1576 1577 err: 1578 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1579 s->info->name, guest_gma, op_size); 1580 1581 pr_err("cmd dump: "); 1582 for (i = 0; i < cmd_length(s); i++) { 1583 if (!(i % 4)) 1584 pr_err("\n%08x ", cmd_val(s, i)); 1585 else 1586 pr_err("%08x ", cmd_val(s, i)); 1587 } 1588 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1589 vgpu->id, 1590 vgpu_aperture_gmadr_base(vgpu), 1591 vgpu_aperture_gmadr_end(vgpu), 1592 vgpu_hidden_gmadr_base(vgpu), 1593 vgpu_hidden_gmadr_end(vgpu)); 1594 return ret; 1595 } 1596 1597 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1598 { 1599 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1600 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1601 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1602 unsigned long gma, gma_low, gma_high; 1603 u32 valid_len = CMD_LEN(2); 1604 int ret = 0; 1605 1606 /* check ppggt */ 1607 if (!(cmd_val(s, 0) & (1 << 22))) 1608 return 0; 1609 1610 /* check if QWORD */ 1611 if (DWORD_FIELD(0, 21, 21)) 1612 valid_len++; 1613 ret = gvt_check_valid_cmd_length(cmd_length(s), 1614 valid_len); 1615 if (ret) 1616 return ret; 1617 1618 gma = cmd_val(s, 2) & GENMASK(31, 2); 1619 1620 if (gmadr_bytes == 8) { 1621 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1622 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1623 gma = (gma_high << 32) | gma_low; 1624 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1625 } 1626 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1627 return ret; 1628 } 1629 1630 static inline int unexpected_cmd(struct parser_exec_state *s) 1631 { 1632 struct intel_vgpu *vgpu = s->vgpu; 1633 1634 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1635 1636 return -EBADRQC; 1637 } 1638 1639 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1640 { 1641 return unexpected_cmd(s); 1642 } 1643 1644 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1645 { 1646 return unexpected_cmd(s); 1647 } 1648 1649 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1650 { 1651 return unexpected_cmd(s); 1652 } 1653 1654 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1655 { 1656 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1657 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1658 sizeof(u32); 1659 unsigned long gma, gma_high; 1660 u32 valid_len = CMD_LEN(1); 1661 int ret = 0; 1662 1663 if (!(cmd_val(s, 0) & (1 << 22))) 1664 return ret; 1665 1666 /* check inline data */ 1667 if (cmd_val(s, 0) & BIT(18)) 1668 valid_len = CMD_LEN(9); 1669 ret = gvt_check_valid_cmd_length(cmd_length(s), 1670 valid_len); 1671 if (ret) 1672 return ret; 1673 1674 gma = cmd_val(s, 1) & GENMASK(31, 2); 1675 if (gmadr_bytes == 8) { 1676 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1677 gma = (gma_high << 32) | gma; 1678 } 1679 ret = cmd_address_audit(s, gma, op_size, false); 1680 return ret; 1681 } 1682 1683 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1684 { 1685 return unexpected_cmd(s); 1686 } 1687 1688 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1689 { 1690 return unexpected_cmd(s); 1691 } 1692 1693 static int cmd_handler_mi_conditional_batch_buffer_end( 1694 struct parser_exec_state *s) 1695 { 1696 return unexpected_cmd(s); 1697 } 1698 1699 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1700 { 1701 return unexpected_cmd(s); 1702 } 1703 1704 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1705 { 1706 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1707 unsigned long gma; 1708 bool index_mode = false; 1709 int ret = 0; 1710 u32 hws_pga, val; 1711 u32 valid_len = CMD_LEN(2); 1712 1713 ret = gvt_check_valid_cmd_length(cmd_length(s), 1714 valid_len); 1715 if (ret) { 1716 /* Check again for Qword */ 1717 ret = gvt_check_valid_cmd_length(cmd_length(s), 1718 ++valid_len); 1719 return ret; 1720 } 1721 1722 /* Check post-sync and ppgtt bit */ 1723 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1724 gma = cmd_val(s, 1) & GENMASK(31, 3); 1725 if (gmadr_bytes == 8) 1726 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1727 /* Store Data Index */ 1728 if (cmd_val(s, 0) & (1 << 21)) 1729 index_mode = true; 1730 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1731 if (ret) 1732 return ret; 1733 if (index_mode) { 1734 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1735 gma = hws_pga + gma; 1736 patch_value(s, cmd_ptr(s, 1), gma); 1737 val = cmd_val(s, 0) & (~(1 << 21)); 1738 patch_value(s, cmd_ptr(s, 0), val); 1739 } 1740 } 1741 /* Check notify bit */ 1742 if ((cmd_val(s, 0) & (1 << 8))) 1743 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1744 s->workload->pending_events); 1745 return ret; 1746 } 1747 1748 static void addr_type_update_snb(struct parser_exec_state *s) 1749 { 1750 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1751 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1752 s->buf_addr_type = PPGTT_BUFFER; 1753 } 1754 } 1755 1756 1757 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1758 unsigned long gma, unsigned long end_gma, void *va) 1759 { 1760 unsigned long copy_len, offset; 1761 unsigned long len = 0; 1762 unsigned long gpa; 1763 1764 while (gma != end_gma) { 1765 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1766 if (gpa == INTEL_GVT_INVALID_ADDR) { 1767 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1768 return -EFAULT; 1769 } 1770 1771 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1772 1773 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1774 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1775 1776 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1777 1778 len += copy_len; 1779 gma += copy_len; 1780 } 1781 return len; 1782 } 1783 1784 1785 /* 1786 * Check whether a batch buffer needs to be scanned. Currently 1787 * the only criteria is based on privilege. 1788 */ 1789 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1790 { 1791 /* Decide privilege based on address space */ 1792 if (cmd_val(s, 0) & BIT(8) && 1793 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1794 return 0; 1795 1796 return 1; 1797 } 1798 1799 static const char *repr_addr_type(unsigned int type) 1800 { 1801 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1802 } 1803 1804 static int find_bb_size(struct parser_exec_state *s, 1805 unsigned long *bb_size, 1806 unsigned long *bb_end_cmd_offset) 1807 { 1808 unsigned long gma = 0; 1809 const struct cmd_info *info; 1810 u32 cmd_len = 0; 1811 bool bb_end = false; 1812 struct intel_vgpu *vgpu = s->vgpu; 1813 u32 cmd; 1814 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1815 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1816 1817 *bb_size = 0; 1818 *bb_end_cmd_offset = 0; 1819 1820 /* get the start gm address of the batch buffer */ 1821 gma = get_gma_bb_from_cmd(s, 1); 1822 if (gma == INTEL_GVT_INVALID_ADDR) 1823 return -EFAULT; 1824 1825 cmd = cmd_val(s, 0); 1826 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1827 if (info == NULL) { 1828 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1829 cmd, get_opcode(cmd, s->engine), 1830 repr_addr_type(s->buf_addr_type), 1831 s->engine->name, s->workload); 1832 return -EBADRQC; 1833 } 1834 do { 1835 if (copy_gma_to_hva(s->vgpu, mm, 1836 gma, gma + 4, &cmd) < 0) 1837 return -EFAULT; 1838 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1839 if (info == NULL) { 1840 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1841 cmd, get_opcode(cmd, s->engine), 1842 repr_addr_type(s->buf_addr_type), 1843 s->engine->name, s->workload); 1844 return -EBADRQC; 1845 } 1846 1847 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1848 bb_end = true; 1849 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1850 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1851 /* chained batch buffer */ 1852 bb_end = true; 1853 } 1854 1855 if (bb_end) 1856 *bb_end_cmd_offset = *bb_size; 1857 1858 cmd_len = get_cmd_length(info, cmd) << 2; 1859 *bb_size += cmd_len; 1860 gma += cmd_len; 1861 } while (!bb_end); 1862 1863 return 0; 1864 } 1865 1866 static int audit_bb_end(struct parser_exec_state *s, void *va) 1867 { 1868 struct intel_vgpu *vgpu = s->vgpu; 1869 u32 cmd = *(u32 *)va; 1870 const struct cmd_info *info; 1871 1872 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1873 if (info == NULL) { 1874 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1875 cmd, get_opcode(cmd, s->engine), 1876 repr_addr_type(s->buf_addr_type), 1877 s->engine->name, s->workload); 1878 return -EBADRQC; 1879 } 1880 1881 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1882 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1883 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1884 return 0; 1885 1886 return -EBADRQC; 1887 } 1888 1889 static int perform_bb_shadow(struct parser_exec_state *s) 1890 { 1891 struct intel_vgpu *vgpu = s->vgpu; 1892 struct intel_vgpu_shadow_bb *bb; 1893 unsigned long gma = 0; 1894 unsigned long bb_size; 1895 unsigned long bb_end_cmd_offset; 1896 int ret = 0; 1897 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1898 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1899 unsigned long start_offset = 0; 1900 1901 /* get the start gm address of the batch buffer */ 1902 gma = get_gma_bb_from_cmd(s, 1); 1903 if (gma == INTEL_GVT_INVALID_ADDR) 1904 return -EFAULT; 1905 1906 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1907 if (ret) 1908 return ret; 1909 1910 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1911 if (!bb) 1912 return -ENOMEM; 1913 1914 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1915 1916 /* the start_offset stores the batch buffer's start gma's 1917 * offset relative to page boundary. so for non-privileged batch 1918 * buffer, the shadowed gem object holds exactly the same page 1919 * layout as original gem object. This is for the convience of 1920 * replacing the whole non-privilged batch buffer page to this 1921 * shadowed one in PPGTT at the same gma address. (this replacing 1922 * action is not implemented yet now, but may be necessary in 1923 * future). 1924 * for prileged batch buffer, we just change start gma address to 1925 * that of shadowed page. 1926 */ 1927 if (bb->ppgtt) 1928 start_offset = gma & ~I915_GTT_PAGE_MASK; 1929 1930 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1931 round_up(bb_size + start_offset, 1932 PAGE_SIZE)); 1933 if (IS_ERR(bb->obj)) { 1934 ret = PTR_ERR(bb->obj); 1935 goto err_free_bb; 1936 } 1937 1938 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1939 if (IS_ERR(bb->va)) { 1940 ret = PTR_ERR(bb->va); 1941 goto err_free_obj; 1942 } 1943 1944 ret = copy_gma_to_hva(s->vgpu, mm, 1945 gma, gma + bb_size, 1946 bb->va + start_offset); 1947 if (ret < 0) { 1948 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1949 ret = -EFAULT; 1950 goto err_unmap; 1951 } 1952 1953 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1954 if (ret) 1955 goto err_unmap; 1956 1957 i915_gem_object_unlock(bb->obj); 1958 INIT_LIST_HEAD(&bb->list); 1959 list_add(&bb->list, &s->workload->shadow_bb); 1960 1961 bb->bb_start_cmd_va = s->ip_va; 1962 1963 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1964 bb->bb_offset = s->ip_va - s->rb_va; 1965 else 1966 bb->bb_offset = 0; 1967 1968 /* 1969 * ip_va saves the virtual address of the shadow batch buffer, while 1970 * ip_gma saves the graphics address of the original batch buffer. 1971 * As the shadow batch buffer is just a copy from the originial one, 1972 * it should be right to use shadow batch buffer'va and original batch 1973 * buffer's gma in pair. After all, we don't want to pin the shadow 1974 * buffer here (too early). 1975 */ 1976 s->ip_va = bb->va + start_offset; 1977 s->ip_gma = gma; 1978 return 0; 1979 err_unmap: 1980 i915_gem_object_unpin_map(bb->obj); 1981 err_free_obj: 1982 i915_gem_object_put(bb->obj); 1983 err_free_bb: 1984 kfree(bb); 1985 return ret; 1986 } 1987 1988 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1989 { 1990 bool second_level; 1991 int ret = 0; 1992 struct intel_vgpu *vgpu = s->vgpu; 1993 1994 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1995 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1996 return -EFAULT; 1997 } 1998 1999 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2000 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2001 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2002 return -EFAULT; 2003 } 2004 2005 s->saved_buf_addr_type = s->buf_addr_type; 2006 addr_type_update_snb(s); 2007 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2008 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2009 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2010 } else if (second_level) { 2011 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2012 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2013 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2014 } 2015 2016 if (batch_buffer_needs_scan(s)) { 2017 ret = perform_bb_shadow(s); 2018 if (ret < 0) 2019 gvt_vgpu_err("invalid shadow batch buffer\n"); 2020 } else { 2021 /* emulate a batch buffer end to do return right */ 2022 ret = cmd_handler_mi_batch_buffer_end(s); 2023 if (ret < 0) 2024 return ret; 2025 } 2026 return ret; 2027 } 2028 2029 static int mi_noop_index; 2030 2031 static const struct cmd_info cmd_info[] = { 2032 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2033 2034 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2035 0, 1, NULL}, 2036 2037 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2038 0, 1, cmd_handler_mi_user_interrupt}, 2039 2040 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2041 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2042 2043 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2044 2045 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2046 NULL}, 2047 2048 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2049 NULL}, 2050 2051 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2052 NULL}, 2053 2054 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2055 NULL}, 2056 2057 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2058 D_ALL, 0, 1, NULL}, 2059 2060 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2061 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2062 cmd_handler_mi_batch_buffer_end}, 2063 2064 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2065 0, 1, NULL}, 2066 2067 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2068 NULL}, 2069 2070 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2071 D_ALL, 0, 1, NULL}, 2072 2073 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2074 NULL}, 2075 2076 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2077 NULL}, 2078 2079 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2080 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2081 2082 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2083 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2084 2085 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2086 2087 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2088 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2089 2090 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2091 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2092 NULL, CMD_LEN(0)}, 2093 2094 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2095 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2096 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2097 2098 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2099 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2100 2101 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2102 0, 8, cmd_handler_mi_store_data_index}, 2103 2104 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2105 D_ALL, 0, 8, cmd_handler_lri}, 2106 2107 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2108 cmd_handler_mi_update_gtt}, 2109 2110 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2111 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2112 cmd_handler_srm, CMD_LEN(2)}, 2113 2114 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2115 cmd_handler_mi_flush_dw}, 2116 2117 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2118 10, cmd_handler_mi_clflush}, 2119 2120 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2121 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2122 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2123 2124 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2125 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2126 cmd_handler_lrm, CMD_LEN(2)}, 2127 2128 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2129 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2130 cmd_handler_lrr, CMD_LEN(1)}, 2131 2132 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2133 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2134 8, NULL, CMD_LEN(2)}, 2135 2136 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2137 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2138 2139 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2140 ADDR_FIX_1(2), 8, NULL}, 2141 2142 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2143 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2144 2145 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2146 8, cmd_handler_mi_op_2f}, 2147 2148 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2149 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2150 cmd_handler_mi_batch_buffer_start}, 2151 2152 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2153 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2154 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2155 2156 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2157 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2158 2159 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2160 ADDR_FIX_2(4, 7), 8, NULL}, 2161 2162 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2163 0, 8, NULL}, 2164 2165 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2166 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2167 2168 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2169 2170 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2171 0, 8, NULL}, 2172 2173 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2174 ADDR_FIX_1(3), 8, NULL}, 2175 2176 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2177 D_ALL, 0, 8, NULL}, 2178 2179 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2180 ADDR_FIX_1(4), 8, NULL}, 2181 2182 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2183 ADDR_FIX_2(4, 5), 8, NULL}, 2184 2185 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2186 ADDR_FIX_1(4), 8, NULL}, 2187 2188 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2189 ADDR_FIX_2(4, 7), 8, NULL}, 2190 2191 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2192 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2193 2194 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2195 2196 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2197 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2198 2199 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2200 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2201 2202 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2203 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2204 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2205 2206 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2207 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2208 2209 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2210 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2211 2212 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2213 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2214 2215 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2216 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2217 2218 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2219 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2220 2221 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2222 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2223 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2224 2225 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2226 ADDR_FIX_2(4, 5), 8, NULL}, 2227 2228 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2229 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2230 2231 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2232 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2233 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2234 2235 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2236 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_BLEND_STATE_POINTERS", 2240 OP_3DSTATE_BLEND_STATE_POINTERS, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2244 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2246 2247 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2248 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2250 2251 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2252 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2256 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2257 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2258 2259 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2260 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2261 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2262 2263 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2264 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2266 2267 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2268 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2269 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2270 2271 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2272 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2274 2275 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2276 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2280 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2281 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2282 2283 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2284 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2285 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2286 2287 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2288 0, 8, NULL}, 2289 2290 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2291 0, 8, NULL}, 2292 2293 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2294 0, 8, NULL}, 2295 2296 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2297 0, 8, NULL}, 2298 2299 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2300 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2301 2302 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2304 2305 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2307 2308 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2310 2311 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2312 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2313 2314 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2315 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2316 2317 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2318 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2319 2320 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2321 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2322 2323 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2324 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2325 2326 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2327 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2328 2329 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2330 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2331 2332 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2333 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2334 2335 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2336 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2337 2338 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2339 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2340 2341 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2342 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2343 2344 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2345 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2346 2347 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2348 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2349 2350 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2351 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2352 2353 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2354 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2355 2356 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2357 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2358 2359 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2360 D_BDW_PLUS, 0, 8, NULL}, 2361 2362 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2363 NULL}, 2364 2365 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2366 D_BDW_PLUS, 0, 8, NULL}, 2367 2368 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2369 D_BDW_PLUS, 0, 8, NULL}, 2370 2371 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2372 8, NULL}, 2373 2374 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2375 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2376 2377 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2378 8, NULL}, 2379 2380 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2381 NULL}, 2382 2383 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2384 NULL}, 2385 2386 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2387 NULL}, 2388 2389 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2390 D_BDW_PLUS, 0, 8, NULL}, 2391 2392 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2393 R_RCS, D_ALL, 0, 8, NULL}, 2394 2395 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2396 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2397 2398 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2399 R_RCS, D_ALL, 0, 1, NULL}, 2400 2401 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2402 2403 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2404 R_RCS, D_ALL, 0, 8, NULL}, 2405 2406 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2407 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2408 2409 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2410 2411 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2412 2413 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2414 2415 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2416 D_BDW_PLUS, 0, 8, NULL}, 2417 2418 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2419 D_BDW_PLUS, 0, 8, NULL}, 2420 2421 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2422 D_ALL, 0, 8, NULL}, 2423 2424 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2425 D_BDW_PLUS, 0, 8, NULL}, 2426 2427 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2428 D_BDW_PLUS, 0, 8, NULL}, 2429 2430 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2431 2432 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2433 2434 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2435 2436 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2437 D_ALL, 0, 8, NULL}, 2438 2439 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2440 2441 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2442 2443 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2444 R_RCS, D_ALL, 0, 8, NULL}, 2445 2446 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2447 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2448 2449 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2450 0, 8, NULL}, 2451 2452 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2453 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2454 2455 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2456 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2457 2458 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2459 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2460 2461 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2462 D_ALL, 0, 8, NULL}, 2463 2464 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2465 D_ALL, 0, 8, NULL}, 2466 2467 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2468 D_ALL, 0, 8, NULL}, 2469 2470 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2471 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2472 2473 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2474 D_BDW_PLUS, 0, 8, NULL}, 2475 2476 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2477 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2478 2479 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2480 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2481 2482 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2483 R_RCS, D_ALL, 0, 8, NULL}, 2484 2485 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2486 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2487 2488 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2489 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2490 2491 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2492 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2493 2494 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2495 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2496 2497 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2498 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2499 2500 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2501 R_RCS, D_ALL, 0, 8, NULL}, 2502 2503 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2504 D_ALL, 0, 9, NULL}, 2505 2506 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2507 ADDR_FIX_2(2, 4), 8, NULL}, 2508 2509 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2510 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2511 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2512 2513 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2514 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2515 2516 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2517 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2518 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2519 2520 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2521 D_BDW_PLUS, 0, 8, NULL}, 2522 2523 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2524 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2525 2526 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2527 2528 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2529 1, NULL}, 2530 2531 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2532 ADDR_FIX_1(1), 8, NULL}, 2533 2534 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2535 2536 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2537 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2538 2539 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2540 ADDR_FIX_1(1), 8, NULL}, 2541 2542 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2543 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2544 2545 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2546 2547 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2548 2549 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2550 0, 8, NULL}, 2551 2552 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2553 D_SKL_PLUS, 0, 8, NULL}, 2554 2555 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2556 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2557 2558 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2559 0, 16, NULL}, 2560 2561 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2562 0, 16, NULL}, 2563 2564 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2565 0, 16, NULL}, 2566 2567 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2568 2569 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2570 0, 16, NULL}, 2571 2572 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2573 0, 16, NULL}, 2574 2575 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2576 0, 16, NULL}, 2577 2578 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2579 0, 8, NULL}, 2580 2581 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2582 NULL}, 2583 2584 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2585 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2586 2587 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2588 R_VCS, D_ALL, 0, 12, NULL}, 2589 2590 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2591 R_VCS, D_ALL, 0, 12, NULL}, 2592 2593 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2594 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2595 2596 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2597 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2598 2599 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2600 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2601 2602 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2603 2604 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2605 R_VCS, D_ALL, 0, 12, NULL}, 2606 2607 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2608 R_VCS, D_ALL, 0, 12, NULL}, 2609 2610 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 2613 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2620 R_VCS, D_ALL, 0, 12, NULL}, 2621 2622 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 6, NULL}, 2624 2625 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2626 R_VCS, D_ALL, 0, 12, NULL}, 2627 2628 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2629 R_VCS, D_ALL, 0, 12, NULL}, 2630 2631 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2632 R_VCS, D_ALL, 0, 12, NULL}, 2633 2634 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2635 R_VCS, D_ALL, 0, 12, NULL}, 2636 2637 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 2643 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2644 R_VCS, D_ALL, 0, 12, NULL}, 2645 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2646 R_VCS, D_ALL, 0, 12, NULL}, 2647 2648 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2649 R_VCS, D_ALL, 0, 12, NULL}, 2650 2651 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2652 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2653 2654 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2655 R_VCS, D_ALL, 0, 12, NULL}, 2656 2657 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2658 R_VCS, D_ALL, 0, 12, NULL}, 2659 2660 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2661 R_VCS, D_ALL, 0, 12, NULL}, 2662 2663 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2664 R_VCS, D_ALL, 0, 12, NULL}, 2665 2666 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2667 R_VCS, D_ALL, 0, 12, NULL}, 2668 2669 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2670 R_VCS, D_ALL, 0, 12, NULL}, 2671 2672 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2673 R_VCS, D_ALL, 0, 12, NULL}, 2674 2675 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2676 R_VCS, D_ALL, 0, 12, NULL}, 2677 2678 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2679 R_VCS, D_ALL, 0, 12, NULL}, 2680 2681 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2682 R_VCS, D_ALL, 0, 12, NULL}, 2683 2684 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2685 R_VCS, D_ALL, 0, 12, NULL}, 2686 2687 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2688 0, 16, NULL}, 2689 2690 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2691 2692 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2693 2694 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2695 R_VCS, D_ALL, 0, 12, NULL}, 2696 2697 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2698 R_VCS, D_ALL, 0, 12, NULL}, 2699 2700 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2701 R_VCS, D_ALL, 0, 12, NULL}, 2702 2703 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2704 2705 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2706 0, 12, NULL}, 2707 2708 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2709 0, 12, NULL}, 2710 }; 2711 2712 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2713 { 2714 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2715 } 2716 2717 /* call the cmd handler, and advance ip */ 2718 static int cmd_parser_exec(struct parser_exec_state *s) 2719 { 2720 struct intel_vgpu *vgpu = s->vgpu; 2721 const struct cmd_info *info; 2722 u32 cmd; 2723 int ret = 0; 2724 2725 cmd = cmd_val(s, 0); 2726 2727 /* fastpath for MI_NOOP */ 2728 if (cmd == MI_NOOP) 2729 info = &cmd_info[mi_noop_index]; 2730 else 2731 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2732 2733 if (info == NULL) { 2734 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2735 cmd, get_opcode(cmd, s->engine), 2736 repr_addr_type(s->buf_addr_type), 2737 s->engine->name, s->workload); 2738 return -EBADRQC; 2739 } 2740 2741 s->info = info; 2742 2743 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2744 cmd_length(s), s->buf_type, s->buf_addr_type, 2745 s->workload, info->name); 2746 2747 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2748 ret = gvt_check_valid_cmd_length(cmd_length(s), 2749 info->valid_len); 2750 if (ret) 2751 return ret; 2752 } 2753 2754 if (info->handler) { 2755 ret = info->handler(s); 2756 if (ret < 0) { 2757 gvt_vgpu_err("%s handler error\n", info->name); 2758 return ret; 2759 } 2760 } 2761 2762 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2763 ret = cmd_advance_default(s); 2764 if (ret) { 2765 gvt_vgpu_err("%s IP advance error\n", info->name); 2766 return ret; 2767 } 2768 } 2769 return 0; 2770 } 2771 2772 static inline bool gma_out_of_range(unsigned long gma, 2773 unsigned long gma_head, unsigned int gma_tail) 2774 { 2775 if (gma_tail >= gma_head) 2776 return (gma < gma_head) || (gma > gma_tail); 2777 else 2778 return (gma > gma_tail) && (gma < gma_head); 2779 } 2780 2781 /* Keep the consistent return type, e.g EBADRQC for unknown 2782 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2783 * works as the input of VM healthy status. 2784 */ 2785 static int command_scan(struct parser_exec_state *s, 2786 unsigned long rb_head, unsigned long rb_tail, 2787 unsigned long rb_start, unsigned long rb_len) 2788 { 2789 2790 unsigned long gma_head, gma_tail, gma_bottom; 2791 int ret = 0; 2792 struct intel_vgpu *vgpu = s->vgpu; 2793 2794 gma_head = rb_start + rb_head; 2795 gma_tail = rb_start + rb_tail; 2796 gma_bottom = rb_start + rb_len; 2797 2798 while (s->ip_gma != gma_tail) { 2799 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2800 s->buf_type == RING_BUFFER_CTX) { 2801 if (!(s->ip_gma >= rb_start) || 2802 !(s->ip_gma < gma_bottom)) { 2803 gvt_vgpu_err("ip_gma %lx out of ring scope." 2804 "(base:0x%lx, bottom: 0x%lx)\n", 2805 s->ip_gma, rb_start, 2806 gma_bottom); 2807 parser_exec_state_dump(s); 2808 return -EFAULT; 2809 } 2810 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2811 gvt_vgpu_err("ip_gma %lx out of range." 2812 "base 0x%lx head 0x%lx tail 0x%lx\n", 2813 s->ip_gma, rb_start, 2814 rb_head, rb_tail); 2815 parser_exec_state_dump(s); 2816 break; 2817 } 2818 } 2819 ret = cmd_parser_exec(s); 2820 if (ret) { 2821 gvt_vgpu_err("cmd parser error\n"); 2822 parser_exec_state_dump(s); 2823 break; 2824 } 2825 } 2826 2827 return ret; 2828 } 2829 2830 static int scan_workload(struct intel_vgpu_workload *workload) 2831 { 2832 unsigned long gma_head, gma_tail, gma_bottom; 2833 struct parser_exec_state s; 2834 int ret = 0; 2835 2836 /* ring base is page aligned */ 2837 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2838 return -EINVAL; 2839 2840 gma_head = workload->rb_start + workload->rb_head; 2841 gma_tail = workload->rb_start + workload->rb_tail; 2842 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2843 2844 s.buf_type = RING_BUFFER_INSTRUCTION; 2845 s.buf_addr_type = GTT_BUFFER; 2846 s.vgpu = workload->vgpu; 2847 s.engine = workload->engine; 2848 s.ring_start = workload->rb_start; 2849 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2850 s.ring_head = gma_head; 2851 s.ring_tail = gma_tail; 2852 s.rb_va = workload->shadow_ring_buffer_va; 2853 s.workload = workload; 2854 s.is_ctx_wa = false; 2855 2856 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2857 return 0; 2858 2859 ret = ip_gma_set(&s, gma_head); 2860 if (ret) 2861 goto out; 2862 2863 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2864 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2865 2866 out: 2867 return ret; 2868 } 2869 2870 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2871 { 2872 2873 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2874 struct parser_exec_state s; 2875 int ret = 0; 2876 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2877 struct intel_vgpu_workload, 2878 wa_ctx); 2879 2880 /* ring base is page aligned */ 2881 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2882 I915_GTT_PAGE_SIZE))) 2883 return -EINVAL; 2884 2885 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2886 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2887 PAGE_SIZE); 2888 gma_head = wa_ctx->indirect_ctx.guest_gma; 2889 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2890 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2891 2892 s.buf_type = RING_BUFFER_INSTRUCTION; 2893 s.buf_addr_type = GTT_BUFFER; 2894 s.vgpu = workload->vgpu; 2895 s.engine = workload->engine; 2896 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2897 s.ring_size = ring_size; 2898 s.ring_head = gma_head; 2899 s.ring_tail = gma_tail; 2900 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2901 s.workload = workload; 2902 s.is_ctx_wa = true; 2903 2904 ret = ip_gma_set(&s, gma_head); 2905 if (ret) 2906 goto out; 2907 2908 ret = command_scan(&s, 0, ring_tail, 2909 wa_ctx->indirect_ctx.guest_gma, ring_size); 2910 out: 2911 return ret; 2912 } 2913 2914 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2915 { 2916 struct intel_vgpu *vgpu = workload->vgpu; 2917 struct intel_vgpu_submission *s = &vgpu->submission; 2918 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2919 void *shadow_ring_buffer_va; 2920 int ret; 2921 2922 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2923 2924 /* calculate workload ring buffer size */ 2925 workload->rb_len = (workload->rb_tail + guest_rb_size - 2926 workload->rb_head) % guest_rb_size; 2927 2928 gma_head = workload->rb_start + workload->rb_head; 2929 gma_tail = workload->rb_start + workload->rb_tail; 2930 gma_top = workload->rb_start + guest_rb_size; 2931 2932 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2933 void *p; 2934 2935 /* realloc the new ring buffer if needed */ 2936 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2937 workload->rb_len, GFP_KERNEL); 2938 if (!p) { 2939 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2940 return -ENOMEM; 2941 } 2942 s->ring_scan_buffer[workload->engine->id] = p; 2943 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2944 } 2945 2946 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2947 2948 /* get shadow ring buffer va */ 2949 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2950 2951 /* head > tail --> copy head <-> top */ 2952 if (gma_head > gma_tail) { 2953 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2954 gma_head, gma_top, shadow_ring_buffer_va); 2955 if (ret < 0) { 2956 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2957 return ret; 2958 } 2959 shadow_ring_buffer_va += ret; 2960 gma_head = workload->rb_start; 2961 } 2962 2963 /* copy head or start <-> tail */ 2964 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2965 shadow_ring_buffer_va); 2966 if (ret < 0) { 2967 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2968 return ret; 2969 } 2970 return 0; 2971 } 2972 2973 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2974 { 2975 int ret; 2976 struct intel_vgpu *vgpu = workload->vgpu; 2977 2978 ret = shadow_workload_ring_buffer(workload); 2979 if (ret) { 2980 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2981 return ret; 2982 } 2983 2984 ret = scan_workload(workload); 2985 if (ret) { 2986 gvt_vgpu_err("scan workload error\n"); 2987 return ret; 2988 } 2989 return 0; 2990 } 2991 2992 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2993 { 2994 int ctx_size = wa_ctx->indirect_ctx.size; 2995 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2996 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2997 struct intel_vgpu_workload, 2998 wa_ctx); 2999 struct intel_vgpu *vgpu = workload->vgpu; 3000 struct drm_i915_gem_object *obj; 3001 int ret = 0; 3002 void *map; 3003 3004 obj = i915_gem_object_create_shmem(workload->engine->i915, 3005 roundup(ctx_size + CACHELINE_BYTES, 3006 PAGE_SIZE)); 3007 if (IS_ERR(obj)) 3008 return PTR_ERR(obj); 3009 3010 /* get the va of the shadow batch buffer */ 3011 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3012 if (IS_ERR(map)) { 3013 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3014 ret = PTR_ERR(map); 3015 goto put_obj; 3016 } 3017 3018 i915_gem_object_lock(obj, NULL); 3019 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3020 i915_gem_object_unlock(obj); 3021 if (ret) { 3022 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3023 goto unmap_src; 3024 } 3025 3026 ret = copy_gma_to_hva(workload->vgpu, 3027 workload->vgpu->gtt.ggtt_mm, 3028 guest_gma, guest_gma + ctx_size, 3029 map); 3030 if (ret < 0) { 3031 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3032 goto unmap_src; 3033 } 3034 3035 wa_ctx->indirect_ctx.obj = obj; 3036 wa_ctx->indirect_ctx.shadow_va = map; 3037 return 0; 3038 3039 unmap_src: 3040 i915_gem_object_unpin_map(obj); 3041 put_obj: 3042 i915_gem_object_put(obj); 3043 return ret; 3044 } 3045 3046 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3047 { 3048 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3049 unsigned char *bb_start_sva; 3050 3051 if (!wa_ctx->per_ctx.valid) 3052 return 0; 3053 3054 per_ctx_start[0] = 0x18800001; 3055 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3056 3057 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3058 wa_ctx->indirect_ctx.size; 3059 3060 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3061 3062 return 0; 3063 } 3064 3065 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3066 { 3067 int ret; 3068 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3069 struct intel_vgpu_workload, 3070 wa_ctx); 3071 struct intel_vgpu *vgpu = workload->vgpu; 3072 3073 if (wa_ctx->indirect_ctx.size == 0) 3074 return 0; 3075 3076 ret = shadow_indirect_ctx(wa_ctx); 3077 if (ret) { 3078 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3079 return ret; 3080 } 3081 3082 combine_wa_ctx(wa_ctx); 3083 3084 ret = scan_wa_ctx(wa_ctx); 3085 if (ret) { 3086 gvt_vgpu_err("scan wa ctx error\n"); 3087 return ret; 3088 } 3089 3090 return 0; 3091 } 3092 3093 /* generate dummy contexts by sending empty requests to HW, and let 3094 * the HW to fill Engine Contexts. This dummy contexts are used for 3095 * initialization purpose (update reg whitelist), so referred to as 3096 * init context here 3097 */ 3098 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3099 { 3100 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3101 struct intel_gvt *gvt = vgpu->gvt; 3102 struct intel_engine_cs *engine; 3103 enum intel_engine_id id; 3104 3105 if (gvt->is_reg_whitelist_updated) 3106 return; 3107 3108 /* scan init ctx to update cmd accessible list */ 3109 for_each_engine(engine, gvt->gt, id) { 3110 struct parser_exec_state s; 3111 void *vaddr; 3112 int ret; 3113 3114 if (!engine->default_state) 3115 continue; 3116 3117 vaddr = shmem_pin_map(engine->default_state); 3118 if (IS_ERR(vaddr)) { 3119 gvt_err("failed to map %s->default state, err:%zd\n", 3120 engine->name, PTR_ERR(vaddr)); 3121 return; 3122 } 3123 3124 s.buf_type = RING_BUFFER_CTX; 3125 s.buf_addr_type = GTT_BUFFER; 3126 s.vgpu = vgpu; 3127 s.engine = engine; 3128 s.ring_start = 0; 3129 s.ring_size = engine->context_size - start; 3130 s.ring_head = 0; 3131 s.ring_tail = s.ring_size; 3132 s.rb_va = vaddr + start; 3133 s.workload = NULL; 3134 s.is_ctx_wa = false; 3135 s.is_init_ctx = true; 3136 3137 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3138 ret = ip_gma_set(&s, RING_CTX_SIZE); 3139 if (ret == 0) { 3140 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3141 if (ret) 3142 gvt_err("Scan init ctx error\n"); 3143 } 3144 3145 shmem_unpin_map(engine->default_state, vaddr); 3146 if (ret) 3147 return; 3148 } 3149 3150 gvt->is_reg_whitelist_updated = true; 3151 } 3152 3153 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3154 { 3155 struct intel_vgpu *vgpu = workload->vgpu; 3156 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3157 struct parser_exec_state s; 3158 int ring_id = workload->engine->id; 3159 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3160 int ret; 3161 3162 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3163 3164 ctx_size = workload->engine->context_size - PAGE_SIZE; 3165 3166 /* Only ring contxt is loaded to HW for inhibit context, no need to 3167 * scan engine context 3168 */ 3169 if (is_inhibit_context(ce)) 3170 return 0; 3171 3172 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3173 gma_head = 0; 3174 gma_tail = ctx_size; 3175 3176 s.buf_type = RING_BUFFER_CTX; 3177 s.buf_addr_type = GTT_BUFFER; 3178 s.vgpu = workload->vgpu; 3179 s.engine = workload->engine; 3180 s.ring_start = gma_start; 3181 s.ring_size = ctx_size; 3182 s.ring_head = gma_start + gma_head; 3183 s.ring_tail = gma_start + gma_tail; 3184 s.rb_va = ce->lrc_reg_state; 3185 s.workload = workload; 3186 s.is_ctx_wa = false; 3187 s.is_init_ctx = false; 3188 3189 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3190 * context 3191 */ 3192 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3193 if (ret) 3194 goto out; 3195 3196 ret = command_scan(&s, gma_head, gma_tail, 3197 gma_start, ctx_size); 3198 out: 3199 if (ret) 3200 gvt_vgpu_err("scan shadow ctx error\n"); 3201 3202 return ret; 3203 } 3204 3205 static int init_cmd_table(struct intel_gvt *gvt) 3206 { 3207 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3208 int i; 3209 3210 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3211 struct cmd_entry *e; 3212 3213 if (!(cmd_info[i].devices & gen_type)) 3214 continue; 3215 3216 e = kzalloc(sizeof(*e), GFP_KERNEL); 3217 if (!e) 3218 return -ENOMEM; 3219 3220 e->info = &cmd_info[i]; 3221 if (cmd_info[i].opcode == OP_MI_NOOP) 3222 mi_noop_index = i; 3223 3224 INIT_HLIST_NODE(&e->hlist); 3225 add_cmd_entry(gvt, e); 3226 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3227 e->info->name, e->info->opcode, e->info->flag, 3228 e->info->devices, e->info->rings); 3229 } 3230 3231 return 0; 3232 } 3233 3234 static void clean_cmd_table(struct intel_gvt *gvt) 3235 { 3236 struct hlist_node *tmp; 3237 struct cmd_entry *e; 3238 int i; 3239 3240 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3241 kfree(e); 3242 3243 hash_init(gvt->cmd_table); 3244 } 3245 3246 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3247 { 3248 clean_cmd_table(gvt); 3249 } 3250 3251 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3252 { 3253 int ret; 3254 3255 ret = init_cmd_table(gvt); 3256 if (ret) { 3257 intel_gvt_clean_cmd_parser(gvt); 3258 return ret; 3259 } 3260 return 0; 3261 } 3262