1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 180 181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 247 248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 259 260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 288 289 /* VCCP Command Parser */ 290 291 /* 292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 293 * git://anongit.freedesktop.org/vaapi/intel-driver 294 * src/i965_defines.h 295 * 296 */ 297 298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 299 (3 << 13 | \ 300 (pipeline) << 11 | \ 301 (op) << 8 | \ 302 (sub_opa) << 5 | \ 303 (sub_opb)) 304 305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 316 317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 318 319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 331 332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 337 338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 343 344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 347 348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 351 352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 353 (3 << 13 | \ 354 (pipeline) << 11 | \ 355 (op) << 8 | \ 356 (sub_opa) << 5 | \ 357 (sub_opb)) 358 359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 362 363 struct parser_exec_state; 364 365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 366 367 #define GVT_CMD_HASH_BITS 7 368 369 /* which DWords need address fix */ 370 #define ADDR_FIX_1(x1) (1 << (x1)) 371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 375 376 struct cmd_info { 377 char *name; 378 u32 opcode; 379 380 #define F_LEN_MASK (1U<<0) 381 #define F_LEN_CONST 1U 382 #define F_LEN_VAR 0U 383 384 /* 385 * command has its own ip advance logic 386 * e.g. MI_BATCH_START, MI_BATCH_END 387 */ 388 #define F_IP_ADVANCE_CUSTOM (1<<1) 389 390 #define F_POST_HANDLE (1<<2) 391 u32 flag; 392 393 #define R_RCS (1 << RCS) 394 #define R_VCS1 (1 << VCS) 395 #define R_VCS2 (1 << VCS2) 396 #define R_VCS (R_VCS1 | R_VCS2) 397 #define R_BCS (1 << BCS) 398 #define R_VECS (1 << VECS) 399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 400 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 401 uint16_t rings; 402 403 /* devices that support this cmd: SNB/IVB/HSW/... */ 404 uint16_t devices; 405 406 /* which DWords are address that need fix up. 407 * bit 0 means a 32-bit non address operand in command 408 * bit 1 means address operand, which could be 32-bit 409 * or 64-bit depending on different architectures.( 410 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 411 * No matter the address length, each address only takes 412 * one bit in the bitmap. 413 */ 414 uint16_t addr_bitmap; 415 416 /* flag == F_LEN_CONST : command length 417 * flag == F_LEN_VAR : length bias bits 418 * Note: length is in DWord 419 */ 420 uint8_t len; 421 422 parser_cmd_handler handler; 423 }; 424 425 struct cmd_entry { 426 struct hlist_node hlist; 427 struct cmd_info *info; 428 }; 429 430 enum { 431 RING_BUFFER_INSTRUCTION, 432 BATCH_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_2ND_LEVEL, 434 }; 435 436 enum { 437 GTT_BUFFER, 438 PPGTT_BUFFER 439 }; 440 441 struct parser_exec_state { 442 struct intel_vgpu *vgpu; 443 int ring_id; 444 445 int buf_type; 446 447 /* batch buffer address type */ 448 int buf_addr_type; 449 450 /* graphics memory address of ring buffer start */ 451 unsigned long ring_start; 452 unsigned long ring_size; 453 unsigned long ring_head; 454 unsigned long ring_tail; 455 456 /* instruction graphics memory address */ 457 unsigned long ip_gma; 458 459 /* mapped va of the instr_gma */ 460 void *ip_va; 461 void *rb_va; 462 463 void *ret_bb_va; 464 /* next instruction when return from batch buffer to ring buffer */ 465 unsigned long ret_ip_gma_ring; 466 467 /* next instruction when return from 2nd batch buffer to batch buffer */ 468 unsigned long ret_ip_gma_bb; 469 470 /* batch buffer address type (GTT or PPGTT) 471 * used when ret from 2nd level batch buffer 472 */ 473 int saved_buf_addr_type; 474 bool is_ctx_wa; 475 476 struct cmd_info *info; 477 478 struct intel_vgpu_workload *workload; 479 }; 480 481 #define gmadr_dw_number(s) \ 482 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 483 484 static unsigned long bypass_scan_mask = 0; 485 486 /* ring ALL, type = 0 */ 487 static struct sub_op_bits sub_op_mi[] = { 488 {31, 29}, 489 {28, 23}, 490 }; 491 492 static struct decode_info decode_info_mi = { 493 "MI", 494 OP_LEN_MI, 495 ARRAY_SIZE(sub_op_mi), 496 sub_op_mi, 497 }; 498 499 /* ring RCS, command type 2 */ 500 static struct sub_op_bits sub_op_2d[] = { 501 {31, 29}, 502 {28, 22}, 503 }; 504 505 static struct decode_info decode_info_2d = { 506 "2D", 507 OP_LEN_2D, 508 ARRAY_SIZE(sub_op_2d), 509 sub_op_2d, 510 }; 511 512 /* ring RCS, command type 3 */ 513 static struct sub_op_bits sub_op_3d_media[] = { 514 {31, 29}, 515 {28, 27}, 516 {26, 24}, 517 {23, 16}, 518 }; 519 520 static struct decode_info decode_info_3d_media = { 521 "3D_Media", 522 OP_LEN_3D_MEDIA, 523 ARRAY_SIZE(sub_op_3d_media), 524 sub_op_3d_media, 525 }; 526 527 /* ring VCS, command type 3 */ 528 static struct sub_op_bits sub_op_mfx_vc[] = { 529 {31, 29}, 530 {28, 27}, 531 {26, 24}, 532 {23, 21}, 533 {20, 16}, 534 }; 535 536 static struct decode_info decode_info_mfx_vc = { 537 "MFX_VC", 538 OP_LEN_MFX_VC, 539 ARRAY_SIZE(sub_op_mfx_vc), 540 sub_op_mfx_vc, 541 }; 542 543 /* ring VECS, command type 3 */ 544 static struct sub_op_bits sub_op_vebox[] = { 545 {31, 29}, 546 {28, 27}, 547 {26, 24}, 548 {23, 21}, 549 {20, 16}, 550 }; 551 552 static struct decode_info decode_info_vebox = { 553 "VEBOX", 554 OP_LEN_VEBOX, 555 ARRAY_SIZE(sub_op_vebox), 556 sub_op_vebox, 557 }; 558 559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 560 [RCS] = { 561 &decode_info_mi, 562 NULL, 563 NULL, 564 &decode_info_3d_media, 565 NULL, 566 NULL, 567 NULL, 568 NULL, 569 }, 570 571 [VCS] = { 572 &decode_info_mi, 573 NULL, 574 NULL, 575 &decode_info_mfx_vc, 576 NULL, 577 NULL, 578 NULL, 579 NULL, 580 }, 581 582 [BCS] = { 583 &decode_info_mi, 584 NULL, 585 &decode_info_2d, 586 NULL, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 }, 592 593 [VECS] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_vebox, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [VCS2] = { 605 &decode_info_mi, 606 NULL, 607 NULL, 608 &decode_info_mfx_vc, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 }; 615 616 static inline u32 get_opcode(u32 cmd, int ring_id) 617 { 618 struct decode_info *d_info; 619 620 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 621 if (d_info == NULL) 622 return INVALID_OP; 623 624 return cmd >> (32 - d_info->op_len); 625 } 626 627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 628 unsigned int opcode, int ring_id) 629 { 630 struct cmd_entry *e; 631 632 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 633 if ((opcode == e->info->opcode) && 634 (e->info->rings & (1 << ring_id))) 635 return e->info; 636 } 637 return NULL; 638 } 639 640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 641 u32 cmd, int ring_id) 642 { 643 u32 opcode; 644 645 opcode = get_opcode(cmd, ring_id); 646 if (opcode == INVALID_OP) 647 return NULL; 648 649 return find_cmd_entry(gvt, opcode, ring_id); 650 } 651 652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 653 { 654 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 655 } 656 657 static inline void print_opcode(u32 cmd, int ring_id) 658 { 659 struct decode_info *d_info; 660 int i; 661 662 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 663 if (d_info == NULL) 664 return; 665 666 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 667 cmd >> (32 - d_info->op_len), d_info->name); 668 669 for (i = 0; i < d_info->nr_sub_op; i++) 670 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 671 d_info->sub_op[i].low)); 672 673 pr_err("\n"); 674 } 675 676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 677 { 678 return s->ip_va + (index << 2); 679 } 680 681 static inline u32 cmd_val(struct parser_exec_state *s, int index) 682 { 683 return *cmd_ptr(s, index); 684 } 685 686 static void parser_exec_state_dump(struct parser_exec_state *s) 687 { 688 int cnt = 0; 689 int i; 690 691 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 692 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 693 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 694 s->ring_head, s->ring_tail); 695 696 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 697 s->buf_type == RING_BUFFER_INSTRUCTION ? 698 "RING_BUFFER" : "BATCH_BUFFER", 699 s->buf_addr_type == GTT_BUFFER ? 700 "GTT" : "PPGTT", s->ip_gma); 701 702 if (s->ip_va == NULL) { 703 gvt_dbg_cmd(" ip_va(NULL)"); 704 return; 705 } 706 707 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 708 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 709 cmd_val(s, 2), cmd_val(s, 3)); 710 711 print_opcode(cmd_val(s, 0), s->ring_id); 712 713 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 714 715 while (cnt < 1024) { 716 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 717 for (i = 0; i < 8; i++) 718 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 719 gvt_dbg_cmd("\n"); 720 721 s->ip_va += 8 * sizeof(u32); 722 cnt += 8; 723 } 724 } 725 726 static inline void update_ip_va(struct parser_exec_state *s) 727 { 728 unsigned long len = 0; 729 730 if (WARN_ON(s->ring_head == s->ring_tail)) 731 return; 732 733 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 734 unsigned long ring_top = s->ring_start + s->ring_size; 735 736 if (s->ring_head > s->ring_tail) { 737 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 738 len = (s->ip_gma - s->ring_head); 739 else if (s->ip_gma >= s->ring_start && 740 s->ip_gma <= s->ring_tail) 741 len = (ring_top - s->ring_head) + 742 (s->ip_gma - s->ring_start); 743 } else 744 len = (s->ip_gma - s->ring_head); 745 746 s->ip_va = s->rb_va + len; 747 } else {/* shadow batch buffer */ 748 s->ip_va = s->ret_bb_va; 749 } 750 } 751 752 static inline int ip_gma_set(struct parser_exec_state *s, 753 unsigned long ip_gma) 754 { 755 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 756 757 s->ip_gma = ip_gma; 758 update_ip_va(s); 759 return 0; 760 } 761 762 static inline int ip_gma_advance(struct parser_exec_state *s, 763 unsigned int dw_len) 764 { 765 s->ip_gma += (dw_len << 2); 766 767 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 768 if (s->ip_gma >= s->ring_start + s->ring_size) 769 s->ip_gma -= s->ring_size; 770 update_ip_va(s); 771 } else { 772 s->ip_va += (dw_len << 2); 773 } 774 775 return 0; 776 } 777 778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 779 { 780 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 781 return info->len; 782 else 783 return (cmd & ((1U << info->len) - 1)) + 2; 784 return 0; 785 } 786 787 static inline int cmd_length(struct parser_exec_state *s) 788 { 789 return get_cmd_length(s->info, cmd_val(s, 0)); 790 } 791 792 /* do not remove this, some platform may need clflush here */ 793 #define patch_value(s, addr, val) do { \ 794 *addr = val; \ 795 } while (0) 796 797 static bool is_shadowed_mmio(unsigned int offset) 798 { 799 bool ret = false; 800 801 if ((offset == 0x2168) || /*BB current head register UDW */ 802 (offset == 0x2140) || /*BB current header register */ 803 (offset == 0x211c) || /*second BB header register UDW */ 804 (offset == 0x2114)) { /*second BB header register UDW */ 805 ret = true; 806 } 807 return ret; 808 } 809 810 static inline bool is_force_nonpriv_mmio(unsigned int offset) 811 { 812 return (offset >= 0x24d0 && offset < 0x2500); 813 } 814 815 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 816 unsigned int offset, unsigned int index, char *cmd) 817 { 818 struct intel_gvt *gvt = s->vgpu->gvt; 819 unsigned int data; 820 u32 ring_base; 821 u32 nopid; 822 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 823 824 if (!strcmp(cmd, "lri")) 825 data = cmd_val(s, index + 1); 826 else { 827 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 828 offset, cmd); 829 return -EINVAL; 830 } 831 832 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 833 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 834 835 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 836 data != nopid) { 837 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 838 offset, data); 839 patch_value(s, cmd_ptr(s, index), nopid); 840 return 0; 841 } 842 return 0; 843 } 844 845 static inline bool is_mocs_mmio(unsigned int offset) 846 { 847 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 848 ((offset >= 0xb020) && (offset <= 0xb0a0)); 849 } 850 851 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 852 unsigned int offset, unsigned int index) 853 { 854 if (!is_mocs_mmio(offset)) 855 return -EINVAL; 856 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 857 return 0; 858 } 859 860 static int cmd_reg_handler(struct parser_exec_state *s, 861 unsigned int offset, unsigned int index, char *cmd) 862 { 863 struct intel_vgpu *vgpu = s->vgpu; 864 struct intel_gvt *gvt = vgpu->gvt; 865 u32 ctx_sr_ctl; 866 867 if (offset + 4 > gvt->device_info.mmio_size) { 868 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 869 cmd, offset); 870 return -EFAULT; 871 } 872 873 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 874 gvt_vgpu_err("%s access to non-render register (%x)\n", 875 cmd, offset); 876 return 0; 877 } 878 879 if (is_shadowed_mmio(offset)) { 880 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 881 return 0; 882 } 883 884 if (is_mocs_mmio(offset) && 885 mocs_cmd_reg_handler(s, offset, index)) 886 return -EINVAL; 887 888 if (is_force_nonpriv_mmio(offset) && 889 force_nonpriv_reg_handler(s, offset, index, cmd)) 890 return -EPERM; 891 892 if (offset == i915_mmio_reg_offset(DERRMR) || 893 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 894 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 895 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 896 } 897 898 /* TODO 899 * Right now only scan LRI command on KBL and in inhibit context. 900 * It's good enough to support initializing mmio by lri command in 901 * vgpu inhibit context on KBL. 902 */ 903 if (IS_KABYLAKE(s->vgpu->gvt->dev_priv) && 904 intel_gvt_mmio_is_in_ctx(gvt, offset) && 905 !strncmp(cmd, "lri", 3)) { 906 intel_gvt_hypervisor_read_gpa(s->vgpu, 907 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 908 /* check inhibit context */ 909 if (ctx_sr_ctl & 1) { 910 u32 data = cmd_val(s, index + 1); 911 912 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 913 intel_vgpu_mask_mmio_write(vgpu, 914 offset, &data, 4); 915 else 916 vgpu_vreg(vgpu, offset) = data; 917 } 918 } 919 920 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 921 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 922 return 0; 923 } 924 925 #define cmd_reg(s, i) \ 926 (cmd_val(s, i) & GENMASK(22, 2)) 927 928 #define cmd_reg_inhibit(s, i) \ 929 (cmd_val(s, i) & GENMASK(22, 18)) 930 931 #define cmd_gma(s, i) \ 932 (cmd_val(s, i) & GENMASK(31, 2)) 933 934 #define cmd_gma_hi(s, i) \ 935 (cmd_val(s, i) & GENMASK(15, 0)) 936 937 static int cmd_handler_lri(struct parser_exec_state *s) 938 { 939 int i, ret = 0; 940 int cmd_len = cmd_length(s); 941 struct intel_gvt *gvt = s->vgpu->gvt; 942 943 for (i = 1; i < cmd_len; i += 2) { 944 if (IS_BROADWELL(gvt->dev_priv) && 945 (s->ring_id != RCS)) { 946 if (s->ring_id == BCS && 947 cmd_reg(s, i) == 948 i915_mmio_reg_offset(DERRMR)) 949 ret |= 0; 950 else 951 ret |= (cmd_reg_inhibit(s, i)) ? 952 -EBADRQC : 0; 953 } 954 if (ret) 955 break; 956 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 957 if (ret) 958 break; 959 } 960 return ret; 961 } 962 963 static int cmd_handler_lrr(struct parser_exec_state *s) 964 { 965 int i, ret = 0; 966 int cmd_len = cmd_length(s); 967 968 for (i = 1; i < cmd_len; i += 2) { 969 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 970 ret |= ((cmd_reg_inhibit(s, i) || 971 (cmd_reg_inhibit(s, i + 1)))) ? 972 -EBADRQC : 0; 973 if (ret) 974 break; 975 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 976 if (ret) 977 break; 978 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 979 if (ret) 980 break; 981 } 982 return ret; 983 } 984 985 static inline int cmd_address_audit(struct parser_exec_state *s, 986 unsigned long guest_gma, int op_size, bool index_mode); 987 988 static int cmd_handler_lrm(struct parser_exec_state *s) 989 { 990 struct intel_gvt *gvt = s->vgpu->gvt; 991 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 992 unsigned long gma; 993 int i, ret = 0; 994 int cmd_len = cmd_length(s); 995 996 for (i = 1; i < cmd_len;) { 997 if (IS_BROADWELL(gvt->dev_priv)) 998 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 999 if (ret) 1000 break; 1001 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1002 if (ret) 1003 break; 1004 if (cmd_val(s, 0) & (1 << 22)) { 1005 gma = cmd_gma(s, i + 1); 1006 if (gmadr_bytes == 8) 1007 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1008 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1009 if (ret) 1010 break; 1011 } 1012 i += gmadr_dw_number(s) + 1; 1013 } 1014 return ret; 1015 } 1016 1017 static int cmd_handler_srm(struct parser_exec_state *s) 1018 { 1019 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1020 unsigned long gma; 1021 int i, ret = 0; 1022 int cmd_len = cmd_length(s); 1023 1024 for (i = 1; i < cmd_len;) { 1025 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1026 if (ret) 1027 break; 1028 if (cmd_val(s, 0) & (1 << 22)) { 1029 gma = cmd_gma(s, i + 1); 1030 if (gmadr_bytes == 8) 1031 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1032 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1033 if (ret) 1034 break; 1035 } 1036 i += gmadr_dw_number(s) + 1; 1037 } 1038 return ret; 1039 } 1040 1041 struct cmd_interrupt_event { 1042 int pipe_control_notify; 1043 int mi_flush_dw; 1044 int mi_user_interrupt; 1045 }; 1046 1047 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1048 [RCS] = { 1049 .pipe_control_notify = RCS_PIPE_CONTROL, 1050 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1051 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1052 }, 1053 [BCS] = { 1054 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1055 .mi_flush_dw = BCS_MI_FLUSH_DW, 1056 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1057 }, 1058 [VCS] = { 1059 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1060 .mi_flush_dw = VCS_MI_FLUSH_DW, 1061 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1062 }, 1063 [VCS2] = { 1064 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1065 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1066 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1067 }, 1068 [VECS] = { 1069 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1070 .mi_flush_dw = VECS_MI_FLUSH_DW, 1071 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1072 }, 1073 }; 1074 1075 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1076 { 1077 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1078 unsigned long gma; 1079 bool index_mode = false; 1080 unsigned int post_sync; 1081 int ret = 0; 1082 1083 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1084 1085 /* LRI post sync */ 1086 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1087 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1088 /* post sync */ 1089 else if (post_sync) { 1090 if (post_sync == 2) 1091 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1092 else if (post_sync == 3) 1093 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1094 else if (post_sync == 1) { 1095 /* check ggtt*/ 1096 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1097 gma = cmd_val(s, 2) & GENMASK(31, 3); 1098 if (gmadr_bytes == 8) 1099 gma |= (cmd_gma_hi(s, 3)) << 32; 1100 /* Store Data Index */ 1101 if (cmd_val(s, 1) & (1 << 21)) 1102 index_mode = true; 1103 ret |= cmd_address_audit(s, gma, sizeof(u64), 1104 index_mode); 1105 } 1106 } 1107 } 1108 1109 if (ret) 1110 return ret; 1111 1112 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1113 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1114 s->workload->pending_events); 1115 return 0; 1116 } 1117 1118 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1119 { 1120 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1121 s->workload->pending_events); 1122 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1123 return 0; 1124 } 1125 1126 static int cmd_advance_default(struct parser_exec_state *s) 1127 { 1128 return ip_gma_advance(s, cmd_length(s)); 1129 } 1130 1131 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1132 { 1133 int ret; 1134 1135 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1136 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1137 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1138 s->buf_addr_type = s->saved_buf_addr_type; 1139 } else { 1140 s->buf_type = RING_BUFFER_INSTRUCTION; 1141 s->buf_addr_type = GTT_BUFFER; 1142 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1143 s->ret_ip_gma_ring -= s->ring_size; 1144 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1145 } 1146 return ret; 1147 } 1148 1149 struct mi_display_flip_command_info { 1150 int pipe; 1151 int plane; 1152 int event; 1153 i915_reg_t stride_reg; 1154 i915_reg_t ctrl_reg; 1155 i915_reg_t surf_reg; 1156 u64 stride_val; 1157 u64 tile_val; 1158 u64 surf_val; 1159 bool async_flip; 1160 }; 1161 1162 struct plane_code_mapping { 1163 int pipe; 1164 int plane; 1165 int event; 1166 }; 1167 1168 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1169 struct mi_display_flip_command_info *info) 1170 { 1171 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1172 struct plane_code_mapping gen8_plane_code[] = { 1173 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1174 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1175 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1176 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1177 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1178 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1179 }; 1180 u32 dword0, dword1, dword2; 1181 u32 v; 1182 1183 dword0 = cmd_val(s, 0); 1184 dword1 = cmd_val(s, 1); 1185 dword2 = cmd_val(s, 2); 1186 1187 v = (dword0 & GENMASK(21, 19)) >> 19; 1188 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1189 return -EBADRQC; 1190 1191 info->pipe = gen8_plane_code[v].pipe; 1192 info->plane = gen8_plane_code[v].plane; 1193 info->event = gen8_plane_code[v].event; 1194 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1195 info->tile_val = (dword1 & 0x1); 1196 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1197 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1198 1199 if (info->plane == PLANE_A) { 1200 info->ctrl_reg = DSPCNTR(info->pipe); 1201 info->stride_reg = DSPSTRIDE(info->pipe); 1202 info->surf_reg = DSPSURF(info->pipe); 1203 } else if (info->plane == PLANE_B) { 1204 info->ctrl_reg = SPRCTL(info->pipe); 1205 info->stride_reg = SPRSTRIDE(info->pipe); 1206 info->surf_reg = SPRSURF(info->pipe); 1207 } else { 1208 WARN_ON(1); 1209 return -EBADRQC; 1210 } 1211 return 0; 1212 } 1213 1214 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1215 struct mi_display_flip_command_info *info) 1216 { 1217 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1218 struct intel_vgpu *vgpu = s->vgpu; 1219 u32 dword0 = cmd_val(s, 0); 1220 u32 dword1 = cmd_val(s, 1); 1221 u32 dword2 = cmd_val(s, 2); 1222 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1223 1224 info->plane = PRIMARY_PLANE; 1225 1226 switch (plane) { 1227 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1228 info->pipe = PIPE_A; 1229 info->event = PRIMARY_A_FLIP_DONE; 1230 break; 1231 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1232 info->pipe = PIPE_B; 1233 info->event = PRIMARY_B_FLIP_DONE; 1234 break; 1235 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1236 info->pipe = PIPE_C; 1237 info->event = PRIMARY_C_FLIP_DONE; 1238 break; 1239 1240 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1241 info->pipe = PIPE_A; 1242 info->event = SPRITE_A_FLIP_DONE; 1243 info->plane = SPRITE_PLANE; 1244 break; 1245 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1246 info->pipe = PIPE_B; 1247 info->event = SPRITE_B_FLIP_DONE; 1248 info->plane = SPRITE_PLANE; 1249 break; 1250 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1251 info->pipe = PIPE_C; 1252 info->event = SPRITE_C_FLIP_DONE; 1253 info->plane = SPRITE_PLANE; 1254 break; 1255 1256 default: 1257 gvt_vgpu_err("unknown plane code %d\n", plane); 1258 return -EBADRQC; 1259 } 1260 1261 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1262 info->tile_val = (dword1 & GENMASK(2, 0)); 1263 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1264 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1265 1266 info->ctrl_reg = DSPCNTR(info->pipe); 1267 info->stride_reg = DSPSTRIDE(info->pipe); 1268 info->surf_reg = DSPSURF(info->pipe); 1269 1270 return 0; 1271 } 1272 1273 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1274 struct mi_display_flip_command_info *info) 1275 { 1276 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1277 u32 stride, tile; 1278 1279 if (!info->async_flip) 1280 return 0; 1281 1282 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1283 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1284 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1285 GENMASK(12, 10)) >> 10; 1286 } else { 1287 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1288 GENMASK(15, 6)) >> 6; 1289 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1290 } 1291 1292 if (stride != info->stride_val) 1293 gvt_dbg_cmd("cannot change stride during async flip\n"); 1294 1295 if (tile != info->tile_val) 1296 gvt_dbg_cmd("cannot change tile during async flip\n"); 1297 1298 return 0; 1299 } 1300 1301 static int gen8_update_plane_mmio_from_mi_display_flip( 1302 struct parser_exec_state *s, 1303 struct mi_display_flip_command_info *info) 1304 { 1305 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1306 struct intel_vgpu *vgpu = s->vgpu; 1307 1308 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1309 info->surf_val << 12); 1310 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1311 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1312 info->stride_val); 1313 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1314 info->tile_val << 10); 1315 } else { 1316 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1317 info->stride_val << 6); 1318 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1319 info->tile_val << 10); 1320 } 1321 1322 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1323 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1324 return 0; 1325 } 1326 1327 static int decode_mi_display_flip(struct parser_exec_state *s, 1328 struct mi_display_flip_command_info *info) 1329 { 1330 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1331 1332 if (IS_BROADWELL(dev_priv)) 1333 return gen8_decode_mi_display_flip(s, info); 1334 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) 1335 return skl_decode_mi_display_flip(s, info); 1336 1337 return -ENODEV; 1338 } 1339 1340 static int check_mi_display_flip(struct parser_exec_state *s, 1341 struct mi_display_flip_command_info *info) 1342 { 1343 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1344 1345 if (IS_BROADWELL(dev_priv) 1346 || IS_SKYLAKE(dev_priv) 1347 || IS_KABYLAKE(dev_priv)) 1348 return gen8_check_mi_display_flip(s, info); 1349 return -ENODEV; 1350 } 1351 1352 static int update_plane_mmio_from_mi_display_flip( 1353 struct parser_exec_state *s, 1354 struct mi_display_flip_command_info *info) 1355 { 1356 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1357 1358 if (IS_BROADWELL(dev_priv) 1359 || IS_SKYLAKE(dev_priv) 1360 || IS_KABYLAKE(dev_priv)) 1361 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1362 return -ENODEV; 1363 } 1364 1365 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1366 { 1367 struct mi_display_flip_command_info info; 1368 struct intel_vgpu *vgpu = s->vgpu; 1369 int ret; 1370 int i; 1371 int len = cmd_length(s); 1372 1373 ret = decode_mi_display_flip(s, &info); 1374 if (ret) { 1375 gvt_vgpu_err("fail to decode MI display flip command\n"); 1376 return ret; 1377 } 1378 1379 ret = check_mi_display_flip(s, &info); 1380 if (ret) { 1381 gvt_vgpu_err("invalid MI display flip command\n"); 1382 return ret; 1383 } 1384 1385 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1386 if (ret) { 1387 gvt_vgpu_err("fail to update plane mmio\n"); 1388 return ret; 1389 } 1390 1391 for (i = 0; i < len; i++) 1392 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1393 return 0; 1394 } 1395 1396 static bool is_wait_for_flip_pending(u32 cmd) 1397 { 1398 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1399 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1400 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1401 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1402 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1403 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1404 } 1405 1406 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1407 { 1408 u32 cmd = cmd_val(s, 0); 1409 1410 if (!is_wait_for_flip_pending(cmd)) 1411 return 0; 1412 1413 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1414 return 0; 1415 } 1416 1417 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1418 { 1419 unsigned long addr; 1420 unsigned long gma_high, gma_low; 1421 struct intel_vgpu *vgpu = s->vgpu; 1422 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1423 1424 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1425 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1426 return INTEL_GVT_INVALID_ADDR; 1427 } 1428 1429 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1430 if (gmadr_bytes == 4) { 1431 addr = gma_low; 1432 } else { 1433 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1434 addr = (((unsigned long)gma_high) << 32) | gma_low; 1435 } 1436 return addr; 1437 } 1438 1439 static inline int cmd_address_audit(struct parser_exec_state *s, 1440 unsigned long guest_gma, int op_size, bool index_mode) 1441 { 1442 struct intel_vgpu *vgpu = s->vgpu; 1443 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1444 int i; 1445 int ret; 1446 1447 if (op_size > max_surface_size) { 1448 gvt_vgpu_err("command address audit fail name %s\n", 1449 s->info->name); 1450 return -EFAULT; 1451 } 1452 1453 if (index_mode) { 1454 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) { 1455 ret = -EFAULT; 1456 goto err; 1457 } 1458 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1459 ret = -EFAULT; 1460 goto err; 1461 } 1462 1463 return 0; 1464 1465 err: 1466 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1467 s->info->name, guest_gma, op_size); 1468 1469 pr_err("cmd dump: "); 1470 for (i = 0; i < cmd_length(s); i++) { 1471 if (!(i % 4)) 1472 pr_err("\n%08x ", cmd_val(s, i)); 1473 else 1474 pr_err("%08x ", cmd_val(s, i)); 1475 } 1476 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1477 vgpu->id, 1478 vgpu_aperture_gmadr_base(vgpu), 1479 vgpu_aperture_gmadr_end(vgpu), 1480 vgpu_hidden_gmadr_base(vgpu), 1481 vgpu_hidden_gmadr_end(vgpu)); 1482 return ret; 1483 } 1484 1485 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1486 { 1487 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1488 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1489 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1490 unsigned long gma, gma_low, gma_high; 1491 int ret = 0; 1492 1493 /* check ppggt */ 1494 if (!(cmd_val(s, 0) & (1 << 22))) 1495 return 0; 1496 1497 gma = cmd_val(s, 2) & GENMASK(31, 2); 1498 1499 if (gmadr_bytes == 8) { 1500 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1501 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1502 gma = (gma_high << 32) | gma_low; 1503 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1504 } 1505 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1506 return ret; 1507 } 1508 1509 static inline int unexpected_cmd(struct parser_exec_state *s) 1510 { 1511 struct intel_vgpu *vgpu = s->vgpu; 1512 1513 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1514 1515 return -EBADRQC; 1516 } 1517 1518 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1519 { 1520 return unexpected_cmd(s); 1521 } 1522 1523 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1524 { 1525 return unexpected_cmd(s); 1526 } 1527 1528 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1529 { 1530 return unexpected_cmd(s); 1531 } 1532 1533 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1534 { 1535 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1536 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1537 sizeof(u32); 1538 unsigned long gma, gma_high; 1539 int ret = 0; 1540 1541 if (!(cmd_val(s, 0) & (1 << 22))) 1542 return ret; 1543 1544 gma = cmd_val(s, 1) & GENMASK(31, 2); 1545 if (gmadr_bytes == 8) { 1546 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1547 gma = (gma_high << 32) | gma; 1548 } 1549 ret = cmd_address_audit(s, gma, op_size, false); 1550 return ret; 1551 } 1552 1553 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1554 { 1555 return unexpected_cmd(s); 1556 } 1557 1558 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1559 { 1560 return unexpected_cmd(s); 1561 } 1562 1563 static int cmd_handler_mi_conditional_batch_buffer_end( 1564 struct parser_exec_state *s) 1565 { 1566 return unexpected_cmd(s); 1567 } 1568 1569 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1570 { 1571 return unexpected_cmd(s); 1572 } 1573 1574 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1575 { 1576 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1577 unsigned long gma; 1578 bool index_mode = false; 1579 int ret = 0; 1580 1581 /* Check post-sync and ppgtt bit */ 1582 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1583 gma = cmd_val(s, 1) & GENMASK(31, 3); 1584 if (gmadr_bytes == 8) 1585 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1586 /* Store Data Index */ 1587 if (cmd_val(s, 0) & (1 << 21)) 1588 index_mode = true; 1589 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1590 } 1591 /* Check notify bit */ 1592 if ((cmd_val(s, 0) & (1 << 8))) 1593 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1594 s->workload->pending_events); 1595 return ret; 1596 } 1597 1598 static void addr_type_update_snb(struct parser_exec_state *s) 1599 { 1600 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1601 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1602 s->buf_addr_type = PPGTT_BUFFER; 1603 } 1604 } 1605 1606 1607 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1608 unsigned long gma, unsigned long end_gma, void *va) 1609 { 1610 unsigned long copy_len, offset; 1611 unsigned long len = 0; 1612 unsigned long gpa; 1613 1614 while (gma != end_gma) { 1615 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1616 if (gpa == INTEL_GVT_INVALID_ADDR) { 1617 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1618 return -EFAULT; 1619 } 1620 1621 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1622 1623 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1624 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1625 1626 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1627 1628 len += copy_len; 1629 gma += copy_len; 1630 } 1631 return len; 1632 } 1633 1634 1635 /* 1636 * Check whether a batch buffer needs to be scanned. Currently 1637 * the only criteria is based on privilege. 1638 */ 1639 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1640 { 1641 struct intel_gvt *gvt = s->vgpu->gvt; 1642 1643 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv) 1644 || IS_KABYLAKE(gvt->dev_priv)) { 1645 /* BDW decides privilege based on address space */ 1646 if (cmd_val(s, 0) & (1 << 8) && 1647 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1648 return 0; 1649 } 1650 return 1; 1651 } 1652 1653 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1654 { 1655 unsigned long gma = 0; 1656 struct cmd_info *info; 1657 uint32_t cmd_len = 0; 1658 bool bb_end = false; 1659 struct intel_vgpu *vgpu = s->vgpu; 1660 u32 cmd; 1661 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1662 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1663 1664 *bb_size = 0; 1665 1666 /* get the start gm address of the batch buffer */ 1667 gma = get_gma_bb_from_cmd(s, 1); 1668 if (gma == INTEL_GVT_INVALID_ADDR) 1669 return -EFAULT; 1670 1671 cmd = cmd_val(s, 0); 1672 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1673 if (info == NULL) { 1674 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1675 cmd, get_opcode(cmd, s->ring_id), 1676 (s->buf_addr_type == PPGTT_BUFFER) ? 1677 "ppgtt" : "ggtt", s->ring_id, s->workload); 1678 return -EBADRQC; 1679 } 1680 do { 1681 if (copy_gma_to_hva(s->vgpu, mm, 1682 gma, gma + 4, &cmd) < 0) 1683 return -EFAULT; 1684 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1685 if (info == NULL) { 1686 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1687 cmd, get_opcode(cmd, s->ring_id), 1688 (s->buf_addr_type == PPGTT_BUFFER) ? 1689 "ppgtt" : "ggtt", s->ring_id, s->workload); 1690 return -EBADRQC; 1691 } 1692 1693 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1694 bb_end = true; 1695 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1696 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1697 /* chained batch buffer */ 1698 bb_end = true; 1699 } 1700 cmd_len = get_cmd_length(info, cmd) << 2; 1701 *bb_size += cmd_len; 1702 gma += cmd_len; 1703 } while (!bb_end); 1704 1705 return 0; 1706 } 1707 1708 static int perform_bb_shadow(struct parser_exec_state *s) 1709 { 1710 struct intel_vgpu *vgpu = s->vgpu; 1711 struct intel_vgpu_shadow_bb *bb; 1712 unsigned long gma = 0; 1713 unsigned long bb_size; 1714 int ret = 0; 1715 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1716 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1717 unsigned long gma_start_offset = 0; 1718 1719 /* get the start gm address of the batch buffer */ 1720 gma = get_gma_bb_from_cmd(s, 1); 1721 if (gma == INTEL_GVT_INVALID_ADDR) 1722 return -EFAULT; 1723 1724 ret = find_bb_size(s, &bb_size); 1725 if (ret) 1726 return ret; 1727 1728 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1729 if (!bb) 1730 return -ENOMEM; 1731 1732 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1733 1734 /* the gma_start_offset stores the batch buffer's start gma's 1735 * offset relative to page boundary. so for non-privileged batch 1736 * buffer, the shadowed gem object holds exactly the same page 1737 * layout as original gem object. This is for the convience of 1738 * replacing the whole non-privilged batch buffer page to this 1739 * shadowed one in PPGTT at the same gma address. (this replacing 1740 * action is not implemented yet now, but may be necessary in 1741 * future). 1742 * for prileged batch buffer, we just change start gma address to 1743 * that of shadowed page. 1744 */ 1745 if (bb->ppgtt) 1746 gma_start_offset = gma & ~I915_GTT_PAGE_MASK; 1747 1748 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv, 1749 roundup(bb_size + gma_start_offset, PAGE_SIZE)); 1750 if (IS_ERR(bb->obj)) { 1751 ret = PTR_ERR(bb->obj); 1752 goto err_free_bb; 1753 } 1754 1755 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush); 1756 if (ret) 1757 goto err_free_obj; 1758 1759 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1760 if (IS_ERR(bb->va)) { 1761 ret = PTR_ERR(bb->va); 1762 goto err_finish_shmem_access; 1763 } 1764 1765 if (bb->clflush & CLFLUSH_BEFORE) { 1766 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1767 bb->clflush &= ~CLFLUSH_BEFORE; 1768 } 1769 1770 ret = copy_gma_to_hva(s->vgpu, mm, 1771 gma, gma + bb_size, 1772 bb->va + gma_start_offset); 1773 if (ret < 0) { 1774 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1775 ret = -EFAULT; 1776 goto err_unmap; 1777 } 1778 1779 INIT_LIST_HEAD(&bb->list); 1780 list_add(&bb->list, &s->workload->shadow_bb); 1781 1782 bb->accessing = true; 1783 bb->bb_start_cmd_va = s->ip_va; 1784 1785 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1786 bb->bb_offset = s->ip_va - s->rb_va; 1787 else 1788 bb->bb_offset = 0; 1789 1790 /* 1791 * ip_va saves the virtual address of the shadow batch buffer, while 1792 * ip_gma saves the graphics address of the original batch buffer. 1793 * As the shadow batch buffer is just a copy from the originial one, 1794 * it should be right to use shadow batch buffer'va and original batch 1795 * buffer's gma in pair. After all, we don't want to pin the shadow 1796 * buffer here (too early). 1797 */ 1798 s->ip_va = bb->va + gma_start_offset; 1799 s->ip_gma = gma; 1800 return 0; 1801 err_unmap: 1802 i915_gem_object_unpin_map(bb->obj); 1803 err_finish_shmem_access: 1804 i915_gem_obj_finish_shmem_access(bb->obj); 1805 err_free_obj: 1806 i915_gem_object_put(bb->obj); 1807 err_free_bb: 1808 kfree(bb); 1809 return ret; 1810 } 1811 1812 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1813 { 1814 bool second_level; 1815 int ret = 0; 1816 struct intel_vgpu *vgpu = s->vgpu; 1817 1818 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1819 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1820 return -EFAULT; 1821 } 1822 1823 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1824 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1825 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1826 return -EFAULT; 1827 } 1828 1829 s->saved_buf_addr_type = s->buf_addr_type; 1830 addr_type_update_snb(s); 1831 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1832 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1833 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1834 } else if (second_level) { 1835 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1836 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1837 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1838 } 1839 1840 if (batch_buffer_needs_scan(s)) { 1841 ret = perform_bb_shadow(s); 1842 if (ret < 0) 1843 gvt_vgpu_err("invalid shadow batch buffer\n"); 1844 } else { 1845 /* emulate a batch buffer end to do return right */ 1846 ret = cmd_handler_mi_batch_buffer_end(s); 1847 if (ret < 0) 1848 return ret; 1849 } 1850 return ret; 1851 } 1852 1853 static struct cmd_info cmd_info[] = { 1854 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1855 1856 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1857 0, 1, NULL}, 1858 1859 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1860 0, 1, cmd_handler_mi_user_interrupt}, 1861 1862 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1863 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1864 1865 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1866 1867 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1868 NULL}, 1869 1870 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1871 NULL}, 1872 1873 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1874 NULL}, 1875 1876 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1877 NULL}, 1878 1879 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1880 D_ALL, 0, 1, NULL}, 1881 1882 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1883 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1884 cmd_handler_mi_batch_buffer_end}, 1885 1886 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1887 0, 1, NULL}, 1888 1889 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1890 NULL}, 1891 1892 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1893 D_ALL, 0, 1, NULL}, 1894 1895 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1896 NULL}, 1897 1898 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1899 NULL}, 1900 1901 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1902 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1903 1904 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1905 0, 8, NULL}, 1906 1907 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1908 1909 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1910 1911 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1912 D_BDW_PLUS, 0, 8, NULL}, 1913 1914 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1915 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1916 1917 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1918 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1919 1920 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1921 0, 8, cmd_handler_mi_store_data_index}, 1922 1923 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1924 D_ALL, 0, 8, cmd_handler_lri}, 1925 1926 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1927 cmd_handler_mi_update_gtt}, 1928 1929 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1930 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1931 1932 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1933 cmd_handler_mi_flush_dw}, 1934 1935 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1936 10, cmd_handler_mi_clflush}, 1937 1938 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1939 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1940 1941 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1942 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1943 1944 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1945 D_ALL, 0, 8, cmd_handler_lrr}, 1946 1947 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1948 D_ALL, 0, 8, NULL}, 1949 1950 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1951 ADDR_FIX_1(2), 8, NULL}, 1952 1953 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1954 ADDR_FIX_1(2), 8, NULL}, 1955 1956 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1957 8, cmd_handler_mi_op_2e}, 1958 1959 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1960 8, cmd_handler_mi_op_2f}, 1961 1962 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1963 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1964 cmd_handler_mi_batch_buffer_start}, 1965 1966 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1967 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1968 cmd_handler_mi_conditional_batch_buffer_end}, 1969 1970 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1971 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1972 1973 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1974 ADDR_FIX_2(4, 7), 8, NULL}, 1975 1976 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1977 0, 8, NULL}, 1978 1979 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1980 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1981 1982 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1983 1984 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1985 0, 8, NULL}, 1986 1987 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1988 ADDR_FIX_1(3), 8, NULL}, 1989 1990 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1991 D_ALL, 0, 8, NULL}, 1992 1993 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1994 ADDR_FIX_1(4), 8, NULL}, 1995 1996 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1997 ADDR_FIX_2(4, 5), 8, NULL}, 1998 1999 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2000 ADDR_FIX_1(4), 8, NULL}, 2001 2002 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2003 ADDR_FIX_2(4, 7), 8, NULL}, 2004 2005 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2006 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2007 2008 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2009 2010 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2011 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2012 2013 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2014 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2015 2016 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2017 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2018 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2019 2020 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2021 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2022 2023 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2024 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2025 2026 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2027 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2028 2029 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2030 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2031 2032 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2033 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2034 2035 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2036 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2037 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2038 2039 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2040 ADDR_FIX_2(4, 5), 8, NULL}, 2041 2042 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2043 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2044 2045 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2046 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2047 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2048 2049 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2050 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2051 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2052 2053 {"3DSTATE_BLEND_STATE_POINTERS", 2054 OP_3DSTATE_BLEND_STATE_POINTERS, 2055 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2056 2057 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2058 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2059 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2060 2061 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2062 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2063 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2064 2065 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2066 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2067 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2068 2069 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2070 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2071 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2072 2073 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2074 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2075 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2076 2077 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2078 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2079 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2080 2081 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2082 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2083 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2084 2085 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2086 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2087 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2088 2089 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2090 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2091 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2092 2093 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2094 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2095 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2096 2097 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2098 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2099 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2100 2101 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2102 0, 8, NULL}, 2103 2104 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2105 0, 8, NULL}, 2106 2107 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2108 0, 8, NULL}, 2109 2110 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2111 0, 8, NULL}, 2112 2113 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2114 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2115 2116 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2117 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2118 2119 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2120 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2121 2122 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2123 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2124 2125 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2126 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2127 2128 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2129 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2130 2131 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2132 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2133 2134 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2135 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2136 2137 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2138 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2139 2140 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2141 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2142 2143 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2144 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2145 2146 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2147 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2148 2149 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2150 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2151 2152 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2153 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2154 2155 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2156 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2157 2158 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2159 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2160 2161 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2162 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2163 2164 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2165 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2166 2167 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2168 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2169 2170 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2171 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2172 2173 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2174 D_BDW_PLUS, 0, 8, NULL}, 2175 2176 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2177 NULL}, 2178 2179 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2180 D_BDW_PLUS, 0, 8, NULL}, 2181 2182 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2183 D_BDW_PLUS, 0, 8, NULL}, 2184 2185 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2186 8, NULL}, 2187 2188 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2189 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2190 2191 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2192 8, NULL}, 2193 2194 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2195 NULL}, 2196 2197 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2198 NULL}, 2199 2200 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2201 NULL}, 2202 2203 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2204 D_BDW_PLUS, 0, 8, NULL}, 2205 2206 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2207 R_RCS, D_ALL, 0, 8, NULL}, 2208 2209 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2210 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2211 2212 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2213 R_RCS, D_ALL, 0, 1, NULL}, 2214 2215 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2216 2217 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2218 R_RCS, D_ALL, 0, 8, NULL}, 2219 2220 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2221 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2222 2223 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2224 2225 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2226 2227 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2228 2229 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2230 D_BDW_PLUS, 0, 8, NULL}, 2231 2232 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2233 D_BDW_PLUS, 0, 8, NULL}, 2234 2235 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2236 D_ALL, 0, 8, NULL}, 2237 2238 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2239 D_BDW_PLUS, 0, 8, NULL}, 2240 2241 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2242 D_BDW_PLUS, 0, 8, NULL}, 2243 2244 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2247 2248 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2249 2250 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2251 D_ALL, 0, 8, NULL}, 2252 2253 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2256 2257 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2258 R_RCS, D_ALL, 0, 8, NULL}, 2259 2260 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2261 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2262 2263 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2264 0, 8, NULL}, 2265 2266 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2267 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2268 2269 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2274 2275 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2276 D_ALL, 0, 8, NULL}, 2277 2278 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2279 D_ALL, 0, 8, NULL}, 2280 2281 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2282 D_ALL, 0, 8, NULL}, 2283 2284 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2285 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2286 2287 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2288 D_BDW_PLUS, 0, 8, NULL}, 2289 2290 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2291 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2292 2293 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2294 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2295 2296 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2297 R_RCS, D_ALL, 0, 8, NULL}, 2298 2299 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2300 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2301 2302 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2304 2305 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2307 2308 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2310 2311 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2312 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2313 2314 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2315 R_RCS, D_ALL, 0, 8, NULL}, 2316 2317 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2318 D_ALL, 0, 9, NULL}, 2319 2320 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2321 ADDR_FIX_2(2, 4), 8, NULL}, 2322 2323 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2324 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2325 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2326 2327 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2328 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2329 2330 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2331 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2332 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2333 2334 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2335 D_BDW_PLUS, 0, 8, NULL}, 2336 2337 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2338 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2339 2340 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2341 2342 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2343 1, NULL}, 2344 2345 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2346 ADDR_FIX_1(1), 8, NULL}, 2347 2348 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2349 2350 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2351 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2352 2353 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2354 ADDR_FIX_1(1), 8, NULL}, 2355 2356 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2357 2358 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2359 2360 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2361 0, 8, NULL}, 2362 2363 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2364 D_SKL_PLUS, 0, 8, NULL}, 2365 2366 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2367 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2368 2369 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2370 0, 16, NULL}, 2371 2372 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2373 0, 16, NULL}, 2374 2375 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2376 2377 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2378 0, 16, NULL}, 2379 2380 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2381 0, 16, NULL}, 2382 2383 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2384 0, 16, NULL}, 2385 2386 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2387 0, 8, NULL}, 2388 2389 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2390 NULL}, 2391 2392 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2393 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2394 2395 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2396 R_VCS, D_ALL, 0, 12, NULL}, 2397 2398 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2399 R_VCS, D_ALL, 0, 12, NULL}, 2400 2401 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2402 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2403 2404 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2405 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2406 2407 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2408 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2409 2410 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2411 2412 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2413 R_VCS, D_ALL, 0, 12, NULL}, 2414 2415 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2416 R_VCS, D_ALL, 0, 12, NULL}, 2417 2418 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2419 R_VCS, D_ALL, 0, 12, NULL}, 2420 2421 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2422 R_VCS, D_ALL, 0, 12, NULL}, 2423 2424 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2425 R_VCS, D_ALL, 0, 12, NULL}, 2426 2427 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2428 R_VCS, D_ALL, 0, 12, NULL}, 2429 2430 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2431 R_VCS, D_ALL, 0, 6, NULL}, 2432 2433 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2434 R_VCS, D_ALL, 0, 12, NULL}, 2435 2436 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2437 R_VCS, D_ALL, 0, 12, NULL}, 2438 2439 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2440 R_VCS, D_ALL, 0, 12, NULL}, 2441 2442 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2443 R_VCS, D_ALL, 0, 12, NULL}, 2444 2445 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2446 R_VCS, D_ALL, 0, 12, NULL}, 2447 2448 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2449 R_VCS, D_ALL, 0, 12, NULL}, 2450 2451 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2452 R_VCS, D_ALL, 0, 12, NULL}, 2453 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2454 R_VCS, D_ALL, 0, 12, NULL}, 2455 2456 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2457 R_VCS, D_ALL, 0, 12, NULL}, 2458 2459 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2460 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2461 2462 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2463 R_VCS, D_ALL, 0, 12, NULL}, 2464 2465 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2466 R_VCS, D_ALL, 0, 12, NULL}, 2467 2468 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2469 R_VCS, D_ALL, 0, 12, NULL}, 2470 2471 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2472 R_VCS, D_ALL, 0, 12, NULL}, 2473 2474 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2475 R_VCS, D_ALL, 0, 12, NULL}, 2476 2477 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2478 R_VCS, D_ALL, 0, 12, NULL}, 2479 2480 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2481 R_VCS, D_ALL, 0, 12, NULL}, 2482 2483 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2484 R_VCS, D_ALL, 0, 12, NULL}, 2485 2486 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2487 R_VCS, D_ALL, 0, 12, NULL}, 2488 2489 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2490 R_VCS, D_ALL, 0, 12, NULL}, 2491 2492 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2493 R_VCS, D_ALL, 0, 12, NULL}, 2494 2495 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2496 0, 16, NULL}, 2497 2498 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2499 2500 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2501 2502 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2503 R_VCS, D_ALL, 0, 12, NULL}, 2504 2505 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2506 R_VCS, D_ALL, 0, 12, NULL}, 2507 2508 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2509 R_VCS, D_ALL, 0, 12, NULL}, 2510 2511 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2512 2513 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2514 0, 12, NULL}, 2515 2516 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2517 0, 20, NULL}, 2518 }; 2519 2520 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2521 { 2522 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2523 } 2524 2525 /* call the cmd handler, and advance ip */ 2526 static int cmd_parser_exec(struct parser_exec_state *s) 2527 { 2528 struct intel_vgpu *vgpu = s->vgpu; 2529 struct cmd_info *info; 2530 u32 cmd; 2531 int ret = 0; 2532 2533 cmd = cmd_val(s, 0); 2534 2535 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2536 if (info == NULL) { 2537 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2538 cmd, get_opcode(cmd, s->ring_id), 2539 (s->buf_addr_type == PPGTT_BUFFER) ? 2540 "ppgtt" : "ggtt", s->ring_id, s->workload); 2541 return -EBADRQC; 2542 } 2543 2544 s->info = info; 2545 2546 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2547 cmd_length(s), s->buf_type, s->buf_addr_type, 2548 s->workload, info->name); 2549 2550 if (info->handler) { 2551 ret = info->handler(s); 2552 if (ret < 0) { 2553 gvt_vgpu_err("%s handler error\n", info->name); 2554 return ret; 2555 } 2556 } 2557 2558 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2559 ret = cmd_advance_default(s); 2560 if (ret) { 2561 gvt_vgpu_err("%s IP advance error\n", info->name); 2562 return ret; 2563 } 2564 } 2565 return 0; 2566 } 2567 2568 static inline bool gma_out_of_range(unsigned long gma, 2569 unsigned long gma_head, unsigned int gma_tail) 2570 { 2571 if (gma_tail >= gma_head) 2572 return (gma < gma_head) || (gma > gma_tail); 2573 else 2574 return (gma > gma_tail) && (gma < gma_head); 2575 } 2576 2577 /* Keep the consistent return type, e.g EBADRQC for unknown 2578 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2579 * works as the input of VM healthy status. 2580 */ 2581 static int command_scan(struct parser_exec_state *s, 2582 unsigned long rb_head, unsigned long rb_tail, 2583 unsigned long rb_start, unsigned long rb_len) 2584 { 2585 2586 unsigned long gma_head, gma_tail, gma_bottom; 2587 int ret = 0; 2588 struct intel_vgpu *vgpu = s->vgpu; 2589 2590 gma_head = rb_start + rb_head; 2591 gma_tail = rb_start + rb_tail; 2592 gma_bottom = rb_start + rb_len; 2593 2594 while (s->ip_gma != gma_tail) { 2595 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2596 if (!(s->ip_gma >= rb_start) || 2597 !(s->ip_gma < gma_bottom)) { 2598 gvt_vgpu_err("ip_gma %lx out of ring scope." 2599 "(base:0x%lx, bottom: 0x%lx)\n", 2600 s->ip_gma, rb_start, 2601 gma_bottom); 2602 parser_exec_state_dump(s); 2603 return -EFAULT; 2604 } 2605 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2606 gvt_vgpu_err("ip_gma %lx out of range." 2607 "base 0x%lx head 0x%lx tail 0x%lx\n", 2608 s->ip_gma, rb_start, 2609 rb_head, rb_tail); 2610 parser_exec_state_dump(s); 2611 break; 2612 } 2613 } 2614 ret = cmd_parser_exec(s); 2615 if (ret) { 2616 gvt_vgpu_err("cmd parser error\n"); 2617 parser_exec_state_dump(s); 2618 break; 2619 } 2620 } 2621 2622 return ret; 2623 } 2624 2625 static int scan_workload(struct intel_vgpu_workload *workload) 2626 { 2627 unsigned long gma_head, gma_tail, gma_bottom; 2628 struct parser_exec_state s; 2629 int ret = 0; 2630 2631 /* ring base is page aligned */ 2632 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2633 return -EINVAL; 2634 2635 gma_head = workload->rb_start + workload->rb_head; 2636 gma_tail = workload->rb_start + workload->rb_tail; 2637 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2638 2639 s.buf_type = RING_BUFFER_INSTRUCTION; 2640 s.buf_addr_type = GTT_BUFFER; 2641 s.vgpu = workload->vgpu; 2642 s.ring_id = workload->ring_id; 2643 s.ring_start = workload->rb_start; 2644 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2645 s.ring_head = gma_head; 2646 s.ring_tail = gma_tail; 2647 s.rb_va = workload->shadow_ring_buffer_va; 2648 s.workload = workload; 2649 s.is_ctx_wa = false; 2650 2651 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2652 gma_head == gma_tail) 2653 return 0; 2654 2655 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2656 ret = -EINVAL; 2657 goto out; 2658 } 2659 2660 ret = ip_gma_set(&s, gma_head); 2661 if (ret) 2662 goto out; 2663 2664 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2665 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2666 2667 out: 2668 return ret; 2669 } 2670 2671 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2672 { 2673 2674 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2675 struct parser_exec_state s; 2676 int ret = 0; 2677 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2678 struct intel_vgpu_workload, 2679 wa_ctx); 2680 2681 /* ring base is page aligned */ 2682 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2683 I915_GTT_PAGE_SIZE))) 2684 return -EINVAL; 2685 2686 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2687 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2688 PAGE_SIZE); 2689 gma_head = wa_ctx->indirect_ctx.guest_gma; 2690 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2691 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2692 2693 s.buf_type = RING_BUFFER_INSTRUCTION; 2694 s.buf_addr_type = GTT_BUFFER; 2695 s.vgpu = workload->vgpu; 2696 s.ring_id = workload->ring_id; 2697 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2698 s.ring_size = ring_size; 2699 s.ring_head = gma_head; 2700 s.ring_tail = gma_tail; 2701 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2702 s.workload = workload; 2703 s.is_ctx_wa = true; 2704 2705 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2706 ret = -EINVAL; 2707 goto out; 2708 } 2709 2710 ret = ip_gma_set(&s, gma_head); 2711 if (ret) 2712 goto out; 2713 2714 ret = command_scan(&s, 0, ring_tail, 2715 wa_ctx->indirect_ctx.guest_gma, ring_size); 2716 out: 2717 return ret; 2718 } 2719 2720 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2721 { 2722 struct intel_vgpu *vgpu = workload->vgpu; 2723 struct intel_vgpu_submission *s = &vgpu->submission; 2724 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2725 void *shadow_ring_buffer_va; 2726 int ring_id = workload->ring_id; 2727 int ret; 2728 2729 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2730 2731 /* calculate workload ring buffer size */ 2732 workload->rb_len = (workload->rb_tail + guest_rb_size - 2733 workload->rb_head) % guest_rb_size; 2734 2735 gma_head = workload->rb_start + workload->rb_head; 2736 gma_tail = workload->rb_start + workload->rb_tail; 2737 gma_top = workload->rb_start + guest_rb_size; 2738 2739 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2740 void *p; 2741 2742 /* realloc the new ring buffer if needed */ 2743 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2744 GFP_KERNEL); 2745 if (!p) { 2746 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2747 return -ENOMEM; 2748 } 2749 s->ring_scan_buffer[ring_id] = p; 2750 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2751 } 2752 2753 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2754 2755 /* get shadow ring buffer va */ 2756 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2757 2758 /* head > tail --> copy head <-> top */ 2759 if (gma_head > gma_tail) { 2760 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2761 gma_head, gma_top, shadow_ring_buffer_va); 2762 if (ret < 0) { 2763 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2764 return ret; 2765 } 2766 shadow_ring_buffer_va += ret; 2767 gma_head = workload->rb_start; 2768 } 2769 2770 /* copy head or start <-> tail */ 2771 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2772 shadow_ring_buffer_va); 2773 if (ret < 0) { 2774 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2775 return ret; 2776 } 2777 return 0; 2778 } 2779 2780 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2781 { 2782 int ret; 2783 struct intel_vgpu *vgpu = workload->vgpu; 2784 2785 ret = shadow_workload_ring_buffer(workload); 2786 if (ret) { 2787 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2788 return ret; 2789 } 2790 2791 ret = scan_workload(workload); 2792 if (ret) { 2793 gvt_vgpu_err("scan workload error\n"); 2794 return ret; 2795 } 2796 return 0; 2797 } 2798 2799 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2800 { 2801 int ctx_size = wa_ctx->indirect_ctx.size; 2802 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2803 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2804 struct intel_vgpu_workload, 2805 wa_ctx); 2806 struct intel_vgpu *vgpu = workload->vgpu; 2807 struct drm_i915_gem_object *obj; 2808 int ret = 0; 2809 void *map; 2810 2811 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv, 2812 roundup(ctx_size + CACHELINE_BYTES, 2813 PAGE_SIZE)); 2814 if (IS_ERR(obj)) 2815 return PTR_ERR(obj); 2816 2817 /* get the va of the shadow batch buffer */ 2818 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2819 if (IS_ERR(map)) { 2820 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2821 ret = PTR_ERR(map); 2822 goto put_obj; 2823 } 2824 2825 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2826 if (ret) { 2827 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2828 goto unmap_src; 2829 } 2830 2831 ret = copy_gma_to_hva(workload->vgpu, 2832 workload->vgpu->gtt.ggtt_mm, 2833 guest_gma, guest_gma + ctx_size, 2834 map); 2835 if (ret < 0) { 2836 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2837 goto unmap_src; 2838 } 2839 2840 wa_ctx->indirect_ctx.obj = obj; 2841 wa_ctx->indirect_ctx.shadow_va = map; 2842 return 0; 2843 2844 unmap_src: 2845 i915_gem_object_unpin_map(obj); 2846 put_obj: 2847 i915_gem_object_put(obj); 2848 return ret; 2849 } 2850 2851 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2852 { 2853 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2854 unsigned char *bb_start_sva; 2855 2856 if (!wa_ctx->per_ctx.valid) 2857 return 0; 2858 2859 per_ctx_start[0] = 0x18800001; 2860 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2861 2862 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2863 wa_ctx->indirect_ctx.size; 2864 2865 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2866 2867 return 0; 2868 } 2869 2870 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2871 { 2872 int ret; 2873 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2874 struct intel_vgpu_workload, 2875 wa_ctx); 2876 struct intel_vgpu *vgpu = workload->vgpu; 2877 2878 if (wa_ctx->indirect_ctx.size == 0) 2879 return 0; 2880 2881 ret = shadow_indirect_ctx(wa_ctx); 2882 if (ret) { 2883 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2884 return ret; 2885 } 2886 2887 combine_wa_ctx(wa_ctx); 2888 2889 ret = scan_wa_ctx(wa_ctx); 2890 if (ret) { 2891 gvt_vgpu_err("scan wa ctx error\n"); 2892 return ret; 2893 } 2894 2895 return 0; 2896 } 2897 2898 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2899 unsigned int opcode, unsigned long rings) 2900 { 2901 struct cmd_info *info = NULL; 2902 unsigned int ring; 2903 2904 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2905 info = find_cmd_entry(gvt, opcode, ring); 2906 if (info) 2907 break; 2908 } 2909 return info; 2910 } 2911 2912 static int init_cmd_table(struct intel_gvt *gvt) 2913 { 2914 int i; 2915 struct cmd_entry *e; 2916 struct cmd_info *info; 2917 unsigned int gen_type; 2918 2919 gen_type = intel_gvt_get_device_type(gvt); 2920 2921 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2922 if (!(cmd_info[i].devices & gen_type)) 2923 continue; 2924 2925 e = kzalloc(sizeof(*e), GFP_KERNEL); 2926 if (!e) 2927 return -ENOMEM; 2928 2929 e->info = &cmd_info[i]; 2930 info = find_cmd_entry_any_ring(gvt, 2931 e->info->opcode, e->info->rings); 2932 if (info) { 2933 gvt_err("%s %s duplicated\n", e->info->name, 2934 info->name); 2935 kfree(e); 2936 return -EEXIST; 2937 } 2938 2939 INIT_HLIST_NODE(&e->hlist); 2940 add_cmd_entry(gvt, e); 2941 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2942 e->info->name, e->info->opcode, e->info->flag, 2943 e->info->devices, e->info->rings); 2944 } 2945 return 0; 2946 } 2947 2948 static void clean_cmd_table(struct intel_gvt *gvt) 2949 { 2950 struct hlist_node *tmp; 2951 struct cmd_entry *e; 2952 int i; 2953 2954 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2955 kfree(e); 2956 2957 hash_init(gvt->cmd_table); 2958 } 2959 2960 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2961 { 2962 clean_cmd_table(gvt); 2963 } 2964 2965 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2966 { 2967 int ret; 2968 2969 ret = init_cmd_table(gvt); 2970 if (ret) { 2971 intel_gvt_clean_cmd_parser(gvt); 2972 return ret; 2973 } 2974 return 0; 2975 } 2976