1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 180 181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 247 248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 259 260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 288 289 /* VCCP Command Parser */ 290 291 /* 292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 293 * git://anongit.freedesktop.org/vaapi/intel-driver 294 * src/i965_defines.h 295 * 296 */ 297 298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 299 (3 << 13 | \ 300 (pipeline) << 11 | \ 301 (op) << 8 | \ 302 (sub_opa) << 5 | \ 303 (sub_opb)) 304 305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 316 317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 318 319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 331 332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 337 338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 343 344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 347 348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 351 352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 353 (3 << 13 | \ 354 (pipeline) << 11 | \ 355 (op) << 8 | \ 356 (sub_opa) << 5 | \ 357 (sub_opb)) 358 359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 362 363 struct parser_exec_state; 364 365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 366 367 #define GVT_CMD_HASH_BITS 7 368 369 /* which DWords need address fix */ 370 #define ADDR_FIX_1(x1) (1 << (x1)) 371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 375 376 struct cmd_info { 377 char *name; 378 u32 opcode; 379 380 #define F_LEN_MASK (1U<<0) 381 #define F_LEN_CONST 1U 382 #define F_LEN_VAR 0U 383 384 /* 385 * command has its own ip advance logic 386 * e.g. MI_BATCH_START, MI_BATCH_END 387 */ 388 #define F_IP_ADVANCE_CUSTOM (1<<1) 389 390 #define F_POST_HANDLE (1<<2) 391 u32 flag; 392 393 #define R_RCS (1 << RCS) 394 #define R_VCS1 (1 << VCS) 395 #define R_VCS2 (1 << VCS2) 396 #define R_VCS (R_VCS1 | R_VCS2) 397 #define R_BCS (1 << BCS) 398 #define R_VECS (1 << VECS) 399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 400 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 401 uint16_t rings; 402 403 /* devices that support this cmd: SNB/IVB/HSW/... */ 404 uint16_t devices; 405 406 /* which DWords are address that need fix up. 407 * bit 0 means a 32-bit non address operand in command 408 * bit 1 means address operand, which could be 32-bit 409 * or 64-bit depending on different architectures.( 410 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 411 * No matter the address length, each address only takes 412 * one bit in the bitmap. 413 */ 414 uint16_t addr_bitmap; 415 416 /* flag == F_LEN_CONST : command length 417 * flag == F_LEN_VAR : length bias bits 418 * Note: length is in DWord 419 */ 420 uint8_t len; 421 422 parser_cmd_handler handler; 423 }; 424 425 struct cmd_entry { 426 struct hlist_node hlist; 427 struct cmd_info *info; 428 }; 429 430 enum { 431 RING_BUFFER_INSTRUCTION, 432 BATCH_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_2ND_LEVEL, 434 }; 435 436 enum { 437 GTT_BUFFER, 438 PPGTT_BUFFER 439 }; 440 441 struct parser_exec_state { 442 struct intel_vgpu *vgpu; 443 int ring_id; 444 445 int buf_type; 446 447 /* batch buffer address type */ 448 int buf_addr_type; 449 450 /* graphics memory address of ring buffer start */ 451 unsigned long ring_start; 452 unsigned long ring_size; 453 unsigned long ring_head; 454 unsigned long ring_tail; 455 456 /* instruction graphics memory address */ 457 unsigned long ip_gma; 458 459 /* mapped va of the instr_gma */ 460 void *ip_va; 461 void *rb_va; 462 463 void *ret_bb_va; 464 /* next instruction when return from batch buffer to ring buffer */ 465 unsigned long ret_ip_gma_ring; 466 467 /* next instruction when return from 2nd batch buffer to batch buffer */ 468 unsigned long ret_ip_gma_bb; 469 470 /* batch buffer address type (GTT or PPGTT) 471 * used when ret from 2nd level batch buffer 472 */ 473 int saved_buf_addr_type; 474 475 struct cmd_info *info; 476 477 struct intel_vgpu_workload *workload; 478 }; 479 480 #define gmadr_dw_number(s) \ 481 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 482 483 static unsigned long bypass_scan_mask = 0; 484 static bool bypass_batch_buffer_scan = true; 485 486 /* ring ALL, type = 0 */ 487 static struct sub_op_bits sub_op_mi[] = { 488 {31, 29}, 489 {28, 23}, 490 }; 491 492 static struct decode_info decode_info_mi = { 493 "MI", 494 OP_LEN_MI, 495 ARRAY_SIZE(sub_op_mi), 496 sub_op_mi, 497 }; 498 499 /* ring RCS, command type 2 */ 500 static struct sub_op_bits sub_op_2d[] = { 501 {31, 29}, 502 {28, 22}, 503 }; 504 505 static struct decode_info decode_info_2d = { 506 "2D", 507 OP_LEN_2D, 508 ARRAY_SIZE(sub_op_2d), 509 sub_op_2d, 510 }; 511 512 /* ring RCS, command type 3 */ 513 static struct sub_op_bits sub_op_3d_media[] = { 514 {31, 29}, 515 {28, 27}, 516 {26, 24}, 517 {23, 16}, 518 }; 519 520 static struct decode_info decode_info_3d_media = { 521 "3D_Media", 522 OP_LEN_3D_MEDIA, 523 ARRAY_SIZE(sub_op_3d_media), 524 sub_op_3d_media, 525 }; 526 527 /* ring VCS, command type 3 */ 528 static struct sub_op_bits sub_op_mfx_vc[] = { 529 {31, 29}, 530 {28, 27}, 531 {26, 24}, 532 {23, 21}, 533 {20, 16}, 534 }; 535 536 static struct decode_info decode_info_mfx_vc = { 537 "MFX_VC", 538 OP_LEN_MFX_VC, 539 ARRAY_SIZE(sub_op_mfx_vc), 540 sub_op_mfx_vc, 541 }; 542 543 /* ring VECS, command type 3 */ 544 static struct sub_op_bits sub_op_vebox[] = { 545 {31, 29}, 546 {28, 27}, 547 {26, 24}, 548 {23, 21}, 549 {20, 16}, 550 }; 551 552 static struct decode_info decode_info_vebox = { 553 "VEBOX", 554 OP_LEN_VEBOX, 555 ARRAY_SIZE(sub_op_vebox), 556 sub_op_vebox, 557 }; 558 559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 560 [RCS] = { 561 &decode_info_mi, 562 NULL, 563 NULL, 564 &decode_info_3d_media, 565 NULL, 566 NULL, 567 NULL, 568 NULL, 569 }, 570 571 [VCS] = { 572 &decode_info_mi, 573 NULL, 574 NULL, 575 &decode_info_mfx_vc, 576 NULL, 577 NULL, 578 NULL, 579 NULL, 580 }, 581 582 [BCS] = { 583 &decode_info_mi, 584 NULL, 585 &decode_info_2d, 586 NULL, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 }, 592 593 [VECS] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_vebox, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [VCS2] = { 605 &decode_info_mi, 606 NULL, 607 NULL, 608 &decode_info_mfx_vc, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 }; 615 616 static inline u32 get_opcode(u32 cmd, int ring_id) 617 { 618 struct decode_info *d_info; 619 620 if (ring_id >= I915_NUM_ENGINES) 621 return INVALID_OP; 622 623 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 624 if (d_info == NULL) 625 return INVALID_OP; 626 627 return cmd >> (32 - d_info->op_len); 628 } 629 630 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 631 unsigned int opcode, int ring_id) 632 { 633 struct cmd_entry *e; 634 635 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 636 if ((opcode == e->info->opcode) && 637 (e->info->rings & (1 << ring_id))) 638 return e->info; 639 } 640 return NULL; 641 } 642 643 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 644 u32 cmd, int ring_id) 645 { 646 u32 opcode; 647 648 opcode = get_opcode(cmd, ring_id); 649 if (opcode == INVALID_OP) 650 return NULL; 651 652 return find_cmd_entry(gvt, opcode, ring_id); 653 } 654 655 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 656 { 657 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 658 } 659 660 static inline void print_opcode(u32 cmd, int ring_id) 661 { 662 struct decode_info *d_info; 663 int i; 664 665 if (ring_id >= I915_NUM_ENGINES) 666 return; 667 668 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 669 if (d_info == NULL) 670 return; 671 672 gvt_err("opcode=0x%x %s sub_ops:", 673 cmd >> (32 - d_info->op_len), d_info->name); 674 675 for (i = 0; i < d_info->nr_sub_op; i++) 676 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 677 d_info->sub_op[i].low)); 678 679 pr_err("\n"); 680 } 681 682 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 683 { 684 return s->ip_va + (index << 2); 685 } 686 687 static inline u32 cmd_val(struct parser_exec_state *s, int index) 688 { 689 return *cmd_ptr(s, index); 690 } 691 692 static void parser_exec_state_dump(struct parser_exec_state *s) 693 { 694 int cnt = 0; 695 int i; 696 697 gvt_err(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 698 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 699 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 700 s->ring_head, s->ring_tail); 701 702 gvt_err(" %s %s ip_gma(%08lx) ", 703 s->buf_type == RING_BUFFER_INSTRUCTION ? 704 "RING_BUFFER" : "BATCH_BUFFER", 705 s->buf_addr_type == GTT_BUFFER ? 706 "GTT" : "PPGTT", s->ip_gma); 707 708 if (s->ip_va == NULL) { 709 gvt_err(" ip_va(NULL)"); 710 return; 711 } 712 713 gvt_err(" ip_va=%p: %08x %08x %08x %08x\n", 714 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 715 cmd_val(s, 2), cmd_val(s, 3)); 716 717 print_opcode(cmd_val(s, 0), s->ring_id); 718 719 /* print the whole page to trace */ 720 pr_err(" ip_va=%p: %08x %08x %08x %08x\n", 721 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 722 cmd_val(s, 2), cmd_val(s, 3)); 723 724 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 725 726 while (cnt < 1024) { 727 pr_err("ip_va=%p: ", s->ip_va); 728 for (i = 0; i < 8; i++) 729 pr_err("%08x ", cmd_val(s, i)); 730 pr_err("\n"); 731 732 s->ip_va += 8 * sizeof(u32); 733 cnt += 8; 734 } 735 } 736 737 static inline void update_ip_va(struct parser_exec_state *s) 738 { 739 unsigned long len = 0; 740 741 if (WARN_ON(s->ring_head == s->ring_tail)) 742 return; 743 744 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 745 unsigned long ring_top = s->ring_start + s->ring_size; 746 747 if (s->ring_head > s->ring_tail) { 748 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 749 len = (s->ip_gma - s->ring_head); 750 else if (s->ip_gma >= s->ring_start && 751 s->ip_gma <= s->ring_tail) 752 len = (ring_top - s->ring_head) + 753 (s->ip_gma - s->ring_start); 754 } else 755 len = (s->ip_gma - s->ring_head); 756 757 s->ip_va = s->rb_va + len; 758 } else {/* shadow batch buffer */ 759 s->ip_va = s->ret_bb_va; 760 } 761 } 762 763 static inline int ip_gma_set(struct parser_exec_state *s, 764 unsigned long ip_gma) 765 { 766 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 767 768 s->ip_gma = ip_gma; 769 update_ip_va(s); 770 return 0; 771 } 772 773 static inline int ip_gma_advance(struct parser_exec_state *s, 774 unsigned int dw_len) 775 { 776 s->ip_gma += (dw_len << 2); 777 778 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 779 if (s->ip_gma >= s->ring_start + s->ring_size) 780 s->ip_gma -= s->ring_size; 781 update_ip_va(s); 782 } else { 783 s->ip_va += (dw_len << 2); 784 } 785 786 return 0; 787 } 788 789 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 790 { 791 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 792 return info->len; 793 else 794 return (cmd & ((1U << info->len) - 1)) + 2; 795 return 0; 796 } 797 798 static inline int cmd_length(struct parser_exec_state *s) 799 { 800 return get_cmd_length(s->info, cmd_val(s, 0)); 801 } 802 803 /* do not remove this, some platform may need clflush here */ 804 #define patch_value(s, addr, val) do { \ 805 *addr = val; \ 806 } while (0) 807 808 static bool is_shadowed_mmio(unsigned int offset) 809 { 810 bool ret = false; 811 812 if ((offset == 0x2168) || /*BB current head register UDW */ 813 (offset == 0x2140) || /*BB current header register */ 814 (offset == 0x211c) || /*second BB header register UDW */ 815 (offset == 0x2114)) { /*second BB header register UDW */ 816 ret = true; 817 } 818 return ret; 819 } 820 821 static int cmd_reg_handler(struct parser_exec_state *s, 822 unsigned int offset, unsigned int index, char *cmd) 823 { 824 struct intel_vgpu *vgpu = s->vgpu; 825 struct intel_gvt *gvt = vgpu->gvt; 826 827 if (offset + 4 > gvt->device_info.mmio_size) { 828 gvt_err("%s access to (%x) outside of MMIO range\n", 829 cmd, offset); 830 return -EINVAL; 831 } 832 833 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 834 gvt_err("vgpu%d: %s access to non-render register (%x)\n", 835 s->vgpu->id, cmd, offset); 836 return 0; 837 } 838 839 if (is_shadowed_mmio(offset)) { 840 gvt_err("vgpu%d: found access of shadowed MMIO %x\n", 841 s->vgpu->id, offset); 842 return 0; 843 } 844 845 if (offset == i915_mmio_reg_offset(DERRMR) || 846 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 847 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 848 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 849 } 850 851 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 852 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 853 return 0; 854 } 855 856 #define cmd_reg(s, i) \ 857 (cmd_val(s, i) & GENMASK(22, 2)) 858 859 #define cmd_reg_inhibit(s, i) \ 860 (cmd_val(s, i) & GENMASK(22, 18)) 861 862 #define cmd_gma(s, i) \ 863 (cmd_val(s, i) & GENMASK(31, 2)) 864 865 #define cmd_gma_hi(s, i) \ 866 (cmd_val(s, i) & GENMASK(15, 0)) 867 868 static int cmd_handler_lri(struct parser_exec_state *s) 869 { 870 int i, ret = 0; 871 int cmd_len = cmd_length(s); 872 struct intel_gvt *gvt = s->vgpu->gvt; 873 874 for (i = 1; i < cmd_len; i += 2) { 875 if (IS_BROADWELL(gvt->dev_priv) && 876 (s->ring_id != RCS)) { 877 if (s->ring_id == BCS && 878 cmd_reg(s, i) == 879 i915_mmio_reg_offset(DERRMR)) 880 ret |= 0; 881 else 882 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0; 883 } 884 if (ret) 885 break; 886 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 887 } 888 return ret; 889 } 890 891 static int cmd_handler_lrr(struct parser_exec_state *s) 892 { 893 int i, ret = 0; 894 int cmd_len = cmd_length(s); 895 896 for (i = 1; i < cmd_len; i += 2) { 897 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 898 ret |= ((cmd_reg_inhibit(s, i) || 899 (cmd_reg_inhibit(s, i + 1)))) ? 900 -EINVAL : 0; 901 if (ret) 902 break; 903 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 904 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 905 } 906 return ret; 907 } 908 909 static inline int cmd_address_audit(struct parser_exec_state *s, 910 unsigned long guest_gma, int op_size, bool index_mode); 911 912 static int cmd_handler_lrm(struct parser_exec_state *s) 913 { 914 struct intel_gvt *gvt = s->vgpu->gvt; 915 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 916 unsigned long gma; 917 int i, ret = 0; 918 int cmd_len = cmd_length(s); 919 920 for (i = 1; i < cmd_len;) { 921 if (IS_BROADWELL(gvt->dev_priv)) 922 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0; 923 if (ret) 924 break; 925 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 926 if (cmd_val(s, 0) & (1 << 22)) { 927 gma = cmd_gma(s, i + 1); 928 if (gmadr_bytes == 8) 929 gma |= (cmd_gma_hi(s, i + 2)) << 32; 930 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 931 } 932 i += gmadr_dw_number(s) + 1; 933 } 934 return ret; 935 } 936 937 static int cmd_handler_srm(struct parser_exec_state *s) 938 { 939 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 940 unsigned long gma; 941 int i, ret = 0; 942 int cmd_len = cmd_length(s); 943 944 for (i = 1; i < cmd_len;) { 945 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 946 if (cmd_val(s, 0) & (1 << 22)) { 947 gma = cmd_gma(s, i + 1); 948 if (gmadr_bytes == 8) 949 gma |= (cmd_gma_hi(s, i + 2)) << 32; 950 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 951 } 952 i += gmadr_dw_number(s) + 1; 953 } 954 return ret; 955 } 956 957 struct cmd_interrupt_event { 958 int pipe_control_notify; 959 int mi_flush_dw; 960 int mi_user_interrupt; 961 }; 962 963 static struct cmd_interrupt_event cmd_interrupt_events[] = { 964 [RCS] = { 965 .pipe_control_notify = RCS_PIPE_CONTROL, 966 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 967 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 968 }, 969 [BCS] = { 970 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 971 .mi_flush_dw = BCS_MI_FLUSH_DW, 972 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 973 }, 974 [VCS] = { 975 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 976 .mi_flush_dw = VCS_MI_FLUSH_DW, 977 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 978 }, 979 [VCS2] = { 980 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 981 .mi_flush_dw = VCS2_MI_FLUSH_DW, 982 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 983 }, 984 [VECS] = { 985 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 986 .mi_flush_dw = VECS_MI_FLUSH_DW, 987 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 988 }, 989 }; 990 991 static int cmd_handler_pipe_control(struct parser_exec_state *s) 992 { 993 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 994 unsigned long gma; 995 bool index_mode = false; 996 unsigned int post_sync; 997 int ret = 0; 998 999 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1000 1001 /* LRI post sync */ 1002 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1003 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1004 /* post sync */ 1005 else if (post_sync) { 1006 if (post_sync == 2) 1007 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1008 else if (post_sync == 3) 1009 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1010 else if (post_sync == 1) { 1011 /* check ggtt*/ 1012 if ((cmd_val(s, 2) & (1 << 2))) { 1013 gma = cmd_val(s, 2) & GENMASK(31, 3); 1014 if (gmadr_bytes == 8) 1015 gma |= (cmd_gma_hi(s, 3)) << 32; 1016 /* Store Data Index */ 1017 if (cmd_val(s, 1) & (1 << 21)) 1018 index_mode = true; 1019 ret |= cmd_address_audit(s, gma, sizeof(u64), 1020 index_mode); 1021 } 1022 } 1023 } 1024 1025 if (ret) 1026 return ret; 1027 1028 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1029 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1030 s->workload->pending_events); 1031 return 0; 1032 } 1033 1034 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1035 { 1036 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1037 s->workload->pending_events); 1038 return 0; 1039 } 1040 1041 static int cmd_advance_default(struct parser_exec_state *s) 1042 { 1043 return ip_gma_advance(s, cmd_length(s)); 1044 } 1045 1046 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1047 { 1048 int ret; 1049 1050 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1051 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1052 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1053 s->buf_addr_type = s->saved_buf_addr_type; 1054 } else { 1055 s->buf_type = RING_BUFFER_INSTRUCTION; 1056 s->buf_addr_type = GTT_BUFFER; 1057 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1058 s->ret_ip_gma_ring -= s->ring_size; 1059 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1060 } 1061 return ret; 1062 } 1063 1064 struct mi_display_flip_command_info { 1065 int pipe; 1066 int plane; 1067 int event; 1068 i915_reg_t stride_reg; 1069 i915_reg_t ctrl_reg; 1070 i915_reg_t surf_reg; 1071 u64 stride_val; 1072 u64 tile_val; 1073 u64 surf_val; 1074 bool async_flip; 1075 }; 1076 1077 struct plane_code_mapping { 1078 int pipe; 1079 int plane; 1080 int event; 1081 }; 1082 1083 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1084 struct mi_display_flip_command_info *info) 1085 { 1086 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1087 struct plane_code_mapping gen8_plane_code[] = { 1088 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1089 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1090 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1091 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1092 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1093 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1094 }; 1095 u32 dword0, dword1, dword2; 1096 u32 v; 1097 1098 dword0 = cmd_val(s, 0); 1099 dword1 = cmd_val(s, 1); 1100 dword2 = cmd_val(s, 2); 1101 1102 v = (dword0 & GENMASK(21, 19)) >> 19; 1103 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1104 return -EINVAL; 1105 1106 info->pipe = gen8_plane_code[v].pipe; 1107 info->plane = gen8_plane_code[v].plane; 1108 info->event = gen8_plane_code[v].event; 1109 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1110 info->tile_val = (dword1 & 0x1); 1111 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1112 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1113 1114 if (info->plane == PLANE_A) { 1115 info->ctrl_reg = DSPCNTR(info->pipe); 1116 info->stride_reg = DSPSTRIDE(info->pipe); 1117 info->surf_reg = DSPSURF(info->pipe); 1118 } else if (info->plane == PLANE_B) { 1119 info->ctrl_reg = SPRCTL(info->pipe); 1120 info->stride_reg = SPRSTRIDE(info->pipe); 1121 info->surf_reg = SPRSURF(info->pipe); 1122 } else { 1123 WARN_ON(1); 1124 return -EINVAL; 1125 } 1126 return 0; 1127 } 1128 1129 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1130 struct mi_display_flip_command_info *info) 1131 { 1132 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1133 u32 dword0 = cmd_val(s, 0); 1134 u32 dword1 = cmd_val(s, 1); 1135 u32 dword2 = cmd_val(s, 2); 1136 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1137 1138 switch (plane) { 1139 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1140 info->pipe = PIPE_A; 1141 info->event = PRIMARY_A_FLIP_DONE; 1142 break; 1143 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1144 info->pipe = PIPE_B; 1145 info->event = PRIMARY_B_FLIP_DONE; 1146 break; 1147 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1148 info->pipe = PIPE_C; 1149 info->event = PRIMARY_C_FLIP_DONE; 1150 break; 1151 default: 1152 gvt_err("unknown plane code %d\n", plane); 1153 return -EINVAL; 1154 } 1155 1156 info->pipe = PRIMARY_PLANE; 1157 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1158 info->tile_val = (dword1 & GENMASK(2, 0)); 1159 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1160 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1161 1162 info->ctrl_reg = DSPCNTR(info->pipe); 1163 info->stride_reg = DSPSTRIDE(info->pipe); 1164 info->surf_reg = DSPSURF(info->pipe); 1165 1166 return 0; 1167 } 1168 1169 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1170 struct mi_display_flip_command_info *info) 1171 { 1172 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1173 u32 stride, tile; 1174 1175 if (!info->async_flip) 1176 return 0; 1177 1178 if (IS_SKYLAKE(dev_priv)) { 1179 stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1180 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & 1181 GENMASK(12, 10)) >> 10; 1182 } else { 1183 stride = (vgpu_vreg(s->vgpu, info->stride_reg) & 1184 GENMASK(15, 6)) >> 6; 1185 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1186 } 1187 1188 if (stride != info->stride_val) 1189 gvt_dbg_cmd("cannot change stride during async flip\n"); 1190 1191 if (tile != info->tile_val) 1192 gvt_dbg_cmd("cannot change tile during async flip\n"); 1193 1194 return 0; 1195 } 1196 1197 static int gen8_update_plane_mmio_from_mi_display_flip( 1198 struct parser_exec_state *s, 1199 struct mi_display_flip_command_info *info) 1200 { 1201 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1202 struct intel_vgpu *vgpu = s->vgpu; 1203 1204 set_mask_bits(&vgpu_vreg(vgpu, info->surf_reg), GENMASK(31, 12), 1205 info->surf_val << 12); 1206 if (IS_SKYLAKE(dev_priv)) { 1207 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(9, 0), 1208 info->stride_val); 1209 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(12, 10), 1210 info->tile_val << 10); 1211 } else { 1212 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(15, 6), 1213 info->stride_val << 6); 1214 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(10, 10), 1215 info->tile_val << 10); 1216 } 1217 1218 vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1219 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1220 return 0; 1221 } 1222 1223 static int decode_mi_display_flip(struct parser_exec_state *s, 1224 struct mi_display_flip_command_info *info) 1225 { 1226 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1227 1228 if (IS_BROADWELL(dev_priv)) 1229 return gen8_decode_mi_display_flip(s, info); 1230 if (IS_SKYLAKE(dev_priv)) 1231 return skl_decode_mi_display_flip(s, info); 1232 1233 return -ENODEV; 1234 } 1235 1236 static int check_mi_display_flip(struct parser_exec_state *s, 1237 struct mi_display_flip_command_info *info) 1238 { 1239 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1240 1241 if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv)) 1242 return gen8_check_mi_display_flip(s, info); 1243 return -ENODEV; 1244 } 1245 1246 static int update_plane_mmio_from_mi_display_flip( 1247 struct parser_exec_state *s, 1248 struct mi_display_flip_command_info *info) 1249 { 1250 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1251 1252 if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv)) 1253 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1254 return -ENODEV; 1255 } 1256 1257 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1258 { 1259 struct mi_display_flip_command_info info; 1260 int ret; 1261 int i; 1262 int len = cmd_length(s); 1263 1264 ret = decode_mi_display_flip(s, &info); 1265 if (ret) { 1266 gvt_err("fail to decode MI display flip command\n"); 1267 return ret; 1268 } 1269 1270 ret = check_mi_display_flip(s, &info); 1271 if (ret) { 1272 gvt_err("invalid MI display flip command\n"); 1273 return ret; 1274 } 1275 1276 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1277 if (ret) { 1278 gvt_err("fail to update plane mmio\n"); 1279 return ret; 1280 } 1281 1282 for (i = 0; i < len; i++) 1283 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1284 return 0; 1285 } 1286 1287 static bool is_wait_for_flip_pending(u32 cmd) 1288 { 1289 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1290 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1291 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1292 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1293 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1294 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1295 } 1296 1297 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1298 { 1299 u32 cmd = cmd_val(s, 0); 1300 1301 if (!is_wait_for_flip_pending(cmd)) 1302 return 0; 1303 1304 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1305 return 0; 1306 } 1307 1308 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1309 { 1310 unsigned long addr; 1311 unsigned long gma_high, gma_low; 1312 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1313 1314 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) 1315 return INTEL_GVT_INVALID_ADDR; 1316 1317 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1318 if (gmadr_bytes == 4) { 1319 addr = gma_low; 1320 } else { 1321 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1322 addr = (((unsigned long)gma_high) << 32) | gma_low; 1323 } 1324 return addr; 1325 } 1326 1327 static inline int cmd_address_audit(struct parser_exec_state *s, 1328 unsigned long guest_gma, int op_size, bool index_mode) 1329 { 1330 struct intel_vgpu *vgpu = s->vgpu; 1331 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1332 int i; 1333 int ret; 1334 1335 if (op_size > max_surface_size) { 1336 gvt_err("command address audit fail name %s\n", s->info->name); 1337 return -EINVAL; 1338 } 1339 1340 if (index_mode) { 1341 if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) { 1342 ret = -EINVAL; 1343 goto err; 1344 } 1345 } else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) || 1346 (!vgpu_gmadr_is_valid(s->vgpu, 1347 guest_gma + op_size - 1))) { 1348 ret = -EINVAL; 1349 goto err; 1350 } 1351 return 0; 1352 err: 1353 gvt_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1354 s->info->name, guest_gma, op_size); 1355 1356 pr_err("cmd dump: "); 1357 for (i = 0; i < cmd_length(s); i++) { 1358 if (!(i % 4)) 1359 pr_err("\n%08x ", cmd_val(s, i)); 1360 else 1361 pr_err("%08x ", cmd_val(s, i)); 1362 } 1363 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1364 vgpu->id, 1365 vgpu_aperture_gmadr_base(vgpu), 1366 vgpu_aperture_gmadr_end(vgpu), 1367 vgpu_hidden_gmadr_base(vgpu), 1368 vgpu_hidden_gmadr_end(vgpu)); 1369 return ret; 1370 } 1371 1372 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1373 { 1374 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1375 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1376 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1377 unsigned long gma, gma_low, gma_high; 1378 int ret = 0; 1379 1380 /* check ppggt */ 1381 if (!(cmd_val(s, 0) & (1 << 22))) 1382 return 0; 1383 1384 gma = cmd_val(s, 2) & GENMASK(31, 2); 1385 1386 if (gmadr_bytes == 8) { 1387 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1388 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1389 gma = (gma_high << 32) | gma_low; 1390 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1391 } 1392 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1393 return ret; 1394 } 1395 1396 static inline int unexpected_cmd(struct parser_exec_state *s) 1397 { 1398 gvt_err("vgpu%d: Unexpected %s in command buffer!\n", 1399 s->vgpu->id, s->info->name); 1400 return -EINVAL; 1401 } 1402 1403 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1404 { 1405 return unexpected_cmd(s); 1406 } 1407 1408 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1409 { 1410 return unexpected_cmd(s); 1411 } 1412 1413 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1414 { 1415 return unexpected_cmd(s); 1416 } 1417 1418 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1419 { 1420 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1421 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1422 sizeof(u32); 1423 unsigned long gma, gma_high; 1424 int ret = 0; 1425 1426 if (!(cmd_val(s, 0) & (1 << 22))) 1427 return ret; 1428 1429 gma = cmd_val(s, 1) & GENMASK(31, 2); 1430 if (gmadr_bytes == 8) { 1431 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1432 gma = (gma_high << 32) | gma; 1433 } 1434 ret = cmd_address_audit(s, gma, op_size, false); 1435 return ret; 1436 } 1437 1438 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1439 { 1440 return unexpected_cmd(s); 1441 } 1442 1443 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1444 { 1445 return unexpected_cmd(s); 1446 } 1447 1448 static int cmd_handler_mi_conditional_batch_buffer_end( 1449 struct parser_exec_state *s) 1450 { 1451 return unexpected_cmd(s); 1452 } 1453 1454 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1455 { 1456 return unexpected_cmd(s); 1457 } 1458 1459 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1460 { 1461 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1462 unsigned long gma; 1463 bool index_mode = false; 1464 int ret = 0; 1465 1466 /* Check post-sync and ppgtt bit */ 1467 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1468 gma = cmd_val(s, 1) & GENMASK(31, 3); 1469 if (gmadr_bytes == 8) 1470 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1471 /* Store Data Index */ 1472 if (cmd_val(s, 0) & (1 << 21)) 1473 index_mode = true; 1474 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1475 } 1476 /* Check notify bit */ 1477 if ((cmd_val(s, 0) & (1 << 8))) 1478 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1479 s->workload->pending_events); 1480 return ret; 1481 } 1482 1483 static void addr_type_update_snb(struct parser_exec_state *s) 1484 { 1485 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1486 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1487 s->buf_addr_type = PPGTT_BUFFER; 1488 } 1489 } 1490 1491 1492 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1493 unsigned long gma, unsigned long end_gma, void *va) 1494 { 1495 unsigned long copy_len, offset; 1496 unsigned long len = 0; 1497 unsigned long gpa; 1498 1499 while (gma != end_gma) { 1500 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1501 if (gpa == INTEL_GVT_INVALID_ADDR) { 1502 gvt_err("invalid gma address: %lx\n", gma); 1503 return -EFAULT; 1504 } 1505 1506 offset = gma & (GTT_PAGE_SIZE - 1); 1507 1508 copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ? 1509 GTT_PAGE_SIZE - offset : end_gma - gma; 1510 1511 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1512 1513 len += copy_len; 1514 gma += copy_len; 1515 } 1516 return 0; 1517 } 1518 1519 1520 /* 1521 * Check whether a batch buffer needs to be scanned. Currently 1522 * the only criteria is based on privilege. 1523 */ 1524 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1525 { 1526 struct intel_gvt *gvt = s->vgpu->gvt; 1527 1528 if (bypass_batch_buffer_scan) 1529 return 0; 1530 1531 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) { 1532 /* BDW decides privilege based on address space */ 1533 if (cmd_val(s, 0) & (1 << 8)) 1534 return 0; 1535 } 1536 return 1; 1537 } 1538 1539 static uint32_t find_bb_size(struct parser_exec_state *s) 1540 { 1541 unsigned long gma = 0; 1542 struct cmd_info *info; 1543 uint32_t bb_size = 0; 1544 uint32_t cmd_len = 0; 1545 bool met_bb_end = false; 1546 u32 cmd; 1547 1548 /* get the start gm address of the batch buffer */ 1549 gma = get_gma_bb_from_cmd(s, 1); 1550 cmd = cmd_val(s, 0); 1551 1552 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1553 if (info == NULL) { 1554 gvt_err("unknown cmd 0x%x, opcode=0x%x\n", 1555 cmd, get_opcode(cmd, s->ring_id)); 1556 return -EINVAL; 1557 } 1558 do { 1559 copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1560 gma, gma + 4, &cmd); 1561 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1562 if (info == NULL) { 1563 gvt_err("unknown cmd 0x%x, opcode=0x%x\n", 1564 cmd, get_opcode(cmd, s->ring_id)); 1565 return -EINVAL; 1566 } 1567 1568 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1569 met_bb_end = true; 1570 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1571 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) { 1572 /* chained batch buffer */ 1573 met_bb_end = true; 1574 } 1575 } 1576 cmd_len = get_cmd_length(info, cmd) << 2; 1577 bb_size += cmd_len; 1578 gma += cmd_len; 1579 1580 } while (!met_bb_end); 1581 1582 return bb_size; 1583 } 1584 1585 static int perform_bb_shadow(struct parser_exec_state *s) 1586 { 1587 struct intel_shadow_bb_entry *entry_obj; 1588 unsigned long gma = 0; 1589 uint32_t bb_size; 1590 void *dst = NULL; 1591 int ret = 0; 1592 1593 /* get the start gm address of the batch buffer */ 1594 gma = get_gma_bb_from_cmd(s, 1); 1595 1596 /* get the size of the batch buffer */ 1597 bb_size = find_bb_size(s); 1598 1599 /* allocate shadow batch buffer */ 1600 entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL); 1601 if (entry_obj == NULL) 1602 return -ENOMEM; 1603 1604 entry_obj->obj = 1605 i915_gem_object_create(&(s->vgpu->gvt->dev_priv->drm), 1606 roundup(bb_size, PAGE_SIZE)); 1607 if (IS_ERR(entry_obj->obj)) { 1608 ret = PTR_ERR(entry_obj->obj); 1609 goto free_entry; 1610 } 1611 entry_obj->len = bb_size; 1612 INIT_LIST_HEAD(&entry_obj->list); 1613 1614 dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB); 1615 if (IS_ERR(dst)) { 1616 ret = PTR_ERR(dst); 1617 goto put_obj; 1618 } 1619 1620 ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false); 1621 if (ret) { 1622 gvt_err("failed to set shadow batch to CPU\n"); 1623 goto unmap_src; 1624 } 1625 1626 entry_obj->va = dst; 1627 entry_obj->bb_start_cmd_va = s->ip_va; 1628 1629 /* copy batch buffer to shadow batch buffer*/ 1630 ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1631 gma, gma + bb_size, 1632 dst); 1633 if (ret) { 1634 gvt_err("fail to copy guest ring buffer\n"); 1635 goto unmap_src; 1636 } 1637 1638 list_add(&entry_obj->list, &s->workload->shadow_bb); 1639 /* 1640 * ip_va saves the virtual address of the shadow batch buffer, while 1641 * ip_gma saves the graphics address of the original batch buffer. 1642 * As the shadow batch buffer is just a copy from the originial one, 1643 * it should be right to use shadow batch buffer'va and original batch 1644 * buffer's gma in pair. After all, we don't want to pin the shadow 1645 * buffer here (too early). 1646 */ 1647 s->ip_va = dst; 1648 s->ip_gma = gma; 1649 1650 return 0; 1651 1652 unmap_src: 1653 i915_gem_object_unpin_map(entry_obj->obj); 1654 put_obj: 1655 i915_gem_object_put(entry_obj->obj); 1656 free_entry: 1657 kfree(entry_obj); 1658 return ret; 1659 } 1660 1661 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1662 { 1663 bool second_level; 1664 int ret = 0; 1665 1666 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1667 gvt_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1668 return -EINVAL; 1669 } 1670 1671 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1672 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1673 gvt_err("Jumping to 2nd level BB from RB is not allowed\n"); 1674 return -EINVAL; 1675 } 1676 1677 s->saved_buf_addr_type = s->buf_addr_type; 1678 addr_type_update_snb(s); 1679 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1680 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1681 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1682 } else if (second_level) { 1683 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1684 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1685 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1686 } 1687 1688 if (batch_buffer_needs_scan(s)) { 1689 ret = perform_bb_shadow(s); 1690 if (ret < 0) 1691 gvt_err("invalid shadow batch buffer\n"); 1692 } else { 1693 /* emulate a batch buffer end to do return right */ 1694 ret = cmd_handler_mi_batch_buffer_end(s); 1695 if (ret < 0) 1696 return ret; 1697 } 1698 1699 return ret; 1700 } 1701 1702 static struct cmd_info cmd_info[] = { 1703 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1704 1705 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1706 0, 1, NULL}, 1707 1708 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1709 0, 1, cmd_handler_mi_user_interrupt}, 1710 1711 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1712 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1713 1714 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1715 1716 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1717 NULL}, 1718 1719 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1720 NULL}, 1721 1722 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1723 NULL}, 1724 1725 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1726 NULL}, 1727 1728 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1729 D_ALL, 0, 1, NULL}, 1730 1731 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1732 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1733 cmd_handler_mi_batch_buffer_end}, 1734 1735 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1736 0, 1, NULL}, 1737 1738 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1739 NULL}, 1740 1741 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1742 D_ALL, 0, 1, NULL}, 1743 1744 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1745 NULL}, 1746 1747 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1748 NULL}, 1749 1750 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1751 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1752 1753 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1754 0, 8, NULL}, 1755 1756 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1757 1758 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1759 1760 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1761 D_BDW_PLUS, 0, 8, NULL}, 1762 1763 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1764 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1765 1766 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1767 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1768 1769 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1770 0, 8, cmd_handler_mi_store_data_index}, 1771 1772 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1773 D_ALL, 0, 8, cmd_handler_lri}, 1774 1775 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1776 cmd_handler_mi_update_gtt}, 1777 1778 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1779 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1780 1781 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1782 cmd_handler_mi_flush_dw}, 1783 1784 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1785 10, cmd_handler_mi_clflush}, 1786 1787 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1788 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1789 1790 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1791 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1792 1793 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1794 D_ALL, 0, 8, cmd_handler_lrr}, 1795 1796 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1797 D_ALL, 0, 8, NULL}, 1798 1799 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1800 ADDR_FIX_1(2), 8, NULL}, 1801 1802 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1803 ADDR_FIX_1(2), 8, NULL}, 1804 1805 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1806 8, cmd_handler_mi_op_2e}, 1807 1808 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1809 8, cmd_handler_mi_op_2f}, 1810 1811 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1812 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1813 cmd_handler_mi_batch_buffer_start}, 1814 1815 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1816 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1817 cmd_handler_mi_conditional_batch_buffer_end}, 1818 1819 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1820 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1821 1822 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1823 ADDR_FIX_2(4, 7), 8, NULL}, 1824 1825 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1826 0, 8, NULL}, 1827 1828 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1829 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1830 1831 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1832 1833 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1834 0, 8, NULL}, 1835 1836 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1837 ADDR_FIX_1(3), 8, NULL}, 1838 1839 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1840 D_ALL, 0, 8, NULL}, 1841 1842 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1843 ADDR_FIX_1(4), 8, NULL}, 1844 1845 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1846 ADDR_FIX_2(4, 5), 8, NULL}, 1847 1848 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1849 ADDR_FIX_1(4), 8, NULL}, 1850 1851 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1852 ADDR_FIX_2(4, 7), 8, NULL}, 1853 1854 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1855 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1856 1857 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1858 1859 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 1860 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 1861 1862 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 1863 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1864 1865 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 1866 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 1867 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1868 1869 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 1870 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1871 1872 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 1873 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1874 1875 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 1876 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1877 1878 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 1879 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1880 1881 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 1882 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1883 1884 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 1885 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 1886 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1887 1888 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 1889 ADDR_FIX_2(4, 5), 8, NULL}, 1890 1891 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 1892 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1893 1894 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 1895 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 1896 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1897 1898 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 1899 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 1900 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1901 1902 {"3DSTATE_BLEND_STATE_POINTERS", 1903 OP_3DSTATE_BLEND_STATE_POINTERS, 1904 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1905 1906 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 1907 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 1908 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1909 1910 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 1911 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 1912 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1913 1914 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 1915 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 1916 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1917 1918 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 1919 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 1920 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1921 1922 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 1923 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 1924 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1925 1926 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 1927 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 1928 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1929 1930 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 1931 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 1932 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1933 1934 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 1935 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 1936 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1937 1938 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 1939 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 1940 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1941 1942 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 1943 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 1944 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1945 1946 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 1947 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 1948 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1949 1950 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 1951 0, 8, NULL}, 1952 1953 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 1954 0, 8, NULL}, 1955 1956 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 1957 0, 8, NULL}, 1958 1959 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 1960 0, 8, NULL}, 1961 1962 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 1963 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1964 1965 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 1966 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1967 1968 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 1969 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1970 1971 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 1972 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1973 1974 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 1975 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1976 1977 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 1978 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 1979 1980 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 1981 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 1982 1983 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 1984 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1985 1986 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 1987 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1988 1989 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 1990 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1991 1992 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 1993 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1994 1995 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 1996 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1997 1998 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 1999 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2000 2001 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2002 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2003 2004 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2005 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2006 2007 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2008 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2009 2010 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2011 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2012 2013 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2014 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2015 2016 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2017 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2018 2019 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2020 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2021 2022 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2023 D_BDW_PLUS, 0, 8, NULL}, 2024 2025 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2026 NULL}, 2027 2028 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2029 D_BDW_PLUS, 0, 8, NULL}, 2030 2031 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2032 D_BDW_PLUS, 0, 8, NULL}, 2033 2034 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2035 8, NULL}, 2036 2037 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2038 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2039 2040 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2041 8, NULL}, 2042 2043 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2044 NULL}, 2045 2046 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2047 NULL}, 2048 2049 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2050 NULL}, 2051 2052 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2053 D_BDW_PLUS, 0, 8, NULL}, 2054 2055 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2056 R_RCS, D_ALL, 0, 8, NULL}, 2057 2058 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2059 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2060 2061 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2062 R_RCS, D_ALL, 0, 1, NULL}, 2063 2064 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2065 2066 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2067 R_RCS, D_ALL, 0, 8, NULL}, 2068 2069 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2070 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2071 2072 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2073 2074 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2075 2076 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2077 2078 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2079 D_BDW_PLUS, 0, 8, NULL}, 2080 2081 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2082 D_BDW_PLUS, 0, 8, NULL}, 2083 2084 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2085 D_ALL, 0, 8, NULL}, 2086 2087 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2088 D_BDW_PLUS, 0, 8, NULL}, 2089 2090 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2091 D_BDW_PLUS, 0, 8, NULL}, 2092 2093 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2094 2095 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2096 2097 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2098 2099 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2100 D_ALL, 0, 8, NULL}, 2101 2102 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2103 2104 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2105 2106 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2107 R_RCS, D_ALL, 0, 8, NULL}, 2108 2109 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2110 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2111 2112 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2113 0, 8, NULL}, 2114 2115 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2116 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2117 2118 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2119 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2120 2121 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2122 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2123 2124 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2125 D_ALL, 0, 8, NULL}, 2126 2127 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2128 D_ALL, 0, 8, NULL}, 2129 2130 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2131 D_ALL, 0, 8, NULL}, 2132 2133 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2134 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2135 2136 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2137 D_BDW_PLUS, 0, 8, NULL}, 2138 2139 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2140 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2141 2142 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2143 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2144 2145 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2146 R_RCS, D_ALL, 0, 8, NULL}, 2147 2148 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2149 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2150 2151 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2152 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2153 2154 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2155 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2156 2157 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2158 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2159 2160 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2161 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2162 2163 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2164 R_RCS, D_ALL, 0, 8, NULL}, 2165 2166 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2167 D_ALL, 0, 9, NULL}, 2168 2169 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2170 ADDR_FIX_2(2, 4), 8, NULL}, 2171 2172 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2173 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2174 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2175 2176 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2177 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2178 2179 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2180 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2181 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2182 2183 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2184 D_BDW_PLUS, 0, 8, NULL}, 2185 2186 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2187 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2188 2189 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2190 2191 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2192 1, NULL}, 2193 2194 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2195 ADDR_FIX_1(1), 8, NULL}, 2196 2197 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2198 2199 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2200 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2201 2202 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2203 ADDR_FIX_1(1), 8, NULL}, 2204 2205 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2206 2207 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2208 2209 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2210 0, 8, NULL}, 2211 2212 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2213 D_SKL_PLUS, 0, 8, NULL}, 2214 2215 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2216 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2217 2218 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2219 0, 16, NULL}, 2220 2221 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2222 0, 16, NULL}, 2223 2224 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2225 2226 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2227 0, 16, NULL}, 2228 2229 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2230 0, 16, NULL}, 2231 2232 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2233 0, 16, NULL}, 2234 2235 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2236 0, 8, NULL}, 2237 2238 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2239 NULL}, 2240 2241 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2242 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2243 2244 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2245 R_VCS, D_ALL, 0, 12, NULL}, 2246 2247 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2248 R_VCS, D_ALL, 0, 12, NULL}, 2249 2250 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2251 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2252 2253 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2254 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2255 2256 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2257 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2258 2259 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2260 2261 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2262 R_VCS, D_ALL, 0, 12, NULL}, 2263 2264 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2265 R_VCS, D_ALL, 0, 12, NULL}, 2266 2267 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2268 R_VCS, D_ALL, 0, 12, NULL}, 2269 2270 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2271 R_VCS, D_ALL, 0, 12, NULL}, 2272 2273 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2274 R_VCS, D_ALL, 0, 12, NULL}, 2275 2276 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2277 R_VCS, D_ALL, 0, 12, NULL}, 2278 2279 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2280 R_VCS, D_ALL, 0, 6, NULL}, 2281 2282 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2283 R_VCS, D_ALL, 0, 12, NULL}, 2284 2285 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2286 R_VCS, D_ALL, 0, 12, NULL}, 2287 2288 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2289 R_VCS, D_ALL, 0, 12, NULL}, 2290 2291 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2292 R_VCS, D_ALL, 0, 12, NULL}, 2293 2294 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2295 R_VCS, D_ALL, 0, 12, NULL}, 2296 2297 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2298 R_VCS, D_ALL, 0, 12, NULL}, 2299 2300 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2301 R_VCS, D_ALL, 0, 12, NULL}, 2302 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2303 R_VCS, D_ALL, 0, 12, NULL}, 2304 2305 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2306 R_VCS, D_ALL, 0, 12, NULL}, 2307 2308 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2309 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2310 2311 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2312 R_VCS, D_ALL, 0, 12, NULL}, 2313 2314 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2315 R_VCS, D_ALL, 0, 12, NULL}, 2316 2317 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2318 R_VCS, D_ALL, 0, 12, NULL}, 2319 2320 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2321 R_VCS, D_ALL, 0, 12, NULL}, 2322 2323 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2324 R_VCS, D_ALL, 0, 12, NULL}, 2325 2326 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2327 R_VCS, D_ALL, 0, 12, NULL}, 2328 2329 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2330 R_VCS, D_ALL, 0, 12, NULL}, 2331 2332 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2333 R_VCS, D_ALL, 0, 12, NULL}, 2334 2335 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2336 R_VCS, D_ALL, 0, 12, NULL}, 2337 2338 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2339 R_VCS, D_ALL, 0, 12, NULL}, 2340 2341 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2342 R_VCS, D_ALL, 0, 12, NULL}, 2343 2344 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2345 0, 16, NULL}, 2346 2347 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2348 2349 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2350 2351 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2352 R_VCS, D_ALL, 0, 12, NULL}, 2353 2354 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2355 R_VCS, D_ALL, 0, 12, NULL}, 2356 2357 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2358 R_VCS, D_ALL, 0, 12, NULL}, 2359 2360 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2361 2362 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2363 0, 12, NULL}, 2364 2365 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2366 0, 20, NULL}, 2367 }; 2368 2369 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2370 { 2371 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2372 } 2373 2374 #define GVT_MAX_CMD_LENGTH 20 /* In Dword */ 2375 2376 static void trace_cs_command(struct parser_exec_state *s, 2377 cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler) 2378 { 2379 /* This buffer is used by ftrace to store all commands copied from 2380 * guest gma space. Sometimes commands can cross pages, this should 2381 * not be handled in ftrace logic. So this is just used as a 2382 * 'bounce buffer' 2383 */ 2384 u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH]; 2385 int i; 2386 u32 cmd_len = cmd_length(s); 2387 /* The chosen value of GVT_MAX_CMD_LENGTH are just based on 2388 * following two considerations: 2389 * 1) From observation, most common ring commands is not that long. 2390 * But there are execeptions. So it indeed makes sence to observe 2391 * longer commands. 2392 * 2) From the performance and debugging point of view, dumping all 2393 * contents of very commands is not necessary. 2394 * We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in 2395 * future for performance considerations. 2396 */ 2397 if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) { 2398 gvt_dbg_cmd("cmd length exceed tracing limitation!\n"); 2399 cmd_len = GVT_MAX_CMD_LENGTH; 2400 } 2401 2402 for (i = 0; i < cmd_len; i++) 2403 cmd_trace_buf[i] = cmd_val(s, i); 2404 2405 trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf, 2406 cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION, 2407 cost_pre_cmd_handler, cost_cmd_handler); 2408 } 2409 2410 /* call the cmd handler, and advance ip */ 2411 static int cmd_parser_exec(struct parser_exec_state *s) 2412 { 2413 struct cmd_info *info; 2414 u32 cmd; 2415 int ret = 0; 2416 cycles_t t0, t1, t2; 2417 struct parser_exec_state s_before_advance_custom; 2418 2419 t0 = get_cycles(); 2420 2421 cmd = cmd_val(s, 0); 2422 2423 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2424 if (info == NULL) { 2425 gvt_err("unknown cmd 0x%x, opcode=0x%x\n", 2426 cmd, get_opcode(cmd, s->ring_id)); 2427 return -EINVAL; 2428 } 2429 2430 gvt_dbg_cmd("%s\n", info->name); 2431 2432 s->info = info; 2433 2434 t1 = get_cycles(); 2435 2436 memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state)); 2437 2438 if (info->handler) { 2439 ret = info->handler(s); 2440 if (ret < 0) { 2441 gvt_err("%s handler error\n", info->name); 2442 return ret; 2443 } 2444 } 2445 t2 = get_cycles(); 2446 2447 trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1); 2448 2449 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2450 ret = cmd_advance_default(s); 2451 if (ret) { 2452 gvt_err("%s IP advance error\n", info->name); 2453 return ret; 2454 } 2455 } 2456 return 0; 2457 } 2458 2459 static inline bool gma_out_of_range(unsigned long gma, 2460 unsigned long gma_head, unsigned int gma_tail) 2461 { 2462 if (gma_tail >= gma_head) 2463 return (gma < gma_head) || (gma > gma_tail); 2464 else 2465 return (gma > gma_tail) && (gma < gma_head); 2466 } 2467 2468 static int command_scan(struct parser_exec_state *s, 2469 unsigned long rb_head, unsigned long rb_tail, 2470 unsigned long rb_start, unsigned long rb_len) 2471 { 2472 2473 unsigned long gma_head, gma_tail, gma_bottom; 2474 int ret = 0; 2475 2476 gma_head = rb_start + rb_head; 2477 gma_tail = rb_start + rb_tail; 2478 gma_bottom = rb_start + rb_len; 2479 2480 gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail); 2481 2482 while (s->ip_gma != gma_tail) { 2483 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2484 if (!(s->ip_gma >= rb_start) || 2485 !(s->ip_gma < gma_bottom)) { 2486 gvt_err("ip_gma %lx out of ring scope." 2487 "(base:0x%lx, bottom: 0x%lx)\n", 2488 s->ip_gma, rb_start, 2489 gma_bottom); 2490 parser_exec_state_dump(s); 2491 return -EINVAL; 2492 } 2493 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2494 gvt_err("ip_gma %lx out of range." 2495 "base 0x%lx head 0x%lx tail 0x%lx\n", 2496 s->ip_gma, rb_start, 2497 rb_head, rb_tail); 2498 parser_exec_state_dump(s); 2499 break; 2500 } 2501 } 2502 ret = cmd_parser_exec(s); 2503 if (ret) { 2504 gvt_err("cmd parser error\n"); 2505 parser_exec_state_dump(s); 2506 break; 2507 } 2508 } 2509 2510 gvt_dbg_cmd("scan_end\n"); 2511 2512 return ret; 2513 } 2514 2515 static int scan_workload(struct intel_vgpu_workload *workload) 2516 { 2517 unsigned long gma_head, gma_tail, gma_bottom; 2518 struct parser_exec_state s; 2519 int ret = 0; 2520 2521 /* ring base is page aligned */ 2522 if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE))) 2523 return -EINVAL; 2524 2525 gma_head = workload->rb_start + workload->rb_head; 2526 gma_tail = workload->rb_start + workload->rb_tail; 2527 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2528 2529 s.buf_type = RING_BUFFER_INSTRUCTION; 2530 s.buf_addr_type = GTT_BUFFER; 2531 s.vgpu = workload->vgpu; 2532 s.ring_id = workload->ring_id; 2533 s.ring_start = workload->rb_start; 2534 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2535 s.ring_head = gma_head; 2536 s.ring_tail = gma_tail; 2537 s.rb_va = workload->shadow_ring_buffer_va; 2538 s.workload = workload; 2539 2540 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2541 gma_head == gma_tail) 2542 return 0; 2543 2544 ret = ip_gma_set(&s, gma_head); 2545 if (ret) 2546 goto out; 2547 2548 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2549 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2550 2551 out: 2552 return ret; 2553 } 2554 2555 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2556 { 2557 2558 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2559 struct parser_exec_state s; 2560 int ret = 0; 2561 2562 /* ring base is page aligned */ 2563 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE))) 2564 return -EINVAL; 2565 2566 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2567 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2568 PAGE_SIZE); 2569 gma_head = wa_ctx->indirect_ctx.guest_gma; 2570 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2571 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2572 2573 s.buf_type = RING_BUFFER_INSTRUCTION; 2574 s.buf_addr_type = GTT_BUFFER; 2575 s.vgpu = wa_ctx->workload->vgpu; 2576 s.ring_id = wa_ctx->workload->ring_id; 2577 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2578 s.ring_size = ring_size; 2579 s.ring_head = gma_head; 2580 s.ring_tail = gma_tail; 2581 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2582 s.workload = wa_ctx->workload; 2583 2584 ret = ip_gma_set(&s, gma_head); 2585 if (ret) 2586 goto out; 2587 2588 ret = command_scan(&s, 0, ring_tail, 2589 wa_ctx->indirect_ctx.guest_gma, ring_size); 2590 out: 2591 return ret; 2592 } 2593 2594 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2595 { 2596 struct intel_vgpu *vgpu = workload->vgpu; 2597 int ring_id = workload->ring_id; 2598 struct i915_gem_context *shadow_ctx = vgpu->shadow_ctx; 2599 struct intel_ring *ring = shadow_ctx->engine[ring_id].ring; 2600 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2601 unsigned int copy_len = 0; 2602 int ret; 2603 2604 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2605 2606 /* calculate workload ring buffer size */ 2607 workload->rb_len = (workload->rb_tail + guest_rb_size - 2608 workload->rb_head) % guest_rb_size; 2609 2610 gma_head = workload->rb_start + workload->rb_head; 2611 gma_tail = workload->rb_start + workload->rb_tail; 2612 gma_top = workload->rb_start + guest_rb_size; 2613 2614 /* allocate shadow ring buffer */ 2615 ret = intel_ring_begin(workload->req, workload->rb_len / 4); 2616 if (ret) 2617 return ret; 2618 2619 /* get shadow ring buffer va */ 2620 workload->shadow_ring_buffer_va = ring->vaddr + ring->tail; 2621 2622 /* head > tail --> copy head <-> top */ 2623 if (gma_head > gma_tail) { 2624 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2625 gma_head, gma_top, 2626 workload->shadow_ring_buffer_va); 2627 if (ret) { 2628 gvt_err("fail to copy guest ring buffer\n"); 2629 return ret; 2630 } 2631 copy_len = gma_top - gma_head; 2632 gma_head = workload->rb_start; 2633 } 2634 2635 /* copy head or start <-> tail */ 2636 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2637 gma_head, gma_tail, 2638 workload->shadow_ring_buffer_va + copy_len); 2639 if (ret) { 2640 gvt_err("fail to copy guest ring buffer\n"); 2641 return ret; 2642 } 2643 ring->tail += workload->rb_len; 2644 intel_ring_advance(ring); 2645 return 0; 2646 } 2647 2648 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 2649 { 2650 int ret; 2651 2652 ret = shadow_workload_ring_buffer(workload); 2653 if (ret) { 2654 gvt_err("fail to shadow workload ring_buffer\n"); 2655 return ret; 2656 } 2657 2658 ret = scan_workload(workload); 2659 if (ret) { 2660 gvt_err("scan workload error\n"); 2661 return ret; 2662 } 2663 return 0; 2664 } 2665 2666 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2667 { 2668 struct drm_device *dev = &wa_ctx->workload->vgpu->gvt->dev_priv->drm; 2669 int ctx_size = wa_ctx->indirect_ctx.size; 2670 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2671 struct drm_i915_gem_object *obj; 2672 int ret = 0; 2673 void *map; 2674 2675 obj = i915_gem_object_create(dev, 2676 roundup(ctx_size + CACHELINE_BYTES, 2677 PAGE_SIZE)); 2678 if (IS_ERR(obj)) 2679 return PTR_ERR(obj); 2680 2681 /* get the va of the shadow batch buffer */ 2682 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2683 if (IS_ERR(map)) { 2684 gvt_err("failed to vmap shadow indirect ctx\n"); 2685 ret = PTR_ERR(map); 2686 goto put_obj; 2687 } 2688 2689 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2690 if (ret) { 2691 gvt_err("failed to set shadow indirect ctx to CPU\n"); 2692 goto unmap_src; 2693 } 2694 2695 ret = copy_gma_to_hva(wa_ctx->workload->vgpu, 2696 wa_ctx->workload->vgpu->gtt.ggtt_mm, 2697 guest_gma, guest_gma + ctx_size, 2698 map); 2699 if (ret) { 2700 gvt_err("fail to copy guest indirect ctx\n"); 2701 goto unmap_src; 2702 } 2703 2704 wa_ctx->indirect_ctx.obj = obj; 2705 wa_ctx->indirect_ctx.shadow_va = map; 2706 return 0; 2707 2708 unmap_src: 2709 i915_gem_object_unpin_map(obj); 2710 put_obj: 2711 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 2712 return ret; 2713 } 2714 2715 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2716 { 2717 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2718 unsigned char *bb_start_sva; 2719 2720 per_ctx_start[0] = 0x18800001; 2721 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2722 2723 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2724 wa_ctx->indirect_ctx.size; 2725 2726 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2727 2728 return 0; 2729 } 2730 2731 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2732 { 2733 int ret; 2734 2735 if (wa_ctx->indirect_ctx.size == 0) 2736 return 0; 2737 2738 ret = shadow_indirect_ctx(wa_ctx); 2739 if (ret) { 2740 gvt_err("fail to shadow indirect ctx\n"); 2741 return ret; 2742 } 2743 2744 combine_wa_ctx(wa_ctx); 2745 2746 ret = scan_wa_ctx(wa_ctx); 2747 if (ret) { 2748 gvt_err("scan wa ctx error\n"); 2749 return ret; 2750 } 2751 2752 return 0; 2753 } 2754 2755 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2756 unsigned int opcode, int rings) 2757 { 2758 struct cmd_info *info = NULL; 2759 unsigned int ring; 2760 2761 for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) { 2762 info = find_cmd_entry(gvt, opcode, ring); 2763 if (info) 2764 break; 2765 } 2766 return info; 2767 } 2768 2769 static int init_cmd_table(struct intel_gvt *gvt) 2770 { 2771 int i; 2772 struct cmd_entry *e; 2773 struct cmd_info *info; 2774 unsigned int gen_type; 2775 2776 gen_type = intel_gvt_get_device_type(gvt); 2777 2778 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2779 if (!(cmd_info[i].devices & gen_type)) 2780 continue; 2781 2782 e = kzalloc(sizeof(*e), GFP_KERNEL); 2783 if (!e) 2784 return -ENOMEM; 2785 2786 e->info = &cmd_info[i]; 2787 info = find_cmd_entry_any_ring(gvt, 2788 e->info->opcode, e->info->rings); 2789 if (info) { 2790 gvt_err("%s %s duplicated\n", e->info->name, 2791 info->name); 2792 return -EEXIST; 2793 } 2794 2795 INIT_HLIST_NODE(&e->hlist); 2796 add_cmd_entry(gvt, e); 2797 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2798 e->info->name, e->info->opcode, e->info->flag, 2799 e->info->devices, e->info->rings); 2800 } 2801 return 0; 2802 } 2803 2804 static void clean_cmd_table(struct intel_gvt *gvt) 2805 { 2806 struct hlist_node *tmp; 2807 struct cmd_entry *e; 2808 int i; 2809 2810 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2811 kfree(e); 2812 2813 hash_init(gvt->cmd_table); 2814 } 2815 2816 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2817 { 2818 clean_cmd_table(gvt); 2819 } 2820 2821 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2822 { 2823 int ret; 2824 2825 ret = init_cmd_table(gvt); 2826 if (ret) { 2827 intel_gvt_clean_cmd_parser(gvt); 2828 return ret; 2829 } 2830 return 0; 2831 } 2832