1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_ring.h" 42 #include "gvt.h" 43 #include "i915_pvinfo.h" 44 #include "trace.h" 45 46 #define INVALID_OP (~0U) 47 48 #define OP_LEN_MI 9 49 #define OP_LEN_2D 10 50 #define OP_LEN_3D_MEDIA 16 51 #define OP_LEN_MFX_VC 16 52 #define OP_LEN_VEBOX 16 53 54 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 55 56 struct sub_op_bits { 57 int hi; 58 int low; 59 }; 60 struct decode_info { 61 const char *name; 62 int op_len; 63 int nr_sub_op; 64 const struct sub_op_bits *sub_op; 65 }; 66 67 #define MAX_CMD_BUDGET 0x7fffffff 68 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 69 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 70 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 71 72 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 73 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 74 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 75 76 /* Render Command Map */ 77 78 /* MI_* command Opcode (28:23) */ 79 #define OP_MI_NOOP 0x0 80 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 81 #define OP_MI_USER_INTERRUPT 0x2 82 #define OP_MI_WAIT_FOR_EVENT 0x3 83 #define OP_MI_FLUSH 0x4 84 #define OP_MI_ARB_CHECK 0x5 85 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 86 #define OP_MI_REPORT_HEAD 0x7 87 #define OP_MI_ARB_ON_OFF 0x8 88 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 89 #define OP_MI_BATCH_BUFFER_END 0xA 90 #define OP_MI_SUSPEND_FLUSH 0xB 91 #define OP_MI_PREDICATE 0xC /* IVB+ */ 92 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 93 #define OP_MI_SET_APPID 0xE /* IVB+ */ 94 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 95 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 96 #define OP_MI_DISPLAY_FLIP 0x14 97 #define OP_MI_SEMAPHORE_MBOX 0x16 98 #define OP_MI_SET_CONTEXT 0x18 99 #define OP_MI_MATH 0x1A 100 #define OP_MI_URB_CLEAR 0x19 101 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 102 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 103 104 #define OP_MI_STORE_DATA_IMM 0x20 105 #define OP_MI_STORE_DATA_INDEX 0x21 106 #define OP_MI_LOAD_REGISTER_IMM 0x22 107 #define OP_MI_UPDATE_GTT 0x23 108 #define OP_MI_STORE_REGISTER_MEM 0x24 109 #define OP_MI_FLUSH_DW 0x26 110 #define OP_MI_CLFLUSH 0x27 111 #define OP_MI_REPORT_PERF_COUNT 0x28 112 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 113 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 114 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 115 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 116 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 117 #define OP_MI_2E 0x2E /* BDW+ */ 118 #define OP_MI_2F 0x2F /* BDW+ */ 119 #define OP_MI_BATCH_BUFFER_START 0x31 120 121 /* Bit definition for dword 0 */ 122 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 123 124 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 125 126 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 127 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 128 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 129 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 130 131 /* 2D command: Opcode (28:22) */ 132 #define OP_2D(x) ((2<<7) | x) 133 134 #define OP_XY_SETUP_BLT OP_2D(0x1) 135 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 136 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 137 #define OP_XY_PIXEL_BLT OP_2D(0x24) 138 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 139 #define OP_XY_TEXT_BLT OP_2D(0x26) 140 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 141 #define OP_XY_COLOR_BLT OP_2D(0x50) 142 #define OP_XY_PAT_BLT OP_2D(0x51) 143 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 144 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 145 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 146 #define OP_XY_FULL_BLT OP_2D(0x55) 147 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 148 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 149 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 150 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 151 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 152 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 153 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 154 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 155 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 156 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 157 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 158 159 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 160 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 161 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 162 163 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 164 165 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 166 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 167 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 168 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 169 170 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 171 172 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 173 174 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 175 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 176 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 177 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 178 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 179 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 180 181 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 182 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 183 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 184 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 185 186 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 187 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 188 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 189 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 190 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 191 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 192 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 193 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 194 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 195 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 196 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 197 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 198 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 199 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 200 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 201 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 202 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 203 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 204 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 205 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 206 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 207 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 208 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 209 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 210 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 211 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 212 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 213 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 215 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 216 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 217 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 222 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 227 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 228 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 229 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 230 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 231 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 233 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 234 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 235 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 236 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 239 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 240 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 241 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 242 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 243 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 244 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 246 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 248 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 249 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 250 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 251 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 252 253 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 254 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 255 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 256 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 257 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 258 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 259 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 260 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 261 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 262 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 263 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 264 265 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 266 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 267 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 268 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 269 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 270 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 271 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 272 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 273 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 274 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 275 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 276 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 277 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 278 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 279 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 284 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 285 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 286 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 287 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 288 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 289 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 290 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 291 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 292 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 293 294 /* VCCP Command Parser */ 295 296 /* 297 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 298 * git://anongit.freedesktop.org/vaapi/intel-driver 299 * src/i965_defines.h 300 * 301 */ 302 303 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 304 (3 << 13 | \ 305 (pipeline) << 11 | \ 306 (op) << 8 | \ 307 (sub_opa) << 5 | \ 308 (sub_opb)) 309 310 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 311 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 312 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 313 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 314 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 315 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 316 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 317 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 318 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 319 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 320 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 321 322 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 323 324 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 325 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 326 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 327 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 328 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 329 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 330 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 331 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 332 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 333 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 334 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 335 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 336 337 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 338 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 339 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 340 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 341 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 342 343 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 344 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 345 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 346 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 347 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 348 349 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 350 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 351 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 352 353 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 354 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 355 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 356 357 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 358 (3 << 13 | \ 359 (pipeline) << 11 | \ 360 (op) << 8 | \ 361 (sub_opa) << 5 | \ 362 (sub_opb)) 363 364 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 365 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 366 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 367 368 struct parser_exec_state; 369 370 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 371 372 #define GVT_CMD_HASH_BITS 7 373 374 /* which DWords need address fix */ 375 #define ADDR_FIX_1(x1) (1 << (x1)) 376 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 377 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 378 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 379 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 380 381 #define DWORD_FIELD(dword, end, start) \ 382 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 383 384 #define OP_LENGTH_BIAS 2 385 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 386 387 static int gvt_check_valid_cmd_length(int len, int valid_len) 388 { 389 if (valid_len != len) { 390 gvt_err("len is not valid: len=%u valid_len=%u\n", 391 len, valid_len); 392 return -EFAULT; 393 } 394 return 0; 395 } 396 397 struct cmd_info { 398 const char *name; 399 u32 opcode; 400 401 #define F_LEN_MASK 3U 402 #define F_LEN_CONST 1U 403 #define F_LEN_VAR 0U 404 /* value is const although LEN maybe variable */ 405 #define F_LEN_VAR_FIXED (1<<1) 406 407 /* 408 * command has its own ip advance logic 409 * e.g. MI_BATCH_START, MI_BATCH_END 410 */ 411 #define F_IP_ADVANCE_CUSTOM (1<<2) 412 u32 flag; 413 414 #define R_RCS BIT(RCS0) 415 #define R_VCS1 BIT(VCS0) 416 #define R_VCS2 BIT(VCS1) 417 #define R_VCS (R_VCS1 | R_VCS2) 418 #define R_BCS BIT(BCS0) 419 #define R_VECS BIT(VECS0) 420 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 421 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 422 u16 rings; 423 424 /* devices that support this cmd: SNB/IVB/HSW/... */ 425 u16 devices; 426 427 /* which DWords are address that need fix up. 428 * bit 0 means a 32-bit non address operand in command 429 * bit 1 means address operand, which could be 32-bit 430 * or 64-bit depending on different architectures.( 431 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 432 * No matter the address length, each address only takes 433 * one bit in the bitmap. 434 */ 435 u16 addr_bitmap; 436 437 /* flag == F_LEN_CONST : command length 438 * flag == F_LEN_VAR : length bias bits 439 * Note: length is in DWord 440 */ 441 u32 len; 442 443 parser_cmd_handler handler; 444 445 /* valid length in DWord */ 446 u32 valid_len; 447 }; 448 449 struct cmd_entry { 450 struct hlist_node hlist; 451 const struct cmd_info *info; 452 }; 453 454 enum { 455 RING_BUFFER_INSTRUCTION, 456 BATCH_BUFFER_INSTRUCTION, 457 BATCH_BUFFER_2ND_LEVEL, 458 }; 459 460 enum { 461 GTT_BUFFER, 462 PPGTT_BUFFER 463 }; 464 465 struct parser_exec_state { 466 struct intel_vgpu *vgpu; 467 const struct intel_engine_cs *engine; 468 469 int buf_type; 470 471 /* batch buffer address type */ 472 int buf_addr_type; 473 474 /* graphics memory address of ring buffer start */ 475 unsigned long ring_start; 476 unsigned long ring_size; 477 unsigned long ring_head; 478 unsigned long ring_tail; 479 480 /* instruction graphics memory address */ 481 unsigned long ip_gma; 482 483 /* mapped va of the instr_gma */ 484 void *ip_va; 485 void *rb_va; 486 487 void *ret_bb_va; 488 /* next instruction when return from batch buffer to ring buffer */ 489 unsigned long ret_ip_gma_ring; 490 491 /* next instruction when return from 2nd batch buffer to batch buffer */ 492 unsigned long ret_ip_gma_bb; 493 494 /* batch buffer address type (GTT or PPGTT) 495 * used when ret from 2nd level batch buffer 496 */ 497 int saved_buf_addr_type; 498 bool is_ctx_wa; 499 500 const struct cmd_info *info; 501 502 struct intel_vgpu_workload *workload; 503 }; 504 505 #define gmadr_dw_number(s) \ 506 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 507 508 static unsigned long bypass_scan_mask = 0; 509 510 /* ring ALL, type = 0 */ 511 static const struct sub_op_bits sub_op_mi[] = { 512 {31, 29}, 513 {28, 23}, 514 }; 515 516 static const struct decode_info decode_info_mi = { 517 "MI", 518 OP_LEN_MI, 519 ARRAY_SIZE(sub_op_mi), 520 sub_op_mi, 521 }; 522 523 /* ring RCS, command type 2 */ 524 static const struct sub_op_bits sub_op_2d[] = { 525 {31, 29}, 526 {28, 22}, 527 }; 528 529 static const struct decode_info decode_info_2d = { 530 "2D", 531 OP_LEN_2D, 532 ARRAY_SIZE(sub_op_2d), 533 sub_op_2d, 534 }; 535 536 /* ring RCS, command type 3 */ 537 static const struct sub_op_bits sub_op_3d_media[] = { 538 {31, 29}, 539 {28, 27}, 540 {26, 24}, 541 {23, 16}, 542 }; 543 544 static const struct decode_info decode_info_3d_media = { 545 "3D_Media", 546 OP_LEN_3D_MEDIA, 547 ARRAY_SIZE(sub_op_3d_media), 548 sub_op_3d_media, 549 }; 550 551 /* ring VCS, command type 3 */ 552 static const struct sub_op_bits sub_op_mfx_vc[] = { 553 {31, 29}, 554 {28, 27}, 555 {26, 24}, 556 {23, 21}, 557 {20, 16}, 558 }; 559 560 static const struct decode_info decode_info_mfx_vc = { 561 "MFX_VC", 562 OP_LEN_MFX_VC, 563 ARRAY_SIZE(sub_op_mfx_vc), 564 sub_op_mfx_vc, 565 }; 566 567 /* ring VECS, command type 3 */ 568 static const struct sub_op_bits sub_op_vebox[] = { 569 {31, 29}, 570 {28, 27}, 571 {26, 24}, 572 {23, 21}, 573 {20, 16}, 574 }; 575 576 static const struct decode_info decode_info_vebox = { 577 "VEBOX", 578 OP_LEN_VEBOX, 579 ARRAY_SIZE(sub_op_vebox), 580 sub_op_vebox, 581 }; 582 583 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 584 [RCS0] = { 585 &decode_info_mi, 586 NULL, 587 NULL, 588 &decode_info_3d_media, 589 NULL, 590 NULL, 591 NULL, 592 NULL, 593 }, 594 595 [VCS0] = { 596 &decode_info_mi, 597 NULL, 598 NULL, 599 &decode_info_mfx_vc, 600 NULL, 601 NULL, 602 NULL, 603 NULL, 604 }, 605 606 [BCS0] = { 607 &decode_info_mi, 608 NULL, 609 &decode_info_2d, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 NULL, 615 }, 616 617 [VECS0] = { 618 &decode_info_mi, 619 NULL, 620 NULL, 621 &decode_info_vebox, 622 NULL, 623 NULL, 624 NULL, 625 NULL, 626 }, 627 628 [VCS1] = { 629 &decode_info_mi, 630 NULL, 631 NULL, 632 &decode_info_mfx_vc, 633 NULL, 634 NULL, 635 NULL, 636 NULL, 637 }, 638 }; 639 640 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 641 { 642 const struct decode_info *d_info; 643 644 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 645 if (d_info == NULL) 646 return INVALID_OP; 647 648 return cmd >> (32 - d_info->op_len); 649 } 650 651 static inline const struct cmd_info * 652 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 653 const struct intel_engine_cs *engine) 654 { 655 struct cmd_entry *e; 656 657 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 658 if (opcode == e->info->opcode && 659 e->info->rings & engine->mask) 660 return e->info; 661 } 662 return NULL; 663 } 664 665 static inline const struct cmd_info * 666 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 667 const struct intel_engine_cs *engine) 668 { 669 u32 opcode; 670 671 opcode = get_opcode(cmd, engine); 672 if (opcode == INVALID_OP) 673 return NULL; 674 675 return find_cmd_entry(gvt, opcode, engine); 676 } 677 678 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 679 { 680 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 681 } 682 683 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 684 { 685 const struct decode_info *d_info; 686 int i; 687 688 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 689 if (d_info == NULL) 690 return; 691 692 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 693 cmd >> (32 - d_info->op_len), d_info->name); 694 695 for (i = 0; i < d_info->nr_sub_op; i++) 696 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 697 d_info->sub_op[i].low)); 698 699 pr_err("\n"); 700 } 701 702 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 703 { 704 return s->ip_va + (index << 2); 705 } 706 707 static inline u32 cmd_val(struct parser_exec_state *s, int index) 708 { 709 return *cmd_ptr(s, index); 710 } 711 712 static void parser_exec_state_dump(struct parser_exec_state *s) 713 { 714 int cnt = 0; 715 int i; 716 717 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 718 " ring_head(%08lx) ring_tail(%08lx)\n", 719 s->vgpu->id, s->engine->name, 720 s->ring_start, s->ring_start + s->ring_size, 721 s->ring_head, s->ring_tail); 722 723 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 724 s->buf_type == RING_BUFFER_INSTRUCTION ? 725 "RING_BUFFER" : "BATCH_BUFFER", 726 s->buf_addr_type == GTT_BUFFER ? 727 "GTT" : "PPGTT", s->ip_gma); 728 729 if (s->ip_va == NULL) { 730 gvt_dbg_cmd(" ip_va(NULL)"); 731 return; 732 } 733 734 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 735 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 736 cmd_val(s, 2), cmd_val(s, 3)); 737 738 print_opcode(cmd_val(s, 0), s->engine); 739 740 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 741 742 while (cnt < 1024) { 743 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 744 for (i = 0; i < 8; i++) 745 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 746 gvt_dbg_cmd("\n"); 747 748 s->ip_va += 8 * sizeof(u32); 749 cnt += 8; 750 } 751 } 752 753 static inline void update_ip_va(struct parser_exec_state *s) 754 { 755 unsigned long len = 0; 756 757 if (WARN_ON(s->ring_head == s->ring_tail)) 758 return; 759 760 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 761 unsigned long ring_top = s->ring_start + s->ring_size; 762 763 if (s->ring_head > s->ring_tail) { 764 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 765 len = (s->ip_gma - s->ring_head); 766 else if (s->ip_gma >= s->ring_start && 767 s->ip_gma <= s->ring_tail) 768 len = (ring_top - s->ring_head) + 769 (s->ip_gma - s->ring_start); 770 } else 771 len = (s->ip_gma - s->ring_head); 772 773 s->ip_va = s->rb_va + len; 774 } else {/* shadow batch buffer */ 775 s->ip_va = s->ret_bb_va; 776 } 777 } 778 779 static inline int ip_gma_set(struct parser_exec_state *s, 780 unsigned long ip_gma) 781 { 782 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 783 784 s->ip_gma = ip_gma; 785 update_ip_va(s); 786 return 0; 787 } 788 789 static inline int ip_gma_advance(struct parser_exec_state *s, 790 unsigned int dw_len) 791 { 792 s->ip_gma += (dw_len << 2); 793 794 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 795 if (s->ip_gma >= s->ring_start + s->ring_size) 796 s->ip_gma -= s->ring_size; 797 update_ip_va(s); 798 } else { 799 s->ip_va += (dw_len << 2); 800 } 801 802 return 0; 803 } 804 805 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 806 { 807 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 808 return info->len; 809 else 810 return (cmd & ((1U << info->len) - 1)) + 2; 811 return 0; 812 } 813 814 static inline int cmd_length(struct parser_exec_state *s) 815 { 816 return get_cmd_length(s->info, cmd_val(s, 0)); 817 } 818 819 /* do not remove this, some platform may need clflush here */ 820 #define patch_value(s, addr, val) do { \ 821 *addr = val; \ 822 } while (0) 823 824 static bool is_shadowed_mmio(unsigned int offset) 825 { 826 bool ret = false; 827 828 if ((offset == 0x2168) || /*BB current head register UDW */ 829 (offset == 0x2140) || /*BB current header register */ 830 (offset == 0x211c) || /*second BB header register UDW */ 831 (offset == 0x2114)) { /*second BB header register UDW */ 832 ret = true; 833 } 834 return ret; 835 } 836 837 static inline bool is_force_nonpriv_mmio(unsigned int offset) 838 { 839 return (offset >= 0x24d0 && offset < 0x2500); 840 } 841 842 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 843 unsigned int offset, unsigned int index, char *cmd) 844 { 845 struct intel_gvt *gvt = s->vgpu->gvt; 846 unsigned int data; 847 u32 ring_base; 848 u32 nopid; 849 850 if (!strcmp(cmd, "lri")) 851 data = cmd_val(s, index + 1); 852 else { 853 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 854 offset, cmd); 855 return -EINVAL; 856 } 857 858 ring_base = s->engine->mmio_base; 859 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 860 861 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 862 data != nopid) { 863 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 864 offset, data); 865 patch_value(s, cmd_ptr(s, index), nopid); 866 return 0; 867 } 868 return 0; 869 } 870 871 static inline bool is_mocs_mmio(unsigned int offset) 872 { 873 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 874 ((offset >= 0xb020) && (offset <= 0xb0a0)); 875 } 876 877 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 878 unsigned int offset, unsigned int index) 879 { 880 if (!is_mocs_mmio(offset)) 881 return -EINVAL; 882 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 883 return 0; 884 } 885 886 static int is_cmd_update_pdps(unsigned int offset, 887 struct parser_exec_state *s) 888 { 889 u32 base = s->workload->engine->mmio_base; 890 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 891 } 892 893 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 894 unsigned int offset, unsigned int index) 895 { 896 struct intel_vgpu *vgpu = s->vgpu; 897 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 898 struct intel_vgpu_mm *mm; 899 u64 pdps[GEN8_3LVL_PDPES]; 900 901 if (shadow_mm->ppgtt_mm.root_entry_type == 902 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 903 pdps[0] = (u64)cmd_val(s, 2) << 32; 904 pdps[0] |= cmd_val(s, 4); 905 906 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 907 if (!mm) { 908 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 909 return -EINVAL; 910 } 911 intel_vgpu_mm_get(mm); 912 list_add_tail(&mm->ppgtt_mm.link, 913 &s->workload->lri_shadow_mm); 914 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 915 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 916 } else { 917 /* Currently all guests use PML4 table and now can't 918 * have a guest with 3-level table but uses LRI for 919 * PPGTT update. So this is simply un-testable. */ 920 GEM_BUG_ON(1); 921 gvt_vgpu_err("invalid shared shadow vm type\n"); 922 return -EINVAL; 923 } 924 return 0; 925 } 926 927 static int cmd_reg_handler(struct parser_exec_state *s, 928 unsigned int offset, unsigned int index, char *cmd) 929 { 930 struct intel_vgpu *vgpu = s->vgpu; 931 struct intel_gvt *gvt = vgpu->gvt; 932 u32 ctx_sr_ctl; 933 934 if (offset + 4 > gvt->device_info.mmio_size) { 935 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 936 cmd, offset); 937 return -EFAULT; 938 } 939 940 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 941 gvt_vgpu_err("%s access to non-render register (%x)\n", 942 cmd, offset); 943 return -EBADRQC; 944 } 945 946 if (is_shadowed_mmio(offset)) { 947 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 948 return 0; 949 } 950 951 if (is_mocs_mmio(offset) && 952 mocs_cmd_reg_handler(s, offset, index)) 953 return -EINVAL; 954 955 if (is_force_nonpriv_mmio(offset) && 956 force_nonpriv_reg_handler(s, offset, index, cmd)) 957 return -EPERM; 958 959 if (offset == i915_mmio_reg_offset(DERRMR) || 960 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 961 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 962 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 963 } 964 965 if (is_cmd_update_pdps(offset, s) && 966 cmd_pdp_mmio_update_handler(s, offset, index)) 967 return -EINVAL; 968 969 /* TODO 970 * In order to let workload with inhibit context to generate 971 * correct image data into memory, vregs values will be loaded to 972 * hw via LRIs in the workload with inhibit context. But as 973 * indirect context is loaded prior to LRIs in workload, we don't 974 * want reg values specified in indirect context overwritten by 975 * LRIs in workloads. So, when scanning an indirect context, we 976 * update reg values in it into vregs, so LRIs in workload with 977 * inhibit context will restore with correct values 978 */ 979 if (IS_GEN(s->engine->i915, 9) && 980 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 981 !strncmp(cmd, "lri", 3)) { 982 intel_gvt_hypervisor_read_gpa(s->vgpu, 983 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 984 /* check inhibit context */ 985 if (ctx_sr_ctl & 1) { 986 u32 data = cmd_val(s, index + 1); 987 988 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 989 intel_vgpu_mask_mmio_write(vgpu, 990 offset, &data, 4); 991 else 992 vgpu_vreg(vgpu, offset) = data; 993 } 994 } 995 996 return 0; 997 } 998 999 #define cmd_reg(s, i) \ 1000 (cmd_val(s, i) & GENMASK(22, 2)) 1001 1002 #define cmd_reg_inhibit(s, i) \ 1003 (cmd_val(s, i) & GENMASK(22, 18)) 1004 1005 #define cmd_gma(s, i) \ 1006 (cmd_val(s, i) & GENMASK(31, 2)) 1007 1008 #define cmd_gma_hi(s, i) \ 1009 (cmd_val(s, i) & GENMASK(15, 0)) 1010 1011 static int cmd_handler_lri(struct parser_exec_state *s) 1012 { 1013 int i, ret = 0; 1014 int cmd_len = cmd_length(s); 1015 1016 for (i = 1; i < cmd_len; i += 2) { 1017 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1018 if (s->engine->id == BCS0 && 1019 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1020 ret |= 0; 1021 else 1022 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1023 } 1024 if (ret) 1025 break; 1026 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1027 if (ret) 1028 break; 1029 } 1030 return ret; 1031 } 1032 1033 static int cmd_handler_lrr(struct parser_exec_state *s) 1034 { 1035 int i, ret = 0; 1036 int cmd_len = cmd_length(s); 1037 1038 for (i = 1; i < cmd_len; i += 2) { 1039 if (IS_BROADWELL(s->engine->i915)) 1040 ret |= ((cmd_reg_inhibit(s, i) || 1041 (cmd_reg_inhibit(s, i + 1)))) ? 1042 -EBADRQC : 0; 1043 if (ret) 1044 break; 1045 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1046 if (ret) 1047 break; 1048 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1049 if (ret) 1050 break; 1051 } 1052 return ret; 1053 } 1054 1055 static inline int cmd_address_audit(struct parser_exec_state *s, 1056 unsigned long guest_gma, int op_size, bool index_mode); 1057 1058 static int cmd_handler_lrm(struct parser_exec_state *s) 1059 { 1060 struct intel_gvt *gvt = s->vgpu->gvt; 1061 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1062 unsigned long gma; 1063 int i, ret = 0; 1064 int cmd_len = cmd_length(s); 1065 1066 for (i = 1; i < cmd_len;) { 1067 if (IS_BROADWELL(s->engine->i915)) 1068 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1069 if (ret) 1070 break; 1071 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1072 if (ret) 1073 break; 1074 if (cmd_val(s, 0) & (1 << 22)) { 1075 gma = cmd_gma(s, i + 1); 1076 if (gmadr_bytes == 8) 1077 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1078 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1079 if (ret) 1080 break; 1081 } 1082 i += gmadr_dw_number(s) + 1; 1083 } 1084 return ret; 1085 } 1086 1087 static int cmd_handler_srm(struct parser_exec_state *s) 1088 { 1089 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1090 unsigned long gma; 1091 int i, ret = 0; 1092 int cmd_len = cmd_length(s); 1093 1094 for (i = 1; i < cmd_len;) { 1095 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1096 if (ret) 1097 break; 1098 if (cmd_val(s, 0) & (1 << 22)) { 1099 gma = cmd_gma(s, i + 1); 1100 if (gmadr_bytes == 8) 1101 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1102 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1103 if (ret) 1104 break; 1105 } 1106 i += gmadr_dw_number(s) + 1; 1107 } 1108 return ret; 1109 } 1110 1111 struct cmd_interrupt_event { 1112 int pipe_control_notify; 1113 int mi_flush_dw; 1114 int mi_user_interrupt; 1115 }; 1116 1117 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1118 [RCS0] = { 1119 .pipe_control_notify = RCS_PIPE_CONTROL, 1120 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1121 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1122 }, 1123 [BCS0] = { 1124 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1125 .mi_flush_dw = BCS_MI_FLUSH_DW, 1126 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1127 }, 1128 [VCS0] = { 1129 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1130 .mi_flush_dw = VCS_MI_FLUSH_DW, 1131 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1132 }, 1133 [VCS1] = { 1134 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1135 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1136 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1137 }, 1138 [VECS0] = { 1139 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1140 .mi_flush_dw = VECS_MI_FLUSH_DW, 1141 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1142 }, 1143 }; 1144 1145 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1146 { 1147 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1148 unsigned long gma; 1149 bool index_mode = false; 1150 unsigned int post_sync; 1151 int ret = 0; 1152 u32 hws_pga, val; 1153 1154 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1155 1156 /* LRI post sync */ 1157 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1158 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1159 /* post sync */ 1160 else if (post_sync) { 1161 if (post_sync == 2) 1162 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1163 else if (post_sync == 3) 1164 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1165 else if (post_sync == 1) { 1166 /* check ggtt*/ 1167 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1168 gma = cmd_val(s, 2) & GENMASK(31, 3); 1169 if (gmadr_bytes == 8) 1170 gma |= (cmd_gma_hi(s, 3)) << 32; 1171 /* Store Data Index */ 1172 if (cmd_val(s, 1) & (1 << 21)) 1173 index_mode = true; 1174 ret |= cmd_address_audit(s, gma, sizeof(u64), 1175 index_mode); 1176 if (ret) 1177 return ret; 1178 if (index_mode) { 1179 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1180 gma = hws_pga + gma; 1181 patch_value(s, cmd_ptr(s, 2), gma); 1182 val = cmd_val(s, 1) & (~(1 << 21)); 1183 patch_value(s, cmd_ptr(s, 1), val); 1184 } 1185 } 1186 } 1187 } 1188 1189 if (ret) 1190 return ret; 1191 1192 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1193 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1194 s->workload->pending_events); 1195 return 0; 1196 } 1197 1198 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1199 { 1200 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1201 s->workload->pending_events); 1202 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1203 return 0; 1204 } 1205 1206 static int cmd_advance_default(struct parser_exec_state *s) 1207 { 1208 return ip_gma_advance(s, cmd_length(s)); 1209 } 1210 1211 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1212 { 1213 int ret; 1214 1215 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1216 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1217 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1218 s->buf_addr_type = s->saved_buf_addr_type; 1219 } else { 1220 s->buf_type = RING_BUFFER_INSTRUCTION; 1221 s->buf_addr_type = GTT_BUFFER; 1222 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1223 s->ret_ip_gma_ring -= s->ring_size; 1224 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1225 } 1226 return ret; 1227 } 1228 1229 struct mi_display_flip_command_info { 1230 int pipe; 1231 int plane; 1232 int event; 1233 i915_reg_t stride_reg; 1234 i915_reg_t ctrl_reg; 1235 i915_reg_t surf_reg; 1236 u64 stride_val; 1237 u64 tile_val; 1238 u64 surf_val; 1239 bool async_flip; 1240 }; 1241 1242 struct plane_code_mapping { 1243 int pipe; 1244 int plane; 1245 int event; 1246 }; 1247 1248 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1249 struct mi_display_flip_command_info *info) 1250 { 1251 struct drm_i915_private *dev_priv = s->engine->i915; 1252 struct plane_code_mapping gen8_plane_code[] = { 1253 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1254 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1255 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1256 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1257 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1258 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1259 }; 1260 u32 dword0, dword1, dword2; 1261 u32 v; 1262 1263 dword0 = cmd_val(s, 0); 1264 dword1 = cmd_val(s, 1); 1265 dword2 = cmd_val(s, 2); 1266 1267 v = (dword0 & GENMASK(21, 19)) >> 19; 1268 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1269 return -EBADRQC; 1270 1271 info->pipe = gen8_plane_code[v].pipe; 1272 info->plane = gen8_plane_code[v].plane; 1273 info->event = gen8_plane_code[v].event; 1274 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1275 info->tile_val = (dword1 & 0x1); 1276 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1277 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1278 1279 if (info->plane == PLANE_A) { 1280 info->ctrl_reg = DSPCNTR(info->pipe); 1281 info->stride_reg = DSPSTRIDE(info->pipe); 1282 info->surf_reg = DSPSURF(info->pipe); 1283 } else if (info->plane == PLANE_B) { 1284 info->ctrl_reg = SPRCTL(info->pipe); 1285 info->stride_reg = SPRSTRIDE(info->pipe); 1286 info->surf_reg = SPRSURF(info->pipe); 1287 } else { 1288 drm_WARN_ON(&dev_priv->drm, 1); 1289 return -EBADRQC; 1290 } 1291 return 0; 1292 } 1293 1294 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1295 struct mi_display_flip_command_info *info) 1296 { 1297 struct drm_i915_private *dev_priv = s->engine->i915; 1298 struct intel_vgpu *vgpu = s->vgpu; 1299 u32 dword0 = cmd_val(s, 0); 1300 u32 dword1 = cmd_val(s, 1); 1301 u32 dword2 = cmd_val(s, 2); 1302 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1303 1304 info->plane = PRIMARY_PLANE; 1305 1306 switch (plane) { 1307 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1308 info->pipe = PIPE_A; 1309 info->event = PRIMARY_A_FLIP_DONE; 1310 break; 1311 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1312 info->pipe = PIPE_B; 1313 info->event = PRIMARY_B_FLIP_DONE; 1314 break; 1315 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1316 info->pipe = PIPE_C; 1317 info->event = PRIMARY_C_FLIP_DONE; 1318 break; 1319 1320 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1321 info->pipe = PIPE_A; 1322 info->event = SPRITE_A_FLIP_DONE; 1323 info->plane = SPRITE_PLANE; 1324 break; 1325 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1326 info->pipe = PIPE_B; 1327 info->event = SPRITE_B_FLIP_DONE; 1328 info->plane = SPRITE_PLANE; 1329 break; 1330 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1331 info->pipe = PIPE_C; 1332 info->event = SPRITE_C_FLIP_DONE; 1333 info->plane = SPRITE_PLANE; 1334 break; 1335 1336 default: 1337 gvt_vgpu_err("unknown plane code %d\n", plane); 1338 return -EBADRQC; 1339 } 1340 1341 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1342 info->tile_val = (dword1 & GENMASK(2, 0)); 1343 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1344 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1345 1346 info->ctrl_reg = DSPCNTR(info->pipe); 1347 info->stride_reg = DSPSTRIDE(info->pipe); 1348 info->surf_reg = DSPSURF(info->pipe); 1349 1350 return 0; 1351 } 1352 1353 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1354 struct mi_display_flip_command_info *info) 1355 { 1356 u32 stride, tile; 1357 1358 if (!info->async_flip) 1359 return 0; 1360 1361 if (INTEL_GEN(s->engine->i915) >= 9) { 1362 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1363 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1364 GENMASK(12, 10)) >> 10; 1365 } else { 1366 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1367 GENMASK(15, 6)) >> 6; 1368 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1369 } 1370 1371 if (stride != info->stride_val) 1372 gvt_dbg_cmd("cannot change stride during async flip\n"); 1373 1374 if (tile != info->tile_val) 1375 gvt_dbg_cmd("cannot change tile during async flip\n"); 1376 1377 return 0; 1378 } 1379 1380 static int gen8_update_plane_mmio_from_mi_display_flip( 1381 struct parser_exec_state *s, 1382 struct mi_display_flip_command_info *info) 1383 { 1384 struct drm_i915_private *dev_priv = s->engine->i915; 1385 struct intel_vgpu *vgpu = s->vgpu; 1386 1387 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1388 info->surf_val << 12); 1389 if (INTEL_GEN(dev_priv) >= 9) { 1390 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1391 info->stride_val); 1392 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1393 info->tile_val << 10); 1394 } else { 1395 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1396 info->stride_val << 6); 1397 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1398 info->tile_val << 10); 1399 } 1400 1401 if (info->plane == PLANE_PRIMARY) 1402 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1403 1404 if (info->async_flip) 1405 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1406 else 1407 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1408 1409 return 0; 1410 } 1411 1412 static int decode_mi_display_flip(struct parser_exec_state *s, 1413 struct mi_display_flip_command_info *info) 1414 { 1415 if (IS_BROADWELL(s->engine->i915)) 1416 return gen8_decode_mi_display_flip(s, info); 1417 if (INTEL_GEN(s->engine->i915) >= 9) 1418 return skl_decode_mi_display_flip(s, info); 1419 1420 return -ENODEV; 1421 } 1422 1423 static int check_mi_display_flip(struct parser_exec_state *s, 1424 struct mi_display_flip_command_info *info) 1425 { 1426 return gen8_check_mi_display_flip(s, info); 1427 } 1428 1429 static int update_plane_mmio_from_mi_display_flip( 1430 struct parser_exec_state *s, 1431 struct mi_display_flip_command_info *info) 1432 { 1433 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1434 } 1435 1436 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1437 { 1438 struct mi_display_flip_command_info info; 1439 struct intel_vgpu *vgpu = s->vgpu; 1440 int ret; 1441 int i; 1442 int len = cmd_length(s); 1443 u32 valid_len = CMD_LEN(1); 1444 1445 /* Flip Type == Stereo 3D Flip */ 1446 if (DWORD_FIELD(2, 1, 0) == 2) 1447 valid_len++; 1448 ret = gvt_check_valid_cmd_length(cmd_length(s), 1449 valid_len); 1450 if (ret) 1451 return ret; 1452 1453 ret = decode_mi_display_flip(s, &info); 1454 if (ret) { 1455 gvt_vgpu_err("fail to decode MI display flip command\n"); 1456 return ret; 1457 } 1458 1459 ret = check_mi_display_flip(s, &info); 1460 if (ret) { 1461 gvt_vgpu_err("invalid MI display flip command\n"); 1462 return ret; 1463 } 1464 1465 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1466 if (ret) { 1467 gvt_vgpu_err("fail to update plane mmio\n"); 1468 return ret; 1469 } 1470 1471 for (i = 0; i < len; i++) 1472 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1473 return 0; 1474 } 1475 1476 static bool is_wait_for_flip_pending(u32 cmd) 1477 { 1478 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1479 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1480 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1481 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1482 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1483 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1484 } 1485 1486 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1487 { 1488 u32 cmd = cmd_val(s, 0); 1489 1490 if (!is_wait_for_flip_pending(cmd)) 1491 return 0; 1492 1493 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1494 return 0; 1495 } 1496 1497 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1498 { 1499 unsigned long addr; 1500 unsigned long gma_high, gma_low; 1501 struct intel_vgpu *vgpu = s->vgpu; 1502 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1503 1504 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1505 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1506 return INTEL_GVT_INVALID_ADDR; 1507 } 1508 1509 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1510 if (gmadr_bytes == 4) { 1511 addr = gma_low; 1512 } else { 1513 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1514 addr = (((unsigned long)gma_high) << 32) | gma_low; 1515 } 1516 return addr; 1517 } 1518 1519 static inline int cmd_address_audit(struct parser_exec_state *s, 1520 unsigned long guest_gma, int op_size, bool index_mode) 1521 { 1522 struct intel_vgpu *vgpu = s->vgpu; 1523 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1524 int i; 1525 int ret; 1526 1527 if (op_size > max_surface_size) { 1528 gvt_vgpu_err("command address audit fail name %s\n", 1529 s->info->name); 1530 return -EFAULT; 1531 } 1532 1533 if (index_mode) { 1534 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1535 ret = -EFAULT; 1536 goto err; 1537 } 1538 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1539 ret = -EFAULT; 1540 goto err; 1541 } 1542 1543 return 0; 1544 1545 err: 1546 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1547 s->info->name, guest_gma, op_size); 1548 1549 pr_err("cmd dump: "); 1550 for (i = 0; i < cmd_length(s); i++) { 1551 if (!(i % 4)) 1552 pr_err("\n%08x ", cmd_val(s, i)); 1553 else 1554 pr_err("%08x ", cmd_val(s, i)); 1555 } 1556 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1557 vgpu->id, 1558 vgpu_aperture_gmadr_base(vgpu), 1559 vgpu_aperture_gmadr_end(vgpu), 1560 vgpu_hidden_gmadr_base(vgpu), 1561 vgpu_hidden_gmadr_end(vgpu)); 1562 return ret; 1563 } 1564 1565 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1566 { 1567 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1568 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1569 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1570 unsigned long gma, gma_low, gma_high; 1571 u32 valid_len = CMD_LEN(2); 1572 int ret = 0; 1573 1574 /* check ppggt */ 1575 if (!(cmd_val(s, 0) & (1 << 22))) 1576 return 0; 1577 1578 /* check if QWORD */ 1579 if (DWORD_FIELD(0, 21, 21)) 1580 valid_len++; 1581 ret = gvt_check_valid_cmd_length(cmd_length(s), 1582 valid_len); 1583 if (ret) 1584 return ret; 1585 1586 gma = cmd_val(s, 2) & GENMASK(31, 2); 1587 1588 if (gmadr_bytes == 8) { 1589 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1590 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1591 gma = (gma_high << 32) | gma_low; 1592 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1593 } 1594 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1595 return ret; 1596 } 1597 1598 static inline int unexpected_cmd(struct parser_exec_state *s) 1599 { 1600 struct intel_vgpu *vgpu = s->vgpu; 1601 1602 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1603 1604 return -EBADRQC; 1605 } 1606 1607 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1608 { 1609 return unexpected_cmd(s); 1610 } 1611 1612 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1613 { 1614 return unexpected_cmd(s); 1615 } 1616 1617 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1618 { 1619 return unexpected_cmd(s); 1620 } 1621 1622 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1623 { 1624 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1625 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1626 sizeof(u32); 1627 unsigned long gma, gma_high; 1628 u32 valid_len = CMD_LEN(1); 1629 int ret = 0; 1630 1631 if (!(cmd_val(s, 0) & (1 << 22))) 1632 return ret; 1633 1634 /* check inline data */ 1635 if (cmd_val(s, 0) & BIT(18)) 1636 valid_len = CMD_LEN(9); 1637 ret = gvt_check_valid_cmd_length(cmd_length(s), 1638 valid_len); 1639 if (ret) 1640 return ret; 1641 1642 gma = cmd_val(s, 1) & GENMASK(31, 2); 1643 if (gmadr_bytes == 8) { 1644 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1645 gma = (gma_high << 32) | gma; 1646 } 1647 ret = cmd_address_audit(s, gma, op_size, false); 1648 return ret; 1649 } 1650 1651 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1652 { 1653 return unexpected_cmd(s); 1654 } 1655 1656 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1657 { 1658 return unexpected_cmd(s); 1659 } 1660 1661 static int cmd_handler_mi_conditional_batch_buffer_end( 1662 struct parser_exec_state *s) 1663 { 1664 return unexpected_cmd(s); 1665 } 1666 1667 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1668 { 1669 return unexpected_cmd(s); 1670 } 1671 1672 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1673 { 1674 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1675 unsigned long gma; 1676 bool index_mode = false; 1677 int ret = 0; 1678 u32 hws_pga, val; 1679 u32 valid_len = CMD_LEN(2); 1680 1681 ret = gvt_check_valid_cmd_length(cmd_length(s), 1682 valid_len); 1683 if (ret) { 1684 /* Check again for Qword */ 1685 ret = gvt_check_valid_cmd_length(cmd_length(s), 1686 ++valid_len); 1687 return ret; 1688 } 1689 1690 /* Check post-sync and ppgtt bit */ 1691 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1692 gma = cmd_val(s, 1) & GENMASK(31, 3); 1693 if (gmadr_bytes == 8) 1694 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1695 /* Store Data Index */ 1696 if (cmd_val(s, 0) & (1 << 21)) 1697 index_mode = true; 1698 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1699 if (ret) 1700 return ret; 1701 if (index_mode) { 1702 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1703 gma = hws_pga + gma; 1704 patch_value(s, cmd_ptr(s, 1), gma); 1705 val = cmd_val(s, 0) & (~(1 << 21)); 1706 patch_value(s, cmd_ptr(s, 0), val); 1707 } 1708 } 1709 /* Check notify bit */ 1710 if ((cmd_val(s, 0) & (1 << 8))) 1711 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1712 s->workload->pending_events); 1713 return ret; 1714 } 1715 1716 static void addr_type_update_snb(struct parser_exec_state *s) 1717 { 1718 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1719 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1720 s->buf_addr_type = PPGTT_BUFFER; 1721 } 1722 } 1723 1724 1725 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1726 unsigned long gma, unsigned long end_gma, void *va) 1727 { 1728 unsigned long copy_len, offset; 1729 unsigned long len = 0; 1730 unsigned long gpa; 1731 1732 while (gma != end_gma) { 1733 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1734 if (gpa == INTEL_GVT_INVALID_ADDR) { 1735 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1736 return -EFAULT; 1737 } 1738 1739 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1740 1741 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1742 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1743 1744 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1745 1746 len += copy_len; 1747 gma += copy_len; 1748 } 1749 return len; 1750 } 1751 1752 1753 /* 1754 * Check whether a batch buffer needs to be scanned. Currently 1755 * the only criteria is based on privilege. 1756 */ 1757 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1758 { 1759 /* Decide privilege based on address space */ 1760 if (cmd_val(s, 0) & BIT(8) && 1761 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1762 return 0; 1763 1764 return 1; 1765 } 1766 1767 static const char *repr_addr_type(unsigned int type) 1768 { 1769 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1770 } 1771 1772 static int find_bb_size(struct parser_exec_state *s, 1773 unsigned long *bb_size, 1774 unsigned long *bb_end_cmd_offset) 1775 { 1776 unsigned long gma = 0; 1777 const struct cmd_info *info; 1778 u32 cmd_len = 0; 1779 bool bb_end = false; 1780 struct intel_vgpu *vgpu = s->vgpu; 1781 u32 cmd; 1782 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1783 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1784 1785 *bb_size = 0; 1786 *bb_end_cmd_offset = 0; 1787 1788 /* get the start gm address of the batch buffer */ 1789 gma = get_gma_bb_from_cmd(s, 1); 1790 if (gma == INTEL_GVT_INVALID_ADDR) 1791 return -EFAULT; 1792 1793 cmd = cmd_val(s, 0); 1794 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1795 if (info == NULL) { 1796 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1797 cmd, get_opcode(cmd, s->engine), 1798 repr_addr_type(s->buf_addr_type), 1799 s->engine->name, s->workload); 1800 return -EBADRQC; 1801 } 1802 do { 1803 if (copy_gma_to_hva(s->vgpu, mm, 1804 gma, gma + 4, &cmd) < 0) 1805 return -EFAULT; 1806 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1807 if (info == NULL) { 1808 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1809 cmd, get_opcode(cmd, s->engine), 1810 repr_addr_type(s->buf_addr_type), 1811 s->engine->name, s->workload); 1812 return -EBADRQC; 1813 } 1814 1815 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1816 bb_end = true; 1817 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1818 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1819 /* chained batch buffer */ 1820 bb_end = true; 1821 } 1822 1823 if (bb_end) 1824 *bb_end_cmd_offset = *bb_size; 1825 1826 cmd_len = get_cmd_length(info, cmd) << 2; 1827 *bb_size += cmd_len; 1828 gma += cmd_len; 1829 } while (!bb_end); 1830 1831 return 0; 1832 } 1833 1834 static int audit_bb_end(struct parser_exec_state *s, void *va) 1835 { 1836 struct intel_vgpu *vgpu = s->vgpu; 1837 u32 cmd = *(u32 *)va; 1838 const struct cmd_info *info; 1839 1840 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1841 if (info == NULL) { 1842 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1843 cmd, get_opcode(cmd, s->engine), 1844 repr_addr_type(s->buf_addr_type), 1845 s->engine->name, s->workload); 1846 return -EBADRQC; 1847 } 1848 1849 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1850 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1851 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1852 return 0; 1853 1854 return -EBADRQC; 1855 } 1856 1857 static int perform_bb_shadow(struct parser_exec_state *s) 1858 { 1859 struct intel_vgpu *vgpu = s->vgpu; 1860 struct intel_vgpu_shadow_bb *bb; 1861 unsigned long gma = 0; 1862 unsigned long bb_size; 1863 unsigned long bb_end_cmd_offset; 1864 int ret = 0; 1865 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1866 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1867 unsigned long start_offset = 0; 1868 1869 /* get the start gm address of the batch buffer */ 1870 gma = get_gma_bb_from_cmd(s, 1); 1871 if (gma == INTEL_GVT_INVALID_ADDR) 1872 return -EFAULT; 1873 1874 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1875 if (ret) 1876 return ret; 1877 1878 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1879 if (!bb) 1880 return -ENOMEM; 1881 1882 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1883 1884 /* the start_offset stores the batch buffer's start gma's 1885 * offset relative to page boundary. so for non-privileged batch 1886 * buffer, the shadowed gem object holds exactly the same page 1887 * layout as original gem object. This is for the convience of 1888 * replacing the whole non-privilged batch buffer page to this 1889 * shadowed one in PPGTT at the same gma address. (this replacing 1890 * action is not implemented yet now, but may be necessary in 1891 * future). 1892 * for prileged batch buffer, we just change start gma address to 1893 * that of shadowed page. 1894 */ 1895 if (bb->ppgtt) 1896 start_offset = gma & ~I915_GTT_PAGE_MASK; 1897 1898 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1899 round_up(bb_size + start_offset, 1900 PAGE_SIZE)); 1901 if (IS_ERR(bb->obj)) { 1902 ret = PTR_ERR(bb->obj); 1903 goto err_free_bb; 1904 } 1905 1906 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1907 if (IS_ERR(bb->va)) { 1908 ret = PTR_ERR(bb->va); 1909 goto err_free_obj; 1910 } 1911 1912 ret = copy_gma_to_hva(s->vgpu, mm, 1913 gma, gma + bb_size, 1914 bb->va + start_offset); 1915 if (ret < 0) { 1916 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1917 ret = -EFAULT; 1918 goto err_unmap; 1919 } 1920 1921 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1922 if (ret) 1923 goto err_unmap; 1924 1925 i915_gem_object_unlock(bb->obj); 1926 INIT_LIST_HEAD(&bb->list); 1927 list_add(&bb->list, &s->workload->shadow_bb); 1928 1929 bb->bb_start_cmd_va = s->ip_va; 1930 1931 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1932 bb->bb_offset = s->ip_va - s->rb_va; 1933 else 1934 bb->bb_offset = 0; 1935 1936 /* 1937 * ip_va saves the virtual address of the shadow batch buffer, while 1938 * ip_gma saves the graphics address of the original batch buffer. 1939 * As the shadow batch buffer is just a copy from the originial one, 1940 * it should be right to use shadow batch buffer'va and original batch 1941 * buffer's gma in pair. After all, we don't want to pin the shadow 1942 * buffer here (too early). 1943 */ 1944 s->ip_va = bb->va + start_offset; 1945 s->ip_gma = gma; 1946 return 0; 1947 err_unmap: 1948 i915_gem_object_unpin_map(bb->obj); 1949 err_free_obj: 1950 i915_gem_object_put(bb->obj); 1951 err_free_bb: 1952 kfree(bb); 1953 return ret; 1954 } 1955 1956 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1957 { 1958 bool second_level; 1959 int ret = 0; 1960 struct intel_vgpu *vgpu = s->vgpu; 1961 1962 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1963 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1964 return -EFAULT; 1965 } 1966 1967 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1968 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1969 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1970 return -EFAULT; 1971 } 1972 1973 s->saved_buf_addr_type = s->buf_addr_type; 1974 addr_type_update_snb(s); 1975 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1976 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1977 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1978 } else if (second_level) { 1979 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1980 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1981 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1982 } 1983 1984 if (batch_buffer_needs_scan(s)) { 1985 ret = perform_bb_shadow(s); 1986 if (ret < 0) 1987 gvt_vgpu_err("invalid shadow batch buffer\n"); 1988 } else { 1989 /* emulate a batch buffer end to do return right */ 1990 ret = cmd_handler_mi_batch_buffer_end(s); 1991 if (ret < 0) 1992 return ret; 1993 } 1994 return ret; 1995 } 1996 1997 static int mi_noop_index; 1998 1999 static const struct cmd_info cmd_info[] = { 2000 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2001 2002 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2003 0, 1, NULL}, 2004 2005 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2006 0, 1, cmd_handler_mi_user_interrupt}, 2007 2008 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2009 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2010 2011 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2012 2013 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2014 NULL}, 2015 2016 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2017 NULL}, 2018 2019 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2020 NULL}, 2021 2022 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2023 NULL}, 2024 2025 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2026 D_ALL, 0, 1, NULL}, 2027 2028 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2029 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2030 cmd_handler_mi_batch_buffer_end}, 2031 2032 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2033 0, 1, NULL}, 2034 2035 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2036 NULL}, 2037 2038 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2039 D_ALL, 0, 1, NULL}, 2040 2041 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2042 NULL}, 2043 2044 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2045 NULL}, 2046 2047 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2048 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2049 2050 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2051 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2052 2053 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2054 2055 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2056 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2057 2058 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2059 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2060 NULL, CMD_LEN(0)}, 2061 2062 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2063 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2064 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2065 2066 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2067 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2068 2069 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2070 0, 8, cmd_handler_mi_store_data_index}, 2071 2072 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2073 D_ALL, 0, 8, cmd_handler_lri}, 2074 2075 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2076 cmd_handler_mi_update_gtt}, 2077 2078 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2079 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2080 cmd_handler_srm, CMD_LEN(2)}, 2081 2082 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2083 cmd_handler_mi_flush_dw}, 2084 2085 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2086 10, cmd_handler_mi_clflush}, 2087 2088 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2089 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2090 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2091 2092 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2093 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2094 cmd_handler_lrm, CMD_LEN(2)}, 2095 2096 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2097 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2098 cmd_handler_lrr, CMD_LEN(1)}, 2099 2100 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2101 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2102 8, NULL, CMD_LEN(2)}, 2103 2104 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2105 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2106 2107 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2108 ADDR_FIX_1(2), 8, NULL}, 2109 2110 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2111 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2112 2113 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2114 8, cmd_handler_mi_op_2f}, 2115 2116 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2117 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2118 cmd_handler_mi_batch_buffer_start}, 2119 2120 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2121 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2122 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2123 2124 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2125 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2126 2127 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2128 ADDR_FIX_2(4, 7), 8, NULL}, 2129 2130 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2131 0, 8, NULL}, 2132 2133 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2134 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2135 2136 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2137 2138 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2139 0, 8, NULL}, 2140 2141 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2142 ADDR_FIX_1(3), 8, NULL}, 2143 2144 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2145 D_ALL, 0, 8, NULL}, 2146 2147 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2148 ADDR_FIX_1(4), 8, NULL}, 2149 2150 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2151 ADDR_FIX_2(4, 5), 8, NULL}, 2152 2153 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2154 ADDR_FIX_1(4), 8, NULL}, 2155 2156 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2157 ADDR_FIX_2(4, 7), 8, NULL}, 2158 2159 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2160 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2161 2162 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2163 2164 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2165 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2166 2167 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2168 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2169 2170 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2171 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2172 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2173 2174 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2175 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2176 2177 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2178 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2179 2180 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2181 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2182 2183 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2184 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2185 2186 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2187 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2188 2189 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2190 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2191 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2192 2193 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2194 ADDR_FIX_2(4, 5), 8, NULL}, 2195 2196 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2197 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2198 2199 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2200 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2201 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2202 2203 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2204 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2205 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2206 2207 {"3DSTATE_BLEND_STATE_POINTERS", 2208 OP_3DSTATE_BLEND_STATE_POINTERS, 2209 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2210 2211 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2212 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2213 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2214 2215 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2216 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2217 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2218 2219 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2220 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2221 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2222 2223 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2224 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2225 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2226 2227 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2228 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2229 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2230 2231 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2232 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2233 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2234 2235 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2236 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2240 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2244 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2246 2247 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2248 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2250 2251 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2252 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2256 0, 8, NULL}, 2257 2258 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2259 0, 8, NULL}, 2260 2261 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2262 0, 8, NULL}, 2263 2264 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2265 0, 8, NULL}, 2266 2267 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2272 2273 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2281 2282 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2284 2285 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2287 2288 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2289 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2290 2291 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2292 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2293 2294 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2295 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2296 2297 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2298 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2299 2300 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2301 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2302 2303 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2304 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2305 2306 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2307 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2308 2309 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2310 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2311 2312 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2313 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2314 2315 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2316 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2317 2318 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2319 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2320 2321 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2322 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2323 2324 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2325 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2326 2327 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2328 D_BDW_PLUS, 0, 8, NULL}, 2329 2330 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2331 NULL}, 2332 2333 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2334 D_BDW_PLUS, 0, 8, NULL}, 2335 2336 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2337 D_BDW_PLUS, 0, 8, NULL}, 2338 2339 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2340 8, NULL}, 2341 2342 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2343 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2344 2345 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2346 8, NULL}, 2347 2348 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2349 NULL}, 2350 2351 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2352 NULL}, 2353 2354 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2355 NULL}, 2356 2357 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2358 D_BDW_PLUS, 0, 8, NULL}, 2359 2360 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2361 R_RCS, D_ALL, 0, 8, NULL}, 2362 2363 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2364 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2365 2366 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2367 R_RCS, D_ALL, 0, 1, NULL}, 2368 2369 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2370 2371 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2372 R_RCS, D_ALL, 0, 8, NULL}, 2373 2374 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2375 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2376 2377 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2378 2379 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2380 2381 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2382 2383 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2384 D_BDW_PLUS, 0, 8, NULL}, 2385 2386 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2387 D_BDW_PLUS, 0, 8, NULL}, 2388 2389 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2390 D_ALL, 0, 8, NULL}, 2391 2392 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2393 D_BDW_PLUS, 0, 8, NULL}, 2394 2395 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2396 D_BDW_PLUS, 0, 8, NULL}, 2397 2398 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2399 2400 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2401 2402 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2403 2404 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2405 D_ALL, 0, 8, NULL}, 2406 2407 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2408 2409 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2410 2411 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2412 R_RCS, D_ALL, 0, 8, NULL}, 2413 2414 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2415 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2416 2417 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2418 0, 8, NULL}, 2419 2420 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2421 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2422 2423 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2424 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2427 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2428 2429 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2430 D_ALL, 0, 8, NULL}, 2431 2432 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2433 D_ALL, 0, 8, NULL}, 2434 2435 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2436 D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2439 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2440 2441 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2442 D_BDW_PLUS, 0, 8, NULL}, 2443 2444 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2445 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2446 2447 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2448 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2449 2450 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2451 R_RCS, D_ALL, 0, 8, NULL}, 2452 2453 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2454 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2455 2456 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2457 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2458 2459 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2460 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2461 2462 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2463 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2464 2465 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2466 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2467 2468 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2469 R_RCS, D_ALL, 0, 8, NULL}, 2470 2471 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2472 D_ALL, 0, 9, NULL}, 2473 2474 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2475 ADDR_FIX_2(2, 4), 8, NULL}, 2476 2477 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2478 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2479 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2480 2481 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2482 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2483 2484 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2485 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2486 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2487 2488 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2489 D_BDW_PLUS, 0, 8, NULL}, 2490 2491 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2492 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2493 2494 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2495 2496 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2497 1, NULL}, 2498 2499 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2500 ADDR_FIX_1(1), 8, NULL}, 2501 2502 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2503 2504 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2505 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2506 2507 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2508 ADDR_FIX_1(1), 8, NULL}, 2509 2510 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2511 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2512 2513 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2514 2515 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2516 2517 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2518 0, 8, NULL}, 2519 2520 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2521 D_SKL_PLUS, 0, 8, NULL}, 2522 2523 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2524 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2525 2526 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2527 0, 16, NULL}, 2528 2529 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2530 0, 16, NULL}, 2531 2532 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2533 0, 16, NULL}, 2534 2535 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2536 2537 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2538 0, 16, NULL}, 2539 2540 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2541 0, 16, NULL}, 2542 2543 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2544 0, 16, NULL}, 2545 2546 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2547 0, 8, NULL}, 2548 2549 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2550 NULL}, 2551 2552 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2553 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2554 2555 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2556 R_VCS, D_ALL, 0, 12, NULL}, 2557 2558 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2559 R_VCS, D_ALL, 0, 12, NULL}, 2560 2561 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2562 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2563 2564 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2565 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2566 2567 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2568 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2569 2570 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2571 2572 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2573 R_VCS, D_ALL, 0, 12, NULL}, 2574 2575 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2576 R_VCS, D_ALL, 0, 12, NULL}, 2577 2578 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2579 R_VCS, D_ALL, 0, 12, NULL}, 2580 2581 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2582 R_VCS, D_ALL, 0, 12, NULL}, 2583 2584 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2585 R_VCS, D_ALL, 0, 12, NULL}, 2586 2587 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2588 R_VCS, D_ALL, 0, 12, NULL}, 2589 2590 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2591 R_VCS, D_ALL, 0, 6, NULL}, 2592 2593 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2594 R_VCS, D_ALL, 0, 12, NULL}, 2595 2596 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2597 R_VCS, D_ALL, 0, 12, NULL}, 2598 2599 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2600 R_VCS, D_ALL, 0, 12, NULL}, 2601 2602 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2603 R_VCS, D_ALL, 0, 12, NULL}, 2604 2605 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2606 R_VCS, D_ALL, 0, 12, NULL}, 2607 2608 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2609 R_VCS, D_ALL, 0, 12, NULL}, 2610 2611 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2612 R_VCS, D_ALL, 0, 12, NULL}, 2613 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2620 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2621 2622 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 12, NULL}, 2624 2625 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2626 R_VCS, D_ALL, 0, 12, NULL}, 2627 2628 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2629 R_VCS, D_ALL, 0, 12, NULL}, 2630 2631 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2632 R_VCS, D_ALL, 0, 12, NULL}, 2633 2634 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2635 R_VCS, D_ALL, 0, 12, NULL}, 2636 2637 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 2643 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2644 R_VCS, D_ALL, 0, 12, NULL}, 2645 2646 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2647 R_VCS, D_ALL, 0, 12, NULL}, 2648 2649 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2650 R_VCS, D_ALL, 0, 12, NULL}, 2651 2652 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2653 R_VCS, D_ALL, 0, 12, NULL}, 2654 2655 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2656 0, 16, NULL}, 2657 2658 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2659 2660 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2661 2662 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2663 R_VCS, D_ALL, 0, 12, NULL}, 2664 2665 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2666 R_VCS, D_ALL, 0, 12, NULL}, 2667 2668 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2669 R_VCS, D_ALL, 0, 12, NULL}, 2670 2671 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2672 2673 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2674 0, 12, NULL}, 2675 2676 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2677 0, 12, NULL}, 2678 }; 2679 2680 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2681 { 2682 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2683 } 2684 2685 /* call the cmd handler, and advance ip */ 2686 static int cmd_parser_exec(struct parser_exec_state *s) 2687 { 2688 struct intel_vgpu *vgpu = s->vgpu; 2689 const struct cmd_info *info; 2690 u32 cmd; 2691 int ret = 0; 2692 2693 cmd = cmd_val(s, 0); 2694 2695 /* fastpath for MI_NOOP */ 2696 if (cmd == MI_NOOP) 2697 info = &cmd_info[mi_noop_index]; 2698 else 2699 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2700 2701 if (info == NULL) { 2702 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2703 cmd, get_opcode(cmd, s->engine), 2704 repr_addr_type(s->buf_addr_type), 2705 s->engine->name, s->workload); 2706 return -EBADRQC; 2707 } 2708 2709 s->info = info; 2710 2711 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2712 cmd_length(s), s->buf_type, s->buf_addr_type, 2713 s->workload, info->name); 2714 2715 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2716 ret = gvt_check_valid_cmd_length(cmd_length(s), 2717 info->valid_len); 2718 if (ret) 2719 return ret; 2720 } 2721 2722 if (info->handler) { 2723 ret = info->handler(s); 2724 if (ret < 0) { 2725 gvt_vgpu_err("%s handler error\n", info->name); 2726 return ret; 2727 } 2728 } 2729 2730 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2731 ret = cmd_advance_default(s); 2732 if (ret) { 2733 gvt_vgpu_err("%s IP advance error\n", info->name); 2734 return ret; 2735 } 2736 } 2737 return 0; 2738 } 2739 2740 static inline bool gma_out_of_range(unsigned long gma, 2741 unsigned long gma_head, unsigned int gma_tail) 2742 { 2743 if (gma_tail >= gma_head) 2744 return (gma < gma_head) || (gma > gma_tail); 2745 else 2746 return (gma > gma_tail) && (gma < gma_head); 2747 } 2748 2749 /* Keep the consistent return type, e.g EBADRQC for unknown 2750 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2751 * works as the input of VM healthy status. 2752 */ 2753 static int command_scan(struct parser_exec_state *s, 2754 unsigned long rb_head, unsigned long rb_tail, 2755 unsigned long rb_start, unsigned long rb_len) 2756 { 2757 2758 unsigned long gma_head, gma_tail, gma_bottom; 2759 int ret = 0; 2760 struct intel_vgpu *vgpu = s->vgpu; 2761 2762 gma_head = rb_start + rb_head; 2763 gma_tail = rb_start + rb_tail; 2764 gma_bottom = rb_start + rb_len; 2765 2766 while (s->ip_gma != gma_tail) { 2767 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2768 if (!(s->ip_gma >= rb_start) || 2769 !(s->ip_gma < gma_bottom)) { 2770 gvt_vgpu_err("ip_gma %lx out of ring scope." 2771 "(base:0x%lx, bottom: 0x%lx)\n", 2772 s->ip_gma, rb_start, 2773 gma_bottom); 2774 parser_exec_state_dump(s); 2775 return -EFAULT; 2776 } 2777 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2778 gvt_vgpu_err("ip_gma %lx out of range." 2779 "base 0x%lx head 0x%lx tail 0x%lx\n", 2780 s->ip_gma, rb_start, 2781 rb_head, rb_tail); 2782 parser_exec_state_dump(s); 2783 break; 2784 } 2785 } 2786 ret = cmd_parser_exec(s); 2787 if (ret) { 2788 gvt_vgpu_err("cmd parser error\n"); 2789 parser_exec_state_dump(s); 2790 break; 2791 } 2792 } 2793 2794 return ret; 2795 } 2796 2797 static int scan_workload(struct intel_vgpu_workload *workload) 2798 { 2799 unsigned long gma_head, gma_tail, gma_bottom; 2800 struct parser_exec_state s; 2801 int ret = 0; 2802 2803 /* ring base is page aligned */ 2804 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2805 return -EINVAL; 2806 2807 gma_head = workload->rb_start + workload->rb_head; 2808 gma_tail = workload->rb_start + workload->rb_tail; 2809 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2810 2811 s.buf_type = RING_BUFFER_INSTRUCTION; 2812 s.buf_addr_type = GTT_BUFFER; 2813 s.vgpu = workload->vgpu; 2814 s.engine = workload->engine; 2815 s.ring_start = workload->rb_start; 2816 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2817 s.ring_head = gma_head; 2818 s.ring_tail = gma_tail; 2819 s.rb_va = workload->shadow_ring_buffer_va; 2820 s.workload = workload; 2821 s.is_ctx_wa = false; 2822 2823 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2824 return 0; 2825 2826 ret = ip_gma_set(&s, gma_head); 2827 if (ret) 2828 goto out; 2829 2830 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2831 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2832 2833 out: 2834 return ret; 2835 } 2836 2837 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2838 { 2839 2840 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2841 struct parser_exec_state s; 2842 int ret = 0; 2843 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2844 struct intel_vgpu_workload, 2845 wa_ctx); 2846 2847 /* ring base is page aligned */ 2848 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2849 I915_GTT_PAGE_SIZE))) 2850 return -EINVAL; 2851 2852 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2853 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2854 PAGE_SIZE); 2855 gma_head = wa_ctx->indirect_ctx.guest_gma; 2856 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2857 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2858 2859 s.buf_type = RING_BUFFER_INSTRUCTION; 2860 s.buf_addr_type = GTT_BUFFER; 2861 s.vgpu = workload->vgpu; 2862 s.engine = workload->engine; 2863 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2864 s.ring_size = ring_size; 2865 s.ring_head = gma_head; 2866 s.ring_tail = gma_tail; 2867 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2868 s.workload = workload; 2869 s.is_ctx_wa = true; 2870 2871 ret = ip_gma_set(&s, gma_head); 2872 if (ret) 2873 goto out; 2874 2875 ret = command_scan(&s, 0, ring_tail, 2876 wa_ctx->indirect_ctx.guest_gma, ring_size); 2877 out: 2878 return ret; 2879 } 2880 2881 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2882 { 2883 struct intel_vgpu *vgpu = workload->vgpu; 2884 struct intel_vgpu_submission *s = &vgpu->submission; 2885 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2886 void *shadow_ring_buffer_va; 2887 int ret; 2888 2889 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2890 2891 /* calculate workload ring buffer size */ 2892 workload->rb_len = (workload->rb_tail + guest_rb_size - 2893 workload->rb_head) % guest_rb_size; 2894 2895 gma_head = workload->rb_start + workload->rb_head; 2896 gma_tail = workload->rb_start + workload->rb_tail; 2897 gma_top = workload->rb_start + guest_rb_size; 2898 2899 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2900 void *p; 2901 2902 /* realloc the new ring buffer if needed */ 2903 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2904 workload->rb_len, GFP_KERNEL); 2905 if (!p) { 2906 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2907 return -ENOMEM; 2908 } 2909 s->ring_scan_buffer[workload->engine->id] = p; 2910 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2911 } 2912 2913 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2914 2915 /* get shadow ring buffer va */ 2916 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2917 2918 /* head > tail --> copy head <-> top */ 2919 if (gma_head > gma_tail) { 2920 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2921 gma_head, gma_top, shadow_ring_buffer_va); 2922 if (ret < 0) { 2923 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2924 return ret; 2925 } 2926 shadow_ring_buffer_va += ret; 2927 gma_head = workload->rb_start; 2928 } 2929 2930 /* copy head or start <-> tail */ 2931 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2932 shadow_ring_buffer_va); 2933 if (ret < 0) { 2934 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2935 return ret; 2936 } 2937 return 0; 2938 } 2939 2940 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2941 { 2942 int ret; 2943 struct intel_vgpu *vgpu = workload->vgpu; 2944 2945 ret = shadow_workload_ring_buffer(workload); 2946 if (ret) { 2947 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2948 return ret; 2949 } 2950 2951 ret = scan_workload(workload); 2952 if (ret) { 2953 gvt_vgpu_err("scan workload error\n"); 2954 return ret; 2955 } 2956 return 0; 2957 } 2958 2959 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2960 { 2961 int ctx_size = wa_ctx->indirect_ctx.size; 2962 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2963 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2964 struct intel_vgpu_workload, 2965 wa_ctx); 2966 struct intel_vgpu *vgpu = workload->vgpu; 2967 struct drm_i915_gem_object *obj; 2968 int ret = 0; 2969 void *map; 2970 2971 obj = i915_gem_object_create_shmem(workload->engine->i915, 2972 roundup(ctx_size + CACHELINE_BYTES, 2973 PAGE_SIZE)); 2974 if (IS_ERR(obj)) 2975 return PTR_ERR(obj); 2976 2977 /* get the va of the shadow batch buffer */ 2978 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2979 if (IS_ERR(map)) { 2980 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2981 ret = PTR_ERR(map); 2982 goto put_obj; 2983 } 2984 2985 i915_gem_object_lock(obj, NULL); 2986 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2987 i915_gem_object_unlock(obj); 2988 if (ret) { 2989 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2990 goto unmap_src; 2991 } 2992 2993 ret = copy_gma_to_hva(workload->vgpu, 2994 workload->vgpu->gtt.ggtt_mm, 2995 guest_gma, guest_gma + ctx_size, 2996 map); 2997 if (ret < 0) { 2998 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2999 goto unmap_src; 3000 } 3001 3002 wa_ctx->indirect_ctx.obj = obj; 3003 wa_ctx->indirect_ctx.shadow_va = map; 3004 return 0; 3005 3006 unmap_src: 3007 i915_gem_object_unpin_map(obj); 3008 put_obj: 3009 i915_gem_object_put(obj); 3010 return ret; 3011 } 3012 3013 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3014 { 3015 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3016 unsigned char *bb_start_sva; 3017 3018 if (!wa_ctx->per_ctx.valid) 3019 return 0; 3020 3021 per_ctx_start[0] = 0x18800001; 3022 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3023 3024 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3025 wa_ctx->indirect_ctx.size; 3026 3027 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3028 3029 return 0; 3030 } 3031 3032 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3033 { 3034 int ret; 3035 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3036 struct intel_vgpu_workload, 3037 wa_ctx); 3038 struct intel_vgpu *vgpu = workload->vgpu; 3039 3040 if (wa_ctx->indirect_ctx.size == 0) 3041 return 0; 3042 3043 ret = shadow_indirect_ctx(wa_ctx); 3044 if (ret) { 3045 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3046 return ret; 3047 } 3048 3049 combine_wa_ctx(wa_ctx); 3050 3051 ret = scan_wa_ctx(wa_ctx); 3052 if (ret) { 3053 gvt_vgpu_err("scan wa ctx error\n"); 3054 return ret; 3055 } 3056 3057 return 0; 3058 } 3059 3060 static int init_cmd_table(struct intel_gvt *gvt) 3061 { 3062 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3063 int i; 3064 3065 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3066 struct cmd_entry *e; 3067 3068 if (!(cmd_info[i].devices & gen_type)) 3069 continue; 3070 3071 e = kzalloc(sizeof(*e), GFP_KERNEL); 3072 if (!e) 3073 return -ENOMEM; 3074 3075 e->info = &cmd_info[i]; 3076 if (cmd_info[i].opcode == OP_MI_NOOP) 3077 mi_noop_index = i; 3078 3079 INIT_HLIST_NODE(&e->hlist); 3080 add_cmd_entry(gvt, e); 3081 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3082 e->info->name, e->info->opcode, e->info->flag, 3083 e->info->devices, e->info->rings); 3084 } 3085 3086 return 0; 3087 } 3088 3089 static void clean_cmd_table(struct intel_gvt *gvt) 3090 { 3091 struct hlist_node *tmp; 3092 struct cmd_entry *e; 3093 int i; 3094 3095 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3096 kfree(e); 3097 3098 hash_init(gvt->cmd_table); 3099 } 3100 3101 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3102 { 3103 clean_cmd_table(gvt); 3104 } 3105 3106 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3107 { 3108 int ret; 3109 3110 ret = init_cmd_table(gvt); 3111 if (ret) { 3112 intel_gvt_clean_cmd_parser(gvt); 3113 return ret; 3114 } 3115 return 0; 3116 } 3117