1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 180 181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 247 248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 259 260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 288 289 /* VCCP Command Parser */ 290 291 /* 292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 293 * git://anongit.freedesktop.org/vaapi/intel-driver 294 * src/i965_defines.h 295 * 296 */ 297 298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 299 (3 << 13 | \ 300 (pipeline) << 11 | \ 301 (op) << 8 | \ 302 (sub_opa) << 5 | \ 303 (sub_opb)) 304 305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 316 317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 318 319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 331 332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 337 338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 343 344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 347 348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 351 352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 353 (3 << 13 | \ 354 (pipeline) << 11 | \ 355 (op) << 8 | \ 356 (sub_opa) << 5 | \ 357 (sub_opb)) 358 359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 362 363 struct parser_exec_state; 364 365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 366 367 #define GVT_CMD_HASH_BITS 7 368 369 /* which DWords need address fix */ 370 #define ADDR_FIX_1(x1) (1 << (x1)) 371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 375 376 struct cmd_info { 377 char *name; 378 u32 opcode; 379 380 #define F_LEN_MASK (1U<<0) 381 #define F_LEN_CONST 1U 382 #define F_LEN_VAR 0U 383 384 /* 385 * command has its own ip advance logic 386 * e.g. MI_BATCH_START, MI_BATCH_END 387 */ 388 #define F_IP_ADVANCE_CUSTOM (1<<1) 389 390 #define F_POST_HANDLE (1<<2) 391 u32 flag; 392 393 #define R_RCS (1 << RCS) 394 #define R_VCS1 (1 << VCS) 395 #define R_VCS2 (1 << VCS2) 396 #define R_VCS (R_VCS1 | R_VCS2) 397 #define R_BCS (1 << BCS) 398 #define R_VECS (1 << VECS) 399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 400 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 401 uint16_t rings; 402 403 /* devices that support this cmd: SNB/IVB/HSW/... */ 404 uint16_t devices; 405 406 /* which DWords are address that need fix up. 407 * bit 0 means a 32-bit non address operand in command 408 * bit 1 means address operand, which could be 32-bit 409 * or 64-bit depending on different architectures.( 410 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 411 * No matter the address length, each address only takes 412 * one bit in the bitmap. 413 */ 414 uint16_t addr_bitmap; 415 416 /* flag == F_LEN_CONST : command length 417 * flag == F_LEN_VAR : length bias bits 418 * Note: length is in DWord 419 */ 420 uint8_t len; 421 422 parser_cmd_handler handler; 423 }; 424 425 struct cmd_entry { 426 struct hlist_node hlist; 427 struct cmd_info *info; 428 }; 429 430 enum { 431 RING_BUFFER_INSTRUCTION, 432 BATCH_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_2ND_LEVEL, 434 }; 435 436 enum { 437 GTT_BUFFER, 438 PPGTT_BUFFER 439 }; 440 441 struct parser_exec_state { 442 struct intel_vgpu *vgpu; 443 int ring_id; 444 445 int buf_type; 446 447 /* batch buffer address type */ 448 int buf_addr_type; 449 450 /* graphics memory address of ring buffer start */ 451 unsigned long ring_start; 452 unsigned long ring_size; 453 unsigned long ring_head; 454 unsigned long ring_tail; 455 456 /* instruction graphics memory address */ 457 unsigned long ip_gma; 458 459 /* mapped va of the instr_gma */ 460 void *ip_va; 461 void *rb_va; 462 463 void *ret_bb_va; 464 /* next instruction when return from batch buffer to ring buffer */ 465 unsigned long ret_ip_gma_ring; 466 467 /* next instruction when return from 2nd batch buffer to batch buffer */ 468 unsigned long ret_ip_gma_bb; 469 470 /* batch buffer address type (GTT or PPGTT) 471 * used when ret from 2nd level batch buffer 472 */ 473 int saved_buf_addr_type; 474 bool is_ctx_wa; 475 476 struct cmd_info *info; 477 478 struct intel_vgpu_workload *workload; 479 }; 480 481 #define gmadr_dw_number(s) \ 482 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 483 484 static unsigned long bypass_scan_mask = 0; 485 486 /* ring ALL, type = 0 */ 487 static struct sub_op_bits sub_op_mi[] = { 488 {31, 29}, 489 {28, 23}, 490 }; 491 492 static struct decode_info decode_info_mi = { 493 "MI", 494 OP_LEN_MI, 495 ARRAY_SIZE(sub_op_mi), 496 sub_op_mi, 497 }; 498 499 /* ring RCS, command type 2 */ 500 static struct sub_op_bits sub_op_2d[] = { 501 {31, 29}, 502 {28, 22}, 503 }; 504 505 static struct decode_info decode_info_2d = { 506 "2D", 507 OP_LEN_2D, 508 ARRAY_SIZE(sub_op_2d), 509 sub_op_2d, 510 }; 511 512 /* ring RCS, command type 3 */ 513 static struct sub_op_bits sub_op_3d_media[] = { 514 {31, 29}, 515 {28, 27}, 516 {26, 24}, 517 {23, 16}, 518 }; 519 520 static struct decode_info decode_info_3d_media = { 521 "3D_Media", 522 OP_LEN_3D_MEDIA, 523 ARRAY_SIZE(sub_op_3d_media), 524 sub_op_3d_media, 525 }; 526 527 /* ring VCS, command type 3 */ 528 static struct sub_op_bits sub_op_mfx_vc[] = { 529 {31, 29}, 530 {28, 27}, 531 {26, 24}, 532 {23, 21}, 533 {20, 16}, 534 }; 535 536 static struct decode_info decode_info_mfx_vc = { 537 "MFX_VC", 538 OP_LEN_MFX_VC, 539 ARRAY_SIZE(sub_op_mfx_vc), 540 sub_op_mfx_vc, 541 }; 542 543 /* ring VECS, command type 3 */ 544 static struct sub_op_bits sub_op_vebox[] = { 545 {31, 29}, 546 {28, 27}, 547 {26, 24}, 548 {23, 21}, 549 {20, 16}, 550 }; 551 552 static struct decode_info decode_info_vebox = { 553 "VEBOX", 554 OP_LEN_VEBOX, 555 ARRAY_SIZE(sub_op_vebox), 556 sub_op_vebox, 557 }; 558 559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 560 [RCS] = { 561 &decode_info_mi, 562 NULL, 563 NULL, 564 &decode_info_3d_media, 565 NULL, 566 NULL, 567 NULL, 568 NULL, 569 }, 570 571 [VCS] = { 572 &decode_info_mi, 573 NULL, 574 NULL, 575 &decode_info_mfx_vc, 576 NULL, 577 NULL, 578 NULL, 579 NULL, 580 }, 581 582 [BCS] = { 583 &decode_info_mi, 584 NULL, 585 &decode_info_2d, 586 NULL, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 }, 592 593 [VECS] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_vebox, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [VCS2] = { 605 &decode_info_mi, 606 NULL, 607 NULL, 608 &decode_info_mfx_vc, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 }; 615 616 static inline u32 get_opcode(u32 cmd, int ring_id) 617 { 618 struct decode_info *d_info; 619 620 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 621 if (d_info == NULL) 622 return INVALID_OP; 623 624 return cmd >> (32 - d_info->op_len); 625 } 626 627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 628 unsigned int opcode, int ring_id) 629 { 630 struct cmd_entry *e; 631 632 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 633 if ((opcode == e->info->opcode) && 634 (e->info->rings & (1 << ring_id))) 635 return e->info; 636 } 637 return NULL; 638 } 639 640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 641 u32 cmd, int ring_id) 642 { 643 u32 opcode; 644 645 opcode = get_opcode(cmd, ring_id); 646 if (opcode == INVALID_OP) 647 return NULL; 648 649 return find_cmd_entry(gvt, opcode, ring_id); 650 } 651 652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 653 { 654 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 655 } 656 657 static inline void print_opcode(u32 cmd, int ring_id) 658 { 659 struct decode_info *d_info; 660 int i; 661 662 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 663 if (d_info == NULL) 664 return; 665 666 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 667 cmd >> (32 - d_info->op_len), d_info->name); 668 669 for (i = 0; i < d_info->nr_sub_op; i++) 670 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 671 d_info->sub_op[i].low)); 672 673 pr_err("\n"); 674 } 675 676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 677 { 678 return s->ip_va + (index << 2); 679 } 680 681 static inline u32 cmd_val(struct parser_exec_state *s, int index) 682 { 683 return *cmd_ptr(s, index); 684 } 685 686 static void parser_exec_state_dump(struct parser_exec_state *s) 687 { 688 int cnt = 0; 689 int i; 690 691 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 692 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 693 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 694 s->ring_head, s->ring_tail); 695 696 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 697 s->buf_type == RING_BUFFER_INSTRUCTION ? 698 "RING_BUFFER" : "BATCH_BUFFER", 699 s->buf_addr_type == GTT_BUFFER ? 700 "GTT" : "PPGTT", s->ip_gma); 701 702 if (s->ip_va == NULL) { 703 gvt_dbg_cmd(" ip_va(NULL)"); 704 return; 705 } 706 707 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 708 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 709 cmd_val(s, 2), cmd_val(s, 3)); 710 711 print_opcode(cmd_val(s, 0), s->ring_id); 712 713 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 714 715 while (cnt < 1024) { 716 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 717 for (i = 0; i < 8; i++) 718 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 719 gvt_dbg_cmd("\n"); 720 721 s->ip_va += 8 * sizeof(u32); 722 cnt += 8; 723 } 724 } 725 726 static inline void update_ip_va(struct parser_exec_state *s) 727 { 728 unsigned long len = 0; 729 730 if (WARN_ON(s->ring_head == s->ring_tail)) 731 return; 732 733 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 734 unsigned long ring_top = s->ring_start + s->ring_size; 735 736 if (s->ring_head > s->ring_tail) { 737 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 738 len = (s->ip_gma - s->ring_head); 739 else if (s->ip_gma >= s->ring_start && 740 s->ip_gma <= s->ring_tail) 741 len = (ring_top - s->ring_head) + 742 (s->ip_gma - s->ring_start); 743 } else 744 len = (s->ip_gma - s->ring_head); 745 746 s->ip_va = s->rb_va + len; 747 } else {/* shadow batch buffer */ 748 s->ip_va = s->ret_bb_va; 749 } 750 } 751 752 static inline int ip_gma_set(struct parser_exec_state *s, 753 unsigned long ip_gma) 754 { 755 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 756 757 s->ip_gma = ip_gma; 758 update_ip_va(s); 759 return 0; 760 } 761 762 static inline int ip_gma_advance(struct parser_exec_state *s, 763 unsigned int dw_len) 764 { 765 s->ip_gma += (dw_len << 2); 766 767 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 768 if (s->ip_gma >= s->ring_start + s->ring_size) 769 s->ip_gma -= s->ring_size; 770 update_ip_va(s); 771 } else { 772 s->ip_va += (dw_len << 2); 773 } 774 775 return 0; 776 } 777 778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 779 { 780 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 781 return info->len; 782 else 783 return (cmd & ((1U << info->len) - 1)) + 2; 784 return 0; 785 } 786 787 static inline int cmd_length(struct parser_exec_state *s) 788 { 789 return get_cmd_length(s->info, cmd_val(s, 0)); 790 } 791 792 /* do not remove this, some platform may need clflush here */ 793 #define patch_value(s, addr, val) do { \ 794 *addr = val; \ 795 } while (0) 796 797 static bool is_shadowed_mmio(unsigned int offset) 798 { 799 bool ret = false; 800 801 if ((offset == 0x2168) || /*BB current head register UDW */ 802 (offset == 0x2140) || /*BB current header register */ 803 (offset == 0x211c) || /*second BB header register UDW */ 804 (offset == 0x2114)) { /*second BB header register UDW */ 805 ret = true; 806 } 807 return ret; 808 } 809 810 static inline bool is_force_nonpriv_mmio(unsigned int offset) 811 { 812 return (offset >= 0x24d0 && offset < 0x2500); 813 } 814 815 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 816 unsigned int offset, unsigned int index) 817 { 818 struct intel_gvt *gvt = s->vgpu->gvt; 819 unsigned int data = cmd_val(s, index + 1); 820 821 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data)) { 822 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 823 offset, data); 824 return -EPERM; 825 } 826 return 0; 827 } 828 829 static inline bool is_mocs_mmio(unsigned int offset) 830 { 831 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 832 ((offset >= 0xb020) && (offset <= 0xb0a0)); 833 } 834 835 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 836 unsigned int offset, unsigned int index) 837 { 838 if (!is_mocs_mmio(offset)) 839 return -EINVAL; 840 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 841 return 0; 842 } 843 844 static int cmd_reg_handler(struct parser_exec_state *s, 845 unsigned int offset, unsigned int index, char *cmd) 846 { 847 struct intel_vgpu *vgpu = s->vgpu; 848 struct intel_gvt *gvt = vgpu->gvt; 849 850 if (offset + 4 > gvt->device_info.mmio_size) { 851 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 852 cmd, offset); 853 return -EFAULT; 854 } 855 856 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 857 gvt_vgpu_err("%s access to non-render register (%x)\n", 858 cmd, offset); 859 return 0; 860 } 861 862 if (is_shadowed_mmio(offset)) { 863 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 864 return 0; 865 } 866 867 if (is_mocs_mmio(offset) && 868 mocs_cmd_reg_handler(s, offset, index)) 869 return -EINVAL; 870 871 if (is_force_nonpriv_mmio(offset) && 872 force_nonpriv_reg_handler(s, offset, index)) 873 return -EPERM; 874 875 if (offset == i915_mmio_reg_offset(DERRMR) || 876 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 877 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 878 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 879 } 880 881 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 882 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 883 return 0; 884 } 885 886 #define cmd_reg(s, i) \ 887 (cmd_val(s, i) & GENMASK(22, 2)) 888 889 #define cmd_reg_inhibit(s, i) \ 890 (cmd_val(s, i) & GENMASK(22, 18)) 891 892 #define cmd_gma(s, i) \ 893 (cmd_val(s, i) & GENMASK(31, 2)) 894 895 #define cmd_gma_hi(s, i) \ 896 (cmd_val(s, i) & GENMASK(15, 0)) 897 898 static int cmd_handler_lri(struct parser_exec_state *s) 899 { 900 int i, ret = 0; 901 int cmd_len = cmd_length(s); 902 struct intel_gvt *gvt = s->vgpu->gvt; 903 904 for (i = 1; i < cmd_len; i += 2) { 905 if (IS_BROADWELL(gvt->dev_priv) && 906 (s->ring_id != RCS)) { 907 if (s->ring_id == BCS && 908 cmd_reg(s, i) == 909 i915_mmio_reg_offset(DERRMR)) 910 ret |= 0; 911 else 912 ret |= (cmd_reg_inhibit(s, i)) ? 913 -EBADRQC : 0; 914 } 915 if (ret) 916 break; 917 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 918 if (ret) 919 break; 920 } 921 return ret; 922 } 923 924 static int cmd_handler_lrr(struct parser_exec_state *s) 925 { 926 int i, ret = 0; 927 int cmd_len = cmd_length(s); 928 929 for (i = 1; i < cmd_len; i += 2) { 930 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 931 ret |= ((cmd_reg_inhibit(s, i) || 932 (cmd_reg_inhibit(s, i + 1)))) ? 933 -EBADRQC : 0; 934 if (ret) 935 break; 936 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 937 if (ret) 938 break; 939 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 940 if (ret) 941 break; 942 } 943 return ret; 944 } 945 946 static inline int cmd_address_audit(struct parser_exec_state *s, 947 unsigned long guest_gma, int op_size, bool index_mode); 948 949 static int cmd_handler_lrm(struct parser_exec_state *s) 950 { 951 struct intel_gvt *gvt = s->vgpu->gvt; 952 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 953 unsigned long gma; 954 int i, ret = 0; 955 int cmd_len = cmd_length(s); 956 957 for (i = 1; i < cmd_len;) { 958 if (IS_BROADWELL(gvt->dev_priv)) 959 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 960 if (ret) 961 break; 962 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 963 if (ret) 964 break; 965 if (cmd_val(s, 0) & (1 << 22)) { 966 gma = cmd_gma(s, i + 1); 967 if (gmadr_bytes == 8) 968 gma |= (cmd_gma_hi(s, i + 2)) << 32; 969 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 970 if (ret) 971 break; 972 } 973 i += gmadr_dw_number(s) + 1; 974 } 975 return ret; 976 } 977 978 static int cmd_handler_srm(struct parser_exec_state *s) 979 { 980 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 981 unsigned long gma; 982 int i, ret = 0; 983 int cmd_len = cmd_length(s); 984 985 for (i = 1; i < cmd_len;) { 986 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 987 if (ret) 988 break; 989 if (cmd_val(s, 0) & (1 << 22)) { 990 gma = cmd_gma(s, i + 1); 991 if (gmadr_bytes == 8) 992 gma |= (cmd_gma_hi(s, i + 2)) << 32; 993 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 994 if (ret) 995 break; 996 } 997 i += gmadr_dw_number(s) + 1; 998 } 999 return ret; 1000 } 1001 1002 struct cmd_interrupt_event { 1003 int pipe_control_notify; 1004 int mi_flush_dw; 1005 int mi_user_interrupt; 1006 }; 1007 1008 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1009 [RCS] = { 1010 .pipe_control_notify = RCS_PIPE_CONTROL, 1011 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1012 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1013 }, 1014 [BCS] = { 1015 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1016 .mi_flush_dw = BCS_MI_FLUSH_DW, 1017 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1018 }, 1019 [VCS] = { 1020 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1021 .mi_flush_dw = VCS_MI_FLUSH_DW, 1022 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1023 }, 1024 [VCS2] = { 1025 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1026 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1027 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1028 }, 1029 [VECS] = { 1030 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1031 .mi_flush_dw = VECS_MI_FLUSH_DW, 1032 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1033 }, 1034 }; 1035 1036 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1037 { 1038 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1039 unsigned long gma; 1040 bool index_mode = false; 1041 unsigned int post_sync; 1042 int ret = 0; 1043 1044 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1045 1046 /* LRI post sync */ 1047 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1048 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1049 /* post sync */ 1050 else if (post_sync) { 1051 if (post_sync == 2) 1052 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1053 else if (post_sync == 3) 1054 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1055 else if (post_sync == 1) { 1056 /* check ggtt*/ 1057 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1058 gma = cmd_val(s, 2) & GENMASK(31, 3); 1059 if (gmadr_bytes == 8) 1060 gma |= (cmd_gma_hi(s, 3)) << 32; 1061 /* Store Data Index */ 1062 if (cmd_val(s, 1) & (1 << 21)) 1063 index_mode = true; 1064 ret |= cmd_address_audit(s, gma, sizeof(u64), 1065 index_mode); 1066 } 1067 } 1068 } 1069 1070 if (ret) 1071 return ret; 1072 1073 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1074 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1075 s->workload->pending_events); 1076 return 0; 1077 } 1078 1079 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1080 { 1081 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1082 s->workload->pending_events); 1083 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1084 return 0; 1085 } 1086 1087 static int cmd_advance_default(struct parser_exec_state *s) 1088 { 1089 return ip_gma_advance(s, cmd_length(s)); 1090 } 1091 1092 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1093 { 1094 int ret; 1095 1096 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1097 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1098 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1099 s->buf_addr_type = s->saved_buf_addr_type; 1100 } else { 1101 s->buf_type = RING_BUFFER_INSTRUCTION; 1102 s->buf_addr_type = GTT_BUFFER; 1103 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1104 s->ret_ip_gma_ring -= s->ring_size; 1105 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1106 } 1107 return ret; 1108 } 1109 1110 struct mi_display_flip_command_info { 1111 int pipe; 1112 int plane; 1113 int event; 1114 i915_reg_t stride_reg; 1115 i915_reg_t ctrl_reg; 1116 i915_reg_t surf_reg; 1117 u64 stride_val; 1118 u64 tile_val; 1119 u64 surf_val; 1120 bool async_flip; 1121 }; 1122 1123 struct plane_code_mapping { 1124 int pipe; 1125 int plane; 1126 int event; 1127 }; 1128 1129 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1130 struct mi_display_flip_command_info *info) 1131 { 1132 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1133 struct plane_code_mapping gen8_plane_code[] = { 1134 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1135 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1136 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1137 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1138 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1139 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1140 }; 1141 u32 dword0, dword1, dword2; 1142 u32 v; 1143 1144 dword0 = cmd_val(s, 0); 1145 dword1 = cmd_val(s, 1); 1146 dword2 = cmd_val(s, 2); 1147 1148 v = (dword0 & GENMASK(21, 19)) >> 19; 1149 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1150 return -EBADRQC; 1151 1152 info->pipe = gen8_plane_code[v].pipe; 1153 info->plane = gen8_plane_code[v].plane; 1154 info->event = gen8_plane_code[v].event; 1155 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1156 info->tile_val = (dword1 & 0x1); 1157 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1158 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1159 1160 if (info->plane == PLANE_A) { 1161 info->ctrl_reg = DSPCNTR(info->pipe); 1162 info->stride_reg = DSPSTRIDE(info->pipe); 1163 info->surf_reg = DSPSURF(info->pipe); 1164 } else if (info->plane == PLANE_B) { 1165 info->ctrl_reg = SPRCTL(info->pipe); 1166 info->stride_reg = SPRSTRIDE(info->pipe); 1167 info->surf_reg = SPRSURF(info->pipe); 1168 } else { 1169 WARN_ON(1); 1170 return -EBADRQC; 1171 } 1172 return 0; 1173 } 1174 1175 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1176 struct mi_display_flip_command_info *info) 1177 { 1178 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1179 struct intel_vgpu *vgpu = s->vgpu; 1180 u32 dword0 = cmd_val(s, 0); 1181 u32 dword1 = cmd_val(s, 1); 1182 u32 dword2 = cmd_val(s, 2); 1183 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1184 1185 info->plane = PRIMARY_PLANE; 1186 1187 switch (plane) { 1188 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1189 info->pipe = PIPE_A; 1190 info->event = PRIMARY_A_FLIP_DONE; 1191 break; 1192 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1193 info->pipe = PIPE_B; 1194 info->event = PRIMARY_B_FLIP_DONE; 1195 break; 1196 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1197 info->pipe = PIPE_C; 1198 info->event = PRIMARY_C_FLIP_DONE; 1199 break; 1200 1201 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1202 info->pipe = PIPE_A; 1203 info->event = SPRITE_A_FLIP_DONE; 1204 info->plane = SPRITE_PLANE; 1205 break; 1206 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1207 info->pipe = PIPE_B; 1208 info->event = SPRITE_B_FLIP_DONE; 1209 info->plane = SPRITE_PLANE; 1210 break; 1211 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1212 info->pipe = PIPE_C; 1213 info->event = SPRITE_C_FLIP_DONE; 1214 info->plane = SPRITE_PLANE; 1215 break; 1216 1217 default: 1218 gvt_vgpu_err("unknown plane code %d\n", plane); 1219 return -EBADRQC; 1220 } 1221 1222 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1223 info->tile_val = (dword1 & GENMASK(2, 0)); 1224 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1225 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1226 1227 info->ctrl_reg = DSPCNTR(info->pipe); 1228 info->stride_reg = DSPSTRIDE(info->pipe); 1229 info->surf_reg = DSPSURF(info->pipe); 1230 1231 return 0; 1232 } 1233 1234 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1235 struct mi_display_flip_command_info *info) 1236 { 1237 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1238 u32 stride, tile; 1239 1240 if (!info->async_flip) 1241 return 0; 1242 1243 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1244 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1245 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1246 GENMASK(12, 10)) >> 10; 1247 } else { 1248 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1249 GENMASK(15, 6)) >> 6; 1250 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1251 } 1252 1253 if (stride != info->stride_val) 1254 gvt_dbg_cmd("cannot change stride during async flip\n"); 1255 1256 if (tile != info->tile_val) 1257 gvt_dbg_cmd("cannot change tile during async flip\n"); 1258 1259 return 0; 1260 } 1261 1262 static int gen8_update_plane_mmio_from_mi_display_flip( 1263 struct parser_exec_state *s, 1264 struct mi_display_flip_command_info *info) 1265 { 1266 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1267 struct intel_vgpu *vgpu = s->vgpu; 1268 1269 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1270 info->surf_val << 12); 1271 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) { 1272 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1273 info->stride_val); 1274 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1275 info->tile_val << 10); 1276 } else { 1277 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1278 info->stride_val << 6); 1279 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1280 info->tile_val << 10); 1281 } 1282 1283 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1284 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1285 return 0; 1286 } 1287 1288 static int decode_mi_display_flip(struct parser_exec_state *s, 1289 struct mi_display_flip_command_info *info) 1290 { 1291 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1292 1293 if (IS_BROADWELL(dev_priv)) 1294 return gen8_decode_mi_display_flip(s, info); 1295 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) 1296 return skl_decode_mi_display_flip(s, info); 1297 1298 return -ENODEV; 1299 } 1300 1301 static int check_mi_display_flip(struct parser_exec_state *s, 1302 struct mi_display_flip_command_info *info) 1303 { 1304 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1305 1306 if (IS_BROADWELL(dev_priv) 1307 || IS_SKYLAKE(dev_priv) 1308 || IS_KABYLAKE(dev_priv)) 1309 return gen8_check_mi_display_flip(s, info); 1310 return -ENODEV; 1311 } 1312 1313 static int update_plane_mmio_from_mi_display_flip( 1314 struct parser_exec_state *s, 1315 struct mi_display_flip_command_info *info) 1316 { 1317 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1318 1319 if (IS_BROADWELL(dev_priv) 1320 || IS_SKYLAKE(dev_priv) 1321 || IS_KABYLAKE(dev_priv)) 1322 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1323 return -ENODEV; 1324 } 1325 1326 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1327 { 1328 struct mi_display_flip_command_info info; 1329 struct intel_vgpu *vgpu = s->vgpu; 1330 int ret; 1331 int i; 1332 int len = cmd_length(s); 1333 1334 ret = decode_mi_display_flip(s, &info); 1335 if (ret) { 1336 gvt_vgpu_err("fail to decode MI display flip command\n"); 1337 return ret; 1338 } 1339 1340 ret = check_mi_display_flip(s, &info); 1341 if (ret) { 1342 gvt_vgpu_err("invalid MI display flip command\n"); 1343 return ret; 1344 } 1345 1346 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1347 if (ret) { 1348 gvt_vgpu_err("fail to update plane mmio\n"); 1349 return ret; 1350 } 1351 1352 for (i = 0; i < len; i++) 1353 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1354 return 0; 1355 } 1356 1357 static bool is_wait_for_flip_pending(u32 cmd) 1358 { 1359 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1360 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1361 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1362 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1363 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1364 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1365 } 1366 1367 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1368 { 1369 u32 cmd = cmd_val(s, 0); 1370 1371 if (!is_wait_for_flip_pending(cmd)) 1372 return 0; 1373 1374 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1375 return 0; 1376 } 1377 1378 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1379 { 1380 unsigned long addr; 1381 unsigned long gma_high, gma_low; 1382 struct intel_vgpu *vgpu = s->vgpu; 1383 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1384 1385 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1386 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1387 return INTEL_GVT_INVALID_ADDR; 1388 } 1389 1390 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1391 if (gmadr_bytes == 4) { 1392 addr = gma_low; 1393 } else { 1394 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1395 addr = (((unsigned long)gma_high) << 32) | gma_low; 1396 } 1397 return addr; 1398 } 1399 1400 static inline int cmd_address_audit(struct parser_exec_state *s, 1401 unsigned long guest_gma, int op_size, bool index_mode) 1402 { 1403 struct intel_vgpu *vgpu = s->vgpu; 1404 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1405 int i; 1406 int ret; 1407 1408 if (op_size > max_surface_size) { 1409 gvt_vgpu_err("command address audit fail name %s\n", 1410 s->info->name); 1411 return -EFAULT; 1412 } 1413 1414 if (index_mode) { 1415 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) { 1416 ret = -EFAULT; 1417 goto err; 1418 } 1419 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1420 ret = -EFAULT; 1421 goto err; 1422 } 1423 1424 return 0; 1425 1426 err: 1427 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1428 s->info->name, guest_gma, op_size); 1429 1430 pr_err("cmd dump: "); 1431 for (i = 0; i < cmd_length(s); i++) { 1432 if (!(i % 4)) 1433 pr_err("\n%08x ", cmd_val(s, i)); 1434 else 1435 pr_err("%08x ", cmd_val(s, i)); 1436 } 1437 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1438 vgpu->id, 1439 vgpu_aperture_gmadr_base(vgpu), 1440 vgpu_aperture_gmadr_end(vgpu), 1441 vgpu_hidden_gmadr_base(vgpu), 1442 vgpu_hidden_gmadr_end(vgpu)); 1443 return ret; 1444 } 1445 1446 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1447 { 1448 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1449 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1450 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1451 unsigned long gma, gma_low, gma_high; 1452 int ret = 0; 1453 1454 /* check ppggt */ 1455 if (!(cmd_val(s, 0) & (1 << 22))) 1456 return 0; 1457 1458 gma = cmd_val(s, 2) & GENMASK(31, 2); 1459 1460 if (gmadr_bytes == 8) { 1461 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1462 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1463 gma = (gma_high << 32) | gma_low; 1464 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1465 } 1466 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1467 return ret; 1468 } 1469 1470 static inline int unexpected_cmd(struct parser_exec_state *s) 1471 { 1472 struct intel_vgpu *vgpu = s->vgpu; 1473 1474 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1475 1476 return -EBADRQC; 1477 } 1478 1479 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1480 { 1481 return unexpected_cmd(s); 1482 } 1483 1484 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1485 { 1486 return unexpected_cmd(s); 1487 } 1488 1489 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1490 { 1491 return unexpected_cmd(s); 1492 } 1493 1494 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1495 { 1496 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1497 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1498 sizeof(u32); 1499 unsigned long gma, gma_high; 1500 int ret = 0; 1501 1502 if (!(cmd_val(s, 0) & (1 << 22))) 1503 return ret; 1504 1505 gma = cmd_val(s, 1) & GENMASK(31, 2); 1506 if (gmadr_bytes == 8) { 1507 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1508 gma = (gma_high << 32) | gma; 1509 } 1510 ret = cmd_address_audit(s, gma, op_size, false); 1511 return ret; 1512 } 1513 1514 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1515 { 1516 return unexpected_cmd(s); 1517 } 1518 1519 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1520 { 1521 return unexpected_cmd(s); 1522 } 1523 1524 static int cmd_handler_mi_conditional_batch_buffer_end( 1525 struct parser_exec_state *s) 1526 { 1527 return unexpected_cmd(s); 1528 } 1529 1530 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1531 { 1532 return unexpected_cmd(s); 1533 } 1534 1535 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1536 { 1537 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1538 unsigned long gma; 1539 bool index_mode = false; 1540 int ret = 0; 1541 1542 /* Check post-sync and ppgtt bit */ 1543 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1544 gma = cmd_val(s, 1) & GENMASK(31, 3); 1545 if (gmadr_bytes == 8) 1546 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1547 /* Store Data Index */ 1548 if (cmd_val(s, 0) & (1 << 21)) 1549 index_mode = true; 1550 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1551 } 1552 /* Check notify bit */ 1553 if ((cmd_val(s, 0) & (1 << 8))) 1554 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1555 s->workload->pending_events); 1556 return ret; 1557 } 1558 1559 static void addr_type_update_snb(struct parser_exec_state *s) 1560 { 1561 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1562 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1563 s->buf_addr_type = PPGTT_BUFFER; 1564 } 1565 } 1566 1567 1568 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1569 unsigned long gma, unsigned long end_gma, void *va) 1570 { 1571 unsigned long copy_len, offset; 1572 unsigned long len = 0; 1573 unsigned long gpa; 1574 1575 while (gma != end_gma) { 1576 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1577 if (gpa == INTEL_GVT_INVALID_ADDR) { 1578 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1579 return -EFAULT; 1580 } 1581 1582 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1583 1584 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1585 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1586 1587 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1588 1589 len += copy_len; 1590 gma += copy_len; 1591 } 1592 return len; 1593 } 1594 1595 1596 /* 1597 * Check whether a batch buffer needs to be scanned. Currently 1598 * the only criteria is based on privilege. 1599 */ 1600 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1601 { 1602 struct intel_gvt *gvt = s->vgpu->gvt; 1603 1604 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv) 1605 || IS_KABYLAKE(gvt->dev_priv)) { 1606 /* BDW decides privilege based on address space */ 1607 if (cmd_val(s, 0) & (1 << 8)) 1608 return 0; 1609 } 1610 return 1; 1611 } 1612 1613 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1614 { 1615 unsigned long gma = 0; 1616 struct cmd_info *info; 1617 uint32_t cmd_len = 0; 1618 bool bb_end = false; 1619 struct intel_vgpu *vgpu = s->vgpu; 1620 u32 cmd; 1621 1622 *bb_size = 0; 1623 1624 /* get the start gm address of the batch buffer */ 1625 gma = get_gma_bb_from_cmd(s, 1); 1626 if (gma == INTEL_GVT_INVALID_ADDR) 1627 return -EFAULT; 1628 1629 cmd = cmd_val(s, 0); 1630 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1631 if (info == NULL) { 1632 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n", 1633 cmd, get_opcode(cmd, s->ring_id)); 1634 return -EBADRQC; 1635 } 1636 do { 1637 if (copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1638 gma, gma + 4, &cmd) < 0) 1639 return -EFAULT; 1640 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1641 if (info == NULL) { 1642 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n", 1643 cmd, get_opcode(cmd, s->ring_id)); 1644 return -EBADRQC; 1645 } 1646 1647 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1648 bb_end = true; 1649 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1650 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1651 /* chained batch buffer */ 1652 bb_end = true; 1653 } 1654 cmd_len = get_cmd_length(info, cmd) << 2; 1655 *bb_size += cmd_len; 1656 gma += cmd_len; 1657 } while (!bb_end); 1658 1659 return 0; 1660 } 1661 1662 static int perform_bb_shadow(struct parser_exec_state *s) 1663 { 1664 struct intel_vgpu *vgpu = s->vgpu; 1665 struct intel_vgpu_shadow_bb *bb; 1666 unsigned long gma = 0; 1667 unsigned long bb_size; 1668 int ret = 0; 1669 1670 /* get the start gm address of the batch buffer */ 1671 gma = get_gma_bb_from_cmd(s, 1); 1672 if (gma == INTEL_GVT_INVALID_ADDR) 1673 return -EFAULT; 1674 1675 ret = find_bb_size(s, &bb_size); 1676 if (ret) 1677 return ret; 1678 1679 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1680 if (!bb) 1681 return -ENOMEM; 1682 1683 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv, 1684 roundup(bb_size, PAGE_SIZE)); 1685 if (IS_ERR(bb->obj)) { 1686 ret = PTR_ERR(bb->obj); 1687 goto err_free_bb; 1688 } 1689 1690 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush); 1691 if (ret) 1692 goto err_free_obj; 1693 1694 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1695 if (IS_ERR(bb->va)) { 1696 ret = PTR_ERR(bb->va); 1697 goto err_finish_shmem_access; 1698 } 1699 1700 if (bb->clflush & CLFLUSH_BEFORE) { 1701 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1702 bb->clflush &= ~CLFLUSH_BEFORE; 1703 } 1704 1705 ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1706 gma, gma + bb_size, 1707 bb->va); 1708 if (ret < 0) { 1709 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1710 ret = -EFAULT; 1711 goto err_unmap; 1712 } 1713 1714 INIT_LIST_HEAD(&bb->list); 1715 list_add(&bb->list, &s->workload->shadow_bb); 1716 1717 bb->accessing = true; 1718 bb->bb_start_cmd_va = s->ip_va; 1719 1720 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1721 bb->bb_offset = s->ip_va - s->rb_va; 1722 else 1723 bb->bb_offset = 0; 1724 1725 /* 1726 * ip_va saves the virtual address of the shadow batch buffer, while 1727 * ip_gma saves the graphics address of the original batch buffer. 1728 * As the shadow batch buffer is just a copy from the originial one, 1729 * it should be right to use shadow batch buffer'va and original batch 1730 * buffer's gma in pair. After all, we don't want to pin the shadow 1731 * buffer here (too early). 1732 */ 1733 s->ip_va = bb->va; 1734 s->ip_gma = gma; 1735 return 0; 1736 err_unmap: 1737 i915_gem_object_unpin_map(bb->obj); 1738 err_finish_shmem_access: 1739 i915_gem_obj_finish_shmem_access(bb->obj); 1740 err_free_obj: 1741 i915_gem_object_put(bb->obj); 1742 err_free_bb: 1743 kfree(bb); 1744 return ret; 1745 } 1746 1747 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1748 { 1749 bool second_level; 1750 int ret = 0; 1751 struct intel_vgpu *vgpu = s->vgpu; 1752 1753 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1754 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1755 return -EFAULT; 1756 } 1757 1758 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1759 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1760 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1761 return -EFAULT; 1762 } 1763 1764 s->saved_buf_addr_type = s->buf_addr_type; 1765 addr_type_update_snb(s); 1766 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1767 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1768 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1769 } else if (second_level) { 1770 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1771 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1772 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1773 } 1774 1775 if (batch_buffer_needs_scan(s)) { 1776 ret = perform_bb_shadow(s); 1777 if (ret < 0) 1778 gvt_vgpu_err("invalid shadow batch buffer\n"); 1779 } else { 1780 /* emulate a batch buffer end to do return right */ 1781 ret = cmd_handler_mi_batch_buffer_end(s); 1782 if (ret < 0) 1783 return ret; 1784 } 1785 return ret; 1786 } 1787 1788 static struct cmd_info cmd_info[] = { 1789 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1790 1791 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1792 0, 1, NULL}, 1793 1794 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1795 0, 1, cmd_handler_mi_user_interrupt}, 1796 1797 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1798 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1799 1800 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1801 1802 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1803 NULL}, 1804 1805 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1806 NULL}, 1807 1808 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1809 NULL}, 1810 1811 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1812 NULL}, 1813 1814 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1815 D_ALL, 0, 1, NULL}, 1816 1817 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1818 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1819 cmd_handler_mi_batch_buffer_end}, 1820 1821 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1822 0, 1, NULL}, 1823 1824 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1825 NULL}, 1826 1827 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1828 D_ALL, 0, 1, NULL}, 1829 1830 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1831 NULL}, 1832 1833 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1834 NULL}, 1835 1836 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1837 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1838 1839 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1840 0, 8, NULL}, 1841 1842 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1843 1844 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1845 1846 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1847 D_BDW_PLUS, 0, 8, NULL}, 1848 1849 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1850 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1851 1852 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1853 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1854 1855 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1856 0, 8, cmd_handler_mi_store_data_index}, 1857 1858 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1859 D_ALL, 0, 8, cmd_handler_lri}, 1860 1861 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1862 cmd_handler_mi_update_gtt}, 1863 1864 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1865 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1866 1867 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1868 cmd_handler_mi_flush_dw}, 1869 1870 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1871 10, cmd_handler_mi_clflush}, 1872 1873 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1874 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1875 1876 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1877 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1878 1879 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1880 D_ALL, 0, 8, cmd_handler_lrr}, 1881 1882 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1883 D_ALL, 0, 8, NULL}, 1884 1885 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1886 ADDR_FIX_1(2), 8, NULL}, 1887 1888 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1889 ADDR_FIX_1(2), 8, NULL}, 1890 1891 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1892 8, cmd_handler_mi_op_2e}, 1893 1894 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1895 8, cmd_handler_mi_op_2f}, 1896 1897 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1898 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1899 cmd_handler_mi_batch_buffer_start}, 1900 1901 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1902 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1903 cmd_handler_mi_conditional_batch_buffer_end}, 1904 1905 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1906 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1907 1908 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1909 ADDR_FIX_2(4, 7), 8, NULL}, 1910 1911 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1912 0, 8, NULL}, 1913 1914 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1915 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1916 1917 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1918 1919 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1920 0, 8, NULL}, 1921 1922 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1923 ADDR_FIX_1(3), 8, NULL}, 1924 1925 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1926 D_ALL, 0, 8, NULL}, 1927 1928 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1929 ADDR_FIX_1(4), 8, NULL}, 1930 1931 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1932 ADDR_FIX_2(4, 5), 8, NULL}, 1933 1934 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1935 ADDR_FIX_1(4), 8, NULL}, 1936 1937 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1938 ADDR_FIX_2(4, 7), 8, NULL}, 1939 1940 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1941 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1942 1943 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1944 1945 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 1946 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 1947 1948 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 1949 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1950 1951 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 1952 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 1953 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1954 1955 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 1956 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1957 1958 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 1959 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1960 1961 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 1962 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1963 1964 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 1965 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1966 1967 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 1968 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1969 1970 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 1971 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 1972 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1973 1974 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 1975 ADDR_FIX_2(4, 5), 8, NULL}, 1976 1977 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 1978 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1979 1980 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 1981 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 1982 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1983 1984 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 1985 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 1986 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1987 1988 {"3DSTATE_BLEND_STATE_POINTERS", 1989 OP_3DSTATE_BLEND_STATE_POINTERS, 1990 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1991 1992 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 1993 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 1994 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1995 1996 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 1997 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 1998 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1999 2000 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2001 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2002 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2003 2004 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2005 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2006 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2007 2008 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2009 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2010 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2011 2012 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2013 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2014 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2015 2016 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2017 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2018 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2019 2020 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2021 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2022 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2023 2024 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2025 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2026 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2027 2028 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2029 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2030 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2031 2032 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2033 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2034 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2035 2036 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2037 0, 8, NULL}, 2038 2039 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2040 0, 8, NULL}, 2041 2042 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2043 0, 8, NULL}, 2044 2045 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2046 0, 8, NULL}, 2047 2048 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2049 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2050 2051 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2052 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2053 2054 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2055 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2056 2057 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2058 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2059 2060 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2061 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2062 2063 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2064 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2065 2066 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2067 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2068 2069 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2070 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2071 2072 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2073 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2074 2075 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2076 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2077 2078 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2079 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2080 2081 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2082 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2083 2084 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2085 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2086 2087 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2088 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2089 2090 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2091 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2092 2093 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2094 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2095 2096 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2097 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2098 2099 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2100 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2101 2102 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2103 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2104 2105 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2106 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2107 2108 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2109 D_BDW_PLUS, 0, 8, NULL}, 2110 2111 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2112 NULL}, 2113 2114 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2115 D_BDW_PLUS, 0, 8, NULL}, 2116 2117 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2118 D_BDW_PLUS, 0, 8, NULL}, 2119 2120 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2121 8, NULL}, 2122 2123 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2124 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2125 2126 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2127 8, NULL}, 2128 2129 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2130 NULL}, 2131 2132 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2133 NULL}, 2134 2135 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2136 NULL}, 2137 2138 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2139 D_BDW_PLUS, 0, 8, NULL}, 2140 2141 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2142 R_RCS, D_ALL, 0, 8, NULL}, 2143 2144 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2145 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2146 2147 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2148 R_RCS, D_ALL, 0, 1, NULL}, 2149 2150 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2151 2152 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2153 R_RCS, D_ALL, 0, 8, NULL}, 2154 2155 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2156 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2157 2158 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2159 2160 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2161 2162 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2163 2164 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2165 D_BDW_PLUS, 0, 8, NULL}, 2166 2167 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2168 D_BDW_PLUS, 0, 8, NULL}, 2169 2170 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2171 D_ALL, 0, 8, NULL}, 2172 2173 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2174 D_BDW_PLUS, 0, 8, NULL}, 2175 2176 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2177 D_BDW_PLUS, 0, 8, NULL}, 2178 2179 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2180 2181 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2182 2183 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2184 2185 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2186 D_ALL, 0, 8, NULL}, 2187 2188 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2189 2190 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2191 2192 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2193 R_RCS, D_ALL, 0, 8, NULL}, 2194 2195 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2196 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2197 2198 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2199 0, 8, NULL}, 2200 2201 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2202 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2203 2204 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2205 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2206 2207 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2208 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2209 2210 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2211 D_ALL, 0, 8, NULL}, 2212 2213 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2214 D_ALL, 0, 8, NULL}, 2215 2216 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2217 D_ALL, 0, 8, NULL}, 2218 2219 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2220 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2221 2222 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2223 D_BDW_PLUS, 0, 8, NULL}, 2224 2225 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2226 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2227 2228 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2229 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2230 2231 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2232 R_RCS, D_ALL, 0, 8, NULL}, 2233 2234 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2235 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2236 2237 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2238 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2239 2240 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2248 2249 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2250 R_RCS, D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2253 D_ALL, 0, 9, NULL}, 2254 2255 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2256 ADDR_FIX_2(2, 4), 8, NULL}, 2257 2258 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2259 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2260 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2261 2262 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2263 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2264 2265 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2266 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2267 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2268 2269 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2270 D_BDW_PLUS, 0, 8, NULL}, 2271 2272 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2273 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2274 2275 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2276 2277 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2278 1, NULL}, 2279 2280 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2281 ADDR_FIX_1(1), 8, NULL}, 2282 2283 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2284 2285 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2286 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2287 2288 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2289 ADDR_FIX_1(1), 8, NULL}, 2290 2291 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2292 2293 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2294 2295 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2296 0, 8, NULL}, 2297 2298 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2299 D_SKL_PLUS, 0, 8, NULL}, 2300 2301 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2302 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2303 2304 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2305 0, 16, NULL}, 2306 2307 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2308 0, 16, NULL}, 2309 2310 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2311 2312 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2313 0, 16, NULL}, 2314 2315 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2316 0, 16, NULL}, 2317 2318 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2319 0, 16, NULL}, 2320 2321 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2322 0, 8, NULL}, 2323 2324 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2325 NULL}, 2326 2327 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2328 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2329 2330 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2331 R_VCS, D_ALL, 0, 12, NULL}, 2332 2333 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2334 R_VCS, D_ALL, 0, 12, NULL}, 2335 2336 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2337 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2338 2339 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2340 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2341 2342 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2343 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2344 2345 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2346 2347 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2348 R_VCS, D_ALL, 0, 12, NULL}, 2349 2350 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2351 R_VCS, D_ALL, 0, 12, NULL}, 2352 2353 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2354 R_VCS, D_ALL, 0, 12, NULL}, 2355 2356 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2357 R_VCS, D_ALL, 0, 12, NULL}, 2358 2359 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2360 R_VCS, D_ALL, 0, 12, NULL}, 2361 2362 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2363 R_VCS, D_ALL, 0, 12, NULL}, 2364 2365 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2366 R_VCS, D_ALL, 0, 6, NULL}, 2367 2368 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2369 R_VCS, D_ALL, 0, 12, NULL}, 2370 2371 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2372 R_VCS, D_ALL, 0, 12, NULL}, 2373 2374 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2375 R_VCS, D_ALL, 0, 12, NULL}, 2376 2377 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2378 R_VCS, D_ALL, 0, 12, NULL}, 2379 2380 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2381 R_VCS, D_ALL, 0, 12, NULL}, 2382 2383 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2384 R_VCS, D_ALL, 0, 12, NULL}, 2385 2386 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2387 R_VCS, D_ALL, 0, 12, NULL}, 2388 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2389 R_VCS, D_ALL, 0, 12, NULL}, 2390 2391 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2392 R_VCS, D_ALL, 0, 12, NULL}, 2393 2394 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2395 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2396 2397 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2398 R_VCS, D_ALL, 0, 12, NULL}, 2399 2400 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2401 R_VCS, D_ALL, 0, 12, NULL}, 2402 2403 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2404 R_VCS, D_ALL, 0, 12, NULL}, 2405 2406 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2407 R_VCS, D_ALL, 0, 12, NULL}, 2408 2409 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2410 R_VCS, D_ALL, 0, 12, NULL}, 2411 2412 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2413 R_VCS, D_ALL, 0, 12, NULL}, 2414 2415 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2416 R_VCS, D_ALL, 0, 12, NULL}, 2417 2418 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2419 R_VCS, D_ALL, 0, 12, NULL}, 2420 2421 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2422 R_VCS, D_ALL, 0, 12, NULL}, 2423 2424 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2425 R_VCS, D_ALL, 0, 12, NULL}, 2426 2427 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2428 R_VCS, D_ALL, 0, 12, NULL}, 2429 2430 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2431 0, 16, NULL}, 2432 2433 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2434 2435 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2436 2437 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2438 R_VCS, D_ALL, 0, 12, NULL}, 2439 2440 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2441 R_VCS, D_ALL, 0, 12, NULL}, 2442 2443 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2444 R_VCS, D_ALL, 0, 12, NULL}, 2445 2446 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2447 2448 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2449 0, 12, NULL}, 2450 2451 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2452 0, 20, NULL}, 2453 }; 2454 2455 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2456 { 2457 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2458 } 2459 2460 /* call the cmd handler, and advance ip */ 2461 static int cmd_parser_exec(struct parser_exec_state *s) 2462 { 2463 struct intel_vgpu *vgpu = s->vgpu; 2464 struct cmd_info *info; 2465 u32 cmd; 2466 int ret = 0; 2467 2468 cmd = cmd_val(s, 0); 2469 2470 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2471 if (info == NULL) { 2472 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n", 2473 cmd, get_opcode(cmd, s->ring_id)); 2474 return -EBADRQC; 2475 } 2476 2477 s->info = info; 2478 2479 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2480 cmd_length(s), s->buf_type); 2481 2482 if (info->handler) { 2483 ret = info->handler(s); 2484 if (ret < 0) { 2485 gvt_vgpu_err("%s handler error\n", info->name); 2486 return ret; 2487 } 2488 } 2489 2490 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2491 ret = cmd_advance_default(s); 2492 if (ret) { 2493 gvt_vgpu_err("%s IP advance error\n", info->name); 2494 return ret; 2495 } 2496 } 2497 return 0; 2498 } 2499 2500 static inline bool gma_out_of_range(unsigned long gma, 2501 unsigned long gma_head, unsigned int gma_tail) 2502 { 2503 if (gma_tail >= gma_head) 2504 return (gma < gma_head) || (gma > gma_tail); 2505 else 2506 return (gma > gma_tail) && (gma < gma_head); 2507 } 2508 2509 /* Keep the consistent return type, e.g EBADRQC for unknown 2510 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2511 * works as the input of VM healthy status. 2512 */ 2513 static int command_scan(struct parser_exec_state *s, 2514 unsigned long rb_head, unsigned long rb_tail, 2515 unsigned long rb_start, unsigned long rb_len) 2516 { 2517 2518 unsigned long gma_head, gma_tail, gma_bottom; 2519 int ret = 0; 2520 struct intel_vgpu *vgpu = s->vgpu; 2521 2522 gma_head = rb_start + rb_head; 2523 gma_tail = rb_start + rb_tail; 2524 gma_bottom = rb_start + rb_len; 2525 2526 while (s->ip_gma != gma_tail) { 2527 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2528 if (!(s->ip_gma >= rb_start) || 2529 !(s->ip_gma < gma_bottom)) { 2530 gvt_vgpu_err("ip_gma %lx out of ring scope." 2531 "(base:0x%lx, bottom: 0x%lx)\n", 2532 s->ip_gma, rb_start, 2533 gma_bottom); 2534 parser_exec_state_dump(s); 2535 return -EFAULT; 2536 } 2537 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2538 gvt_vgpu_err("ip_gma %lx out of range." 2539 "base 0x%lx head 0x%lx tail 0x%lx\n", 2540 s->ip_gma, rb_start, 2541 rb_head, rb_tail); 2542 parser_exec_state_dump(s); 2543 break; 2544 } 2545 } 2546 ret = cmd_parser_exec(s); 2547 if (ret) { 2548 gvt_vgpu_err("cmd parser error\n"); 2549 parser_exec_state_dump(s); 2550 break; 2551 } 2552 } 2553 2554 return ret; 2555 } 2556 2557 static int scan_workload(struct intel_vgpu_workload *workload) 2558 { 2559 unsigned long gma_head, gma_tail, gma_bottom; 2560 struct parser_exec_state s; 2561 int ret = 0; 2562 2563 /* ring base is page aligned */ 2564 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2565 return -EINVAL; 2566 2567 gma_head = workload->rb_start + workload->rb_head; 2568 gma_tail = workload->rb_start + workload->rb_tail; 2569 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2570 2571 s.buf_type = RING_BUFFER_INSTRUCTION; 2572 s.buf_addr_type = GTT_BUFFER; 2573 s.vgpu = workload->vgpu; 2574 s.ring_id = workload->ring_id; 2575 s.ring_start = workload->rb_start; 2576 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2577 s.ring_head = gma_head; 2578 s.ring_tail = gma_tail; 2579 s.rb_va = workload->shadow_ring_buffer_va; 2580 s.workload = workload; 2581 s.is_ctx_wa = false; 2582 2583 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2584 gma_head == gma_tail) 2585 return 0; 2586 2587 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2588 ret = -EINVAL; 2589 goto out; 2590 } 2591 2592 ret = ip_gma_set(&s, gma_head); 2593 if (ret) 2594 goto out; 2595 2596 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2597 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2598 2599 out: 2600 return ret; 2601 } 2602 2603 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2604 { 2605 2606 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2607 struct parser_exec_state s; 2608 int ret = 0; 2609 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2610 struct intel_vgpu_workload, 2611 wa_ctx); 2612 2613 /* ring base is page aligned */ 2614 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2615 I915_GTT_PAGE_SIZE))) 2616 return -EINVAL; 2617 2618 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2619 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2620 PAGE_SIZE); 2621 gma_head = wa_ctx->indirect_ctx.guest_gma; 2622 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2623 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2624 2625 s.buf_type = RING_BUFFER_INSTRUCTION; 2626 s.buf_addr_type = GTT_BUFFER; 2627 s.vgpu = workload->vgpu; 2628 s.ring_id = workload->ring_id; 2629 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2630 s.ring_size = ring_size; 2631 s.ring_head = gma_head; 2632 s.ring_tail = gma_tail; 2633 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2634 s.workload = workload; 2635 s.is_ctx_wa = true; 2636 2637 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2638 ret = -EINVAL; 2639 goto out; 2640 } 2641 2642 ret = ip_gma_set(&s, gma_head); 2643 if (ret) 2644 goto out; 2645 2646 ret = command_scan(&s, 0, ring_tail, 2647 wa_ctx->indirect_ctx.guest_gma, ring_size); 2648 out: 2649 return ret; 2650 } 2651 2652 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2653 { 2654 struct intel_vgpu *vgpu = workload->vgpu; 2655 struct intel_vgpu_submission *s = &vgpu->submission; 2656 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2657 void *shadow_ring_buffer_va; 2658 int ring_id = workload->ring_id; 2659 int ret; 2660 2661 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2662 2663 /* calculate workload ring buffer size */ 2664 workload->rb_len = (workload->rb_tail + guest_rb_size - 2665 workload->rb_head) % guest_rb_size; 2666 2667 gma_head = workload->rb_start + workload->rb_head; 2668 gma_tail = workload->rb_start + workload->rb_tail; 2669 gma_top = workload->rb_start + guest_rb_size; 2670 2671 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2672 void *p; 2673 2674 /* realloc the new ring buffer if needed */ 2675 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2676 GFP_KERNEL); 2677 if (!p) { 2678 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2679 return -ENOMEM; 2680 } 2681 s->ring_scan_buffer[ring_id] = p; 2682 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2683 } 2684 2685 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2686 2687 /* get shadow ring buffer va */ 2688 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2689 2690 /* head > tail --> copy head <-> top */ 2691 if (gma_head > gma_tail) { 2692 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2693 gma_head, gma_top, shadow_ring_buffer_va); 2694 if (ret < 0) { 2695 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2696 return ret; 2697 } 2698 shadow_ring_buffer_va += ret; 2699 gma_head = workload->rb_start; 2700 } 2701 2702 /* copy head or start <-> tail */ 2703 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2704 shadow_ring_buffer_va); 2705 if (ret < 0) { 2706 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2707 return ret; 2708 } 2709 return 0; 2710 } 2711 2712 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2713 { 2714 int ret; 2715 struct intel_vgpu *vgpu = workload->vgpu; 2716 2717 ret = shadow_workload_ring_buffer(workload); 2718 if (ret) { 2719 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2720 return ret; 2721 } 2722 2723 ret = scan_workload(workload); 2724 if (ret) { 2725 gvt_vgpu_err("scan workload error\n"); 2726 return ret; 2727 } 2728 return 0; 2729 } 2730 2731 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2732 { 2733 int ctx_size = wa_ctx->indirect_ctx.size; 2734 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2735 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2736 struct intel_vgpu_workload, 2737 wa_ctx); 2738 struct intel_vgpu *vgpu = workload->vgpu; 2739 struct drm_i915_gem_object *obj; 2740 int ret = 0; 2741 void *map; 2742 2743 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv, 2744 roundup(ctx_size + CACHELINE_BYTES, 2745 PAGE_SIZE)); 2746 if (IS_ERR(obj)) 2747 return PTR_ERR(obj); 2748 2749 /* get the va of the shadow batch buffer */ 2750 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2751 if (IS_ERR(map)) { 2752 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2753 ret = PTR_ERR(map); 2754 goto put_obj; 2755 } 2756 2757 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2758 if (ret) { 2759 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2760 goto unmap_src; 2761 } 2762 2763 ret = copy_gma_to_hva(workload->vgpu, 2764 workload->vgpu->gtt.ggtt_mm, 2765 guest_gma, guest_gma + ctx_size, 2766 map); 2767 if (ret < 0) { 2768 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2769 goto unmap_src; 2770 } 2771 2772 wa_ctx->indirect_ctx.obj = obj; 2773 wa_ctx->indirect_ctx.shadow_va = map; 2774 return 0; 2775 2776 unmap_src: 2777 i915_gem_object_unpin_map(obj); 2778 put_obj: 2779 i915_gem_object_put(obj); 2780 return ret; 2781 } 2782 2783 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2784 { 2785 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2786 unsigned char *bb_start_sva; 2787 2788 if (!wa_ctx->per_ctx.valid) 2789 return 0; 2790 2791 per_ctx_start[0] = 0x18800001; 2792 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2793 2794 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2795 wa_ctx->indirect_ctx.size; 2796 2797 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2798 2799 return 0; 2800 } 2801 2802 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2803 { 2804 int ret; 2805 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2806 struct intel_vgpu_workload, 2807 wa_ctx); 2808 struct intel_vgpu *vgpu = workload->vgpu; 2809 2810 if (wa_ctx->indirect_ctx.size == 0) 2811 return 0; 2812 2813 ret = shadow_indirect_ctx(wa_ctx); 2814 if (ret) { 2815 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2816 return ret; 2817 } 2818 2819 combine_wa_ctx(wa_ctx); 2820 2821 ret = scan_wa_ctx(wa_ctx); 2822 if (ret) { 2823 gvt_vgpu_err("scan wa ctx error\n"); 2824 return ret; 2825 } 2826 2827 return 0; 2828 } 2829 2830 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2831 unsigned int opcode, unsigned long rings) 2832 { 2833 struct cmd_info *info = NULL; 2834 unsigned int ring; 2835 2836 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2837 info = find_cmd_entry(gvt, opcode, ring); 2838 if (info) 2839 break; 2840 } 2841 return info; 2842 } 2843 2844 static int init_cmd_table(struct intel_gvt *gvt) 2845 { 2846 int i; 2847 struct cmd_entry *e; 2848 struct cmd_info *info; 2849 unsigned int gen_type; 2850 2851 gen_type = intel_gvt_get_device_type(gvt); 2852 2853 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2854 if (!(cmd_info[i].devices & gen_type)) 2855 continue; 2856 2857 e = kzalloc(sizeof(*e), GFP_KERNEL); 2858 if (!e) 2859 return -ENOMEM; 2860 2861 e->info = &cmd_info[i]; 2862 info = find_cmd_entry_any_ring(gvt, 2863 e->info->opcode, e->info->rings); 2864 if (info) { 2865 gvt_err("%s %s duplicated\n", e->info->name, 2866 info->name); 2867 return -EEXIST; 2868 } 2869 2870 INIT_HLIST_NODE(&e->hlist); 2871 add_cmd_entry(gvt, e); 2872 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2873 e->info->name, e->info->opcode, e->info->flag, 2874 e->info->devices, e->info->rings); 2875 } 2876 return 0; 2877 } 2878 2879 static void clean_cmd_table(struct intel_gvt *gvt) 2880 { 2881 struct hlist_node *tmp; 2882 struct cmd_entry *e; 2883 int i; 2884 2885 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2886 kfree(e); 2887 2888 hash_init(gvt->cmd_table); 2889 } 2890 2891 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2892 { 2893 clean_cmd_table(gvt); 2894 } 2895 2896 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2897 { 2898 int ret; 2899 2900 ret = init_cmd_table(gvt); 2901 if (ret) { 2902 intel_gvt_clean_cmd_parser(gvt); 2903 return ret; 2904 } 2905 return 0; 2906 } 2907