xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 
176 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
180 
181 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247 
248 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259 
260 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
288 
289 /* VCCP Command Parser */
290 
291 /*
292  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293  * git://anongit.freedesktop.org/vaapi/intel-driver
294  * src/i965_defines.h
295  *
296  */
297 
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
299 	(3 << 13 | \
300 	 (pipeline) << 11 | \
301 	 (op) << 8 | \
302 	 (sub_opa) << 5 | \
303 	 (sub_opb))
304 
305 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
306 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
310 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
311 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
312 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
313 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
316 
317 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
318 
319 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
331 
332 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
337 
338 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
343 
344 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
347 
348 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
351 
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353 	(3 << 13 | \
354 	 (pipeline) << 11 | \
355 	 (op) << 8 | \
356 	 (sub_opa) << 5 | \
357 	 (sub_opb))
358 
359 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
362 
363 struct parser_exec_state;
364 
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366 
367 #define GVT_CMD_HASH_BITS   7
368 
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1)			(1 << (x1))
371 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375 
376 struct cmd_info {
377 	char *name;
378 	u32 opcode;
379 
380 #define F_LEN_MASK	(1U<<0)
381 #define F_LEN_CONST  1U
382 #define F_LEN_VAR    0U
383 
384 /*
385  * command has its own ip advance logic
386  * e.g. MI_BATCH_START, MI_BATCH_END
387  */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389 
390 #define F_POST_HANDLE	(1<<2)
391 	u32 flag;
392 
393 #define R_RCS	(1 << RCS)
394 #define R_VCS1  (1 << VCS)
395 #define R_VCS2  (1 << VCS2)
396 #define R_VCS	(R_VCS1 | R_VCS2)
397 #define R_BCS	(1 << BCS)
398 #define R_VECS	(1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
401 	uint16_t rings;
402 
403 	/* devices that support this cmd: SNB/IVB/HSW/... */
404 	uint16_t devices;
405 
406 	/* which DWords are address that need fix up.
407 	 * bit 0 means a 32-bit non address operand in command
408 	 * bit 1 means address operand, which could be 32-bit
409 	 * or 64-bit depending on different architectures.(
410 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411 	 * No matter the address length, each address only takes
412 	 * one bit in the bitmap.
413 	 */
414 	uint16_t addr_bitmap;
415 
416 	/* flag == F_LEN_CONST : command length
417 	 * flag == F_LEN_VAR : length bias bits
418 	 * Note: length is in DWord
419 	 */
420 	uint8_t	len;
421 
422 	parser_cmd_handler handler;
423 };
424 
425 struct cmd_entry {
426 	struct hlist_node hlist;
427 	struct cmd_info *info;
428 };
429 
430 enum {
431 	RING_BUFFER_INSTRUCTION,
432 	BATCH_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_2ND_LEVEL,
434 };
435 
436 enum {
437 	GTT_BUFFER,
438 	PPGTT_BUFFER
439 };
440 
441 struct parser_exec_state {
442 	struct intel_vgpu *vgpu;
443 	int ring_id;
444 
445 	int buf_type;
446 
447 	/* batch buffer address type */
448 	int buf_addr_type;
449 
450 	/* graphics memory address of ring buffer start */
451 	unsigned long ring_start;
452 	unsigned long ring_size;
453 	unsigned long ring_head;
454 	unsigned long ring_tail;
455 
456 	/* instruction graphics memory address */
457 	unsigned long ip_gma;
458 
459 	/* mapped va of the instr_gma */
460 	void *ip_va;
461 	void *rb_va;
462 
463 	void *ret_bb_va;
464 	/* next instruction when return from  batch buffer to ring buffer */
465 	unsigned long ret_ip_gma_ring;
466 
467 	/* next instruction when return from 2nd batch buffer to batch buffer */
468 	unsigned long ret_ip_gma_bb;
469 
470 	/* batch buffer address type (GTT or PPGTT)
471 	 * used when ret from 2nd level batch buffer
472 	 */
473 	int saved_buf_addr_type;
474 	bool is_ctx_wa;
475 
476 	struct cmd_info *info;
477 
478 	struct intel_vgpu_workload *workload;
479 };
480 
481 #define gmadr_dw_number(s)	\
482 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
483 
484 static unsigned long bypass_scan_mask = 0;
485 
486 /* ring ALL, type = 0 */
487 static struct sub_op_bits sub_op_mi[] = {
488 	{31, 29},
489 	{28, 23},
490 };
491 
492 static struct decode_info decode_info_mi = {
493 	"MI",
494 	OP_LEN_MI,
495 	ARRAY_SIZE(sub_op_mi),
496 	sub_op_mi,
497 };
498 
499 /* ring RCS, command type 2 */
500 static struct sub_op_bits sub_op_2d[] = {
501 	{31, 29},
502 	{28, 22},
503 };
504 
505 static struct decode_info decode_info_2d = {
506 	"2D",
507 	OP_LEN_2D,
508 	ARRAY_SIZE(sub_op_2d),
509 	sub_op_2d,
510 };
511 
512 /* ring RCS, command type 3 */
513 static struct sub_op_bits sub_op_3d_media[] = {
514 	{31, 29},
515 	{28, 27},
516 	{26, 24},
517 	{23, 16},
518 };
519 
520 static struct decode_info decode_info_3d_media = {
521 	"3D_Media",
522 	OP_LEN_3D_MEDIA,
523 	ARRAY_SIZE(sub_op_3d_media),
524 	sub_op_3d_media,
525 };
526 
527 /* ring VCS, command type 3 */
528 static struct sub_op_bits sub_op_mfx_vc[] = {
529 	{31, 29},
530 	{28, 27},
531 	{26, 24},
532 	{23, 21},
533 	{20, 16},
534 };
535 
536 static struct decode_info decode_info_mfx_vc = {
537 	"MFX_VC",
538 	OP_LEN_MFX_VC,
539 	ARRAY_SIZE(sub_op_mfx_vc),
540 	sub_op_mfx_vc,
541 };
542 
543 /* ring VECS, command type 3 */
544 static struct sub_op_bits sub_op_vebox[] = {
545 	{31, 29},
546 	{28, 27},
547 	{26, 24},
548 	{23, 21},
549 	{20, 16},
550 };
551 
552 static struct decode_info decode_info_vebox = {
553 	"VEBOX",
554 	OP_LEN_VEBOX,
555 	ARRAY_SIZE(sub_op_vebox),
556 	sub_op_vebox,
557 };
558 
559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
560 	[RCS] = {
561 		&decode_info_mi,
562 		NULL,
563 		NULL,
564 		&decode_info_3d_media,
565 		NULL,
566 		NULL,
567 		NULL,
568 		NULL,
569 	},
570 
571 	[VCS] = {
572 		&decode_info_mi,
573 		NULL,
574 		NULL,
575 		&decode_info_mfx_vc,
576 		NULL,
577 		NULL,
578 		NULL,
579 		NULL,
580 	},
581 
582 	[BCS] = {
583 		&decode_info_mi,
584 		NULL,
585 		&decode_info_2d,
586 		NULL,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 	},
592 
593 	[VECS] = {
594 		&decode_info_mi,
595 		NULL,
596 		NULL,
597 		&decode_info_vebox,
598 		NULL,
599 		NULL,
600 		NULL,
601 		NULL,
602 	},
603 
604 	[VCS2] = {
605 		&decode_info_mi,
606 		NULL,
607 		NULL,
608 		&decode_info_mfx_vc,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 };
615 
616 static inline u32 get_opcode(u32 cmd, int ring_id)
617 {
618 	struct decode_info *d_info;
619 
620 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
621 	if (d_info == NULL)
622 		return INVALID_OP;
623 
624 	return cmd >> (32 - d_info->op_len);
625 }
626 
627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
628 		unsigned int opcode, int ring_id)
629 {
630 	struct cmd_entry *e;
631 
632 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
633 		if ((opcode == e->info->opcode) &&
634 				(e->info->rings & (1 << ring_id)))
635 			return e->info;
636 	}
637 	return NULL;
638 }
639 
640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641 		u32 cmd, int ring_id)
642 {
643 	u32 opcode;
644 
645 	opcode = get_opcode(cmd, ring_id);
646 	if (opcode == INVALID_OP)
647 		return NULL;
648 
649 	return find_cmd_entry(gvt, opcode, ring_id);
650 }
651 
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656 
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659 	struct decode_info *d_info;
660 	int i;
661 
662 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663 	if (d_info == NULL)
664 		return;
665 
666 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667 			cmd >> (32 - d_info->op_len), d_info->name);
668 
669 	for (i = 0; i < d_info->nr_sub_op; i++)
670 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671 					d_info->sub_op[i].low));
672 
673 	pr_err("\n");
674 }
675 
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678 	return s->ip_va + (index << 2);
679 }
680 
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683 	return *cmd_ptr(s, index);
684 }
685 
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688 	int cnt = 0;
689 	int i;
690 
691 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694 			s->ring_head, s->ring_tail);
695 
696 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
697 			s->buf_type == RING_BUFFER_INSTRUCTION ?
698 			"RING_BUFFER" : "BATCH_BUFFER",
699 			s->buf_addr_type == GTT_BUFFER ?
700 			"GTT" : "PPGTT", s->ip_gma);
701 
702 	if (s->ip_va == NULL) {
703 		gvt_dbg_cmd(" ip_va(NULL)");
704 		return;
705 	}
706 
707 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
708 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709 			cmd_val(s, 2), cmd_val(s, 3));
710 
711 	print_opcode(cmd_val(s, 0), s->ring_id);
712 
713 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714 
715 	while (cnt < 1024) {
716 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717 		for (i = 0; i < 8; i++)
718 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
719 		gvt_dbg_cmd("\n");
720 
721 		s->ip_va += 8 * sizeof(u32);
722 		cnt += 8;
723 	}
724 }
725 
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728 	unsigned long len = 0;
729 
730 	if (WARN_ON(s->ring_head == s->ring_tail))
731 		return;
732 
733 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734 		unsigned long ring_top = s->ring_start + s->ring_size;
735 
736 		if (s->ring_head > s->ring_tail) {
737 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738 				len = (s->ip_gma - s->ring_head);
739 			else if (s->ip_gma >= s->ring_start &&
740 					s->ip_gma <= s->ring_tail)
741 				len = (ring_top - s->ring_head) +
742 					(s->ip_gma - s->ring_start);
743 		} else
744 			len = (s->ip_gma - s->ring_head);
745 
746 		s->ip_va = s->rb_va + len;
747 	} else {/* shadow batch buffer */
748 		s->ip_va = s->ret_bb_va;
749 	}
750 }
751 
752 static inline int ip_gma_set(struct parser_exec_state *s,
753 		unsigned long ip_gma)
754 {
755 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
756 
757 	s->ip_gma = ip_gma;
758 	update_ip_va(s);
759 	return 0;
760 }
761 
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763 		unsigned int dw_len)
764 {
765 	s->ip_gma += (dw_len << 2);
766 
767 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768 		if (s->ip_gma >= s->ring_start + s->ring_size)
769 			s->ip_gma -= s->ring_size;
770 		update_ip_va(s);
771 	} else {
772 		s->ip_va += (dw_len << 2);
773 	}
774 
775 	return 0;
776 }
777 
778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
779 {
780 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781 		return info->len;
782 	else
783 		return (cmd & ((1U << info->len) - 1)) + 2;
784 	return 0;
785 }
786 
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789 	return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791 
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794 	*addr = val; \
795 } while (0)
796 
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799 	bool ret = false;
800 
801 	if ((offset == 0x2168) || /*BB current head register UDW */
802 	    (offset == 0x2140) || /*BB current header register */
803 	    (offset == 0x211c) || /*second BB header register UDW */
804 	    (offset == 0x2114)) { /*second BB header register UDW */
805 		ret = true;
806 	}
807 	return ret;
808 }
809 
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812 	return (offset >= 0x24d0 && offset < 0x2500);
813 }
814 
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816 				     unsigned int offset, unsigned int index)
817 {
818 	struct intel_gvt *gvt = s->vgpu->gvt;
819 	unsigned int data = cmd_val(s, index + 1);
820 
821 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data)) {
822 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
823 			offset, data);
824 		return -EPERM;
825 	}
826 	return 0;
827 }
828 
829 static inline bool is_mocs_mmio(unsigned int offset)
830 {
831 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
832 		((offset >= 0xb020) && (offset <= 0xb0a0));
833 }
834 
835 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
836 				unsigned int offset, unsigned int index)
837 {
838 	if (!is_mocs_mmio(offset))
839 		return -EINVAL;
840 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
841 	return 0;
842 }
843 
844 static int cmd_reg_handler(struct parser_exec_state *s,
845 	unsigned int offset, unsigned int index, char *cmd)
846 {
847 	struct intel_vgpu *vgpu = s->vgpu;
848 	struct intel_gvt *gvt = vgpu->gvt;
849 
850 	if (offset + 4 > gvt->device_info.mmio_size) {
851 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
852 				cmd, offset);
853 		return -EFAULT;
854 	}
855 
856 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
857 		gvt_vgpu_err("%s access to non-render register (%x)\n",
858 				cmd, offset);
859 		return 0;
860 	}
861 
862 	if (is_shadowed_mmio(offset)) {
863 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
864 		return 0;
865 	}
866 
867 	if (is_mocs_mmio(offset) &&
868 	    mocs_cmd_reg_handler(s, offset, index))
869 		return -EINVAL;
870 
871 	if (is_force_nonpriv_mmio(offset) &&
872 		force_nonpriv_reg_handler(s, offset, index))
873 		return -EPERM;
874 
875 	if (offset == i915_mmio_reg_offset(DERRMR) ||
876 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
877 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
878 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
879 	}
880 
881 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
882 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
883 	return 0;
884 }
885 
886 #define cmd_reg(s, i) \
887 	(cmd_val(s, i) & GENMASK(22, 2))
888 
889 #define cmd_reg_inhibit(s, i) \
890 	(cmd_val(s, i) & GENMASK(22, 18))
891 
892 #define cmd_gma(s, i) \
893 	(cmd_val(s, i) & GENMASK(31, 2))
894 
895 #define cmd_gma_hi(s, i) \
896 	(cmd_val(s, i) & GENMASK(15, 0))
897 
898 static int cmd_handler_lri(struct parser_exec_state *s)
899 {
900 	int i, ret = 0;
901 	int cmd_len = cmd_length(s);
902 	struct intel_gvt *gvt = s->vgpu->gvt;
903 
904 	for (i = 1; i < cmd_len; i += 2) {
905 		if (IS_BROADWELL(gvt->dev_priv) &&
906 				(s->ring_id != RCS)) {
907 			if (s->ring_id == BCS &&
908 					cmd_reg(s, i) ==
909 					i915_mmio_reg_offset(DERRMR))
910 				ret |= 0;
911 			else
912 				ret |= (cmd_reg_inhibit(s, i)) ?
913 					-EBADRQC : 0;
914 		}
915 		if (ret)
916 			break;
917 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
918 		if (ret)
919 			break;
920 	}
921 	return ret;
922 }
923 
924 static int cmd_handler_lrr(struct parser_exec_state *s)
925 {
926 	int i, ret = 0;
927 	int cmd_len = cmd_length(s);
928 
929 	for (i = 1; i < cmd_len; i += 2) {
930 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
931 			ret |= ((cmd_reg_inhibit(s, i) ||
932 					(cmd_reg_inhibit(s, i + 1)))) ?
933 				-EBADRQC : 0;
934 		if (ret)
935 			break;
936 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
937 		if (ret)
938 			break;
939 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
940 		if (ret)
941 			break;
942 	}
943 	return ret;
944 }
945 
946 static inline int cmd_address_audit(struct parser_exec_state *s,
947 		unsigned long guest_gma, int op_size, bool index_mode);
948 
949 static int cmd_handler_lrm(struct parser_exec_state *s)
950 {
951 	struct intel_gvt *gvt = s->vgpu->gvt;
952 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
953 	unsigned long gma;
954 	int i, ret = 0;
955 	int cmd_len = cmd_length(s);
956 
957 	for (i = 1; i < cmd_len;) {
958 		if (IS_BROADWELL(gvt->dev_priv))
959 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
960 		if (ret)
961 			break;
962 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
963 		if (ret)
964 			break;
965 		if (cmd_val(s, 0) & (1 << 22)) {
966 			gma = cmd_gma(s, i + 1);
967 			if (gmadr_bytes == 8)
968 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
969 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
970 			if (ret)
971 				break;
972 		}
973 		i += gmadr_dw_number(s) + 1;
974 	}
975 	return ret;
976 }
977 
978 static int cmd_handler_srm(struct parser_exec_state *s)
979 {
980 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
981 	unsigned long gma;
982 	int i, ret = 0;
983 	int cmd_len = cmd_length(s);
984 
985 	for (i = 1; i < cmd_len;) {
986 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
987 		if (ret)
988 			break;
989 		if (cmd_val(s, 0) & (1 << 22)) {
990 			gma = cmd_gma(s, i + 1);
991 			if (gmadr_bytes == 8)
992 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
993 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
994 			if (ret)
995 				break;
996 		}
997 		i += gmadr_dw_number(s) + 1;
998 	}
999 	return ret;
1000 }
1001 
1002 struct cmd_interrupt_event {
1003 	int pipe_control_notify;
1004 	int mi_flush_dw;
1005 	int mi_user_interrupt;
1006 };
1007 
1008 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1009 	[RCS] = {
1010 		.pipe_control_notify = RCS_PIPE_CONTROL,
1011 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1012 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1013 	},
1014 	[BCS] = {
1015 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1016 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1017 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1018 	},
1019 	[VCS] = {
1020 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1021 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1022 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1023 	},
1024 	[VCS2] = {
1025 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1026 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1027 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1028 	},
1029 	[VECS] = {
1030 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1031 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1032 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1033 	},
1034 };
1035 
1036 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1037 {
1038 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1039 	unsigned long gma;
1040 	bool index_mode = false;
1041 	unsigned int post_sync;
1042 	int ret = 0;
1043 
1044 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1045 
1046 	/* LRI post sync */
1047 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1048 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1049 	/* post sync */
1050 	else if (post_sync) {
1051 		if (post_sync == 2)
1052 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1053 		else if (post_sync == 3)
1054 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1055 		else if (post_sync == 1) {
1056 			/* check ggtt*/
1057 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1058 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1059 				if (gmadr_bytes == 8)
1060 					gma |= (cmd_gma_hi(s, 3)) << 32;
1061 				/* Store Data Index */
1062 				if (cmd_val(s, 1) & (1 << 21))
1063 					index_mode = true;
1064 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1065 						index_mode);
1066 			}
1067 		}
1068 	}
1069 
1070 	if (ret)
1071 		return ret;
1072 
1073 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1074 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1075 				s->workload->pending_events);
1076 	return 0;
1077 }
1078 
1079 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1080 {
1081 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1082 			s->workload->pending_events);
1083 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1084 	return 0;
1085 }
1086 
1087 static int cmd_advance_default(struct parser_exec_state *s)
1088 {
1089 	return ip_gma_advance(s, cmd_length(s));
1090 }
1091 
1092 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1093 {
1094 	int ret;
1095 
1096 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1097 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1098 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1099 		s->buf_addr_type = s->saved_buf_addr_type;
1100 	} else {
1101 		s->buf_type = RING_BUFFER_INSTRUCTION;
1102 		s->buf_addr_type = GTT_BUFFER;
1103 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1104 			s->ret_ip_gma_ring -= s->ring_size;
1105 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1106 	}
1107 	return ret;
1108 }
1109 
1110 struct mi_display_flip_command_info {
1111 	int pipe;
1112 	int plane;
1113 	int event;
1114 	i915_reg_t stride_reg;
1115 	i915_reg_t ctrl_reg;
1116 	i915_reg_t surf_reg;
1117 	u64 stride_val;
1118 	u64 tile_val;
1119 	u64 surf_val;
1120 	bool async_flip;
1121 };
1122 
1123 struct plane_code_mapping {
1124 	int pipe;
1125 	int plane;
1126 	int event;
1127 };
1128 
1129 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1130 		struct mi_display_flip_command_info *info)
1131 {
1132 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1133 	struct plane_code_mapping gen8_plane_code[] = {
1134 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1135 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1136 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1137 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1138 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1139 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1140 	};
1141 	u32 dword0, dword1, dword2;
1142 	u32 v;
1143 
1144 	dword0 = cmd_val(s, 0);
1145 	dword1 = cmd_val(s, 1);
1146 	dword2 = cmd_val(s, 2);
1147 
1148 	v = (dword0 & GENMASK(21, 19)) >> 19;
1149 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1150 		return -EBADRQC;
1151 
1152 	info->pipe = gen8_plane_code[v].pipe;
1153 	info->plane = gen8_plane_code[v].plane;
1154 	info->event = gen8_plane_code[v].event;
1155 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1156 	info->tile_val = (dword1 & 0x1);
1157 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1158 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1159 
1160 	if (info->plane == PLANE_A) {
1161 		info->ctrl_reg = DSPCNTR(info->pipe);
1162 		info->stride_reg = DSPSTRIDE(info->pipe);
1163 		info->surf_reg = DSPSURF(info->pipe);
1164 	} else if (info->plane == PLANE_B) {
1165 		info->ctrl_reg = SPRCTL(info->pipe);
1166 		info->stride_reg = SPRSTRIDE(info->pipe);
1167 		info->surf_reg = SPRSURF(info->pipe);
1168 	} else {
1169 		WARN_ON(1);
1170 		return -EBADRQC;
1171 	}
1172 	return 0;
1173 }
1174 
1175 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1176 		struct mi_display_flip_command_info *info)
1177 {
1178 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1179 	struct intel_vgpu *vgpu = s->vgpu;
1180 	u32 dword0 = cmd_val(s, 0);
1181 	u32 dword1 = cmd_val(s, 1);
1182 	u32 dword2 = cmd_val(s, 2);
1183 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1184 
1185 	info->plane = PRIMARY_PLANE;
1186 
1187 	switch (plane) {
1188 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1189 		info->pipe = PIPE_A;
1190 		info->event = PRIMARY_A_FLIP_DONE;
1191 		break;
1192 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1193 		info->pipe = PIPE_B;
1194 		info->event = PRIMARY_B_FLIP_DONE;
1195 		break;
1196 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1197 		info->pipe = PIPE_C;
1198 		info->event = PRIMARY_C_FLIP_DONE;
1199 		break;
1200 
1201 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1202 		info->pipe = PIPE_A;
1203 		info->event = SPRITE_A_FLIP_DONE;
1204 		info->plane = SPRITE_PLANE;
1205 		break;
1206 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1207 		info->pipe = PIPE_B;
1208 		info->event = SPRITE_B_FLIP_DONE;
1209 		info->plane = SPRITE_PLANE;
1210 		break;
1211 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1212 		info->pipe = PIPE_C;
1213 		info->event = SPRITE_C_FLIP_DONE;
1214 		info->plane = SPRITE_PLANE;
1215 		break;
1216 
1217 	default:
1218 		gvt_vgpu_err("unknown plane code %d\n", plane);
1219 		return -EBADRQC;
1220 	}
1221 
1222 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1223 	info->tile_val = (dword1 & GENMASK(2, 0));
1224 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1225 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1226 
1227 	info->ctrl_reg = DSPCNTR(info->pipe);
1228 	info->stride_reg = DSPSTRIDE(info->pipe);
1229 	info->surf_reg = DSPSURF(info->pipe);
1230 
1231 	return 0;
1232 }
1233 
1234 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1235 		struct mi_display_flip_command_info *info)
1236 {
1237 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1238 	u32 stride, tile;
1239 
1240 	if (!info->async_flip)
1241 		return 0;
1242 
1243 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1244 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1245 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1246 				GENMASK(12, 10)) >> 10;
1247 	} else {
1248 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1249 				GENMASK(15, 6)) >> 6;
1250 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1251 	}
1252 
1253 	if (stride != info->stride_val)
1254 		gvt_dbg_cmd("cannot change stride during async flip\n");
1255 
1256 	if (tile != info->tile_val)
1257 		gvt_dbg_cmd("cannot change tile during async flip\n");
1258 
1259 	return 0;
1260 }
1261 
1262 static int gen8_update_plane_mmio_from_mi_display_flip(
1263 		struct parser_exec_state *s,
1264 		struct mi_display_flip_command_info *info)
1265 {
1266 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1267 	struct intel_vgpu *vgpu = s->vgpu;
1268 
1269 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1270 		      info->surf_val << 12);
1271 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1272 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1273 			      info->stride_val);
1274 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1275 			      info->tile_val << 10);
1276 	} else {
1277 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1278 			      info->stride_val << 6);
1279 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1280 			      info->tile_val << 10);
1281 	}
1282 
1283 	vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1284 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1285 	return 0;
1286 }
1287 
1288 static int decode_mi_display_flip(struct parser_exec_state *s,
1289 		struct mi_display_flip_command_info *info)
1290 {
1291 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1292 
1293 	if (IS_BROADWELL(dev_priv))
1294 		return gen8_decode_mi_display_flip(s, info);
1295 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1296 		return skl_decode_mi_display_flip(s, info);
1297 
1298 	return -ENODEV;
1299 }
1300 
1301 static int check_mi_display_flip(struct parser_exec_state *s,
1302 		struct mi_display_flip_command_info *info)
1303 {
1304 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1305 
1306 	if (IS_BROADWELL(dev_priv)
1307 		|| IS_SKYLAKE(dev_priv)
1308 		|| IS_KABYLAKE(dev_priv))
1309 		return gen8_check_mi_display_flip(s, info);
1310 	return -ENODEV;
1311 }
1312 
1313 static int update_plane_mmio_from_mi_display_flip(
1314 		struct parser_exec_state *s,
1315 		struct mi_display_flip_command_info *info)
1316 {
1317 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1318 
1319 	if (IS_BROADWELL(dev_priv)
1320 		|| IS_SKYLAKE(dev_priv)
1321 		|| IS_KABYLAKE(dev_priv))
1322 		return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1323 	return -ENODEV;
1324 }
1325 
1326 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1327 {
1328 	struct mi_display_flip_command_info info;
1329 	struct intel_vgpu *vgpu = s->vgpu;
1330 	int ret;
1331 	int i;
1332 	int len = cmd_length(s);
1333 
1334 	ret = decode_mi_display_flip(s, &info);
1335 	if (ret) {
1336 		gvt_vgpu_err("fail to decode MI display flip command\n");
1337 		return ret;
1338 	}
1339 
1340 	ret = check_mi_display_flip(s, &info);
1341 	if (ret) {
1342 		gvt_vgpu_err("invalid MI display flip command\n");
1343 		return ret;
1344 	}
1345 
1346 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1347 	if (ret) {
1348 		gvt_vgpu_err("fail to update plane mmio\n");
1349 		return ret;
1350 	}
1351 
1352 	for (i = 0; i < len; i++)
1353 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1354 	return 0;
1355 }
1356 
1357 static bool is_wait_for_flip_pending(u32 cmd)
1358 {
1359 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1360 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1361 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1362 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1363 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1364 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1365 }
1366 
1367 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1368 {
1369 	u32 cmd = cmd_val(s, 0);
1370 
1371 	if (!is_wait_for_flip_pending(cmd))
1372 		return 0;
1373 
1374 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1375 	return 0;
1376 }
1377 
1378 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1379 {
1380 	unsigned long addr;
1381 	unsigned long gma_high, gma_low;
1382 	struct intel_vgpu *vgpu = s->vgpu;
1383 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1384 
1385 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1386 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1387 		return INTEL_GVT_INVALID_ADDR;
1388 	}
1389 
1390 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1391 	if (gmadr_bytes == 4) {
1392 		addr = gma_low;
1393 	} else {
1394 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1395 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1396 	}
1397 	return addr;
1398 }
1399 
1400 static inline int cmd_address_audit(struct parser_exec_state *s,
1401 		unsigned long guest_gma, int op_size, bool index_mode)
1402 {
1403 	struct intel_vgpu *vgpu = s->vgpu;
1404 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1405 	int i;
1406 	int ret;
1407 
1408 	if (op_size > max_surface_size) {
1409 		gvt_vgpu_err("command address audit fail name %s\n",
1410 			s->info->name);
1411 		return -EFAULT;
1412 	}
1413 
1414 	if (index_mode)	{
1415 		if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
1416 			ret = -EFAULT;
1417 			goto err;
1418 		}
1419 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1420 		ret = -EFAULT;
1421 		goto err;
1422 	}
1423 
1424 	return 0;
1425 
1426 err:
1427 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1428 			s->info->name, guest_gma, op_size);
1429 
1430 	pr_err("cmd dump: ");
1431 	for (i = 0; i < cmd_length(s); i++) {
1432 		if (!(i % 4))
1433 			pr_err("\n%08x ", cmd_val(s, i));
1434 		else
1435 			pr_err("%08x ", cmd_val(s, i));
1436 	}
1437 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1438 			vgpu->id,
1439 			vgpu_aperture_gmadr_base(vgpu),
1440 			vgpu_aperture_gmadr_end(vgpu),
1441 			vgpu_hidden_gmadr_base(vgpu),
1442 			vgpu_hidden_gmadr_end(vgpu));
1443 	return ret;
1444 }
1445 
1446 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1447 {
1448 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1449 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1450 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1451 	unsigned long gma, gma_low, gma_high;
1452 	int ret = 0;
1453 
1454 	/* check ppggt */
1455 	if (!(cmd_val(s, 0) & (1 << 22)))
1456 		return 0;
1457 
1458 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1459 
1460 	if (gmadr_bytes == 8) {
1461 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1462 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1463 		gma = (gma_high << 32) | gma_low;
1464 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1465 	}
1466 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1467 	return ret;
1468 }
1469 
1470 static inline int unexpected_cmd(struct parser_exec_state *s)
1471 {
1472 	struct intel_vgpu *vgpu = s->vgpu;
1473 
1474 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1475 
1476 	return -EBADRQC;
1477 }
1478 
1479 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1480 {
1481 	return unexpected_cmd(s);
1482 }
1483 
1484 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1485 {
1486 	return unexpected_cmd(s);
1487 }
1488 
1489 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1490 {
1491 	return unexpected_cmd(s);
1492 }
1493 
1494 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1495 {
1496 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1497 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1498 			sizeof(u32);
1499 	unsigned long gma, gma_high;
1500 	int ret = 0;
1501 
1502 	if (!(cmd_val(s, 0) & (1 << 22)))
1503 		return ret;
1504 
1505 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1506 	if (gmadr_bytes == 8) {
1507 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1508 		gma = (gma_high << 32) | gma;
1509 	}
1510 	ret = cmd_address_audit(s, gma, op_size, false);
1511 	return ret;
1512 }
1513 
1514 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1515 {
1516 	return unexpected_cmd(s);
1517 }
1518 
1519 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1520 {
1521 	return unexpected_cmd(s);
1522 }
1523 
1524 static int cmd_handler_mi_conditional_batch_buffer_end(
1525 		struct parser_exec_state *s)
1526 {
1527 	return unexpected_cmd(s);
1528 }
1529 
1530 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1531 {
1532 	return unexpected_cmd(s);
1533 }
1534 
1535 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1536 {
1537 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1538 	unsigned long gma;
1539 	bool index_mode = false;
1540 	int ret = 0;
1541 
1542 	/* Check post-sync and ppgtt bit */
1543 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1544 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1545 		if (gmadr_bytes == 8)
1546 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1547 		/* Store Data Index */
1548 		if (cmd_val(s, 0) & (1 << 21))
1549 			index_mode = true;
1550 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1551 	}
1552 	/* Check notify bit */
1553 	if ((cmd_val(s, 0) & (1 << 8)))
1554 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1555 				s->workload->pending_events);
1556 	return ret;
1557 }
1558 
1559 static void addr_type_update_snb(struct parser_exec_state *s)
1560 {
1561 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1562 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1563 		s->buf_addr_type = PPGTT_BUFFER;
1564 	}
1565 }
1566 
1567 
1568 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1569 		unsigned long gma, unsigned long end_gma, void *va)
1570 {
1571 	unsigned long copy_len, offset;
1572 	unsigned long len = 0;
1573 	unsigned long gpa;
1574 
1575 	while (gma != end_gma) {
1576 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1577 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1578 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1579 			return -EFAULT;
1580 		}
1581 
1582 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1583 
1584 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1585 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1586 
1587 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1588 
1589 		len += copy_len;
1590 		gma += copy_len;
1591 	}
1592 	return len;
1593 }
1594 
1595 
1596 /*
1597  * Check whether a batch buffer needs to be scanned. Currently
1598  * the only criteria is based on privilege.
1599  */
1600 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1601 {
1602 	struct intel_gvt *gvt = s->vgpu->gvt;
1603 
1604 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
1605 		|| IS_KABYLAKE(gvt->dev_priv)) {
1606 		/* BDW decides privilege based on address space */
1607 		if (cmd_val(s, 0) & (1 << 8))
1608 			return 0;
1609 	}
1610 	return 1;
1611 }
1612 
1613 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1614 {
1615 	unsigned long gma = 0;
1616 	struct cmd_info *info;
1617 	uint32_t cmd_len = 0;
1618 	bool bb_end = false;
1619 	struct intel_vgpu *vgpu = s->vgpu;
1620 	u32 cmd;
1621 
1622 	*bb_size = 0;
1623 
1624 	/* get the start gm address of the batch buffer */
1625 	gma = get_gma_bb_from_cmd(s, 1);
1626 	if (gma == INTEL_GVT_INVALID_ADDR)
1627 		return -EFAULT;
1628 
1629 	cmd = cmd_val(s, 0);
1630 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1631 	if (info == NULL) {
1632 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
1633 				cmd, get_opcode(cmd, s->ring_id));
1634 		return -EBADRQC;
1635 	}
1636 	do {
1637 		if (copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1638 				gma, gma + 4, &cmd) < 0)
1639 			return -EFAULT;
1640 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1641 		if (info == NULL) {
1642 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
1643 				cmd, get_opcode(cmd, s->ring_id));
1644 			return -EBADRQC;
1645 		}
1646 
1647 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1648 			bb_end = true;
1649 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1650 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1651 				/* chained batch buffer */
1652 				bb_end = true;
1653 		}
1654 		cmd_len = get_cmd_length(info, cmd) << 2;
1655 		*bb_size += cmd_len;
1656 		gma += cmd_len;
1657 	} while (!bb_end);
1658 
1659 	return 0;
1660 }
1661 
1662 static int perform_bb_shadow(struct parser_exec_state *s)
1663 {
1664 	struct intel_vgpu *vgpu = s->vgpu;
1665 	struct intel_vgpu_shadow_bb *bb;
1666 	unsigned long gma = 0;
1667 	unsigned long bb_size;
1668 	int ret = 0;
1669 
1670 	/* get the start gm address of the batch buffer */
1671 	gma = get_gma_bb_from_cmd(s, 1);
1672 	if (gma == INTEL_GVT_INVALID_ADDR)
1673 		return -EFAULT;
1674 
1675 	ret = find_bb_size(s, &bb_size);
1676 	if (ret)
1677 		return ret;
1678 
1679 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1680 	if (!bb)
1681 		return -ENOMEM;
1682 
1683 	bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1684 					 roundup(bb_size, PAGE_SIZE));
1685 	if (IS_ERR(bb->obj)) {
1686 		ret = PTR_ERR(bb->obj);
1687 		goto err_free_bb;
1688 	}
1689 
1690 	ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1691 	if (ret)
1692 		goto err_free_obj;
1693 
1694 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1695 	if (IS_ERR(bb->va)) {
1696 		ret = PTR_ERR(bb->va);
1697 		goto err_finish_shmem_access;
1698 	}
1699 
1700 	if (bb->clflush & CLFLUSH_BEFORE) {
1701 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1702 		bb->clflush &= ~CLFLUSH_BEFORE;
1703 	}
1704 
1705 	ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1706 			      gma, gma + bb_size,
1707 			      bb->va);
1708 	if (ret < 0) {
1709 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1710 		ret = -EFAULT;
1711 		goto err_unmap;
1712 	}
1713 
1714 	INIT_LIST_HEAD(&bb->list);
1715 	list_add(&bb->list, &s->workload->shadow_bb);
1716 
1717 	bb->accessing = true;
1718 	bb->bb_start_cmd_va = s->ip_va;
1719 
1720 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1721 		bb->bb_offset = s->ip_va - s->rb_va;
1722 	else
1723 		bb->bb_offset = 0;
1724 
1725 	/*
1726 	 * ip_va saves the virtual address of the shadow batch buffer, while
1727 	 * ip_gma saves the graphics address of the original batch buffer.
1728 	 * As the shadow batch buffer is just a copy from the originial one,
1729 	 * it should be right to use shadow batch buffer'va and original batch
1730 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1731 	 * buffer here (too early).
1732 	 */
1733 	s->ip_va = bb->va;
1734 	s->ip_gma = gma;
1735 	return 0;
1736 err_unmap:
1737 	i915_gem_object_unpin_map(bb->obj);
1738 err_finish_shmem_access:
1739 	i915_gem_obj_finish_shmem_access(bb->obj);
1740 err_free_obj:
1741 	i915_gem_object_put(bb->obj);
1742 err_free_bb:
1743 	kfree(bb);
1744 	return ret;
1745 }
1746 
1747 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1748 {
1749 	bool second_level;
1750 	int ret = 0;
1751 	struct intel_vgpu *vgpu = s->vgpu;
1752 
1753 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1754 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1755 		return -EFAULT;
1756 	}
1757 
1758 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1759 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1760 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1761 		return -EFAULT;
1762 	}
1763 
1764 	s->saved_buf_addr_type = s->buf_addr_type;
1765 	addr_type_update_snb(s);
1766 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1767 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1768 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1769 	} else if (second_level) {
1770 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1771 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1772 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1773 	}
1774 
1775 	if (batch_buffer_needs_scan(s)) {
1776 		ret = perform_bb_shadow(s);
1777 		if (ret < 0)
1778 			gvt_vgpu_err("invalid shadow batch buffer\n");
1779 	} else {
1780 		/* emulate a batch buffer end to do return right */
1781 		ret = cmd_handler_mi_batch_buffer_end(s);
1782 		if (ret < 0)
1783 			return ret;
1784 	}
1785 	return ret;
1786 }
1787 
1788 static struct cmd_info cmd_info[] = {
1789 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1790 
1791 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1792 		0, 1, NULL},
1793 
1794 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1795 		0, 1, cmd_handler_mi_user_interrupt},
1796 
1797 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1798 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1799 
1800 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1801 
1802 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1803 		NULL},
1804 
1805 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1806 		NULL},
1807 
1808 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1809 		NULL},
1810 
1811 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1812 		NULL},
1813 
1814 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1815 		D_ALL, 0, 1, NULL},
1816 
1817 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1818 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1819 		cmd_handler_mi_batch_buffer_end},
1820 
1821 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1822 		0, 1, NULL},
1823 
1824 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1825 		NULL},
1826 
1827 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1828 		D_ALL, 0, 1, NULL},
1829 
1830 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1831 		NULL},
1832 
1833 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1834 		NULL},
1835 
1836 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1837 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1838 
1839 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1840 		0, 8, NULL},
1841 
1842 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1843 
1844 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1845 
1846 	{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1847 		D_BDW_PLUS, 0, 8, NULL},
1848 
1849 	{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1850 		ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1851 
1852 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1853 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1854 
1855 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1856 		0, 8, cmd_handler_mi_store_data_index},
1857 
1858 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1859 		D_ALL, 0, 8, cmd_handler_lri},
1860 
1861 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1862 		cmd_handler_mi_update_gtt},
1863 
1864 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1865 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1866 
1867 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1868 		cmd_handler_mi_flush_dw},
1869 
1870 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1871 		10, cmd_handler_mi_clflush},
1872 
1873 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1874 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1875 
1876 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1877 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1878 
1879 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1880 		D_ALL, 0, 8, cmd_handler_lrr},
1881 
1882 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1883 		D_ALL, 0, 8, NULL},
1884 
1885 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1886 		ADDR_FIX_1(2), 8, NULL},
1887 
1888 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1889 		ADDR_FIX_1(2), 8, NULL},
1890 
1891 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1892 		8, cmd_handler_mi_op_2e},
1893 
1894 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1895 		8, cmd_handler_mi_op_2f},
1896 
1897 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1898 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1899 		cmd_handler_mi_batch_buffer_start},
1900 
1901 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1902 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1903 		cmd_handler_mi_conditional_batch_buffer_end},
1904 
1905 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1906 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1907 
1908 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1909 		ADDR_FIX_2(4, 7), 8, NULL},
1910 
1911 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1912 		0, 8, NULL},
1913 
1914 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1915 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1916 
1917 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1918 
1919 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1920 		0, 8, NULL},
1921 
1922 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1923 		ADDR_FIX_1(3), 8, NULL},
1924 
1925 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1926 		D_ALL, 0, 8, NULL},
1927 
1928 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1929 		ADDR_FIX_1(4), 8, NULL},
1930 
1931 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1932 		ADDR_FIX_2(4, 5), 8, NULL},
1933 
1934 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1935 		ADDR_FIX_1(4), 8, NULL},
1936 
1937 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1938 		ADDR_FIX_2(4, 7), 8, NULL},
1939 
1940 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1941 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1942 
1943 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1944 
1945 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1946 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1947 
1948 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1949 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1950 
1951 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1952 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1953 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1954 
1955 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1956 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1957 
1958 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
1959 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1960 
1961 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
1962 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1963 
1964 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
1965 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1966 
1967 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
1968 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1969 
1970 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
1971 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
1972 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1973 
1974 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
1975 		ADDR_FIX_2(4, 5), 8, NULL},
1976 
1977 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
1978 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1979 
1980 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
1981 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
1982 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1983 
1984 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
1985 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
1986 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1987 
1988 	{"3DSTATE_BLEND_STATE_POINTERS",
1989 		OP_3DSTATE_BLEND_STATE_POINTERS,
1990 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1991 
1992 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
1993 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
1994 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1995 
1996 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
1997 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
1998 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1999 
2000 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2001 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2002 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2003 
2004 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2005 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2006 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2007 
2008 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2009 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2010 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2011 
2012 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2013 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2014 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2015 
2016 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2017 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2018 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2019 
2020 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2021 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2022 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2023 
2024 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2025 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2026 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2027 
2028 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2029 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2030 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2031 
2032 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2033 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2034 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2035 
2036 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2037 		0, 8, NULL},
2038 
2039 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2040 		0, 8, NULL},
2041 
2042 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2043 		0, 8, NULL},
2044 
2045 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2046 		0, 8, NULL},
2047 
2048 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2049 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2050 
2051 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2052 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2053 
2054 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2055 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2056 
2057 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2058 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2059 
2060 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2061 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2062 
2063 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2064 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2065 
2066 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2067 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2068 
2069 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2070 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2071 
2072 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2073 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2074 
2075 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2076 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2077 
2078 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2079 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2080 
2081 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2082 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2083 
2084 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2085 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2086 
2087 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2088 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2089 
2090 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2091 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2092 
2093 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2094 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2095 
2096 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2097 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2098 
2099 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2100 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2101 
2102 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2103 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2104 
2105 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2106 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2107 
2108 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2109 		D_BDW_PLUS, 0, 8, NULL},
2110 
2111 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2112 		NULL},
2113 
2114 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2115 		D_BDW_PLUS, 0, 8, NULL},
2116 
2117 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2118 		D_BDW_PLUS, 0, 8, NULL},
2119 
2120 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2121 		8, NULL},
2122 
2123 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2124 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2125 
2126 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2127 		8, NULL},
2128 
2129 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2130 		NULL},
2131 
2132 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2133 		NULL},
2134 
2135 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2136 		NULL},
2137 
2138 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2139 		D_BDW_PLUS, 0, 8, NULL},
2140 
2141 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2142 		R_RCS, D_ALL, 0, 8, NULL},
2143 
2144 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2145 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2146 
2147 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2148 		R_RCS, D_ALL, 0, 1, NULL},
2149 
2150 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2151 
2152 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2153 		R_RCS, D_ALL, 0, 8, NULL},
2154 
2155 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2156 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2157 
2158 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2159 
2160 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2161 
2162 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2163 
2164 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2165 		D_BDW_PLUS, 0, 8, NULL},
2166 
2167 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2168 		D_BDW_PLUS, 0, 8, NULL},
2169 
2170 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2171 		D_ALL, 0, 8, NULL},
2172 
2173 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2174 		D_BDW_PLUS, 0, 8, NULL},
2175 
2176 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2177 		D_BDW_PLUS, 0, 8, NULL},
2178 
2179 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2180 
2181 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2182 
2183 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2184 
2185 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2186 		D_ALL, 0, 8, NULL},
2187 
2188 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2189 
2190 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2191 
2192 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2193 		R_RCS, D_ALL, 0, 8, NULL},
2194 
2195 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2196 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2197 
2198 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2199 		0, 8, NULL},
2200 
2201 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2202 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2203 
2204 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2205 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2206 
2207 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2208 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209 
2210 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2211 		D_ALL, 0, 8, NULL},
2212 
2213 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2214 		D_ALL, 0, 8, NULL},
2215 
2216 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2217 		D_ALL, 0, 8, NULL},
2218 
2219 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2220 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2221 
2222 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2223 		D_BDW_PLUS, 0, 8, NULL},
2224 
2225 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2226 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2227 
2228 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2229 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2230 
2231 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2232 		R_RCS, D_ALL, 0, 8, NULL},
2233 
2234 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2235 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236 
2237 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2238 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2239 
2240 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2241 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242 
2243 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2244 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245 
2246 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2247 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248 
2249 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2250 		R_RCS, D_ALL, 0, 8, NULL},
2251 
2252 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2253 		D_ALL, 0, 9, NULL},
2254 
2255 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2256 		ADDR_FIX_2(2, 4), 8, NULL},
2257 
2258 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2259 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2260 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2261 
2262 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2263 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2264 
2265 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2266 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2267 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2268 
2269 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2270 		D_BDW_PLUS, 0, 8, NULL},
2271 
2272 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2273 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2274 
2275 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276 
2277 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2278 		1, NULL},
2279 
2280 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2281 		ADDR_FIX_1(1), 8, NULL},
2282 
2283 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284 
2285 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2286 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2287 
2288 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2289 		ADDR_FIX_1(1), 8, NULL},
2290 
2291 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2292 
2293 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2294 
2295 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2296 		0, 8, NULL},
2297 
2298 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2299 		D_SKL_PLUS, 0, 8, NULL},
2300 
2301 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2302 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2303 
2304 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2305 		0, 16, NULL},
2306 
2307 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2308 		0, 16, NULL},
2309 
2310 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2311 
2312 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2313 		0, 16, NULL},
2314 
2315 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2316 		0, 16, NULL},
2317 
2318 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2319 		0, 16, NULL},
2320 
2321 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2322 		0, 8, NULL},
2323 
2324 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2325 		NULL},
2326 
2327 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2328 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2329 
2330 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2331 		R_VCS, D_ALL, 0, 12, NULL},
2332 
2333 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2334 		R_VCS, D_ALL, 0, 12, NULL},
2335 
2336 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2337 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2338 
2339 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2340 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2341 
2342 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2343 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2344 
2345 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2346 
2347 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2348 		R_VCS, D_ALL, 0, 12, NULL},
2349 
2350 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2351 		R_VCS, D_ALL, 0, 12, NULL},
2352 
2353 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2354 		R_VCS, D_ALL, 0, 12, NULL},
2355 
2356 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2357 		R_VCS, D_ALL, 0, 12, NULL},
2358 
2359 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2360 		R_VCS, D_ALL, 0, 12, NULL},
2361 
2362 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2363 		R_VCS, D_ALL, 0, 12, NULL},
2364 
2365 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2366 		R_VCS, D_ALL, 0, 6, NULL},
2367 
2368 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2369 		R_VCS, D_ALL, 0, 12, NULL},
2370 
2371 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2372 		R_VCS, D_ALL, 0, 12, NULL},
2373 
2374 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2375 		R_VCS, D_ALL, 0, 12, NULL},
2376 
2377 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2378 		R_VCS, D_ALL, 0, 12, NULL},
2379 
2380 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2381 		R_VCS, D_ALL, 0, 12, NULL},
2382 
2383 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2384 		R_VCS, D_ALL, 0, 12, NULL},
2385 
2386 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2387 		R_VCS, D_ALL, 0, 12, NULL},
2388 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2389 		R_VCS, D_ALL, 0, 12, NULL},
2390 
2391 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2392 		R_VCS, D_ALL, 0, 12, NULL},
2393 
2394 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2395 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2396 
2397 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2398 		R_VCS, D_ALL, 0, 12, NULL},
2399 
2400 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2401 		R_VCS, D_ALL, 0, 12, NULL},
2402 
2403 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2404 		R_VCS, D_ALL, 0, 12, NULL},
2405 
2406 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2407 		R_VCS, D_ALL, 0, 12, NULL},
2408 
2409 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2410 		R_VCS, D_ALL, 0, 12, NULL},
2411 
2412 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2413 		R_VCS, D_ALL, 0, 12, NULL},
2414 
2415 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2416 		R_VCS, D_ALL, 0, 12, NULL},
2417 
2418 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2419 		R_VCS, D_ALL, 0, 12, NULL},
2420 
2421 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2422 		R_VCS, D_ALL, 0, 12, NULL},
2423 
2424 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2425 		R_VCS, D_ALL, 0, 12, NULL},
2426 
2427 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2428 		R_VCS, D_ALL, 0, 12, NULL},
2429 
2430 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2431 		0, 16, NULL},
2432 
2433 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2434 
2435 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2436 
2437 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2438 		R_VCS, D_ALL, 0, 12, NULL},
2439 
2440 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2441 		R_VCS, D_ALL, 0, 12, NULL},
2442 
2443 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2444 		R_VCS, D_ALL, 0, 12, NULL},
2445 
2446 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2447 
2448 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2449 		0, 12, NULL},
2450 
2451 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2452 		0, 20, NULL},
2453 };
2454 
2455 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2456 {
2457 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2458 }
2459 
2460 /* call the cmd handler, and advance ip */
2461 static int cmd_parser_exec(struct parser_exec_state *s)
2462 {
2463 	struct intel_vgpu *vgpu = s->vgpu;
2464 	struct cmd_info *info;
2465 	u32 cmd;
2466 	int ret = 0;
2467 
2468 	cmd = cmd_val(s, 0);
2469 
2470 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2471 	if (info == NULL) {
2472 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
2473 				cmd, get_opcode(cmd, s->ring_id));
2474 		return -EBADRQC;
2475 	}
2476 
2477 	s->info = info;
2478 
2479 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2480 			  cmd_length(s), s->buf_type);
2481 
2482 	if (info->handler) {
2483 		ret = info->handler(s);
2484 		if (ret < 0) {
2485 			gvt_vgpu_err("%s handler error\n", info->name);
2486 			return ret;
2487 		}
2488 	}
2489 
2490 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2491 		ret = cmd_advance_default(s);
2492 		if (ret) {
2493 			gvt_vgpu_err("%s IP advance error\n", info->name);
2494 			return ret;
2495 		}
2496 	}
2497 	return 0;
2498 }
2499 
2500 static inline bool gma_out_of_range(unsigned long gma,
2501 		unsigned long gma_head, unsigned int gma_tail)
2502 {
2503 	if (gma_tail >= gma_head)
2504 		return (gma < gma_head) || (gma > gma_tail);
2505 	else
2506 		return (gma > gma_tail) && (gma < gma_head);
2507 }
2508 
2509 /* Keep the consistent return type, e.g EBADRQC for unknown
2510  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2511  * works as the input of VM healthy status.
2512  */
2513 static int command_scan(struct parser_exec_state *s,
2514 		unsigned long rb_head, unsigned long rb_tail,
2515 		unsigned long rb_start, unsigned long rb_len)
2516 {
2517 
2518 	unsigned long gma_head, gma_tail, gma_bottom;
2519 	int ret = 0;
2520 	struct intel_vgpu *vgpu = s->vgpu;
2521 
2522 	gma_head = rb_start + rb_head;
2523 	gma_tail = rb_start + rb_tail;
2524 	gma_bottom = rb_start +  rb_len;
2525 
2526 	while (s->ip_gma != gma_tail) {
2527 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2528 			if (!(s->ip_gma >= rb_start) ||
2529 				!(s->ip_gma < gma_bottom)) {
2530 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2531 					"(base:0x%lx, bottom: 0x%lx)\n",
2532 					s->ip_gma, rb_start,
2533 					gma_bottom);
2534 				parser_exec_state_dump(s);
2535 				return -EFAULT;
2536 			}
2537 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2538 				gvt_vgpu_err("ip_gma %lx out of range."
2539 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2540 					s->ip_gma, rb_start,
2541 					rb_head, rb_tail);
2542 				parser_exec_state_dump(s);
2543 				break;
2544 			}
2545 		}
2546 		ret = cmd_parser_exec(s);
2547 		if (ret) {
2548 			gvt_vgpu_err("cmd parser error\n");
2549 			parser_exec_state_dump(s);
2550 			break;
2551 		}
2552 	}
2553 
2554 	return ret;
2555 }
2556 
2557 static int scan_workload(struct intel_vgpu_workload *workload)
2558 {
2559 	unsigned long gma_head, gma_tail, gma_bottom;
2560 	struct parser_exec_state s;
2561 	int ret = 0;
2562 
2563 	/* ring base is page aligned */
2564 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2565 		return -EINVAL;
2566 
2567 	gma_head = workload->rb_start + workload->rb_head;
2568 	gma_tail = workload->rb_start + workload->rb_tail;
2569 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2570 
2571 	s.buf_type = RING_BUFFER_INSTRUCTION;
2572 	s.buf_addr_type = GTT_BUFFER;
2573 	s.vgpu = workload->vgpu;
2574 	s.ring_id = workload->ring_id;
2575 	s.ring_start = workload->rb_start;
2576 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2577 	s.ring_head = gma_head;
2578 	s.ring_tail = gma_tail;
2579 	s.rb_va = workload->shadow_ring_buffer_va;
2580 	s.workload = workload;
2581 	s.is_ctx_wa = false;
2582 
2583 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2584 		gma_head == gma_tail)
2585 		return 0;
2586 
2587 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2588 		ret = -EINVAL;
2589 		goto out;
2590 	}
2591 
2592 	ret = ip_gma_set(&s, gma_head);
2593 	if (ret)
2594 		goto out;
2595 
2596 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2597 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2598 
2599 out:
2600 	return ret;
2601 }
2602 
2603 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2604 {
2605 
2606 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2607 	struct parser_exec_state s;
2608 	int ret = 0;
2609 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2610 				struct intel_vgpu_workload,
2611 				wa_ctx);
2612 
2613 	/* ring base is page aligned */
2614 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2615 					I915_GTT_PAGE_SIZE)))
2616 		return -EINVAL;
2617 
2618 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2619 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2620 			PAGE_SIZE);
2621 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2622 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2623 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2624 
2625 	s.buf_type = RING_BUFFER_INSTRUCTION;
2626 	s.buf_addr_type = GTT_BUFFER;
2627 	s.vgpu = workload->vgpu;
2628 	s.ring_id = workload->ring_id;
2629 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2630 	s.ring_size = ring_size;
2631 	s.ring_head = gma_head;
2632 	s.ring_tail = gma_tail;
2633 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2634 	s.workload = workload;
2635 	s.is_ctx_wa = true;
2636 
2637 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2638 		ret = -EINVAL;
2639 		goto out;
2640 	}
2641 
2642 	ret = ip_gma_set(&s, gma_head);
2643 	if (ret)
2644 		goto out;
2645 
2646 	ret = command_scan(&s, 0, ring_tail,
2647 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2648 out:
2649 	return ret;
2650 }
2651 
2652 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2653 {
2654 	struct intel_vgpu *vgpu = workload->vgpu;
2655 	struct intel_vgpu_submission *s = &vgpu->submission;
2656 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2657 	void *shadow_ring_buffer_va;
2658 	int ring_id = workload->ring_id;
2659 	int ret;
2660 
2661 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2662 
2663 	/* calculate workload ring buffer size */
2664 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2665 			workload->rb_head) % guest_rb_size;
2666 
2667 	gma_head = workload->rb_start + workload->rb_head;
2668 	gma_tail = workload->rb_start + workload->rb_tail;
2669 	gma_top = workload->rb_start + guest_rb_size;
2670 
2671 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2672 		void *p;
2673 
2674 		/* realloc the new ring buffer if needed */
2675 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2676 				GFP_KERNEL);
2677 		if (!p) {
2678 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2679 			return -ENOMEM;
2680 		}
2681 		s->ring_scan_buffer[ring_id] = p;
2682 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2683 	}
2684 
2685 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2686 
2687 	/* get shadow ring buffer va */
2688 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2689 
2690 	/* head > tail --> copy head <-> top */
2691 	if (gma_head > gma_tail) {
2692 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2693 				      gma_head, gma_top, shadow_ring_buffer_va);
2694 		if (ret < 0) {
2695 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2696 			return ret;
2697 		}
2698 		shadow_ring_buffer_va += ret;
2699 		gma_head = workload->rb_start;
2700 	}
2701 
2702 	/* copy head or start <-> tail */
2703 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2704 				shadow_ring_buffer_va);
2705 	if (ret < 0) {
2706 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2707 		return ret;
2708 	}
2709 	return 0;
2710 }
2711 
2712 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2713 {
2714 	int ret;
2715 	struct intel_vgpu *vgpu = workload->vgpu;
2716 
2717 	ret = shadow_workload_ring_buffer(workload);
2718 	if (ret) {
2719 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2720 		return ret;
2721 	}
2722 
2723 	ret = scan_workload(workload);
2724 	if (ret) {
2725 		gvt_vgpu_err("scan workload error\n");
2726 		return ret;
2727 	}
2728 	return 0;
2729 }
2730 
2731 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2732 {
2733 	int ctx_size = wa_ctx->indirect_ctx.size;
2734 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2735 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2736 					struct intel_vgpu_workload,
2737 					wa_ctx);
2738 	struct intel_vgpu *vgpu = workload->vgpu;
2739 	struct drm_i915_gem_object *obj;
2740 	int ret = 0;
2741 	void *map;
2742 
2743 	obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2744 				     roundup(ctx_size + CACHELINE_BYTES,
2745 					     PAGE_SIZE));
2746 	if (IS_ERR(obj))
2747 		return PTR_ERR(obj);
2748 
2749 	/* get the va of the shadow batch buffer */
2750 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2751 	if (IS_ERR(map)) {
2752 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2753 		ret = PTR_ERR(map);
2754 		goto put_obj;
2755 	}
2756 
2757 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2758 	if (ret) {
2759 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2760 		goto unmap_src;
2761 	}
2762 
2763 	ret = copy_gma_to_hva(workload->vgpu,
2764 				workload->vgpu->gtt.ggtt_mm,
2765 				guest_gma, guest_gma + ctx_size,
2766 				map);
2767 	if (ret < 0) {
2768 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2769 		goto unmap_src;
2770 	}
2771 
2772 	wa_ctx->indirect_ctx.obj = obj;
2773 	wa_ctx->indirect_ctx.shadow_va = map;
2774 	return 0;
2775 
2776 unmap_src:
2777 	i915_gem_object_unpin_map(obj);
2778 put_obj:
2779 	i915_gem_object_put(obj);
2780 	return ret;
2781 }
2782 
2783 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2784 {
2785 	uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2786 	unsigned char *bb_start_sva;
2787 
2788 	if (!wa_ctx->per_ctx.valid)
2789 		return 0;
2790 
2791 	per_ctx_start[0] = 0x18800001;
2792 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2793 
2794 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2795 				wa_ctx->indirect_ctx.size;
2796 
2797 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2798 
2799 	return 0;
2800 }
2801 
2802 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2803 {
2804 	int ret;
2805 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2806 					struct intel_vgpu_workload,
2807 					wa_ctx);
2808 	struct intel_vgpu *vgpu = workload->vgpu;
2809 
2810 	if (wa_ctx->indirect_ctx.size == 0)
2811 		return 0;
2812 
2813 	ret = shadow_indirect_ctx(wa_ctx);
2814 	if (ret) {
2815 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2816 		return ret;
2817 	}
2818 
2819 	combine_wa_ctx(wa_ctx);
2820 
2821 	ret = scan_wa_ctx(wa_ctx);
2822 	if (ret) {
2823 		gvt_vgpu_err("scan wa ctx error\n");
2824 		return ret;
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2831 		unsigned int opcode, unsigned long rings)
2832 {
2833 	struct cmd_info *info = NULL;
2834 	unsigned int ring;
2835 
2836 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2837 		info = find_cmd_entry(gvt, opcode, ring);
2838 		if (info)
2839 			break;
2840 	}
2841 	return info;
2842 }
2843 
2844 static int init_cmd_table(struct intel_gvt *gvt)
2845 {
2846 	int i;
2847 	struct cmd_entry *e;
2848 	struct cmd_info	*info;
2849 	unsigned int gen_type;
2850 
2851 	gen_type = intel_gvt_get_device_type(gvt);
2852 
2853 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2854 		if (!(cmd_info[i].devices & gen_type))
2855 			continue;
2856 
2857 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2858 		if (!e)
2859 			return -ENOMEM;
2860 
2861 		e->info = &cmd_info[i];
2862 		info = find_cmd_entry_any_ring(gvt,
2863 				e->info->opcode, e->info->rings);
2864 		if (info) {
2865 			gvt_err("%s %s duplicated\n", e->info->name,
2866 					info->name);
2867 			return -EEXIST;
2868 		}
2869 
2870 		INIT_HLIST_NODE(&e->hlist);
2871 		add_cmd_entry(gvt, e);
2872 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2873 				e->info->name, e->info->opcode, e->info->flag,
2874 				e->info->devices, e->info->rings);
2875 	}
2876 	return 0;
2877 }
2878 
2879 static void clean_cmd_table(struct intel_gvt *gvt)
2880 {
2881 	struct hlist_node *tmp;
2882 	struct cmd_entry *e;
2883 	int i;
2884 
2885 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2886 		kfree(e);
2887 
2888 	hash_init(gvt->cmd_table);
2889 }
2890 
2891 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2892 {
2893 	clean_cmd_table(gvt);
2894 }
2895 
2896 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2897 {
2898 	int ret;
2899 
2900 	ret = init_cmd_table(gvt);
2901 	if (ret) {
2902 		intel_gvt_clean_cmd_parser(gvt);
2903 		return ret;
2904 	}
2905 	return 0;
2906 }
2907