1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "i915_reg.h" 41 #include "gt/intel_engine_regs.h" 42 #include "gt/intel_gpu_commands.h" 43 #include "gt/intel_gt_regs.h" 44 #include "gt/intel_lrc.h" 45 #include "gt/intel_ring.h" 46 #include "gt/intel_gt_requests.h" 47 #include "gt/shmem_utils.h" 48 #include "gvt.h" 49 #include "i915_pvinfo.h" 50 #include "trace.h" 51 52 #include "display/intel_display.h" 53 #include "gem/i915_gem_context.h" 54 #include "gem/i915_gem_pm.h" 55 #include "gt/intel_context.h" 56 57 #define INVALID_OP (~0U) 58 59 #define OP_LEN_MI 9 60 #define OP_LEN_2D 10 61 #define OP_LEN_3D_MEDIA 16 62 #define OP_LEN_MFX_VC 16 63 #define OP_LEN_VEBOX 16 64 65 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 66 67 struct sub_op_bits { 68 int hi; 69 int low; 70 }; 71 struct decode_info { 72 const char *name; 73 int op_len; 74 int nr_sub_op; 75 const struct sub_op_bits *sub_op; 76 }; 77 78 #define MAX_CMD_BUDGET 0x7fffffff 79 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 80 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 81 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 82 83 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 84 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 85 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 86 87 /* Render Command Map */ 88 89 /* MI_* command Opcode (28:23) */ 90 #define OP_MI_NOOP 0x0 91 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 92 #define OP_MI_USER_INTERRUPT 0x2 93 #define OP_MI_WAIT_FOR_EVENT 0x3 94 #define OP_MI_FLUSH 0x4 95 #define OP_MI_ARB_CHECK 0x5 96 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 97 #define OP_MI_REPORT_HEAD 0x7 98 #define OP_MI_ARB_ON_OFF 0x8 99 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 100 #define OP_MI_BATCH_BUFFER_END 0xA 101 #define OP_MI_SUSPEND_FLUSH 0xB 102 #define OP_MI_PREDICATE 0xC /* IVB+ */ 103 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 104 #define OP_MI_SET_APPID 0xE /* IVB+ */ 105 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 106 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 107 #define OP_MI_DISPLAY_FLIP 0x14 108 #define OP_MI_SEMAPHORE_MBOX 0x16 109 #define OP_MI_SET_CONTEXT 0x18 110 #define OP_MI_MATH 0x1A 111 #define OP_MI_URB_CLEAR 0x19 112 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 113 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 114 115 #define OP_MI_STORE_DATA_IMM 0x20 116 #define OP_MI_STORE_DATA_INDEX 0x21 117 #define OP_MI_LOAD_REGISTER_IMM 0x22 118 #define OP_MI_UPDATE_GTT 0x23 119 #define OP_MI_STORE_REGISTER_MEM 0x24 120 #define OP_MI_FLUSH_DW 0x26 121 #define OP_MI_CLFLUSH 0x27 122 #define OP_MI_REPORT_PERF_COUNT 0x28 123 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 124 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 125 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 126 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 127 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 128 #define OP_MI_2E 0x2E /* BDW+ */ 129 #define OP_MI_2F 0x2F /* BDW+ */ 130 #define OP_MI_BATCH_BUFFER_START 0x31 131 132 /* Bit definition for dword 0 */ 133 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 134 135 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 136 137 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 138 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 139 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 140 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 141 142 /* 2D command: Opcode (28:22) */ 143 #define OP_2D(x) ((2<<7) | x) 144 145 #define OP_XY_SETUP_BLT OP_2D(0x1) 146 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 147 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 148 #define OP_XY_PIXEL_BLT OP_2D(0x24) 149 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 150 #define OP_XY_TEXT_BLT OP_2D(0x26) 151 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 152 #define OP_XY_COLOR_BLT OP_2D(0x50) 153 #define OP_XY_PAT_BLT OP_2D(0x51) 154 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 155 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 156 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 157 #define OP_XY_FULL_BLT OP_2D(0x55) 158 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 159 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 160 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 161 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 162 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 163 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 164 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 165 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 166 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 167 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 168 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 169 170 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 171 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 172 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 173 174 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 175 176 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 177 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 178 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 179 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 180 181 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 182 183 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 184 185 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 186 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 187 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 188 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 189 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 190 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 191 192 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 193 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 194 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 195 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 196 197 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 198 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 199 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 200 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 201 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 202 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 203 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 204 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 205 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 206 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 207 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 208 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 209 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 210 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 211 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 212 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 213 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 214 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 215 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 216 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 217 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 218 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 219 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 220 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 221 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 222 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 223 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 224 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 225 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 226 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 227 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 228 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 239 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 240 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 241 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 242 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 243 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 244 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 245 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 246 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 247 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 248 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 249 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 250 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 251 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 252 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 253 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 254 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 255 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 256 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 257 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 258 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 259 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 260 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 261 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 262 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 263 264 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 265 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 266 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 267 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 268 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 269 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 270 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 271 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 272 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 273 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 274 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 275 276 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 277 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 278 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 279 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 280 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 281 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 282 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 283 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 284 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 285 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 286 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 287 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 288 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 289 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 290 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 296 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 297 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 298 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 299 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 300 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 301 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 302 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 303 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 304 305 /* VCCP Command Parser */ 306 307 /* 308 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 309 * git://anongit.freedesktop.org/vaapi/intel-driver 310 * src/i965_defines.h 311 * 312 */ 313 314 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 315 (3 << 13 | \ 316 (pipeline) << 11 | \ 317 (op) << 8 | \ 318 (sub_opa) << 5 | \ 319 (sub_opb)) 320 321 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 322 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 323 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 324 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 325 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 326 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 327 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 328 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 329 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 330 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 331 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 332 333 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 334 335 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 336 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 337 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 338 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 339 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 340 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 341 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 342 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 343 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 344 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 345 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 346 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 347 348 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 349 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 350 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 351 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 352 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 353 354 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 355 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 356 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 357 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 358 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 359 360 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 361 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 362 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 363 364 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 365 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 366 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 367 368 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 369 (3 << 13 | \ 370 (pipeline) << 11 | \ 371 (op) << 8 | \ 372 (sub_opa) << 5 | \ 373 (sub_opb)) 374 375 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 376 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 377 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 378 379 struct parser_exec_state; 380 381 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 382 383 #define GVT_CMD_HASH_BITS 7 384 385 /* which DWords need address fix */ 386 #define ADDR_FIX_1(x1) (1 << (x1)) 387 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 388 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 389 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 390 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 391 392 #define DWORD_FIELD(dword, end, start) \ 393 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 394 395 #define OP_LENGTH_BIAS 2 396 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 397 398 static int gvt_check_valid_cmd_length(int len, int valid_len) 399 { 400 if (valid_len != len) { 401 gvt_err("len is not valid: len=%u valid_len=%u\n", 402 len, valid_len); 403 return -EFAULT; 404 } 405 return 0; 406 } 407 408 struct cmd_info { 409 const char *name; 410 u32 opcode; 411 412 #define F_LEN_MASK 3U 413 #define F_LEN_CONST 1U 414 #define F_LEN_VAR 0U 415 /* value is const although LEN maybe variable */ 416 #define F_LEN_VAR_FIXED (1<<1) 417 418 /* 419 * command has its own ip advance logic 420 * e.g. MI_BATCH_START, MI_BATCH_END 421 */ 422 #define F_IP_ADVANCE_CUSTOM (1<<2) 423 u32 flag; 424 425 #define R_RCS BIT(RCS0) 426 #define R_VCS1 BIT(VCS0) 427 #define R_VCS2 BIT(VCS1) 428 #define R_VCS (R_VCS1 | R_VCS2) 429 #define R_BCS BIT(BCS0) 430 #define R_VECS BIT(VECS0) 431 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 432 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 433 intel_engine_mask_t rings; 434 435 /* devices that support this cmd: SNB/IVB/HSW/... */ 436 u16 devices; 437 438 /* which DWords are address that need fix up. 439 * bit 0 means a 32-bit non address operand in command 440 * bit 1 means address operand, which could be 32-bit 441 * or 64-bit depending on different architectures.( 442 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 443 * No matter the address length, each address only takes 444 * one bit in the bitmap. 445 */ 446 u16 addr_bitmap; 447 448 /* flag == F_LEN_CONST : command length 449 * flag == F_LEN_VAR : length bias bits 450 * Note: length is in DWord 451 */ 452 u32 len; 453 454 parser_cmd_handler handler; 455 456 /* valid length in DWord */ 457 u32 valid_len; 458 }; 459 460 struct cmd_entry { 461 struct hlist_node hlist; 462 const struct cmd_info *info; 463 }; 464 465 enum { 466 RING_BUFFER_INSTRUCTION, 467 BATCH_BUFFER_INSTRUCTION, 468 BATCH_BUFFER_2ND_LEVEL, 469 RING_BUFFER_CTX, 470 }; 471 472 enum { 473 GTT_BUFFER, 474 PPGTT_BUFFER 475 }; 476 477 struct parser_exec_state { 478 struct intel_vgpu *vgpu; 479 const struct intel_engine_cs *engine; 480 481 int buf_type; 482 483 /* batch buffer address type */ 484 int buf_addr_type; 485 486 /* graphics memory address of ring buffer start */ 487 unsigned long ring_start; 488 unsigned long ring_size; 489 unsigned long ring_head; 490 unsigned long ring_tail; 491 492 /* instruction graphics memory address */ 493 unsigned long ip_gma; 494 495 /* mapped va of the instr_gma */ 496 void *ip_va; 497 void *rb_va; 498 499 void *ret_bb_va; 500 /* next instruction when return from batch buffer to ring buffer */ 501 unsigned long ret_ip_gma_ring; 502 503 /* next instruction when return from 2nd batch buffer to batch buffer */ 504 unsigned long ret_ip_gma_bb; 505 506 /* batch buffer address type (GTT or PPGTT) 507 * used when ret from 2nd level batch buffer 508 */ 509 int saved_buf_addr_type; 510 bool is_ctx_wa; 511 bool is_init_ctx; 512 513 const struct cmd_info *info; 514 515 struct intel_vgpu_workload *workload; 516 }; 517 518 #define gmadr_dw_number(s) \ 519 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 520 521 static unsigned long bypass_scan_mask = 0; 522 523 /* ring ALL, type = 0 */ 524 static const struct sub_op_bits sub_op_mi[] = { 525 {31, 29}, 526 {28, 23}, 527 }; 528 529 static const struct decode_info decode_info_mi = { 530 "MI", 531 OP_LEN_MI, 532 ARRAY_SIZE(sub_op_mi), 533 sub_op_mi, 534 }; 535 536 /* ring RCS, command type 2 */ 537 static const struct sub_op_bits sub_op_2d[] = { 538 {31, 29}, 539 {28, 22}, 540 }; 541 542 static const struct decode_info decode_info_2d = { 543 "2D", 544 OP_LEN_2D, 545 ARRAY_SIZE(sub_op_2d), 546 sub_op_2d, 547 }; 548 549 /* ring RCS, command type 3 */ 550 static const struct sub_op_bits sub_op_3d_media[] = { 551 {31, 29}, 552 {28, 27}, 553 {26, 24}, 554 {23, 16}, 555 }; 556 557 static const struct decode_info decode_info_3d_media = { 558 "3D_Media", 559 OP_LEN_3D_MEDIA, 560 ARRAY_SIZE(sub_op_3d_media), 561 sub_op_3d_media, 562 }; 563 564 /* ring VCS, command type 3 */ 565 static const struct sub_op_bits sub_op_mfx_vc[] = { 566 {31, 29}, 567 {28, 27}, 568 {26, 24}, 569 {23, 21}, 570 {20, 16}, 571 }; 572 573 static const struct decode_info decode_info_mfx_vc = { 574 "MFX_VC", 575 OP_LEN_MFX_VC, 576 ARRAY_SIZE(sub_op_mfx_vc), 577 sub_op_mfx_vc, 578 }; 579 580 /* ring VECS, command type 3 */ 581 static const struct sub_op_bits sub_op_vebox[] = { 582 {31, 29}, 583 {28, 27}, 584 {26, 24}, 585 {23, 21}, 586 {20, 16}, 587 }; 588 589 static const struct decode_info decode_info_vebox = { 590 "VEBOX", 591 OP_LEN_VEBOX, 592 ARRAY_SIZE(sub_op_vebox), 593 sub_op_vebox, 594 }; 595 596 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 597 [RCS0] = { 598 &decode_info_mi, 599 NULL, 600 NULL, 601 &decode_info_3d_media, 602 NULL, 603 NULL, 604 NULL, 605 NULL, 606 }, 607 608 [VCS0] = { 609 &decode_info_mi, 610 NULL, 611 NULL, 612 &decode_info_mfx_vc, 613 NULL, 614 NULL, 615 NULL, 616 NULL, 617 }, 618 619 [BCS0] = { 620 &decode_info_mi, 621 NULL, 622 &decode_info_2d, 623 NULL, 624 NULL, 625 NULL, 626 NULL, 627 NULL, 628 }, 629 630 [VECS0] = { 631 &decode_info_mi, 632 NULL, 633 NULL, 634 &decode_info_vebox, 635 NULL, 636 NULL, 637 NULL, 638 NULL, 639 }, 640 641 [VCS1] = { 642 &decode_info_mi, 643 NULL, 644 NULL, 645 &decode_info_mfx_vc, 646 NULL, 647 NULL, 648 NULL, 649 NULL, 650 }, 651 }; 652 653 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 654 { 655 const struct decode_info *d_info; 656 657 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 658 if (d_info == NULL) 659 return INVALID_OP; 660 661 return cmd >> (32 - d_info->op_len); 662 } 663 664 static inline const struct cmd_info * 665 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 666 const struct intel_engine_cs *engine) 667 { 668 struct cmd_entry *e; 669 670 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 671 if (opcode == e->info->opcode && 672 e->info->rings & engine->mask) 673 return e->info; 674 } 675 return NULL; 676 } 677 678 static inline const struct cmd_info * 679 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 680 const struct intel_engine_cs *engine) 681 { 682 u32 opcode; 683 684 opcode = get_opcode(cmd, engine); 685 if (opcode == INVALID_OP) 686 return NULL; 687 688 return find_cmd_entry(gvt, opcode, engine); 689 } 690 691 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 692 { 693 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 694 } 695 696 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 697 { 698 const struct decode_info *d_info; 699 int i; 700 701 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 702 if (d_info == NULL) 703 return; 704 705 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 706 cmd >> (32 - d_info->op_len), d_info->name); 707 708 for (i = 0; i < d_info->nr_sub_op; i++) 709 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 710 d_info->sub_op[i].low)); 711 712 pr_err("\n"); 713 } 714 715 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 716 { 717 return s->ip_va + (index << 2); 718 } 719 720 static inline u32 cmd_val(struct parser_exec_state *s, int index) 721 { 722 return *cmd_ptr(s, index); 723 } 724 725 static inline bool is_init_ctx(struct parser_exec_state *s) 726 { 727 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 728 } 729 730 static void parser_exec_state_dump(struct parser_exec_state *s) 731 { 732 int cnt = 0; 733 int i; 734 735 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 736 " ring_head(%08lx) ring_tail(%08lx)\n", 737 s->vgpu->id, s->engine->name, 738 s->ring_start, s->ring_start + s->ring_size, 739 s->ring_head, s->ring_tail); 740 741 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 742 s->buf_type == RING_BUFFER_INSTRUCTION ? 743 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 744 "CTX_BUFFER" : "BATCH_BUFFER"), 745 s->buf_addr_type == GTT_BUFFER ? 746 "GTT" : "PPGTT", s->ip_gma); 747 748 if (s->ip_va == NULL) { 749 gvt_dbg_cmd(" ip_va(NULL)"); 750 return; 751 } 752 753 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 754 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 755 cmd_val(s, 2), cmd_val(s, 3)); 756 757 print_opcode(cmd_val(s, 0), s->engine); 758 759 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 760 761 while (cnt < 1024) { 762 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 763 for (i = 0; i < 8; i++) 764 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 765 gvt_dbg_cmd("\n"); 766 767 s->ip_va += 8 * sizeof(u32); 768 cnt += 8; 769 } 770 } 771 772 static inline void update_ip_va(struct parser_exec_state *s) 773 { 774 unsigned long len = 0; 775 776 if (WARN_ON(s->ring_head == s->ring_tail)) 777 return; 778 779 if (s->buf_type == RING_BUFFER_INSTRUCTION || 780 s->buf_type == RING_BUFFER_CTX) { 781 unsigned long ring_top = s->ring_start + s->ring_size; 782 783 if (s->ring_head > s->ring_tail) { 784 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 785 len = (s->ip_gma - s->ring_head); 786 else if (s->ip_gma >= s->ring_start && 787 s->ip_gma <= s->ring_tail) 788 len = (ring_top - s->ring_head) + 789 (s->ip_gma - s->ring_start); 790 } else 791 len = (s->ip_gma - s->ring_head); 792 793 s->ip_va = s->rb_va + len; 794 } else {/* shadow batch buffer */ 795 s->ip_va = s->ret_bb_va; 796 } 797 } 798 799 static inline int ip_gma_set(struct parser_exec_state *s, 800 unsigned long ip_gma) 801 { 802 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 803 804 s->ip_gma = ip_gma; 805 update_ip_va(s); 806 return 0; 807 } 808 809 static inline int ip_gma_advance(struct parser_exec_state *s, 810 unsigned int dw_len) 811 { 812 s->ip_gma += (dw_len << 2); 813 814 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 815 if (s->ip_gma >= s->ring_start + s->ring_size) 816 s->ip_gma -= s->ring_size; 817 update_ip_va(s); 818 } else { 819 s->ip_va += (dw_len << 2); 820 } 821 822 return 0; 823 } 824 825 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 826 { 827 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 828 return info->len; 829 else 830 return (cmd & ((1U << info->len) - 1)) + 2; 831 return 0; 832 } 833 834 static inline int cmd_length(struct parser_exec_state *s) 835 { 836 return get_cmd_length(s->info, cmd_val(s, 0)); 837 } 838 839 /* do not remove this, some platform may need clflush here */ 840 #define patch_value(s, addr, val) do { \ 841 *addr = val; \ 842 } while (0) 843 844 static inline bool is_mocs_mmio(unsigned int offset) 845 { 846 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 847 ((offset >= 0xb020) && (offset <= 0xb0a0)); 848 } 849 850 static int is_cmd_update_pdps(unsigned int offset, 851 struct parser_exec_state *s) 852 { 853 u32 base = s->workload->engine->mmio_base; 854 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 855 } 856 857 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 858 unsigned int offset, unsigned int index) 859 { 860 struct intel_vgpu *vgpu = s->vgpu; 861 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 862 struct intel_vgpu_mm *mm; 863 u64 pdps[GEN8_3LVL_PDPES]; 864 865 if (shadow_mm->ppgtt_mm.root_entry_type == 866 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 867 pdps[0] = (u64)cmd_val(s, 2) << 32; 868 pdps[0] |= cmd_val(s, 4); 869 870 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 871 if (!mm) { 872 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 873 return -EINVAL; 874 } 875 intel_vgpu_mm_get(mm); 876 list_add_tail(&mm->ppgtt_mm.link, 877 &s->workload->lri_shadow_mm); 878 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 879 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 880 } else { 881 /* Currently all guests use PML4 table and now can't 882 * have a guest with 3-level table but uses LRI for 883 * PPGTT update. So this is simply un-testable. */ 884 GEM_BUG_ON(1); 885 gvt_vgpu_err("invalid shared shadow vm type\n"); 886 return -EINVAL; 887 } 888 return 0; 889 } 890 891 static int cmd_reg_handler(struct parser_exec_state *s, 892 unsigned int offset, unsigned int index, char *cmd) 893 { 894 struct intel_vgpu *vgpu = s->vgpu; 895 struct intel_gvt *gvt = vgpu->gvt; 896 u32 ctx_sr_ctl; 897 u32 *vreg, vreg_old; 898 899 if (offset + 4 > gvt->device_info.mmio_size) { 900 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 901 cmd, offset); 902 return -EFAULT; 903 } 904 905 if (is_init_ctx(s)) { 906 struct intel_gvt_mmio_info *mmio_info; 907 908 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 909 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 910 if (mmio_info && mmio_info->write) 911 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 912 return 0; 913 } 914 915 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 916 gvt_vgpu_err("%s access to non-render register (%x)\n", 917 cmd, offset); 918 return -EBADRQC; 919 } 920 921 if (!strncmp(cmd, "srm", 3) || 922 !strncmp(cmd, "lrm", 3)) { 923 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 924 offset == 0x21f0 || 925 (IS_BROADWELL(gvt->gt->i915) && 926 offset == i915_mmio_reg_offset(INSTPM))) 927 return 0; 928 else { 929 gvt_vgpu_err("%s access to register (%x)\n", 930 cmd, offset); 931 return -EPERM; 932 } 933 } 934 935 if (!strncmp(cmd, "lrr-src", 7) || 936 !strncmp(cmd, "lrr-dst", 7)) { 937 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 938 return 0; 939 else { 940 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 941 return -EPERM; 942 } 943 } 944 945 if (!strncmp(cmd, "pipe_ctrl", 9)) { 946 /* TODO: add LRI POST logic here */ 947 return 0; 948 } 949 950 if (strncmp(cmd, "lri", 3)) 951 return -EPERM; 952 953 /* below are all lri handlers */ 954 vreg = &vgpu_vreg(s->vgpu, offset); 955 956 if (is_cmd_update_pdps(offset, s) && 957 cmd_pdp_mmio_update_handler(s, offset, index)) 958 return -EINVAL; 959 960 if (offset == i915_mmio_reg_offset(DERRMR) || 961 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 962 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 963 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 964 } 965 966 if (is_mocs_mmio(offset)) 967 *vreg = cmd_val(s, index + 1); 968 969 vreg_old = *vreg; 970 971 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 972 u32 cmdval_new, cmdval; 973 struct intel_gvt_mmio_info *mmio_info; 974 975 cmdval = cmd_val(s, index + 1); 976 977 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 978 if (!mmio_info) { 979 cmdval_new = cmdval; 980 } else { 981 u64 ro_mask = mmio_info->ro_mask; 982 int ret; 983 984 if (likely(!ro_mask)) 985 ret = mmio_info->write(s->vgpu, offset, 986 &cmdval, 4); 987 else { 988 gvt_vgpu_err("try to write RO reg %x\n", 989 offset); 990 ret = -EBADRQC; 991 } 992 if (ret) 993 return ret; 994 cmdval_new = *vreg; 995 } 996 if (cmdval_new != cmdval) 997 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 998 } 999 1000 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 1001 *vreg = vreg_old; 1002 1003 /* TODO 1004 * In order to let workload with inhibit context to generate 1005 * correct image data into memory, vregs values will be loaded to 1006 * hw via LRIs in the workload with inhibit context. But as 1007 * indirect context is loaded prior to LRIs in workload, we don't 1008 * want reg values specified in indirect context overwritten by 1009 * LRIs in workloads. So, when scanning an indirect context, we 1010 * update reg values in it into vregs, so LRIs in workload with 1011 * inhibit context will restore with correct values 1012 */ 1013 if (GRAPHICS_VER(s->engine->i915) == 9 && 1014 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1015 !strncmp(cmd, "lri", 3)) { 1016 intel_gvt_read_gpa(s->vgpu, 1017 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1018 /* check inhibit context */ 1019 if (ctx_sr_ctl & 1) { 1020 u32 data = cmd_val(s, index + 1); 1021 1022 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1023 intel_vgpu_mask_mmio_write(vgpu, 1024 offset, &data, 4); 1025 else 1026 vgpu_vreg(vgpu, offset) = data; 1027 } 1028 } 1029 1030 return 0; 1031 } 1032 1033 #define cmd_reg(s, i) \ 1034 (cmd_val(s, i) & GENMASK(22, 2)) 1035 1036 #define cmd_reg_inhibit(s, i) \ 1037 (cmd_val(s, i) & GENMASK(22, 18)) 1038 1039 #define cmd_gma(s, i) \ 1040 (cmd_val(s, i) & GENMASK(31, 2)) 1041 1042 #define cmd_gma_hi(s, i) \ 1043 (cmd_val(s, i) & GENMASK(15, 0)) 1044 1045 static int cmd_handler_lri(struct parser_exec_state *s) 1046 { 1047 int i, ret = 0; 1048 int cmd_len = cmd_length(s); 1049 1050 for (i = 1; i < cmd_len; i += 2) { 1051 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1052 if (s->engine->id == BCS0 && 1053 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1054 ret |= 0; 1055 else 1056 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1057 } 1058 if (ret) 1059 break; 1060 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1061 if (ret) 1062 break; 1063 } 1064 return ret; 1065 } 1066 1067 static int cmd_handler_lrr(struct parser_exec_state *s) 1068 { 1069 int i, ret = 0; 1070 int cmd_len = cmd_length(s); 1071 1072 for (i = 1; i < cmd_len; i += 2) { 1073 if (IS_BROADWELL(s->engine->i915)) 1074 ret |= ((cmd_reg_inhibit(s, i) || 1075 (cmd_reg_inhibit(s, i + 1)))) ? 1076 -EBADRQC : 0; 1077 if (ret) 1078 break; 1079 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1080 if (ret) 1081 break; 1082 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1083 if (ret) 1084 break; 1085 } 1086 return ret; 1087 } 1088 1089 static inline int cmd_address_audit(struct parser_exec_state *s, 1090 unsigned long guest_gma, int op_size, bool index_mode); 1091 1092 static int cmd_handler_lrm(struct parser_exec_state *s) 1093 { 1094 struct intel_gvt *gvt = s->vgpu->gvt; 1095 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1096 unsigned long gma; 1097 int i, ret = 0; 1098 int cmd_len = cmd_length(s); 1099 1100 for (i = 1; i < cmd_len;) { 1101 if (IS_BROADWELL(s->engine->i915)) 1102 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1103 if (ret) 1104 break; 1105 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1106 if (ret) 1107 break; 1108 if (cmd_val(s, 0) & (1 << 22)) { 1109 gma = cmd_gma(s, i + 1); 1110 if (gmadr_bytes == 8) 1111 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1112 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1113 if (ret) 1114 break; 1115 } 1116 i += gmadr_dw_number(s) + 1; 1117 } 1118 return ret; 1119 } 1120 1121 static int cmd_handler_srm(struct parser_exec_state *s) 1122 { 1123 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1124 unsigned long gma; 1125 int i, ret = 0; 1126 int cmd_len = cmd_length(s); 1127 1128 for (i = 1; i < cmd_len;) { 1129 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1130 if (ret) 1131 break; 1132 if (cmd_val(s, 0) & (1 << 22)) { 1133 gma = cmd_gma(s, i + 1); 1134 if (gmadr_bytes == 8) 1135 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1136 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1137 if (ret) 1138 break; 1139 } 1140 i += gmadr_dw_number(s) + 1; 1141 } 1142 return ret; 1143 } 1144 1145 struct cmd_interrupt_event { 1146 int pipe_control_notify; 1147 int mi_flush_dw; 1148 int mi_user_interrupt; 1149 }; 1150 1151 static const struct cmd_interrupt_event cmd_interrupt_events[] = { 1152 [RCS0] = { 1153 .pipe_control_notify = RCS_PIPE_CONTROL, 1154 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1155 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1156 }, 1157 [BCS0] = { 1158 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1159 .mi_flush_dw = BCS_MI_FLUSH_DW, 1160 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1161 }, 1162 [VCS0] = { 1163 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1164 .mi_flush_dw = VCS_MI_FLUSH_DW, 1165 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1166 }, 1167 [VCS1] = { 1168 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1169 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1170 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1171 }, 1172 [VECS0] = { 1173 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1174 .mi_flush_dw = VECS_MI_FLUSH_DW, 1175 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1176 }, 1177 }; 1178 1179 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1180 { 1181 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1182 unsigned long gma; 1183 bool index_mode = false; 1184 unsigned int post_sync; 1185 int ret = 0; 1186 u32 hws_pga, val; 1187 1188 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1189 1190 /* LRI post sync */ 1191 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1192 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1193 /* post sync */ 1194 else if (post_sync) { 1195 if (post_sync == 2) 1196 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1197 else if (post_sync == 3) 1198 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1199 else if (post_sync == 1) { 1200 /* check ggtt*/ 1201 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1202 gma = cmd_val(s, 2) & GENMASK(31, 3); 1203 if (gmadr_bytes == 8) 1204 gma |= (cmd_gma_hi(s, 3)) << 32; 1205 /* Store Data Index */ 1206 if (cmd_val(s, 1) & (1 << 21)) 1207 index_mode = true; 1208 ret |= cmd_address_audit(s, gma, sizeof(u64), 1209 index_mode); 1210 if (ret) 1211 return ret; 1212 if (index_mode) { 1213 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1214 gma = hws_pga + gma; 1215 patch_value(s, cmd_ptr(s, 2), gma); 1216 val = cmd_val(s, 1) & (~(1 << 21)); 1217 patch_value(s, cmd_ptr(s, 1), val); 1218 } 1219 } 1220 } 1221 } 1222 1223 if (ret) 1224 return ret; 1225 1226 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1227 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1228 s->workload->pending_events); 1229 return 0; 1230 } 1231 1232 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1233 { 1234 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1235 s->workload->pending_events); 1236 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1237 return 0; 1238 } 1239 1240 static int cmd_advance_default(struct parser_exec_state *s) 1241 { 1242 return ip_gma_advance(s, cmd_length(s)); 1243 } 1244 1245 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1246 { 1247 int ret; 1248 1249 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1250 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1251 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1252 s->buf_addr_type = s->saved_buf_addr_type; 1253 } else if (s->buf_type == RING_BUFFER_CTX) { 1254 ret = ip_gma_set(s, s->ring_tail); 1255 } else { 1256 s->buf_type = RING_BUFFER_INSTRUCTION; 1257 s->buf_addr_type = GTT_BUFFER; 1258 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1259 s->ret_ip_gma_ring -= s->ring_size; 1260 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1261 } 1262 return ret; 1263 } 1264 1265 struct mi_display_flip_command_info { 1266 int pipe; 1267 int plane; 1268 int event; 1269 i915_reg_t stride_reg; 1270 i915_reg_t ctrl_reg; 1271 i915_reg_t surf_reg; 1272 u64 stride_val; 1273 u64 tile_val; 1274 u64 surf_val; 1275 bool async_flip; 1276 }; 1277 1278 struct plane_code_mapping { 1279 int pipe; 1280 int plane; 1281 int event; 1282 }; 1283 1284 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1285 struct mi_display_flip_command_info *info) 1286 { 1287 struct drm_i915_private *dev_priv = s->engine->i915; 1288 struct plane_code_mapping gen8_plane_code[] = { 1289 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1290 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1291 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1292 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1293 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1294 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1295 }; 1296 u32 dword0, dword1, dword2; 1297 u32 v; 1298 1299 dword0 = cmd_val(s, 0); 1300 dword1 = cmd_val(s, 1); 1301 dword2 = cmd_val(s, 2); 1302 1303 v = (dword0 & GENMASK(21, 19)) >> 19; 1304 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1305 return -EBADRQC; 1306 1307 info->pipe = gen8_plane_code[v].pipe; 1308 info->plane = gen8_plane_code[v].plane; 1309 info->event = gen8_plane_code[v].event; 1310 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1311 info->tile_val = (dword1 & 0x1); 1312 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1313 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1314 1315 if (info->plane == PLANE_A) { 1316 info->ctrl_reg = DSPCNTR(info->pipe); 1317 info->stride_reg = DSPSTRIDE(info->pipe); 1318 info->surf_reg = DSPSURF(info->pipe); 1319 } else if (info->plane == PLANE_B) { 1320 info->ctrl_reg = SPRCTL(info->pipe); 1321 info->stride_reg = SPRSTRIDE(info->pipe); 1322 info->surf_reg = SPRSURF(info->pipe); 1323 } else { 1324 drm_WARN_ON(&dev_priv->drm, 1); 1325 return -EBADRQC; 1326 } 1327 return 0; 1328 } 1329 1330 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1331 struct mi_display_flip_command_info *info) 1332 { 1333 struct drm_i915_private *dev_priv = s->engine->i915; 1334 struct intel_vgpu *vgpu = s->vgpu; 1335 u32 dword0 = cmd_val(s, 0); 1336 u32 dword1 = cmd_val(s, 1); 1337 u32 dword2 = cmd_val(s, 2); 1338 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1339 1340 info->plane = PRIMARY_PLANE; 1341 1342 switch (plane) { 1343 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1344 info->pipe = PIPE_A; 1345 info->event = PRIMARY_A_FLIP_DONE; 1346 break; 1347 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1348 info->pipe = PIPE_B; 1349 info->event = PRIMARY_B_FLIP_DONE; 1350 break; 1351 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1352 info->pipe = PIPE_C; 1353 info->event = PRIMARY_C_FLIP_DONE; 1354 break; 1355 1356 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1357 info->pipe = PIPE_A; 1358 info->event = SPRITE_A_FLIP_DONE; 1359 info->plane = SPRITE_PLANE; 1360 break; 1361 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1362 info->pipe = PIPE_B; 1363 info->event = SPRITE_B_FLIP_DONE; 1364 info->plane = SPRITE_PLANE; 1365 break; 1366 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1367 info->pipe = PIPE_C; 1368 info->event = SPRITE_C_FLIP_DONE; 1369 info->plane = SPRITE_PLANE; 1370 break; 1371 1372 default: 1373 gvt_vgpu_err("unknown plane code %d\n", plane); 1374 return -EBADRQC; 1375 } 1376 1377 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1378 info->tile_val = (dword1 & GENMASK(2, 0)); 1379 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1380 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1381 1382 info->ctrl_reg = DSPCNTR(info->pipe); 1383 info->stride_reg = DSPSTRIDE(info->pipe); 1384 info->surf_reg = DSPSURF(info->pipe); 1385 1386 return 0; 1387 } 1388 1389 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1390 struct mi_display_flip_command_info *info) 1391 { 1392 u32 stride, tile; 1393 1394 if (!info->async_flip) 1395 return 0; 1396 1397 if (GRAPHICS_VER(s->engine->i915) >= 9) { 1398 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1399 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1400 GENMASK(12, 10)) >> 10; 1401 } else { 1402 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1403 GENMASK(15, 6)) >> 6; 1404 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1405 } 1406 1407 if (stride != info->stride_val) 1408 gvt_dbg_cmd("cannot change stride during async flip\n"); 1409 1410 if (tile != info->tile_val) 1411 gvt_dbg_cmd("cannot change tile during async flip\n"); 1412 1413 return 0; 1414 } 1415 1416 static int gen8_update_plane_mmio_from_mi_display_flip( 1417 struct parser_exec_state *s, 1418 struct mi_display_flip_command_info *info) 1419 { 1420 struct drm_i915_private *dev_priv = s->engine->i915; 1421 struct intel_vgpu *vgpu = s->vgpu; 1422 1423 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1424 info->surf_val << 12); 1425 if (GRAPHICS_VER(dev_priv) >= 9) { 1426 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1427 info->stride_val); 1428 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1429 info->tile_val << 10); 1430 } else { 1431 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1432 info->stride_val << 6); 1433 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1434 info->tile_val << 10); 1435 } 1436 1437 if (info->plane == PLANE_PRIMARY) 1438 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1439 1440 if (info->async_flip) 1441 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1442 else 1443 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1444 1445 return 0; 1446 } 1447 1448 static int decode_mi_display_flip(struct parser_exec_state *s, 1449 struct mi_display_flip_command_info *info) 1450 { 1451 if (IS_BROADWELL(s->engine->i915)) 1452 return gen8_decode_mi_display_flip(s, info); 1453 if (GRAPHICS_VER(s->engine->i915) >= 9) 1454 return skl_decode_mi_display_flip(s, info); 1455 1456 return -ENODEV; 1457 } 1458 1459 static int check_mi_display_flip(struct parser_exec_state *s, 1460 struct mi_display_flip_command_info *info) 1461 { 1462 return gen8_check_mi_display_flip(s, info); 1463 } 1464 1465 static int update_plane_mmio_from_mi_display_flip( 1466 struct parser_exec_state *s, 1467 struct mi_display_flip_command_info *info) 1468 { 1469 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1470 } 1471 1472 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1473 { 1474 struct mi_display_flip_command_info info; 1475 struct intel_vgpu *vgpu = s->vgpu; 1476 int ret; 1477 int i; 1478 int len = cmd_length(s); 1479 u32 valid_len = CMD_LEN(1); 1480 1481 /* Flip Type == Stereo 3D Flip */ 1482 if (DWORD_FIELD(2, 1, 0) == 2) 1483 valid_len++; 1484 ret = gvt_check_valid_cmd_length(cmd_length(s), 1485 valid_len); 1486 if (ret) 1487 return ret; 1488 1489 ret = decode_mi_display_flip(s, &info); 1490 if (ret) { 1491 gvt_vgpu_err("fail to decode MI display flip command\n"); 1492 return ret; 1493 } 1494 1495 ret = check_mi_display_flip(s, &info); 1496 if (ret) { 1497 gvt_vgpu_err("invalid MI display flip command\n"); 1498 return ret; 1499 } 1500 1501 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1502 if (ret) { 1503 gvt_vgpu_err("fail to update plane mmio\n"); 1504 return ret; 1505 } 1506 1507 for (i = 0; i < len; i++) 1508 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1509 return 0; 1510 } 1511 1512 static bool is_wait_for_flip_pending(u32 cmd) 1513 { 1514 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1515 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1516 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1517 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1518 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1519 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1520 } 1521 1522 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1523 { 1524 u32 cmd = cmd_val(s, 0); 1525 1526 if (!is_wait_for_flip_pending(cmd)) 1527 return 0; 1528 1529 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1530 return 0; 1531 } 1532 1533 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1534 { 1535 unsigned long addr; 1536 unsigned long gma_high, gma_low; 1537 struct intel_vgpu *vgpu = s->vgpu; 1538 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1539 1540 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1541 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1542 return INTEL_GVT_INVALID_ADDR; 1543 } 1544 1545 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1546 if (gmadr_bytes == 4) { 1547 addr = gma_low; 1548 } else { 1549 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1550 addr = (((unsigned long)gma_high) << 32) | gma_low; 1551 } 1552 return addr; 1553 } 1554 1555 static inline int cmd_address_audit(struct parser_exec_state *s, 1556 unsigned long guest_gma, int op_size, bool index_mode) 1557 { 1558 struct intel_vgpu *vgpu = s->vgpu; 1559 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1560 int i; 1561 int ret; 1562 1563 if (op_size > max_surface_size) { 1564 gvt_vgpu_err("command address audit fail name %s\n", 1565 s->info->name); 1566 return -EFAULT; 1567 } 1568 1569 if (index_mode) { 1570 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1571 ret = -EFAULT; 1572 goto err; 1573 } 1574 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1575 ret = -EFAULT; 1576 goto err; 1577 } 1578 1579 return 0; 1580 1581 err: 1582 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1583 s->info->name, guest_gma, op_size); 1584 1585 pr_err("cmd dump: "); 1586 for (i = 0; i < cmd_length(s); i++) { 1587 if (!(i % 4)) 1588 pr_err("\n%08x ", cmd_val(s, i)); 1589 else 1590 pr_err("%08x ", cmd_val(s, i)); 1591 } 1592 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1593 vgpu->id, 1594 vgpu_aperture_gmadr_base(vgpu), 1595 vgpu_aperture_gmadr_end(vgpu), 1596 vgpu_hidden_gmadr_base(vgpu), 1597 vgpu_hidden_gmadr_end(vgpu)); 1598 return ret; 1599 } 1600 1601 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1602 { 1603 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1604 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1605 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1606 unsigned long gma, gma_low, gma_high; 1607 u32 valid_len = CMD_LEN(2); 1608 int ret = 0; 1609 1610 /* check ppggt */ 1611 if (!(cmd_val(s, 0) & (1 << 22))) 1612 return 0; 1613 1614 /* check if QWORD */ 1615 if (DWORD_FIELD(0, 21, 21)) 1616 valid_len++; 1617 ret = gvt_check_valid_cmd_length(cmd_length(s), 1618 valid_len); 1619 if (ret) 1620 return ret; 1621 1622 gma = cmd_val(s, 2) & GENMASK(31, 2); 1623 1624 if (gmadr_bytes == 8) { 1625 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1626 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1627 gma = (gma_high << 32) | gma_low; 1628 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1629 } 1630 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1631 return ret; 1632 } 1633 1634 static inline int unexpected_cmd(struct parser_exec_state *s) 1635 { 1636 struct intel_vgpu *vgpu = s->vgpu; 1637 1638 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1639 1640 return -EBADRQC; 1641 } 1642 1643 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1644 { 1645 return unexpected_cmd(s); 1646 } 1647 1648 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1649 { 1650 return unexpected_cmd(s); 1651 } 1652 1653 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1654 { 1655 return unexpected_cmd(s); 1656 } 1657 1658 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1659 { 1660 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1661 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1662 sizeof(u32); 1663 unsigned long gma, gma_high; 1664 u32 valid_len = CMD_LEN(1); 1665 int ret = 0; 1666 1667 if (!(cmd_val(s, 0) & (1 << 22))) 1668 return ret; 1669 1670 /* check inline data */ 1671 if (cmd_val(s, 0) & BIT(18)) 1672 valid_len = CMD_LEN(9); 1673 ret = gvt_check_valid_cmd_length(cmd_length(s), 1674 valid_len); 1675 if (ret) 1676 return ret; 1677 1678 gma = cmd_val(s, 1) & GENMASK(31, 2); 1679 if (gmadr_bytes == 8) { 1680 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1681 gma = (gma_high << 32) | gma; 1682 } 1683 ret = cmd_address_audit(s, gma, op_size, false); 1684 return ret; 1685 } 1686 1687 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1688 { 1689 return unexpected_cmd(s); 1690 } 1691 1692 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1693 { 1694 return unexpected_cmd(s); 1695 } 1696 1697 static int cmd_handler_mi_conditional_batch_buffer_end( 1698 struct parser_exec_state *s) 1699 { 1700 return unexpected_cmd(s); 1701 } 1702 1703 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1704 { 1705 return unexpected_cmd(s); 1706 } 1707 1708 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1709 { 1710 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1711 unsigned long gma; 1712 bool index_mode = false; 1713 int ret = 0; 1714 u32 hws_pga, val; 1715 u32 valid_len = CMD_LEN(2); 1716 1717 ret = gvt_check_valid_cmd_length(cmd_length(s), 1718 valid_len); 1719 if (ret) { 1720 /* Check again for Qword */ 1721 ret = gvt_check_valid_cmd_length(cmd_length(s), 1722 ++valid_len); 1723 return ret; 1724 } 1725 1726 /* Check post-sync and ppgtt bit */ 1727 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1728 gma = cmd_val(s, 1) & GENMASK(31, 3); 1729 if (gmadr_bytes == 8) 1730 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1731 /* Store Data Index */ 1732 if (cmd_val(s, 0) & (1 << 21)) 1733 index_mode = true; 1734 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1735 if (ret) 1736 return ret; 1737 if (index_mode) { 1738 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1739 gma = hws_pga + gma; 1740 patch_value(s, cmd_ptr(s, 1), gma); 1741 val = cmd_val(s, 0) & (~(1 << 21)); 1742 patch_value(s, cmd_ptr(s, 0), val); 1743 } 1744 } 1745 /* Check notify bit */ 1746 if ((cmd_val(s, 0) & (1 << 8))) 1747 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1748 s->workload->pending_events); 1749 return ret; 1750 } 1751 1752 static void addr_type_update_snb(struct parser_exec_state *s) 1753 { 1754 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1755 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1756 s->buf_addr_type = PPGTT_BUFFER; 1757 } 1758 } 1759 1760 1761 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1762 unsigned long gma, unsigned long end_gma, void *va) 1763 { 1764 unsigned long copy_len, offset; 1765 unsigned long len = 0; 1766 unsigned long gpa; 1767 1768 while (gma != end_gma) { 1769 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1770 if (gpa == INTEL_GVT_INVALID_ADDR) { 1771 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1772 return -EFAULT; 1773 } 1774 1775 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1776 1777 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1778 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1779 1780 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); 1781 1782 len += copy_len; 1783 gma += copy_len; 1784 } 1785 return len; 1786 } 1787 1788 1789 /* 1790 * Check whether a batch buffer needs to be scanned. Currently 1791 * the only criteria is based on privilege. 1792 */ 1793 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1794 { 1795 /* Decide privilege based on address space */ 1796 if (cmd_val(s, 0) & BIT(8) && 1797 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1798 return 0; 1799 1800 return 1; 1801 } 1802 1803 static const char *repr_addr_type(unsigned int type) 1804 { 1805 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1806 } 1807 1808 static int find_bb_size(struct parser_exec_state *s, 1809 unsigned long *bb_size, 1810 unsigned long *bb_end_cmd_offset) 1811 { 1812 unsigned long gma = 0; 1813 const struct cmd_info *info; 1814 u32 cmd_len = 0; 1815 bool bb_end = false; 1816 struct intel_vgpu *vgpu = s->vgpu; 1817 u32 cmd; 1818 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1819 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1820 1821 *bb_size = 0; 1822 *bb_end_cmd_offset = 0; 1823 1824 /* get the start gm address of the batch buffer */ 1825 gma = get_gma_bb_from_cmd(s, 1); 1826 if (gma == INTEL_GVT_INVALID_ADDR) 1827 return -EFAULT; 1828 1829 cmd = cmd_val(s, 0); 1830 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1831 if (info == NULL) { 1832 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1833 cmd, get_opcode(cmd, s->engine), 1834 repr_addr_type(s->buf_addr_type), 1835 s->engine->name, s->workload); 1836 return -EBADRQC; 1837 } 1838 do { 1839 if (copy_gma_to_hva(s->vgpu, mm, 1840 gma, gma + 4, &cmd) < 0) 1841 return -EFAULT; 1842 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1843 if (info == NULL) { 1844 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1845 cmd, get_opcode(cmd, s->engine), 1846 repr_addr_type(s->buf_addr_type), 1847 s->engine->name, s->workload); 1848 return -EBADRQC; 1849 } 1850 1851 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1852 bb_end = true; 1853 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1854 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1855 /* chained batch buffer */ 1856 bb_end = true; 1857 } 1858 1859 if (bb_end) 1860 *bb_end_cmd_offset = *bb_size; 1861 1862 cmd_len = get_cmd_length(info, cmd) << 2; 1863 *bb_size += cmd_len; 1864 gma += cmd_len; 1865 } while (!bb_end); 1866 1867 return 0; 1868 } 1869 1870 static int audit_bb_end(struct parser_exec_state *s, void *va) 1871 { 1872 struct intel_vgpu *vgpu = s->vgpu; 1873 u32 cmd = *(u32 *)va; 1874 const struct cmd_info *info; 1875 1876 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1877 if (info == NULL) { 1878 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1879 cmd, get_opcode(cmd, s->engine), 1880 repr_addr_type(s->buf_addr_type), 1881 s->engine->name, s->workload); 1882 return -EBADRQC; 1883 } 1884 1885 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1886 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1887 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1888 return 0; 1889 1890 return -EBADRQC; 1891 } 1892 1893 static int perform_bb_shadow(struct parser_exec_state *s) 1894 { 1895 struct intel_vgpu *vgpu = s->vgpu; 1896 struct intel_vgpu_shadow_bb *bb; 1897 unsigned long gma = 0; 1898 unsigned long bb_size; 1899 unsigned long bb_end_cmd_offset; 1900 int ret = 0; 1901 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1902 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1903 unsigned long start_offset = 0; 1904 1905 /* get the start gm address of the batch buffer */ 1906 gma = get_gma_bb_from_cmd(s, 1); 1907 if (gma == INTEL_GVT_INVALID_ADDR) 1908 return -EFAULT; 1909 1910 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1911 if (ret) 1912 return ret; 1913 1914 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1915 if (!bb) 1916 return -ENOMEM; 1917 1918 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1919 1920 /* the start_offset stores the batch buffer's start gma's 1921 * offset relative to page boundary. so for non-privileged batch 1922 * buffer, the shadowed gem object holds exactly the same page 1923 * layout as original gem object. This is for the convience of 1924 * replacing the whole non-privilged batch buffer page to this 1925 * shadowed one in PPGTT at the same gma address. (this replacing 1926 * action is not implemented yet now, but may be necessary in 1927 * future). 1928 * for prileged batch buffer, we just change start gma address to 1929 * that of shadowed page. 1930 */ 1931 if (bb->ppgtt) 1932 start_offset = gma & ~I915_GTT_PAGE_MASK; 1933 1934 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1935 round_up(bb_size + start_offset, 1936 PAGE_SIZE)); 1937 if (IS_ERR(bb->obj)) { 1938 ret = PTR_ERR(bb->obj); 1939 goto err_free_bb; 1940 } 1941 1942 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1943 if (IS_ERR(bb->va)) { 1944 ret = PTR_ERR(bb->va); 1945 goto err_free_obj; 1946 } 1947 1948 ret = copy_gma_to_hva(s->vgpu, mm, 1949 gma, gma + bb_size, 1950 bb->va + start_offset); 1951 if (ret < 0) { 1952 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1953 ret = -EFAULT; 1954 goto err_unmap; 1955 } 1956 1957 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1958 if (ret) 1959 goto err_unmap; 1960 1961 i915_gem_object_unlock(bb->obj); 1962 INIT_LIST_HEAD(&bb->list); 1963 list_add(&bb->list, &s->workload->shadow_bb); 1964 1965 bb->bb_start_cmd_va = s->ip_va; 1966 1967 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1968 bb->bb_offset = s->ip_va - s->rb_va; 1969 else 1970 bb->bb_offset = 0; 1971 1972 /* 1973 * ip_va saves the virtual address of the shadow batch buffer, while 1974 * ip_gma saves the graphics address of the original batch buffer. 1975 * As the shadow batch buffer is just a copy from the originial one, 1976 * it should be right to use shadow batch buffer'va and original batch 1977 * buffer's gma in pair. After all, we don't want to pin the shadow 1978 * buffer here (too early). 1979 */ 1980 s->ip_va = bb->va + start_offset; 1981 s->ip_gma = gma; 1982 return 0; 1983 err_unmap: 1984 i915_gem_object_unpin_map(bb->obj); 1985 err_free_obj: 1986 i915_gem_object_put(bb->obj); 1987 err_free_bb: 1988 kfree(bb); 1989 return ret; 1990 } 1991 1992 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1993 { 1994 bool second_level; 1995 int ret = 0; 1996 struct intel_vgpu *vgpu = s->vgpu; 1997 1998 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1999 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 2000 return -EFAULT; 2001 } 2002 2003 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2004 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2005 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2006 return -EFAULT; 2007 } 2008 2009 s->saved_buf_addr_type = s->buf_addr_type; 2010 addr_type_update_snb(s); 2011 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2012 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2013 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2014 } else if (second_level) { 2015 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2016 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2017 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2018 } 2019 2020 if (batch_buffer_needs_scan(s)) { 2021 ret = perform_bb_shadow(s); 2022 if (ret < 0) 2023 gvt_vgpu_err("invalid shadow batch buffer\n"); 2024 } else { 2025 /* emulate a batch buffer end to do return right */ 2026 ret = cmd_handler_mi_batch_buffer_end(s); 2027 if (ret < 0) 2028 return ret; 2029 } 2030 return ret; 2031 } 2032 2033 static int mi_noop_index; 2034 2035 static const struct cmd_info cmd_info[] = { 2036 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2037 2038 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2039 0, 1, NULL}, 2040 2041 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2042 0, 1, cmd_handler_mi_user_interrupt}, 2043 2044 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2045 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2046 2047 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2048 2049 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2050 NULL}, 2051 2052 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2053 NULL}, 2054 2055 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2056 NULL}, 2057 2058 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2059 NULL}, 2060 2061 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2062 D_ALL, 0, 1, NULL}, 2063 2064 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2065 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2066 cmd_handler_mi_batch_buffer_end}, 2067 2068 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2069 0, 1, NULL}, 2070 2071 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2072 NULL}, 2073 2074 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2075 D_ALL, 0, 1, NULL}, 2076 2077 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2078 NULL}, 2079 2080 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2081 NULL}, 2082 2083 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2084 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2085 2086 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2087 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2088 2089 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2090 2091 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2092 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2093 2094 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2095 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2096 NULL, CMD_LEN(0)}, 2097 2098 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2099 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2100 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2101 2102 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2103 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2104 2105 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2106 0, 8, cmd_handler_mi_store_data_index}, 2107 2108 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2109 D_ALL, 0, 8, cmd_handler_lri}, 2110 2111 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2112 cmd_handler_mi_update_gtt}, 2113 2114 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2115 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2116 cmd_handler_srm, CMD_LEN(2)}, 2117 2118 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2119 cmd_handler_mi_flush_dw}, 2120 2121 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2122 10, cmd_handler_mi_clflush}, 2123 2124 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2125 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2126 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2127 2128 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2129 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2130 cmd_handler_lrm, CMD_LEN(2)}, 2131 2132 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2133 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2134 cmd_handler_lrr, CMD_LEN(1)}, 2135 2136 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2137 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2138 8, NULL, CMD_LEN(2)}, 2139 2140 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2141 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2142 2143 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2144 ADDR_FIX_1(2), 8, NULL}, 2145 2146 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2147 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2148 2149 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2150 8, cmd_handler_mi_op_2f}, 2151 2152 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2153 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2154 cmd_handler_mi_batch_buffer_start}, 2155 2156 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2157 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2158 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2159 2160 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2161 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2162 2163 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2164 ADDR_FIX_2(4, 7), 8, NULL}, 2165 2166 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2167 0, 8, NULL}, 2168 2169 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2170 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2171 2172 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2173 2174 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2175 0, 8, NULL}, 2176 2177 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2178 ADDR_FIX_1(3), 8, NULL}, 2179 2180 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2181 D_ALL, 0, 8, NULL}, 2182 2183 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2184 ADDR_FIX_1(4), 8, NULL}, 2185 2186 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2187 ADDR_FIX_2(4, 5), 8, NULL}, 2188 2189 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2190 ADDR_FIX_1(4), 8, NULL}, 2191 2192 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2193 ADDR_FIX_2(4, 7), 8, NULL}, 2194 2195 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2196 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2197 2198 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2199 2200 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2201 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2202 2203 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2204 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2205 2206 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2207 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2208 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2209 2210 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2211 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2212 2213 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2214 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2215 2216 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2217 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2218 2219 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2220 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2221 2222 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2223 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2224 2225 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2226 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2227 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2228 2229 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2230 ADDR_FIX_2(4, 5), 8, NULL}, 2231 2232 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2233 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2234 2235 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2236 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2240 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_BLEND_STATE_POINTERS", 2244 OP_3DSTATE_BLEND_STATE_POINTERS, 2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2246 2247 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2248 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2250 2251 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2252 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2254 2255 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2256 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2257 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2258 2259 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2260 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2261 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2262 2263 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2264 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2266 2267 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2268 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2269 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2270 2271 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2272 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2274 2275 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2276 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2278 2279 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2280 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2281 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2282 2283 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2284 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2285 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2286 2287 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2288 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2289 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2290 2291 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2292 0, 8, NULL}, 2293 2294 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2295 0, 8, NULL}, 2296 2297 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2298 0, 8, NULL}, 2299 2300 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2301 0, 8, NULL}, 2302 2303 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2304 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2305 2306 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2307 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2308 2309 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2310 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2311 2312 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2313 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2314 2315 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2316 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2317 2318 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2319 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2320 2321 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2322 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2323 2324 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2325 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2326 2327 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2328 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2329 2330 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2331 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2332 2333 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2334 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2335 2336 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2337 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2338 2339 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2340 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2341 2342 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2343 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2344 2345 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2346 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2347 2348 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2349 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2350 2351 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2352 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2353 2354 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2355 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2356 2357 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2358 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2359 2360 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2361 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2362 2363 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2364 D_BDW_PLUS, 0, 8, NULL}, 2365 2366 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2367 NULL}, 2368 2369 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2370 D_BDW_PLUS, 0, 8, NULL}, 2371 2372 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2373 D_BDW_PLUS, 0, 8, NULL}, 2374 2375 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2376 8, NULL}, 2377 2378 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2379 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2380 2381 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2382 8, NULL}, 2383 2384 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2385 NULL}, 2386 2387 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2388 NULL}, 2389 2390 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2391 NULL}, 2392 2393 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2394 D_BDW_PLUS, 0, 8, NULL}, 2395 2396 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2397 R_RCS, D_ALL, 0, 8, NULL}, 2398 2399 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2400 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2401 2402 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2403 R_RCS, D_ALL, 0, 1, NULL}, 2404 2405 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2406 2407 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2408 R_RCS, D_ALL, 0, 8, NULL}, 2409 2410 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2411 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2412 2413 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2414 2415 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2416 2417 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2418 2419 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2420 D_BDW_PLUS, 0, 8, NULL}, 2421 2422 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2423 D_BDW_PLUS, 0, 8, NULL}, 2424 2425 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2426 D_ALL, 0, 8, NULL}, 2427 2428 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2429 D_BDW_PLUS, 0, 8, NULL}, 2430 2431 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2432 D_BDW_PLUS, 0, 8, NULL}, 2433 2434 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2435 2436 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2439 2440 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2441 D_ALL, 0, 8, NULL}, 2442 2443 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2444 2445 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2446 2447 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2448 R_RCS, D_ALL, 0, 8, NULL}, 2449 2450 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2451 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2452 2453 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2454 0, 8, NULL}, 2455 2456 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2457 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2458 2459 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2460 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2461 2462 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2463 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2464 2465 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2466 D_ALL, 0, 8, NULL}, 2467 2468 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2469 D_ALL, 0, 8, NULL}, 2470 2471 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2472 D_ALL, 0, 8, NULL}, 2473 2474 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2475 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2476 2477 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2478 D_BDW_PLUS, 0, 8, NULL}, 2479 2480 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2481 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2482 2483 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2484 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2485 2486 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2487 R_RCS, D_ALL, 0, 8, NULL}, 2488 2489 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2490 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2491 2492 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2493 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2494 2495 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2496 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2497 2498 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2499 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2500 2501 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2502 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2503 2504 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2505 R_RCS, D_ALL, 0, 8, NULL}, 2506 2507 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2508 D_ALL, 0, 9, NULL}, 2509 2510 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2511 ADDR_FIX_2(2, 4), 8, NULL}, 2512 2513 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2514 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2515 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2516 2517 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2518 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2519 2520 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2521 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2522 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2523 2524 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2525 D_BDW_PLUS, 0, 8, NULL}, 2526 2527 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2528 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2529 2530 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2531 2532 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2533 1, NULL}, 2534 2535 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2536 ADDR_FIX_1(1), 8, NULL}, 2537 2538 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2539 2540 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2541 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2542 2543 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2544 ADDR_FIX_1(1), 8, NULL}, 2545 2546 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2547 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2548 2549 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2550 2551 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2552 2553 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2554 0, 8, NULL}, 2555 2556 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2557 D_SKL_PLUS, 0, 8, NULL}, 2558 2559 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2560 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2561 2562 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2563 0, 16, NULL}, 2564 2565 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2566 0, 16, NULL}, 2567 2568 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2569 0, 16, NULL}, 2570 2571 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2572 2573 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2574 0, 16, NULL}, 2575 2576 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2577 0, 16, NULL}, 2578 2579 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2580 0, 16, NULL}, 2581 2582 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2583 0, 8, NULL}, 2584 2585 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2586 NULL}, 2587 2588 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2589 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2590 2591 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2592 R_VCS, D_ALL, 0, 12, NULL}, 2593 2594 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2595 R_VCS, D_ALL, 0, 12, NULL}, 2596 2597 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2598 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2599 2600 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2601 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2602 2603 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2604 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2605 2606 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2607 2608 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2609 R_VCS, D_ALL, 0, 12, NULL}, 2610 2611 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2612 R_VCS, D_ALL, 0, 12, NULL}, 2613 2614 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2615 R_VCS, D_ALL, 0, 12, NULL}, 2616 2617 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2618 R_VCS, D_ALL, 0, 12, NULL}, 2619 2620 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2621 R_VCS, D_ALL, 0, 12, NULL}, 2622 2623 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2624 R_VCS, D_ALL, 0, 12, NULL}, 2625 2626 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2627 R_VCS, D_ALL, 0, 6, NULL}, 2628 2629 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2630 R_VCS, D_ALL, 0, 12, NULL}, 2631 2632 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2633 R_VCS, D_ALL, 0, 12, NULL}, 2634 2635 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2636 R_VCS, D_ALL, 0, 12, NULL}, 2637 2638 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2639 R_VCS, D_ALL, 0, 12, NULL}, 2640 2641 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2642 R_VCS, D_ALL, 0, 12, NULL}, 2643 2644 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2645 R_VCS, D_ALL, 0, 12, NULL}, 2646 2647 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2648 R_VCS, D_ALL, 0, 12, NULL}, 2649 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2650 R_VCS, D_ALL, 0, 12, NULL}, 2651 2652 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2653 R_VCS, D_ALL, 0, 12, NULL}, 2654 2655 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2656 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2657 2658 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2659 R_VCS, D_ALL, 0, 12, NULL}, 2660 2661 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2662 R_VCS, D_ALL, 0, 12, NULL}, 2663 2664 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2665 R_VCS, D_ALL, 0, 12, NULL}, 2666 2667 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2668 R_VCS, D_ALL, 0, 12, NULL}, 2669 2670 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2671 R_VCS, D_ALL, 0, 12, NULL}, 2672 2673 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2674 R_VCS, D_ALL, 0, 12, NULL}, 2675 2676 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2677 R_VCS, D_ALL, 0, 12, NULL}, 2678 2679 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2680 R_VCS, D_ALL, 0, 12, NULL}, 2681 2682 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2683 R_VCS, D_ALL, 0, 12, NULL}, 2684 2685 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2686 R_VCS, D_ALL, 0, 12, NULL}, 2687 2688 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2689 R_VCS, D_ALL, 0, 12, NULL}, 2690 2691 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2692 0, 16, NULL}, 2693 2694 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2695 2696 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2697 2698 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2699 R_VCS, D_ALL, 0, 12, NULL}, 2700 2701 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2702 R_VCS, D_ALL, 0, 12, NULL}, 2703 2704 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2705 R_VCS, D_ALL, 0, 12, NULL}, 2706 2707 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2708 2709 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2710 0, 12, NULL}, 2711 2712 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2713 0, 12, NULL}, 2714 }; 2715 2716 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2717 { 2718 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2719 } 2720 2721 /* call the cmd handler, and advance ip */ 2722 static int cmd_parser_exec(struct parser_exec_state *s) 2723 { 2724 struct intel_vgpu *vgpu = s->vgpu; 2725 const struct cmd_info *info; 2726 u32 cmd; 2727 int ret = 0; 2728 2729 cmd = cmd_val(s, 0); 2730 2731 /* fastpath for MI_NOOP */ 2732 if (cmd == MI_NOOP) 2733 info = &cmd_info[mi_noop_index]; 2734 else 2735 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2736 2737 if (info == NULL) { 2738 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2739 cmd, get_opcode(cmd, s->engine), 2740 repr_addr_type(s->buf_addr_type), 2741 s->engine->name, s->workload); 2742 return -EBADRQC; 2743 } 2744 2745 s->info = info; 2746 2747 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2748 cmd_length(s), s->buf_type, s->buf_addr_type, 2749 s->workload, info->name); 2750 2751 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2752 ret = gvt_check_valid_cmd_length(cmd_length(s), 2753 info->valid_len); 2754 if (ret) 2755 return ret; 2756 } 2757 2758 if (info->handler) { 2759 ret = info->handler(s); 2760 if (ret < 0) { 2761 gvt_vgpu_err("%s handler error\n", info->name); 2762 return ret; 2763 } 2764 } 2765 2766 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2767 ret = cmd_advance_default(s); 2768 if (ret) { 2769 gvt_vgpu_err("%s IP advance error\n", info->name); 2770 return ret; 2771 } 2772 } 2773 return 0; 2774 } 2775 2776 static inline bool gma_out_of_range(unsigned long gma, 2777 unsigned long gma_head, unsigned int gma_tail) 2778 { 2779 if (gma_tail >= gma_head) 2780 return (gma < gma_head) || (gma > gma_tail); 2781 else 2782 return (gma > gma_tail) && (gma < gma_head); 2783 } 2784 2785 /* Keep the consistent return type, e.g EBADRQC for unknown 2786 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2787 * works as the input of VM healthy status. 2788 */ 2789 static int command_scan(struct parser_exec_state *s, 2790 unsigned long rb_head, unsigned long rb_tail, 2791 unsigned long rb_start, unsigned long rb_len) 2792 { 2793 2794 unsigned long gma_head, gma_tail, gma_bottom; 2795 int ret = 0; 2796 struct intel_vgpu *vgpu = s->vgpu; 2797 2798 gma_head = rb_start + rb_head; 2799 gma_tail = rb_start + rb_tail; 2800 gma_bottom = rb_start + rb_len; 2801 2802 while (s->ip_gma != gma_tail) { 2803 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2804 s->buf_type == RING_BUFFER_CTX) { 2805 if (!(s->ip_gma >= rb_start) || 2806 !(s->ip_gma < gma_bottom)) { 2807 gvt_vgpu_err("ip_gma %lx out of ring scope." 2808 "(base:0x%lx, bottom: 0x%lx)\n", 2809 s->ip_gma, rb_start, 2810 gma_bottom); 2811 parser_exec_state_dump(s); 2812 return -EFAULT; 2813 } 2814 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2815 gvt_vgpu_err("ip_gma %lx out of range." 2816 "base 0x%lx head 0x%lx tail 0x%lx\n", 2817 s->ip_gma, rb_start, 2818 rb_head, rb_tail); 2819 parser_exec_state_dump(s); 2820 break; 2821 } 2822 } 2823 ret = cmd_parser_exec(s); 2824 if (ret) { 2825 gvt_vgpu_err("cmd parser error\n"); 2826 parser_exec_state_dump(s); 2827 break; 2828 } 2829 } 2830 2831 return ret; 2832 } 2833 2834 static int scan_workload(struct intel_vgpu_workload *workload) 2835 { 2836 unsigned long gma_head, gma_tail, gma_bottom; 2837 struct parser_exec_state s; 2838 int ret = 0; 2839 2840 /* ring base is page aligned */ 2841 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2842 return -EINVAL; 2843 2844 gma_head = workload->rb_start + workload->rb_head; 2845 gma_tail = workload->rb_start + workload->rb_tail; 2846 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2847 2848 s.buf_type = RING_BUFFER_INSTRUCTION; 2849 s.buf_addr_type = GTT_BUFFER; 2850 s.vgpu = workload->vgpu; 2851 s.engine = workload->engine; 2852 s.ring_start = workload->rb_start; 2853 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2854 s.ring_head = gma_head; 2855 s.ring_tail = gma_tail; 2856 s.rb_va = workload->shadow_ring_buffer_va; 2857 s.workload = workload; 2858 s.is_ctx_wa = false; 2859 2860 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2861 return 0; 2862 2863 ret = ip_gma_set(&s, gma_head); 2864 if (ret) 2865 goto out; 2866 2867 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2868 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2869 2870 out: 2871 return ret; 2872 } 2873 2874 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2875 { 2876 2877 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2878 struct parser_exec_state s; 2879 int ret = 0; 2880 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2881 struct intel_vgpu_workload, 2882 wa_ctx); 2883 2884 /* ring base is page aligned */ 2885 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2886 I915_GTT_PAGE_SIZE))) 2887 return -EINVAL; 2888 2889 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2890 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2891 PAGE_SIZE); 2892 gma_head = wa_ctx->indirect_ctx.guest_gma; 2893 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2894 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2895 2896 s.buf_type = RING_BUFFER_INSTRUCTION; 2897 s.buf_addr_type = GTT_BUFFER; 2898 s.vgpu = workload->vgpu; 2899 s.engine = workload->engine; 2900 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2901 s.ring_size = ring_size; 2902 s.ring_head = gma_head; 2903 s.ring_tail = gma_tail; 2904 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2905 s.workload = workload; 2906 s.is_ctx_wa = true; 2907 2908 ret = ip_gma_set(&s, gma_head); 2909 if (ret) 2910 goto out; 2911 2912 ret = command_scan(&s, 0, ring_tail, 2913 wa_ctx->indirect_ctx.guest_gma, ring_size); 2914 out: 2915 return ret; 2916 } 2917 2918 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2919 { 2920 struct intel_vgpu *vgpu = workload->vgpu; 2921 struct intel_vgpu_submission *s = &vgpu->submission; 2922 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2923 void *shadow_ring_buffer_va; 2924 int ret; 2925 2926 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2927 2928 /* calculate workload ring buffer size */ 2929 workload->rb_len = (workload->rb_tail + guest_rb_size - 2930 workload->rb_head) % guest_rb_size; 2931 2932 gma_head = workload->rb_start + workload->rb_head; 2933 gma_tail = workload->rb_start + workload->rb_tail; 2934 gma_top = workload->rb_start + guest_rb_size; 2935 2936 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2937 void *p; 2938 2939 /* realloc the new ring buffer if needed */ 2940 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2941 workload->rb_len, GFP_KERNEL); 2942 if (!p) { 2943 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2944 return -ENOMEM; 2945 } 2946 s->ring_scan_buffer[workload->engine->id] = p; 2947 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2948 } 2949 2950 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2951 2952 /* get shadow ring buffer va */ 2953 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2954 2955 /* head > tail --> copy head <-> top */ 2956 if (gma_head > gma_tail) { 2957 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2958 gma_head, gma_top, shadow_ring_buffer_va); 2959 if (ret < 0) { 2960 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2961 return ret; 2962 } 2963 shadow_ring_buffer_va += ret; 2964 gma_head = workload->rb_start; 2965 } 2966 2967 /* copy head or start <-> tail */ 2968 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2969 shadow_ring_buffer_va); 2970 if (ret < 0) { 2971 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2972 return ret; 2973 } 2974 return 0; 2975 } 2976 2977 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2978 { 2979 int ret; 2980 struct intel_vgpu *vgpu = workload->vgpu; 2981 2982 ret = shadow_workload_ring_buffer(workload); 2983 if (ret) { 2984 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2985 return ret; 2986 } 2987 2988 ret = scan_workload(workload); 2989 if (ret) { 2990 gvt_vgpu_err("scan workload error\n"); 2991 return ret; 2992 } 2993 return 0; 2994 } 2995 2996 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2997 { 2998 int ctx_size = wa_ctx->indirect_ctx.size; 2999 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 3000 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3001 struct intel_vgpu_workload, 3002 wa_ctx); 3003 struct intel_vgpu *vgpu = workload->vgpu; 3004 struct drm_i915_gem_object *obj; 3005 int ret = 0; 3006 void *map; 3007 3008 obj = i915_gem_object_create_shmem(workload->engine->i915, 3009 roundup(ctx_size + CACHELINE_BYTES, 3010 PAGE_SIZE)); 3011 if (IS_ERR(obj)) 3012 return PTR_ERR(obj); 3013 3014 /* get the va of the shadow batch buffer */ 3015 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3016 if (IS_ERR(map)) { 3017 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3018 ret = PTR_ERR(map); 3019 goto put_obj; 3020 } 3021 3022 i915_gem_object_lock(obj, NULL); 3023 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3024 i915_gem_object_unlock(obj); 3025 if (ret) { 3026 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3027 goto unmap_src; 3028 } 3029 3030 ret = copy_gma_to_hva(workload->vgpu, 3031 workload->vgpu->gtt.ggtt_mm, 3032 guest_gma, guest_gma + ctx_size, 3033 map); 3034 if (ret < 0) { 3035 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3036 goto unmap_src; 3037 } 3038 3039 wa_ctx->indirect_ctx.obj = obj; 3040 wa_ctx->indirect_ctx.shadow_va = map; 3041 return 0; 3042 3043 unmap_src: 3044 i915_gem_object_unpin_map(obj); 3045 put_obj: 3046 i915_gem_object_put(obj); 3047 return ret; 3048 } 3049 3050 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3051 { 3052 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3053 unsigned char *bb_start_sva; 3054 3055 if (!wa_ctx->per_ctx.valid) 3056 return 0; 3057 3058 per_ctx_start[0] = 0x18800001; 3059 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3060 3061 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3062 wa_ctx->indirect_ctx.size; 3063 3064 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3065 3066 return 0; 3067 } 3068 3069 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3070 { 3071 int ret; 3072 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3073 struct intel_vgpu_workload, 3074 wa_ctx); 3075 struct intel_vgpu *vgpu = workload->vgpu; 3076 3077 if (wa_ctx->indirect_ctx.size == 0) 3078 return 0; 3079 3080 ret = shadow_indirect_ctx(wa_ctx); 3081 if (ret) { 3082 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3083 return ret; 3084 } 3085 3086 combine_wa_ctx(wa_ctx); 3087 3088 ret = scan_wa_ctx(wa_ctx); 3089 if (ret) { 3090 gvt_vgpu_err("scan wa ctx error\n"); 3091 return ret; 3092 } 3093 3094 return 0; 3095 } 3096 3097 /* generate dummy contexts by sending empty requests to HW, and let 3098 * the HW to fill Engine Contexts. This dummy contexts are used for 3099 * initialization purpose (update reg whitelist), so referred to as 3100 * init context here 3101 */ 3102 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3103 { 3104 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3105 struct intel_gvt *gvt = vgpu->gvt; 3106 struct intel_engine_cs *engine; 3107 enum intel_engine_id id; 3108 3109 if (gvt->is_reg_whitelist_updated) 3110 return; 3111 3112 /* scan init ctx to update cmd accessible list */ 3113 for_each_engine(engine, gvt->gt, id) { 3114 struct parser_exec_state s; 3115 void *vaddr; 3116 int ret; 3117 3118 if (!engine->default_state) 3119 continue; 3120 3121 vaddr = shmem_pin_map(engine->default_state); 3122 if (!vaddr) { 3123 gvt_err("failed to map %s->default state\n", 3124 engine->name); 3125 return; 3126 } 3127 3128 s.buf_type = RING_BUFFER_CTX; 3129 s.buf_addr_type = GTT_BUFFER; 3130 s.vgpu = vgpu; 3131 s.engine = engine; 3132 s.ring_start = 0; 3133 s.ring_size = engine->context_size - start; 3134 s.ring_head = 0; 3135 s.ring_tail = s.ring_size; 3136 s.rb_va = vaddr + start; 3137 s.workload = NULL; 3138 s.is_ctx_wa = false; 3139 s.is_init_ctx = true; 3140 3141 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3142 ret = ip_gma_set(&s, RING_CTX_SIZE); 3143 if (ret == 0) { 3144 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3145 if (ret) 3146 gvt_err("Scan init ctx error\n"); 3147 } 3148 3149 shmem_unpin_map(engine->default_state, vaddr); 3150 if (ret) 3151 return; 3152 } 3153 3154 gvt->is_reg_whitelist_updated = true; 3155 } 3156 3157 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3158 { 3159 struct intel_vgpu *vgpu = workload->vgpu; 3160 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3161 struct parser_exec_state s; 3162 int ring_id = workload->engine->id; 3163 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3164 int ret; 3165 3166 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3167 3168 ctx_size = workload->engine->context_size - PAGE_SIZE; 3169 3170 /* Only ring contxt is loaded to HW for inhibit context, no need to 3171 * scan engine context 3172 */ 3173 if (is_inhibit_context(ce)) 3174 return 0; 3175 3176 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3177 gma_head = 0; 3178 gma_tail = ctx_size; 3179 3180 s.buf_type = RING_BUFFER_CTX; 3181 s.buf_addr_type = GTT_BUFFER; 3182 s.vgpu = workload->vgpu; 3183 s.engine = workload->engine; 3184 s.ring_start = gma_start; 3185 s.ring_size = ctx_size; 3186 s.ring_head = gma_start + gma_head; 3187 s.ring_tail = gma_start + gma_tail; 3188 s.rb_va = ce->lrc_reg_state; 3189 s.workload = workload; 3190 s.is_ctx_wa = false; 3191 s.is_init_ctx = false; 3192 3193 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3194 * context 3195 */ 3196 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3197 if (ret) 3198 goto out; 3199 3200 ret = command_scan(&s, gma_head, gma_tail, 3201 gma_start, ctx_size); 3202 out: 3203 if (ret) 3204 gvt_vgpu_err("scan shadow ctx error\n"); 3205 3206 return ret; 3207 } 3208 3209 static int init_cmd_table(struct intel_gvt *gvt) 3210 { 3211 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3212 int i; 3213 3214 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3215 struct cmd_entry *e; 3216 3217 if (!(cmd_info[i].devices & gen_type)) 3218 continue; 3219 3220 e = kzalloc(sizeof(*e), GFP_KERNEL); 3221 if (!e) 3222 return -ENOMEM; 3223 3224 e->info = &cmd_info[i]; 3225 if (cmd_info[i].opcode == OP_MI_NOOP) 3226 mi_noop_index = i; 3227 3228 INIT_HLIST_NODE(&e->hlist); 3229 add_cmd_entry(gvt, e); 3230 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3231 e->info->name, e->info->opcode, e->info->flag, 3232 e->info->devices, e->info->rings); 3233 } 3234 3235 return 0; 3236 } 3237 3238 static void clean_cmd_table(struct intel_gvt *gvt) 3239 { 3240 struct hlist_node *tmp; 3241 struct cmd_entry *e; 3242 int i; 3243 3244 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3245 kfree(e); 3246 3247 hash_init(gvt->cmd_table); 3248 } 3249 3250 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3251 { 3252 clean_cmd_table(gvt); 3253 } 3254 3255 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3256 { 3257 int ret; 3258 3259 ret = init_cmd_table(gvt); 3260 if (ret) { 3261 intel_gvt_clean_cmd_parser(gvt); 3262 return ret; 3263 } 3264 return 0; 3265 } 3266