xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 5a1ea477)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	const char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	const struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176 
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181 
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248 
249 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260 
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289 
290 /* VCCP Command Parser */
291 
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298 
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300 	(3 << 13 | \
301 	 (pipeline) << 11 | \
302 	 (op) << 8 | \
303 	 (sub_opa) << 5 | \
304 	 (sub_opb))
305 
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317 
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319 
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332 
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338 
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344 
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348 
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352 
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354 	(3 << 13 | \
355 	 (pipeline) << 11 | \
356 	 (op) << 8 | \
357 	 (sub_opa) << 5 | \
358 	 (sub_opb))
359 
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363 
364 struct parser_exec_state;
365 
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367 
368 #define GVT_CMD_HASH_BITS   7
369 
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)			(1 << (x1))
372 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376 
377 struct cmd_info {
378 	const char *name;
379 	u32 opcode;
380 
381 #define F_LEN_MASK	(1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384 
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390 
391 #define F_POST_HANDLE	(1<<2)
392 	u32 flag;
393 
394 #define R_RCS	BIT(RCS0)
395 #define R_VCS1  BIT(VCS0)
396 #define R_VCS2  BIT(VCS1)
397 #define R_VCS	(R_VCS1 | R_VCS2)
398 #define R_BCS	BIT(BCS0)
399 #define R_VECS	BIT(VECS0)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
402 	u16 rings;
403 
404 	/* devices that support this cmd: SNB/IVB/HSW/... */
405 	u16 devices;
406 
407 	/* which DWords are address that need fix up.
408 	 * bit 0 means a 32-bit non address operand in command
409 	 * bit 1 means address operand, which could be 32-bit
410 	 * or 64-bit depending on different architectures.(
411 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412 	 * No matter the address length, each address only takes
413 	 * one bit in the bitmap.
414 	 */
415 	u16 addr_bitmap;
416 
417 	/* flag == F_LEN_CONST : command length
418 	 * flag == F_LEN_VAR : length bias bits
419 	 * Note: length is in DWord
420 	 */
421 	u8 len;
422 
423 	parser_cmd_handler handler;
424 };
425 
426 struct cmd_entry {
427 	struct hlist_node hlist;
428 	const struct cmd_info *info;
429 };
430 
431 enum {
432 	RING_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_INSTRUCTION,
434 	BATCH_BUFFER_2ND_LEVEL,
435 };
436 
437 enum {
438 	GTT_BUFFER,
439 	PPGTT_BUFFER
440 };
441 
442 struct parser_exec_state {
443 	struct intel_vgpu *vgpu;
444 	int ring_id;
445 
446 	int buf_type;
447 
448 	/* batch buffer address type */
449 	int buf_addr_type;
450 
451 	/* graphics memory address of ring buffer start */
452 	unsigned long ring_start;
453 	unsigned long ring_size;
454 	unsigned long ring_head;
455 	unsigned long ring_tail;
456 
457 	/* instruction graphics memory address */
458 	unsigned long ip_gma;
459 
460 	/* mapped va of the instr_gma */
461 	void *ip_va;
462 	void *rb_va;
463 
464 	void *ret_bb_va;
465 	/* next instruction when return from  batch buffer to ring buffer */
466 	unsigned long ret_ip_gma_ring;
467 
468 	/* next instruction when return from 2nd batch buffer to batch buffer */
469 	unsigned long ret_ip_gma_bb;
470 
471 	/* batch buffer address type (GTT or PPGTT)
472 	 * used when ret from 2nd level batch buffer
473 	 */
474 	int saved_buf_addr_type;
475 	bool is_ctx_wa;
476 
477 	const struct cmd_info *info;
478 
479 	struct intel_vgpu_workload *workload;
480 };
481 
482 #define gmadr_dw_number(s)	\
483 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484 
485 static unsigned long bypass_scan_mask = 0;
486 
487 /* ring ALL, type = 0 */
488 static const struct sub_op_bits sub_op_mi[] = {
489 	{31, 29},
490 	{28, 23},
491 };
492 
493 static const struct decode_info decode_info_mi = {
494 	"MI",
495 	OP_LEN_MI,
496 	ARRAY_SIZE(sub_op_mi),
497 	sub_op_mi,
498 };
499 
500 /* ring RCS, command type 2 */
501 static const struct sub_op_bits sub_op_2d[] = {
502 	{31, 29},
503 	{28, 22},
504 };
505 
506 static const struct decode_info decode_info_2d = {
507 	"2D",
508 	OP_LEN_2D,
509 	ARRAY_SIZE(sub_op_2d),
510 	sub_op_2d,
511 };
512 
513 /* ring RCS, command type 3 */
514 static const struct sub_op_bits sub_op_3d_media[] = {
515 	{31, 29},
516 	{28, 27},
517 	{26, 24},
518 	{23, 16},
519 };
520 
521 static const struct decode_info decode_info_3d_media = {
522 	"3D_Media",
523 	OP_LEN_3D_MEDIA,
524 	ARRAY_SIZE(sub_op_3d_media),
525 	sub_op_3d_media,
526 };
527 
528 /* ring VCS, command type 3 */
529 static const struct sub_op_bits sub_op_mfx_vc[] = {
530 	{31, 29},
531 	{28, 27},
532 	{26, 24},
533 	{23, 21},
534 	{20, 16},
535 };
536 
537 static const struct decode_info decode_info_mfx_vc = {
538 	"MFX_VC",
539 	OP_LEN_MFX_VC,
540 	ARRAY_SIZE(sub_op_mfx_vc),
541 	sub_op_mfx_vc,
542 };
543 
544 /* ring VECS, command type 3 */
545 static const struct sub_op_bits sub_op_vebox[] = {
546 	{31, 29},
547 	{28, 27},
548 	{26, 24},
549 	{23, 21},
550 	{20, 16},
551 };
552 
553 static const struct decode_info decode_info_vebox = {
554 	"VEBOX",
555 	OP_LEN_VEBOX,
556 	ARRAY_SIZE(sub_op_vebox),
557 	sub_op_vebox,
558 };
559 
560 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561 	[RCS0] = {
562 		&decode_info_mi,
563 		NULL,
564 		NULL,
565 		&decode_info_3d_media,
566 		NULL,
567 		NULL,
568 		NULL,
569 		NULL,
570 	},
571 
572 	[VCS0] = {
573 		&decode_info_mi,
574 		NULL,
575 		NULL,
576 		&decode_info_mfx_vc,
577 		NULL,
578 		NULL,
579 		NULL,
580 		NULL,
581 	},
582 
583 	[BCS0] = {
584 		&decode_info_mi,
585 		NULL,
586 		&decode_info_2d,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 		NULL,
592 	},
593 
594 	[VECS0] = {
595 		&decode_info_mi,
596 		NULL,
597 		NULL,
598 		&decode_info_vebox,
599 		NULL,
600 		NULL,
601 		NULL,
602 		NULL,
603 	},
604 
605 	[VCS1] = {
606 		&decode_info_mi,
607 		NULL,
608 		NULL,
609 		&decode_info_mfx_vc,
610 		NULL,
611 		NULL,
612 		NULL,
613 		NULL,
614 	},
615 };
616 
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619 	const struct decode_info *d_info;
620 
621 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622 	if (d_info == NULL)
623 		return INVALID_OP;
624 
625 	return cmd >> (32 - d_info->op_len);
626 }
627 
628 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629 		unsigned int opcode, int ring_id)
630 {
631 	struct cmd_entry *e;
632 
633 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634 		if (opcode == e->info->opcode && e->info->rings & BIT(ring_id))
635 			return e->info;
636 	}
637 	return NULL;
638 }
639 
640 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641 		u32 cmd, int ring_id)
642 {
643 	u32 opcode;
644 
645 	opcode = get_opcode(cmd, ring_id);
646 	if (opcode == INVALID_OP)
647 		return NULL;
648 
649 	return find_cmd_entry(gvt, opcode, ring_id);
650 }
651 
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656 
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659 	const struct decode_info *d_info;
660 	int i;
661 
662 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663 	if (d_info == NULL)
664 		return;
665 
666 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667 			cmd >> (32 - d_info->op_len), d_info->name);
668 
669 	for (i = 0; i < d_info->nr_sub_op; i++)
670 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671 					d_info->sub_op[i].low));
672 
673 	pr_err("\n");
674 }
675 
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678 	return s->ip_va + (index << 2);
679 }
680 
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683 	return *cmd_ptr(s, index);
684 }
685 
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688 	int cnt = 0;
689 	int i;
690 
691 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694 			s->ring_head, s->ring_tail);
695 
696 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
697 			s->buf_type == RING_BUFFER_INSTRUCTION ?
698 			"RING_BUFFER" : "BATCH_BUFFER",
699 			s->buf_addr_type == GTT_BUFFER ?
700 			"GTT" : "PPGTT", s->ip_gma);
701 
702 	if (s->ip_va == NULL) {
703 		gvt_dbg_cmd(" ip_va(NULL)");
704 		return;
705 	}
706 
707 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
708 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709 			cmd_val(s, 2), cmd_val(s, 3));
710 
711 	print_opcode(cmd_val(s, 0), s->ring_id);
712 
713 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714 
715 	while (cnt < 1024) {
716 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717 		for (i = 0; i < 8; i++)
718 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
719 		gvt_dbg_cmd("\n");
720 
721 		s->ip_va += 8 * sizeof(u32);
722 		cnt += 8;
723 	}
724 }
725 
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728 	unsigned long len = 0;
729 
730 	if (WARN_ON(s->ring_head == s->ring_tail))
731 		return;
732 
733 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734 		unsigned long ring_top = s->ring_start + s->ring_size;
735 
736 		if (s->ring_head > s->ring_tail) {
737 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738 				len = (s->ip_gma - s->ring_head);
739 			else if (s->ip_gma >= s->ring_start &&
740 					s->ip_gma <= s->ring_tail)
741 				len = (ring_top - s->ring_head) +
742 					(s->ip_gma - s->ring_start);
743 		} else
744 			len = (s->ip_gma - s->ring_head);
745 
746 		s->ip_va = s->rb_va + len;
747 	} else {/* shadow batch buffer */
748 		s->ip_va = s->ret_bb_va;
749 	}
750 }
751 
752 static inline int ip_gma_set(struct parser_exec_state *s,
753 		unsigned long ip_gma)
754 {
755 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
756 
757 	s->ip_gma = ip_gma;
758 	update_ip_va(s);
759 	return 0;
760 }
761 
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763 		unsigned int dw_len)
764 {
765 	s->ip_gma += (dw_len << 2);
766 
767 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768 		if (s->ip_gma >= s->ring_start + s->ring_size)
769 			s->ip_gma -= s->ring_size;
770 		update_ip_va(s);
771 	} else {
772 		s->ip_va += (dw_len << 2);
773 	}
774 
775 	return 0;
776 }
777 
778 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
779 {
780 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781 		return info->len;
782 	else
783 		return (cmd & ((1U << info->len) - 1)) + 2;
784 	return 0;
785 }
786 
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789 	return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791 
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794 	*addr = val; \
795 } while (0)
796 
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799 	bool ret = false;
800 
801 	if ((offset == 0x2168) || /*BB current head register UDW */
802 	    (offset == 0x2140) || /*BB current header register */
803 	    (offset == 0x211c) || /*second BB header register UDW */
804 	    (offset == 0x2114)) { /*second BB header register UDW */
805 		ret = true;
806 	}
807 	return ret;
808 }
809 
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812 	return (offset >= 0x24d0 && offset < 0x2500);
813 }
814 
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816 		unsigned int offset, unsigned int index, char *cmd)
817 {
818 	struct intel_gvt *gvt = s->vgpu->gvt;
819 	unsigned int data;
820 	u32 ring_base;
821 	u32 nopid;
822 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
823 
824 	if (!strcmp(cmd, "lri"))
825 		data = cmd_val(s, index + 1);
826 	else {
827 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
828 			offset, cmd);
829 		return -EINVAL;
830 	}
831 
832 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
833 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
834 
835 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
836 			data != nopid) {
837 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
838 			offset, data);
839 		patch_value(s, cmd_ptr(s, index), nopid);
840 		return 0;
841 	}
842 	return 0;
843 }
844 
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848 		((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850 
851 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
852 				unsigned int offset, unsigned int index)
853 {
854 	if (!is_mocs_mmio(offset))
855 		return -EINVAL;
856 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
857 	return 0;
858 }
859 
860 static int cmd_reg_handler(struct parser_exec_state *s,
861 	unsigned int offset, unsigned int index, char *cmd)
862 {
863 	struct intel_vgpu *vgpu = s->vgpu;
864 	struct intel_gvt *gvt = vgpu->gvt;
865 	u32 ctx_sr_ctl;
866 
867 	if (offset + 4 > gvt->device_info.mmio_size) {
868 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
869 				cmd, offset);
870 		return -EFAULT;
871 	}
872 
873 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
874 		gvt_vgpu_err("%s access to non-render register (%x)\n",
875 				cmd, offset);
876 		return -EBADRQC;
877 	}
878 
879 	if (is_shadowed_mmio(offset)) {
880 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
881 		return 0;
882 	}
883 
884 	if (is_mocs_mmio(offset) &&
885 	    mocs_cmd_reg_handler(s, offset, index))
886 		return -EINVAL;
887 
888 	if (is_force_nonpriv_mmio(offset) &&
889 		force_nonpriv_reg_handler(s, offset, index, cmd))
890 		return -EPERM;
891 
892 	if (offset == i915_mmio_reg_offset(DERRMR) ||
893 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
894 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
895 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
896 	}
897 
898 	/* TODO
899 	 * In order to let workload with inhibit context to generate
900 	 * correct image data into memory, vregs values will be loaded to
901 	 * hw via LRIs in the workload with inhibit context. But as
902 	 * indirect context is loaded prior to LRIs in workload, we don't
903 	 * want reg values specified in indirect context overwritten by
904 	 * LRIs in workloads. So, when scanning an indirect context, we
905 	 * update reg values in it into vregs, so LRIs in workload with
906 	 * inhibit context will restore with correct values
907 	 */
908 	if (IS_GEN(gvt->dev_priv, 9) &&
909 			intel_gvt_mmio_is_in_ctx(gvt, offset) &&
910 			!strncmp(cmd, "lri", 3)) {
911 		intel_gvt_hypervisor_read_gpa(s->vgpu,
912 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
913 		/* check inhibit context */
914 		if (ctx_sr_ctl & 1) {
915 			u32 data = cmd_val(s, index + 1);
916 
917 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
918 				intel_vgpu_mask_mmio_write(vgpu,
919 							offset, &data, 4);
920 			else
921 				vgpu_vreg(vgpu, offset) = data;
922 		}
923 	}
924 
925 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
926 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
927 	return 0;
928 }
929 
930 #define cmd_reg(s, i) \
931 	(cmd_val(s, i) & GENMASK(22, 2))
932 
933 #define cmd_reg_inhibit(s, i) \
934 	(cmd_val(s, i) & GENMASK(22, 18))
935 
936 #define cmd_gma(s, i) \
937 	(cmd_val(s, i) & GENMASK(31, 2))
938 
939 #define cmd_gma_hi(s, i) \
940 	(cmd_val(s, i) & GENMASK(15, 0))
941 
942 static int cmd_handler_lri(struct parser_exec_state *s)
943 {
944 	int i, ret = 0;
945 	int cmd_len = cmd_length(s);
946 	struct intel_gvt *gvt = s->vgpu->gvt;
947 
948 	for (i = 1; i < cmd_len; i += 2) {
949 		if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) {
950 			if (s->ring_id == BCS0 &&
951 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
952 				ret |= 0;
953 			else
954 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
955 		}
956 		if (ret)
957 			break;
958 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
959 		if (ret)
960 			break;
961 	}
962 	return ret;
963 }
964 
965 static int cmd_handler_lrr(struct parser_exec_state *s)
966 {
967 	int i, ret = 0;
968 	int cmd_len = cmd_length(s);
969 
970 	for (i = 1; i < cmd_len; i += 2) {
971 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
972 			ret |= ((cmd_reg_inhibit(s, i) ||
973 					(cmd_reg_inhibit(s, i + 1)))) ?
974 				-EBADRQC : 0;
975 		if (ret)
976 			break;
977 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
978 		if (ret)
979 			break;
980 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
981 		if (ret)
982 			break;
983 	}
984 	return ret;
985 }
986 
987 static inline int cmd_address_audit(struct parser_exec_state *s,
988 		unsigned long guest_gma, int op_size, bool index_mode);
989 
990 static int cmd_handler_lrm(struct parser_exec_state *s)
991 {
992 	struct intel_gvt *gvt = s->vgpu->gvt;
993 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
994 	unsigned long gma;
995 	int i, ret = 0;
996 	int cmd_len = cmd_length(s);
997 
998 	for (i = 1; i < cmd_len;) {
999 		if (IS_BROADWELL(gvt->dev_priv))
1000 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1001 		if (ret)
1002 			break;
1003 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1004 		if (ret)
1005 			break;
1006 		if (cmd_val(s, 0) & (1 << 22)) {
1007 			gma = cmd_gma(s, i + 1);
1008 			if (gmadr_bytes == 8)
1009 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1010 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1011 			if (ret)
1012 				break;
1013 		}
1014 		i += gmadr_dw_number(s) + 1;
1015 	}
1016 	return ret;
1017 }
1018 
1019 static int cmd_handler_srm(struct parser_exec_state *s)
1020 {
1021 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1022 	unsigned long gma;
1023 	int i, ret = 0;
1024 	int cmd_len = cmd_length(s);
1025 
1026 	for (i = 1; i < cmd_len;) {
1027 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1028 		if (ret)
1029 			break;
1030 		if (cmd_val(s, 0) & (1 << 22)) {
1031 			gma = cmd_gma(s, i + 1);
1032 			if (gmadr_bytes == 8)
1033 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1034 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1035 			if (ret)
1036 				break;
1037 		}
1038 		i += gmadr_dw_number(s) + 1;
1039 	}
1040 	return ret;
1041 }
1042 
1043 struct cmd_interrupt_event {
1044 	int pipe_control_notify;
1045 	int mi_flush_dw;
1046 	int mi_user_interrupt;
1047 };
1048 
1049 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1050 	[RCS0] = {
1051 		.pipe_control_notify = RCS_PIPE_CONTROL,
1052 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1053 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1054 	},
1055 	[BCS0] = {
1056 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1057 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1058 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1059 	},
1060 	[VCS0] = {
1061 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1062 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1063 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1064 	},
1065 	[VCS1] = {
1066 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1067 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1068 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1069 	},
1070 	[VECS0] = {
1071 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1072 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1073 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1074 	},
1075 };
1076 
1077 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1078 {
1079 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1080 	unsigned long gma;
1081 	bool index_mode = false;
1082 	unsigned int post_sync;
1083 	int ret = 0;
1084 	u32 hws_pga, val;
1085 
1086 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1087 
1088 	/* LRI post sync */
1089 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1090 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1091 	/* post sync */
1092 	else if (post_sync) {
1093 		if (post_sync == 2)
1094 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1095 		else if (post_sync == 3)
1096 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1097 		else if (post_sync == 1) {
1098 			/* check ggtt*/
1099 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1100 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1101 				if (gmadr_bytes == 8)
1102 					gma |= (cmd_gma_hi(s, 3)) << 32;
1103 				/* Store Data Index */
1104 				if (cmd_val(s, 1) & (1 << 21))
1105 					index_mode = true;
1106 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1107 						index_mode);
1108 				if (ret)
1109 					return ret;
1110 				if (index_mode) {
1111 					hws_pga = s->vgpu->hws_pga[s->ring_id];
1112 					gma = hws_pga + gma;
1113 					patch_value(s, cmd_ptr(s, 2), gma);
1114 					val = cmd_val(s, 1) & (~(1 << 21));
1115 					patch_value(s, cmd_ptr(s, 1), val);
1116 				}
1117 			}
1118 		}
1119 	}
1120 
1121 	if (ret)
1122 		return ret;
1123 
1124 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1125 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1126 				s->workload->pending_events);
1127 	return 0;
1128 }
1129 
1130 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1131 {
1132 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1133 			s->workload->pending_events);
1134 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1135 	return 0;
1136 }
1137 
1138 static int cmd_advance_default(struct parser_exec_state *s)
1139 {
1140 	return ip_gma_advance(s, cmd_length(s));
1141 }
1142 
1143 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1144 {
1145 	int ret;
1146 
1147 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1148 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1149 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1150 		s->buf_addr_type = s->saved_buf_addr_type;
1151 	} else {
1152 		s->buf_type = RING_BUFFER_INSTRUCTION;
1153 		s->buf_addr_type = GTT_BUFFER;
1154 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1155 			s->ret_ip_gma_ring -= s->ring_size;
1156 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1157 	}
1158 	return ret;
1159 }
1160 
1161 struct mi_display_flip_command_info {
1162 	int pipe;
1163 	int plane;
1164 	int event;
1165 	i915_reg_t stride_reg;
1166 	i915_reg_t ctrl_reg;
1167 	i915_reg_t surf_reg;
1168 	u64 stride_val;
1169 	u64 tile_val;
1170 	u64 surf_val;
1171 	bool async_flip;
1172 };
1173 
1174 struct plane_code_mapping {
1175 	int pipe;
1176 	int plane;
1177 	int event;
1178 };
1179 
1180 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1181 		struct mi_display_flip_command_info *info)
1182 {
1183 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1184 	struct plane_code_mapping gen8_plane_code[] = {
1185 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1186 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1187 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1188 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1189 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1190 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1191 	};
1192 	u32 dword0, dword1, dword2;
1193 	u32 v;
1194 
1195 	dword0 = cmd_val(s, 0);
1196 	dword1 = cmd_val(s, 1);
1197 	dword2 = cmd_val(s, 2);
1198 
1199 	v = (dword0 & GENMASK(21, 19)) >> 19;
1200 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1201 		return -EBADRQC;
1202 
1203 	info->pipe = gen8_plane_code[v].pipe;
1204 	info->plane = gen8_plane_code[v].plane;
1205 	info->event = gen8_plane_code[v].event;
1206 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1207 	info->tile_val = (dword1 & 0x1);
1208 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1209 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1210 
1211 	if (info->plane == PLANE_A) {
1212 		info->ctrl_reg = DSPCNTR(info->pipe);
1213 		info->stride_reg = DSPSTRIDE(info->pipe);
1214 		info->surf_reg = DSPSURF(info->pipe);
1215 	} else if (info->plane == PLANE_B) {
1216 		info->ctrl_reg = SPRCTL(info->pipe);
1217 		info->stride_reg = SPRSTRIDE(info->pipe);
1218 		info->surf_reg = SPRSURF(info->pipe);
1219 	} else {
1220 		WARN_ON(1);
1221 		return -EBADRQC;
1222 	}
1223 	return 0;
1224 }
1225 
1226 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1227 		struct mi_display_flip_command_info *info)
1228 {
1229 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1230 	struct intel_vgpu *vgpu = s->vgpu;
1231 	u32 dword0 = cmd_val(s, 0);
1232 	u32 dword1 = cmd_val(s, 1);
1233 	u32 dword2 = cmd_val(s, 2);
1234 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1235 
1236 	info->plane = PRIMARY_PLANE;
1237 
1238 	switch (plane) {
1239 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1240 		info->pipe = PIPE_A;
1241 		info->event = PRIMARY_A_FLIP_DONE;
1242 		break;
1243 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1244 		info->pipe = PIPE_B;
1245 		info->event = PRIMARY_B_FLIP_DONE;
1246 		break;
1247 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1248 		info->pipe = PIPE_C;
1249 		info->event = PRIMARY_C_FLIP_DONE;
1250 		break;
1251 
1252 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1253 		info->pipe = PIPE_A;
1254 		info->event = SPRITE_A_FLIP_DONE;
1255 		info->plane = SPRITE_PLANE;
1256 		break;
1257 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1258 		info->pipe = PIPE_B;
1259 		info->event = SPRITE_B_FLIP_DONE;
1260 		info->plane = SPRITE_PLANE;
1261 		break;
1262 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1263 		info->pipe = PIPE_C;
1264 		info->event = SPRITE_C_FLIP_DONE;
1265 		info->plane = SPRITE_PLANE;
1266 		break;
1267 
1268 	default:
1269 		gvt_vgpu_err("unknown plane code %d\n", plane);
1270 		return -EBADRQC;
1271 	}
1272 
1273 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1274 	info->tile_val = (dword1 & GENMASK(2, 0));
1275 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1276 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1277 
1278 	info->ctrl_reg = DSPCNTR(info->pipe);
1279 	info->stride_reg = DSPSTRIDE(info->pipe);
1280 	info->surf_reg = DSPSURF(info->pipe);
1281 
1282 	return 0;
1283 }
1284 
1285 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1286 		struct mi_display_flip_command_info *info)
1287 {
1288 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1289 	u32 stride, tile;
1290 
1291 	if (!info->async_flip)
1292 		return 0;
1293 
1294 	if (INTEL_GEN(dev_priv) >= 9) {
1295 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1296 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1297 				GENMASK(12, 10)) >> 10;
1298 	} else {
1299 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1300 				GENMASK(15, 6)) >> 6;
1301 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1302 	}
1303 
1304 	if (stride != info->stride_val)
1305 		gvt_dbg_cmd("cannot change stride during async flip\n");
1306 
1307 	if (tile != info->tile_val)
1308 		gvt_dbg_cmd("cannot change tile during async flip\n");
1309 
1310 	return 0;
1311 }
1312 
1313 static int gen8_update_plane_mmio_from_mi_display_flip(
1314 		struct parser_exec_state *s,
1315 		struct mi_display_flip_command_info *info)
1316 {
1317 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1318 	struct intel_vgpu *vgpu = s->vgpu;
1319 
1320 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1321 		      info->surf_val << 12);
1322 	if (INTEL_GEN(dev_priv) >= 9) {
1323 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1324 			      info->stride_val);
1325 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1326 			      info->tile_val << 10);
1327 	} else {
1328 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1329 			      info->stride_val << 6);
1330 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1331 			      info->tile_val << 10);
1332 	}
1333 
1334 	if (info->plane == PLANE_PRIMARY)
1335 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1336 
1337 	if (info->async_flip)
1338 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1339 	else
1340 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1341 
1342 	return 0;
1343 }
1344 
1345 static int decode_mi_display_flip(struct parser_exec_state *s,
1346 		struct mi_display_flip_command_info *info)
1347 {
1348 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1349 
1350 	if (IS_BROADWELL(dev_priv))
1351 		return gen8_decode_mi_display_flip(s, info);
1352 	if (INTEL_GEN(dev_priv) >= 9)
1353 		return skl_decode_mi_display_flip(s, info);
1354 
1355 	return -ENODEV;
1356 }
1357 
1358 static int check_mi_display_flip(struct parser_exec_state *s,
1359 		struct mi_display_flip_command_info *info)
1360 {
1361 	return gen8_check_mi_display_flip(s, info);
1362 }
1363 
1364 static int update_plane_mmio_from_mi_display_flip(
1365 		struct parser_exec_state *s,
1366 		struct mi_display_flip_command_info *info)
1367 {
1368 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1369 }
1370 
1371 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1372 {
1373 	struct mi_display_flip_command_info info;
1374 	struct intel_vgpu *vgpu = s->vgpu;
1375 	int ret;
1376 	int i;
1377 	int len = cmd_length(s);
1378 
1379 	ret = decode_mi_display_flip(s, &info);
1380 	if (ret) {
1381 		gvt_vgpu_err("fail to decode MI display flip command\n");
1382 		return ret;
1383 	}
1384 
1385 	ret = check_mi_display_flip(s, &info);
1386 	if (ret) {
1387 		gvt_vgpu_err("invalid MI display flip command\n");
1388 		return ret;
1389 	}
1390 
1391 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1392 	if (ret) {
1393 		gvt_vgpu_err("fail to update plane mmio\n");
1394 		return ret;
1395 	}
1396 
1397 	for (i = 0; i < len; i++)
1398 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1399 	return 0;
1400 }
1401 
1402 static bool is_wait_for_flip_pending(u32 cmd)
1403 {
1404 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1405 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1406 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1407 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1408 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1409 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1410 }
1411 
1412 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1413 {
1414 	u32 cmd = cmd_val(s, 0);
1415 
1416 	if (!is_wait_for_flip_pending(cmd))
1417 		return 0;
1418 
1419 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1420 	return 0;
1421 }
1422 
1423 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1424 {
1425 	unsigned long addr;
1426 	unsigned long gma_high, gma_low;
1427 	struct intel_vgpu *vgpu = s->vgpu;
1428 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1429 
1430 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1431 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1432 		return INTEL_GVT_INVALID_ADDR;
1433 	}
1434 
1435 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1436 	if (gmadr_bytes == 4) {
1437 		addr = gma_low;
1438 	} else {
1439 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1440 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1441 	}
1442 	return addr;
1443 }
1444 
1445 static inline int cmd_address_audit(struct parser_exec_state *s,
1446 		unsigned long guest_gma, int op_size, bool index_mode)
1447 {
1448 	struct intel_vgpu *vgpu = s->vgpu;
1449 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1450 	int i;
1451 	int ret;
1452 
1453 	if (op_size > max_surface_size) {
1454 		gvt_vgpu_err("command address audit fail name %s\n",
1455 			s->info->name);
1456 		return -EFAULT;
1457 	}
1458 
1459 	if (index_mode)	{
1460 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1461 			ret = -EFAULT;
1462 			goto err;
1463 		}
1464 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1465 		ret = -EFAULT;
1466 		goto err;
1467 	}
1468 
1469 	return 0;
1470 
1471 err:
1472 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1473 			s->info->name, guest_gma, op_size);
1474 
1475 	pr_err("cmd dump: ");
1476 	for (i = 0; i < cmd_length(s); i++) {
1477 		if (!(i % 4))
1478 			pr_err("\n%08x ", cmd_val(s, i));
1479 		else
1480 			pr_err("%08x ", cmd_val(s, i));
1481 	}
1482 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1483 			vgpu->id,
1484 			vgpu_aperture_gmadr_base(vgpu),
1485 			vgpu_aperture_gmadr_end(vgpu),
1486 			vgpu_hidden_gmadr_base(vgpu),
1487 			vgpu_hidden_gmadr_end(vgpu));
1488 	return ret;
1489 }
1490 
1491 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1492 {
1493 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1494 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1495 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1496 	unsigned long gma, gma_low, gma_high;
1497 	int ret = 0;
1498 
1499 	/* check ppggt */
1500 	if (!(cmd_val(s, 0) & (1 << 22)))
1501 		return 0;
1502 
1503 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1504 
1505 	if (gmadr_bytes == 8) {
1506 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1507 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1508 		gma = (gma_high << 32) | gma_low;
1509 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1510 	}
1511 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1512 	return ret;
1513 }
1514 
1515 static inline int unexpected_cmd(struct parser_exec_state *s)
1516 {
1517 	struct intel_vgpu *vgpu = s->vgpu;
1518 
1519 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1520 
1521 	return -EBADRQC;
1522 }
1523 
1524 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1525 {
1526 	return unexpected_cmd(s);
1527 }
1528 
1529 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1530 {
1531 	return unexpected_cmd(s);
1532 }
1533 
1534 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1535 {
1536 	return unexpected_cmd(s);
1537 }
1538 
1539 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1540 {
1541 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1542 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1543 			sizeof(u32);
1544 	unsigned long gma, gma_high;
1545 	int ret = 0;
1546 
1547 	if (!(cmd_val(s, 0) & (1 << 22)))
1548 		return ret;
1549 
1550 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1551 	if (gmadr_bytes == 8) {
1552 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1553 		gma = (gma_high << 32) | gma;
1554 	}
1555 	ret = cmd_address_audit(s, gma, op_size, false);
1556 	return ret;
1557 }
1558 
1559 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1560 {
1561 	return unexpected_cmd(s);
1562 }
1563 
1564 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1565 {
1566 	return unexpected_cmd(s);
1567 }
1568 
1569 static int cmd_handler_mi_conditional_batch_buffer_end(
1570 		struct parser_exec_state *s)
1571 {
1572 	return unexpected_cmd(s);
1573 }
1574 
1575 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1576 {
1577 	return unexpected_cmd(s);
1578 }
1579 
1580 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1581 {
1582 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1583 	unsigned long gma;
1584 	bool index_mode = false;
1585 	int ret = 0;
1586 	u32 hws_pga, val;
1587 
1588 	/* Check post-sync and ppgtt bit */
1589 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1590 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1591 		if (gmadr_bytes == 8)
1592 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1593 		/* Store Data Index */
1594 		if (cmd_val(s, 0) & (1 << 21))
1595 			index_mode = true;
1596 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1597 		if (ret)
1598 			return ret;
1599 		if (index_mode) {
1600 			hws_pga = s->vgpu->hws_pga[s->ring_id];
1601 			gma = hws_pga + gma;
1602 			patch_value(s, cmd_ptr(s, 1), gma);
1603 			val = cmd_val(s, 0) & (~(1 << 21));
1604 			patch_value(s, cmd_ptr(s, 0), val);
1605 		}
1606 	}
1607 	/* Check notify bit */
1608 	if ((cmd_val(s, 0) & (1 << 8)))
1609 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1610 				s->workload->pending_events);
1611 	return ret;
1612 }
1613 
1614 static void addr_type_update_snb(struct parser_exec_state *s)
1615 {
1616 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1617 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1618 		s->buf_addr_type = PPGTT_BUFFER;
1619 	}
1620 }
1621 
1622 
1623 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1624 		unsigned long gma, unsigned long end_gma, void *va)
1625 {
1626 	unsigned long copy_len, offset;
1627 	unsigned long len = 0;
1628 	unsigned long gpa;
1629 
1630 	while (gma != end_gma) {
1631 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1632 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1633 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1634 			return -EFAULT;
1635 		}
1636 
1637 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1638 
1639 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1640 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1641 
1642 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1643 
1644 		len += copy_len;
1645 		gma += copy_len;
1646 	}
1647 	return len;
1648 }
1649 
1650 
1651 /*
1652  * Check whether a batch buffer needs to be scanned. Currently
1653  * the only criteria is based on privilege.
1654  */
1655 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1656 {
1657 	/* Decide privilege based on address space */
1658 	if (cmd_val(s, 0) & (1 << 8) &&
1659 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1660 		return 0;
1661 	return 1;
1662 }
1663 
1664 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1665 {
1666 	unsigned long gma = 0;
1667 	const struct cmd_info *info;
1668 	u32 cmd_len = 0;
1669 	bool bb_end = false;
1670 	struct intel_vgpu *vgpu = s->vgpu;
1671 	u32 cmd;
1672 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1673 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1674 
1675 	*bb_size = 0;
1676 
1677 	/* get the start gm address of the batch buffer */
1678 	gma = get_gma_bb_from_cmd(s, 1);
1679 	if (gma == INTEL_GVT_INVALID_ADDR)
1680 		return -EFAULT;
1681 
1682 	cmd = cmd_val(s, 0);
1683 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1684 	if (info == NULL) {
1685 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1686 				cmd, get_opcode(cmd, s->ring_id),
1687 				(s->buf_addr_type == PPGTT_BUFFER) ?
1688 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1689 		return -EBADRQC;
1690 	}
1691 	do {
1692 		if (copy_gma_to_hva(s->vgpu, mm,
1693 				gma, gma + 4, &cmd) < 0)
1694 			return -EFAULT;
1695 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1696 		if (info == NULL) {
1697 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1698 				cmd, get_opcode(cmd, s->ring_id),
1699 				(s->buf_addr_type == PPGTT_BUFFER) ?
1700 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1701 			return -EBADRQC;
1702 		}
1703 
1704 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1705 			bb_end = true;
1706 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1707 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1708 				/* chained batch buffer */
1709 				bb_end = true;
1710 		}
1711 		cmd_len = get_cmd_length(info, cmd) << 2;
1712 		*bb_size += cmd_len;
1713 		gma += cmd_len;
1714 	} while (!bb_end);
1715 
1716 	return 0;
1717 }
1718 
1719 static int perform_bb_shadow(struct parser_exec_state *s)
1720 {
1721 	struct intel_vgpu *vgpu = s->vgpu;
1722 	struct intel_vgpu_shadow_bb *bb;
1723 	unsigned long gma = 0;
1724 	unsigned long bb_size;
1725 	int ret = 0;
1726 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1727 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1728 	unsigned long gma_start_offset = 0;
1729 
1730 	/* get the start gm address of the batch buffer */
1731 	gma = get_gma_bb_from_cmd(s, 1);
1732 	if (gma == INTEL_GVT_INVALID_ADDR)
1733 		return -EFAULT;
1734 
1735 	ret = find_bb_size(s, &bb_size);
1736 	if (ret)
1737 		return ret;
1738 
1739 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1740 	if (!bb)
1741 		return -ENOMEM;
1742 
1743 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1744 
1745 	/* the gma_start_offset stores the batch buffer's start gma's
1746 	 * offset relative to page boundary. so for non-privileged batch
1747 	 * buffer, the shadowed gem object holds exactly the same page
1748 	 * layout as original gem object. This is for the convience of
1749 	 * replacing the whole non-privilged batch buffer page to this
1750 	 * shadowed one in PPGTT at the same gma address. (this replacing
1751 	 * action is not implemented yet now, but may be necessary in
1752 	 * future).
1753 	 * for prileged batch buffer, we just change start gma address to
1754 	 * that of shadowed page.
1755 	 */
1756 	if (bb->ppgtt)
1757 		gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1758 
1759 	bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1760 			 roundup(bb_size + gma_start_offset, PAGE_SIZE));
1761 	if (IS_ERR(bb->obj)) {
1762 		ret = PTR_ERR(bb->obj);
1763 		goto err_free_bb;
1764 	}
1765 
1766 	ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1767 	if (ret)
1768 		goto err_free_obj;
1769 
1770 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1771 	if (IS_ERR(bb->va)) {
1772 		ret = PTR_ERR(bb->va);
1773 		goto err_finish_shmem_access;
1774 	}
1775 
1776 	if (bb->clflush & CLFLUSH_BEFORE) {
1777 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1778 		bb->clflush &= ~CLFLUSH_BEFORE;
1779 	}
1780 
1781 	ret = copy_gma_to_hva(s->vgpu, mm,
1782 			      gma, gma + bb_size,
1783 			      bb->va + gma_start_offset);
1784 	if (ret < 0) {
1785 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1786 		ret = -EFAULT;
1787 		goto err_unmap;
1788 	}
1789 
1790 	INIT_LIST_HEAD(&bb->list);
1791 	list_add(&bb->list, &s->workload->shadow_bb);
1792 
1793 	bb->accessing = true;
1794 	bb->bb_start_cmd_va = s->ip_va;
1795 
1796 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1797 		bb->bb_offset = s->ip_va - s->rb_va;
1798 	else
1799 		bb->bb_offset = 0;
1800 
1801 	/*
1802 	 * ip_va saves the virtual address of the shadow batch buffer, while
1803 	 * ip_gma saves the graphics address of the original batch buffer.
1804 	 * As the shadow batch buffer is just a copy from the originial one,
1805 	 * it should be right to use shadow batch buffer'va and original batch
1806 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1807 	 * buffer here (too early).
1808 	 */
1809 	s->ip_va = bb->va + gma_start_offset;
1810 	s->ip_gma = gma;
1811 	return 0;
1812 err_unmap:
1813 	i915_gem_object_unpin_map(bb->obj);
1814 err_finish_shmem_access:
1815 	i915_gem_obj_finish_shmem_access(bb->obj);
1816 err_free_obj:
1817 	i915_gem_object_put(bb->obj);
1818 err_free_bb:
1819 	kfree(bb);
1820 	return ret;
1821 }
1822 
1823 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1824 {
1825 	bool second_level;
1826 	int ret = 0;
1827 	struct intel_vgpu *vgpu = s->vgpu;
1828 
1829 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1830 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1831 		return -EFAULT;
1832 	}
1833 
1834 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1835 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1836 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1837 		return -EFAULT;
1838 	}
1839 
1840 	s->saved_buf_addr_type = s->buf_addr_type;
1841 	addr_type_update_snb(s);
1842 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1843 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1844 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1845 	} else if (second_level) {
1846 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1847 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1848 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1849 	}
1850 
1851 	if (batch_buffer_needs_scan(s)) {
1852 		ret = perform_bb_shadow(s);
1853 		if (ret < 0)
1854 			gvt_vgpu_err("invalid shadow batch buffer\n");
1855 	} else {
1856 		/* emulate a batch buffer end to do return right */
1857 		ret = cmd_handler_mi_batch_buffer_end(s);
1858 		if (ret < 0)
1859 			return ret;
1860 	}
1861 	return ret;
1862 }
1863 
1864 static int mi_noop_index;
1865 
1866 static const struct cmd_info cmd_info[] = {
1867 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1868 
1869 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1870 		0, 1, NULL},
1871 
1872 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1873 		0, 1, cmd_handler_mi_user_interrupt},
1874 
1875 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1876 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1877 
1878 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1879 
1880 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1881 		NULL},
1882 
1883 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1884 		NULL},
1885 
1886 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1887 		NULL},
1888 
1889 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1890 		NULL},
1891 
1892 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1893 		D_ALL, 0, 1, NULL},
1894 
1895 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1896 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1897 		cmd_handler_mi_batch_buffer_end},
1898 
1899 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1900 		0, 1, NULL},
1901 
1902 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1903 		NULL},
1904 
1905 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1906 		D_ALL, 0, 1, NULL},
1907 
1908 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1909 		NULL},
1910 
1911 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1912 		NULL},
1913 
1914 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1915 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1916 
1917 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1918 		0, 8, NULL},
1919 
1920 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1921 
1922 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1923 
1924 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1925 		D_BDW_PLUS, 0, 8, NULL},
1926 
1927 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL,
1928 		D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1929 
1930 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1931 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1932 
1933 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1934 		0, 8, cmd_handler_mi_store_data_index},
1935 
1936 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1937 		D_ALL, 0, 8, cmd_handler_lri},
1938 
1939 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1940 		cmd_handler_mi_update_gtt},
1941 
1942 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1943 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1944 
1945 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1946 		cmd_handler_mi_flush_dw},
1947 
1948 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1949 		10, cmd_handler_mi_clflush},
1950 
1951 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1952 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1953 
1954 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1955 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1956 
1957 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1958 		D_ALL, 0, 8, cmd_handler_lrr},
1959 
1960 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1961 		D_ALL, 0, 8, NULL},
1962 
1963 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1964 		ADDR_FIX_1(2), 8, NULL},
1965 
1966 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1967 		ADDR_FIX_1(2), 8, NULL},
1968 
1969 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1970 		8, cmd_handler_mi_op_2e},
1971 
1972 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1973 		8, cmd_handler_mi_op_2f},
1974 
1975 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1976 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1977 		cmd_handler_mi_batch_buffer_start},
1978 
1979 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1980 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1981 		cmd_handler_mi_conditional_batch_buffer_end},
1982 
1983 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1984 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1985 
1986 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1987 		ADDR_FIX_2(4, 7), 8, NULL},
1988 
1989 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1990 		0, 8, NULL},
1991 
1992 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1993 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1994 
1995 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1996 
1997 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1998 		0, 8, NULL},
1999 
2000 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2001 		ADDR_FIX_1(3), 8, NULL},
2002 
2003 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2004 		D_ALL, 0, 8, NULL},
2005 
2006 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2007 		ADDR_FIX_1(4), 8, NULL},
2008 
2009 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2010 		ADDR_FIX_2(4, 5), 8, NULL},
2011 
2012 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2013 		ADDR_FIX_1(4), 8, NULL},
2014 
2015 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2016 		ADDR_FIX_2(4, 7), 8, NULL},
2017 
2018 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2019 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2020 
2021 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2022 
2023 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2024 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2025 
2026 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2027 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2028 
2029 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2030 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2031 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2032 
2033 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2034 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2035 
2036 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2037 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2038 
2039 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2040 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2041 
2042 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2043 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2044 
2045 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2046 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2047 
2048 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2049 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2050 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2051 
2052 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2053 		ADDR_FIX_2(4, 5), 8, NULL},
2054 
2055 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2056 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2057 
2058 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2059 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2060 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2061 
2062 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2063 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2064 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2065 
2066 	{"3DSTATE_BLEND_STATE_POINTERS",
2067 		OP_3DSTATE_BLEND_STATE_POINTERS,
2068 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2069 
2070 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2071 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2072 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2073 
2074 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2075 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2076 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2077 
2078 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2079 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2080 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2081 
2082 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2083 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2084 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2085 
2086 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2087 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2088 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2089 
2090 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2091 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2092 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2093 
2094 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2095 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2096 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2097 
2098 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2099 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2100 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2101 
2102 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2103 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2104 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2105 
2106 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2107 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2108 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2109 
2110 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2111 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2112 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2113 
2114 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2115 		0, 8, NULL},
2116 
2117 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2118 		0, 8, NULL},
2119 
2120 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2121 		0, 8, NULL},
2122 
2123 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2124 		0, 8, NULL},
2125 
2126 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2127 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2128 
2129 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2130 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2131 
2132 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2133 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2134 
2135 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2136 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2137 
2138 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2139 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2140 
2141 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2142 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2143 
2144 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2145 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2146 
2147 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2148 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2149 
2150 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2151 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2152 
2153 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2154 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2155 
2156 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2157 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2158 
2159 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2160 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2161 
2162 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2163 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2164 
2165 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2166 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2167 
2168 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2169 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2170 
2171 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2172 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2173 
2174 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2175 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2176 
2177 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2178 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2179 
2180 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2181 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2182 
2183 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2184 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2185 
2186 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2187 		D_BDW_PLUS, 0, 8, NULL},
2188 
2189 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2190 		NULL},
2191 
2192 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2193 		D_BDW_PLUS, 0, 8, NULL},
2194 
2195 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2196 		D_BDW_PLUS, 0, 8, NULL},
2197 
2198 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2199 		8, NULL},
2200 
2201 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2202 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2203 
2204 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2205 		8, NULL},
2206 
2207 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2208 		NULL},
2209 
2210 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2211 		NULL},
2212 
2213 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2214 		NULL},
2215 
2216 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2217 		D_BDW_PLUS, 0, 8, NULL},
2218 
2219 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2220 		R_RCS, D_ALL, 0, 8, NULL},
2221 
2222 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2223 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2224 
2225 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2226 		R_RCS, D_ALL, 0, 1, NULL},
2227 
2228 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2229 
2230 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2231 		R_RCS, D_ALL, 0, 8, NULL},
2232 
2233 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2234 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2235 
2236 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237 
2238 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2239 
2240 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 
2242 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2243 		D_BDW_PLUS, 0, 8, NULL},
2244 
2245 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2246 		D_BDW_PLUS, 0, 8, NULL},
2247 
2248 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2249 		D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2252 		D_BDW_PLUS, 0, 8, NULL},
2253 
2254 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2255 		D_BDW_PLUS, 0, 8, NULL},
2256 
2257 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258 
2259 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2260 
2261 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262 
2263 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2264 		D_ALL, 0, 8, NULL},
2265 
2266 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2267 
2268 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2271 		R_RCS, D_ALL, 0, 8, NULL},
2272 
2273 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2274 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2277 		0, 8, NULL},
2278 
2279 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2280 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2281 
2282 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2283 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284 
2285 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2286 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2287 
2288 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2289 		D_ALL, 0, 8, NULL},
2290 
2291 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2292 		D_ALL, 0, 8, NULL},
2293 
2294 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2295 		D_ALL, 0, 8, NULL},
2296 
2297 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2298 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2299 
2300 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2301 		D_BDW_PLUS, 0, 8, NULL},
2302 
2303 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2304 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2305 
2306 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2307 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2308 
2309 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2310 		R_RCS, D_ALL, 0, 8, NULL},
2311 
2312 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2313 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2314 
2315 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2316 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2317 
2318 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2319 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2320 
2321 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2322 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2323 
2324 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2325 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326 
2327 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2328 		R_RCS, D_ALL, 0, 8, NULL},
2329 
2330 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2331 		D_ALL, 0, 9, NULL},
2332 
2333 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2334 		ADDR_FIX_2(2, 4), 8, NULL},
2335 
2336 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2337 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2338 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2339 
2340 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2341 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2342 
2343 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2344 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2345 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2346 
2347 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2348 		D_BDW_PLUS, 0, 8, NULL},
2349 
2350 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2351 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2352 
2353 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2354 
2355 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2356 		1, NULL},
2357 
2358 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2359 		ADDR_FIX_1(1), 8, NULL},
2360 
2361 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2362 
2363 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2364 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2365 
2366 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2367 		ADDR_FIX_1(1), 8, NULL},
2368 
2369 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2370 
2371 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2372 
2373 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2374 		0, 8, NULL},
2375 
2376 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2377 		D_SKL_PLUS, 0, 8, NULL},
2378 
2379 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2380 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2381 
2382 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2383 		0, 16, NULL},
2384 
2385 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2386 		0, 16, NULL},
2387 
2388 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2389 		0, 16, NULL},
2390 
2391 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2392 
2393 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2394 		0, 16, NULL},
2395 
2396 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2397 		0, 16, NULL},
2398 
2399 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2400 		0, 16, NULL},
2401 
2402 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2403 		0, 8, NULL},
2404 
2405 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2406 		NULL},
2407 
2408 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2409 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2410 
2411 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2412 		R_VCS, D_ALL, 0, 12, NULL},
2413 
2414 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2415 		R_VCS, D_ALL, 0, 12, NULL},
2416 
2417 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2418 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2419 
2420 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2421 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2422 
2423 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2424 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2425 
2426 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2427 
2428 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2429 		R_VCS, D_ALL, 0, 12, NULL},
2430 
2431 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2432 		R_VCS, D_ALL, 0, 12, NULL},
2433 
2434 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2435 		R_VCS, D_ALL, 0, 12, NULL},
2436 
2437 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2438 		R_VCS, D_ALL, 0, 12, NULL},
2439 
2440 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2441 		R_VCS, D_ALL, 0, 12, NULL},
2442 
2443 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2444 		R_VCS, D_ALL, 0, 12, NULL},
2445 
2446 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2447 		R_VCS, D_ALL, 0, 6, NULL},
2448 
2449 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2450 		R_VCS, D_ALL, 0, 12, NULL},
2451 
2452 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2453 		R_VCS, D_ALL, 0, 12, NULL},
2454 
2455 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2456 		R_VCS, D_ALL, 0, 12, NULL},
2457 
2458 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2459 		R_VCS, D_ALL, 0, 12, NULL},
2460 
2461 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2462 		R_VCS, D_ALL, 0, 12, NULL},
2463 
2464 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2465 		R_VCS, D_ALL, 0, 12, NULL},
2466 
2467 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2468 		R_VCS, D_ALL, 0, 12, NULL},
2469 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2470 		R_VCS, D_ALL, 0, 12, NULL},
2471 
2472 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2473 		R_VCS, D_ALL, 0, 12, NULL},
2474 
2475 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2476 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2477 
2478 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2479 		R_VCS, D_ALL, 0, 12, NULL},
2480 
2481 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2482 		R_VCS, D_ALL, 0, 12, NULL},
2483 
2484 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2485 		R_VCS, D_ALL, 0, 12, NULL},
2486 
2487 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2488 		R_VCS, D_ALL, 0, 12, NULL},
2489 
2490 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2491 		R_VCS, D_ALL, 0, 12, NULL},
2492 
2493 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2494 		R_VCS, D_ALL, 0, 12, NULL},
2495 
2496 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2497 		R_VCS, D_ALL, 0, 12, NULL},
2498 
2499 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2500 		R_VCS, D_ALL, 0, 12, NULL},
2501 
2502 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2503 		R_VCS, D_ALL, 0, 12, NULL},
2504 
2505 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2506 		R_VCS, D_ALL, 0, 12, NULL},
2507 
2508 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2509 		R_VCS, D_ALL, 0, 12, NULL},
2510 
2511 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2512 		0, 16, NULL},
2513 
2514 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2515 
2516 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2517 
2518 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2519 		R_VCS, D_ALL, 0, 12, NULL},
2520 
2521 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2522 		R_VCS, D_ALL, 0, 12, NULL},
2523 
2524 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2525 		R_VCS, D_ALL, 0, 12, NULL},
2526 
2527 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2528 
2529 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2530 		0, 12, NULL},
2531 
2532 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2533 		0, 20, NULL},
2534 };
2535 
2536 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2537 {
2538 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2539 }
2540 
2541 /* call the cmd handler, and advance ip */
2542 static int cmd_parser_exec(struct parser_exec_state *s)
2543 {
2544 	struct intel_vgpu *vgpu = s->vgpu;
2545 	const struct cmd_info *info;
2546 	u32 cmd;
2547 	int ret = 0;
2548 
2549 	cmd = cmd_val(s, 0);
2550 
2551 	/* fastpath for MI_NOOP */
2552 	if (cmd == MI_NOOP)
2553 		info = &cmd_info[mi_noop_index];
2554 	else
2555 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2556 
2557 	if (info == NULL) {
2558 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2559 				cmd, get_opcode(cmd, s->ring_id),
2560 				(s->buf_addr_type == PPGTT_BUFFER) ?
2561 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2562 		return -EBADRQC;
2563 	}
2564 
2565 	s->info = info;
2566 
2567 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2568 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2569 			  s->workload, info->name);
2570 
2571 	if (info->handler) {
2572 		ret = info->handler(s);
2573 		if (ret < 0) {
2574 			gvt_vgpu_err("%s handler error\n", info->name);
2575 			return ret;
2576 		}
2577 	}
2578 
2579 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2580 		ret = cmd_advance_default(s);
2581 		if (ret) {
2582 			gvt_vgpu_err("%s IP advance error\n", info->name);
2583 			return ret;
2584 		}
2585 	}
2586 	return 0;
2587 }
2588 
2589 static inline bool gma_out_of_range(unsigned long gma,
2590 		unsigned long gma_head, unsigned int gma_tail)
2591 {
2592 	if (gma_tail >= gma_head)
2593 		return (gma < gma_head) || (gma > gma_tail);
2594 	else
2595 		return (gma > gma_tail) && (gma < gma_head);
2596 }
2597 
2598 /* Keep the consistent return type, e.g EBADRQC for unknown
2599  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2600  * works as the input of VM healthy status.
2601  */
2602 static int command_scan(struct parser_exec_state *s,
2603 		unsigned long rb_head, unsigned long rb_tail,
2604 		unsigned long rb_start, unsigned long rb_len)
2605 {
2606 
2607 	unsigned long gma_head, gma_tail, gma_bottom;
2608 	int ret = 0;
2609 	struct intel_vgpu *vgpu = s->vgpu;
2610 
2611 	gma_head = rb_start + rb_head;
2612 	gma_tail = rb_start + rb_tail;
2613 	gma_bottom = rb_start +  rb_len;
2614 
2615 	while (s->ip_gma != gma_tail) {
2616 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2617 			if (!(s->ip_gma >= rb_start) ||
2618 				!(s->ip_gma < gma_bottom)) {
2619 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2620 					"(base:0x%lx, bottom: 0x%lx)\n",
2621 					s->ip_gma, rb_start,
2622 					gma_bottom);
2623 				parser_exec_state_dump(s);
2624 				return -EFAULT;
2625 			}
2626 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2627 				gvt_vgpu_err("ip_gma %lx out of range."
2628 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2629 					s->ip_gma, rb_start,
2630 					rb_head, rb_tail);
2631 				parser_exec_state_dump(s);
2632 				break;
2633 			}
2634 		}
2635 		ret = cmd_parser_exec(s);
2636 		if (ret) {
2637 			gvt_vgpu_err("cmd parser error\n");
2638 			parser_exec_state_dump(s);
2639 			break;
2640 		}
2641 	}
2642 
2643 	return ret;
2644 }
2645 
2646 static int scan_workload(struct intel_vgpu_workload *workload)
2647 {
2648 	unsigned long gma_head, gma_tail, gma_bottom;
2649 	struct parser_exec_state s;
2650 	int ret = 0;
2651 
2652 	/* ring base is page aligned */
2653 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2654 		return -EINVAL;
2655 
2656 	gma_head = workload->rb_start + workload->rb_head;
2657 	gma_tail = workload->rb_start + workload->rb_tail;
2658 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2659 
2660 	s.buf_type = RING_BUFFER_INSTRUCTION;
2661 	s.buf_addr_type = GTT_BUFFER;
2662 	s.vgpu = workload->vgpu;
2663 	s.ring_id = workload->ring_id;
2664 	s.ring_start = workload->rb_start;
2665 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2666 	s.ring_head = gma_head;
2667 	s.ring_tail = gma_tail;
2668 	s.rb_va = workload->shadow_ring_buffer_va;
2669 	s.workload = workload;
2670 	s.is_ctx_wa = false;
2671 
2672 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2673 		gma_head == gma_tail)
2674 		return 0;
2675 
2676 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2677 		ret = -EINVAL;
2678 		goto out;
2679 	}
2680 
2681 	ret = ip_gma_set(&s, gma_head);
2682 	if (ret)
2683 		goto out;
2684 
2685 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2686 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2687 
2688 out:
2689 	return ret;
2690 }
2691 
2692 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2693 {
2694 
2695 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2696 	struct parser_exec_state s;
2697 	int ret = 0;
2698 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2699 				struct intel_vgpu_workload,
2700 				wa_ctx);
2701 
2702 	/* ring base is page aligned */
2703 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2704 					I915_GTT_PAGE_SIZE)))
2705 		return -EINVAL;
2706 
2707 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2708 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2709 			PAGE_SIZE);
2710 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2711 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2712 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2713 
2714 	s.buf_type = RING_BUFFER_INSTRUCTION;
2715 	s.buf_addr_type = GTT_BUFFER;
2716 	s.vgpu = workload->vgpu;
2717 	s.ring_id = workload->ring_id;
2718 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2719 	s.ring_size = ring_size;
2720 	s.ring_head = gma_head;
2721 	s.ring_tail = gma_tail;
2722 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2723 	s.workload = workload;
2724 	s.is_ctx_wa = true;
2725 
2726 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2727 		ret = -EINVAL;
2728 		goto out;
2729 	}
2730 
2731 	ret = ip_gma_set(&s, gma_head);
2732 	if (ret)
2733 		goto out;
2734 
2735 	ret = command_scan(&s, 0, ring_tail,
2736 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2737 out:
2738 	return ret;
2739 }
2740 
2741 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2742 {
2743 	struct intel_vgpu *vgpu = workload->vgpu;
2744 	struct intel_vgpu_submission *s = &vgpu->submission;
2745 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2746 	void *shadow_ring_buffer_va;
2747 	int ring_id = workload->ring_id;
2748 	int ret;
2749 
2750 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2751 
2752 	/* calculate workload ring buffer size */
2753 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2754 			workload->rb_head) % guest_rb_size;
2755 
2756 	gma_head = workload->rb_start + workload->rb_head;
2757 	gma_tail = workload->rb_start + workload->rb_tail;
2758 	gma_top = workload->rb_start + guest_rb_size;
2759 
2760 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2761 		void *p;
2762 
2763 		/* realloc the new ring buffer if needed */
2764 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2765 				GFP_KERNEL);
2766 		if (!p) {
2767 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2768 			return -ENOMEM;
2769 		}
2770 		s->ring_scan_buffer[ring_id] = p;
2771 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2772 	}
2773 
2774 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2775 
2776 	/* get shadow ring buffer va */
2777 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2778 
2779 	/* head > tail --> copy head <-> top */
2780 	if (gma_head > gma_tail) {
2781 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2782 				      gma_head, gma_top, shadow_ring_buffer_va);
2783 		if (ret < 0) {
2784 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2785 			return ret;
2786 		}
2787 		shadow_ring_buffer_va += ret;
2788 		gma_head = workload->rb_start;
2789 	}
2790 
2791 	/* copy head or start <-> tail */
2792 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2793 				shadow_ring_buffer_va);
2794 	if (ret < 0) {
2795 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2796 		return ret;
2797 	}
2798 	return 0;
2799 }
2800 
2801 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2802 {
2803 	int ret;
2804 	struct intel_vgpu *vgpu = workload->vgpu;
2805 
2806 	ret = shadow_workload_ring_buffer(workload);
2807 	if (ret) {
2808 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2809 		return ret;
2810 	}
2811 
2812 	ret = scan_workload(workload);
2813 	if (ret) {
2814 		gvt_vgpu_err("scan workload error\n");
2815 		return ret;
2816 	}
2817 	return 0;
2818 }
2819 
2820 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2821 {
2822 	int ctx_size = wa_ctx->indirect_ctx.size;
2823 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2824 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2825 					struct intel_vgpu_workload,
2826 					wa_ctx);
2827 	struct intel_vgpu *vgpu = workload->vgpu;
2828 	struct drm_i915_gem_object *obj;
2829 	int ret = 0;
2830 	void *map;
2831 
2832 	obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2833 				     roundup(ctx_size + CACHELINE_BYTES,
2834 					     PAGE_SIZE));
2835 	if (IS_ERR(obj))
2836 		return PTR_ERR(obj);
2837 
2838 	/* get the va of the shadow batch buffer */
2839 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2840 	if (IS_ERR(map)) {
2841 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2842 		ret = PTR_ERR(map);
2843 		goto put_obj;
2844 	}
2845 
2846 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2847 	if (ret) {
2848 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2849 		goto unmap_src;
2850 	}
2851 
2852 	ret = copy_gma_to_hva(workload->vgpu,
2853 				workload->vgpu->gtt.ggtt_mm,
2854 				guest_gma, guest_gma + ctx_size,
2855 				map);
2856 	if (ret < 0) {
2857 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2858 		goto unmap_src;
2859 	}
2860 
2861 	wa_ctx->indirect_ctx.obj = obj;
2862 	wa_ctx->indirect_ctx.shadow_va = map;
2863 	return 0;
2864 
2865 unmap_src:
2866 	i915_gem_object_unpin_map(obj);
2867 put_obj:
2868 	i915_gem_object_put(obj);
2869 	return ret;
2870 }
2871 
2872 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2873 {
2874 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2875 	unsigned char *bb_start_sva;
2876 
2877 	if (!wa_ctx->per_ctx.valid)
2878 		return 0;
2879 
2880 	per_ctx_start[0] = 0x18800001;
2881 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2882 
2883 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2884 				wa_ctx->indirect_ctx.size;
2885 
2886 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2887 
2888 	return 0;
2889 }
2890 
2891 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2892 {
2893 	int ret;
2894 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2895 					struct intel_vgpu_workload,
2896 					wa_ctx);
2897 	struct intel_vgpu *vgpu = workload->vgpu;
2898 
2899 	if (wa_ctx->indirect_ctx.size == 0)
2900 		return 0;
2901 
2902 	ret = shadow_indirect_ctx(wa_ctx);
2903 	if (ret) {
2904 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2905 		return ret;
2906 	}
2907 
2908 	combine_wa_ctx(wa_ctx);
2909 
2910 	ret = scan_wa_ctx(wa_ctx);
2911 	if (ret) {
2912 		gvt_vgpu_err("scan wa ctx error\n");
2913 		return ret;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2920 		unsigned int opcode, unsigned long rings)
2921 {
2922 	const struct cmd_info *info = NULL;
2923 	unsigned int ring;
2924 
2925 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2926 		info = find_cmd_entry(gvt, opcode, ring);
2927 		if (info)
2928 			break;
2929 	}
2930 	return info;
2931 }
2932 
2933 static int init_cmd_table(struct intel_gvt *gvt)
2934 {
2935 	int i;
2936 	struct cmd_entry *e;
2937 	const struct cmd_info *info;
2938 	unsigned int gen_type;
2939 
2940 	gen_type = intel_gvt_get_device_type(gvt);
2941 
2942 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2943 		if (!(cmd_info[i].devices & gen_type))
2944 			continue;
2945 
2946 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2947 		if (!e)
2948 			return -ENOMEM;
2949 
2950 		e->info = &cmd_info[i];
2951 		info = find_cmd_entry_any_ring(gvt,
2952 				e->info->opcode, e->info->rings);
2953 		if (info) {
2954 			gvt_err("%s %s duplicated\n", e->info->name,
2955 					info->name);
2956 			kfree(e);
2957 			return -EEXIST;
2958 		}
2959 		if (cmd_info[i].opcode == OP_MI_NOOP)
2960 			mi_noop_index = i;
2961 
2962 		INIT_HLIST_NODE(&e->hlist);
2963 		add_cmd_entry(gvt, e);
2964 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2965 				e->info->name, e->info->opcode, e->info->flag,
2966 				e->info->devices, e->info->rings);
2967 	}
2968 	return 0;
2969 }
2970 
2971 static void clean_cmd_table(struct intel_gvt *gvt)
2972 {
2973 	struct hlist_node *tmp;
2974 	struct cmd_entry *e;
2975 	int i;
2976 
2977 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2978 		kfree(e);
2979 
2980 	hash_init(gvt->cmd_table);
2981 }
2982 
2983 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2984 {
2985 	clean_cmd_table(gvt);
2986 }
2987 
2988 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2989 {
2990 	int ret;
2991 
2992 	ret = init_cmd_table(gvt);
2993 	if (ret) {
2994 		intel_gvt_clean_cmd_parser(gvt);
2995 		return ret;
2996 	}
2997 	return 0;
2998 }
2999