1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_engine_regs.h" 41 #include "gt/intel_gpu_commands.h" 42 #include "gt/intel_gt_regs.h" 43 #include "gt/intel_lrc.h" 44 #include "gt/intel_ring.h" 45 #include "gt/intel_gt_requests.h" 46 #include "gt/shmem_utils.h" 47 #include "gvt.h" 48 #include "i915_pvinfo.h" 49 #include "trace.h" 50 51 #include "gem/i915_gem_context.h" 52 #include "gem/i915_gem_pm.h" 53 #include "gt/intel_context.h" 54 55 #define INVALID_OP (~0U) 56 57 #define OP_LEN_MI 9 58 #define OP_LEN_2D 10 59 #define OP_LEN_3D_MEDIA 16 60 #define OP_LEN_MFX_VC 16 61 #define OP_LEN_VEBOX 16 62 63 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 64 65 struct sub_op_bits { 66 int hi; 67 int low; 68 }; 69 struct decode_info { 70 const char *name; 71 int op_len; 72 int nr_sub_op; 73 const struct sub_op_bits *sub_op; 74 }; 75 76 #define MAX_CMD_BUDGET 0x7fffffff 77 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 78 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 79 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 80 81 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 82 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 83 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 84 85 /* Render Command Map */ 86 87 /* MI_* command Opcode (28:23) */ 88 #define OP_MI_NOOP 0x0 89 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 90 #define OP_MI_USER_INTERRUPT 0x2 91 #define OP_MI_WAIT_FOR_EVENT 0x3 92 #define OP_MI_FLUSH 0x4 93 #define OP_MI_ARB_CHECK 0x5 94 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 95 #define OP_MI_REPORT_HEAD 0x7 96 #define OP_MI_ARB_ON_OFF 0x8 97 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 98 #define OP_MI_BATCH_BUFFER_END 0xA 99 #define OP_MI_SUSPEND_FLUSH 0xB 100 #define OP_MI_PREDICATE 0xC /* IVB+ */ 101 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 102 #define OP_MI_SET_APPID 0xE /* IVB+ */ 103 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 104 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 105 #define OP_MI_DISPLAY_FLIP 0x14 106 #define OP_MI_SEMAPHORE_MBOX 0x16 107 #define OP_MI_SET_CONTEXT 0x18 108 #define OP_MI_MATH 0x1A 109 #define OP_MI_URB_CLEAR 0x19 110 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 111 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 112 113 #define OP_MI_STORE_DATA_IMM 0x20 114 #define OP_MI_STORE_DATA_INDEX 0x21 115 #define OP_MI_LOAD_REGISTER_IMM 0x22 116 #define OP_MI_UPDATE_GTT 0x23 117 #define OP_MI_STORE_REGISTER_MEM 0x24 118 #define OP_MI_FLUSH_DW 0x26 119 #define OP_MI_CLFLUSH 0x27 120 #define OP_MI_REPORT_PERF_COUNT 0x28 121 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 122 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 123 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 124 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 125 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 126 #define OP_MI_2E 0x2E /* BDW+ */ 127 #define OP_MI_2F 0x2F /* BDW+ */ 128 #define OP_MI_BATCH_BUFFER_START 0x31 129 130 /* Bit definition for dword 0 */ 131 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 132 133 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 134 135 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 136 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 137 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 138 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 139 140 /* 2D command: Opcode (28:22) */ 141 #define OP_2D(x) ((2<<7) | x) 142 143 #define OP_XY_SETUP_BLT OP_2D(0x1) 144 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 145 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 146 #define OP_XY_PIXEL_BLT OP_2D(0x24) 147 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 148 #define OP_XY_TEXT_BLT OP_2D(0x26) 149 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 150 #define OP_XY_COLOR_BLT OP_2D(0x50) 151 #define OP_XY_PAT_BLT OP_2D(0x51) 152 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 153 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 154 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 155 #define OP_XY_FULL_BLT OP_2D(0x55) 156 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 157 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 158 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 159 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 160 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 161 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 162 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 163 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 164 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 165 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 166 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 167 168 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 169 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 170 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 171 172 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 173 174 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 175 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 176 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 177 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 178 179 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 180 181 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 182 183 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 184 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 185 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 186 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 187 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 188 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 189 190 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 191 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 192 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 193 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 194 195 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 196 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 197 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 198 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 199 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 200 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 201 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 202 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 203 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 204 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 205 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 206 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 207 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 208 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 209 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 210 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 211 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 212 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 213 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 214 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 215 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 216 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 217 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 218 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 219 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 220 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 221 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 222 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 223 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 224 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 225 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 226 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 237 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 238 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 239 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 240 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 241 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 242 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 243 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 244 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 245 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 246 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 247 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 248 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 249 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 250 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 251 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 252 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 253 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 254 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 255 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 256 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 257 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 258 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 259 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 260 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 261 262 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 263 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 264 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 265 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 266 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 267 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 268 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 269 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 270 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 271 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 272 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 273 274 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 275 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 276 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 277 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 278 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 279 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 280 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 281 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 282 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 283 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 284 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 285 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 286 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 287 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 288 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 294 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 295 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 296 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 297 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 298 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 299 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 300 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 301 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 302 303 /* VCCP Command Parser */ 304 305 /* 306 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 307 * git://anongit.freedesktop.org/vaapi/intel-driver 308 * src/i965_defines.h 309 * 310 */ 311 312 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 313 (3 << 13 | \ 314 (pipeline) << 11 | \ 315 (op) << 8 | \ 316 (sub_opa) << 5 | \ 317 (sub_opb)) 318 319 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 320 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 321 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 322 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 323 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 324 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 325 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 326 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 327 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 328 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 329 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 330 331 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 332 333 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 334 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 335 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 336 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 337 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 338 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 339 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 340 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 341 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 342 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 343 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 344 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 345 346 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 347 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 348 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 349 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 350 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 351 352 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 353 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 354 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 355 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 356 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 357 358 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 359 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 360 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 361 362 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 363 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 364 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 365 366 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 367 (3 << 13 | \ 368 (pipeline) << 11 | \ 369 (op) << 8 | \ 370 (sub_opa) << 5 | \ 371 (sub_opb)) 372 373 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 374 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 375 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 376 377 struct parser_exec_state; 378 379 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 380 381 #define GVT_CMD_HASH_BITS 7 382 383 /* which DWords need address fix */ 384 #define ADDR_FIX_1(x1) (1 << (x1)) 385 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 386 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 387 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 388 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 389 390 #define DWORD_FIELD(dword, end, start) \ 391 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 392 393 #define OP_LENGTH_BIAS 2 394 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 395 396 static int gvt_check_valid_cmd_length(int len, int valid_len) 397 { 398 if (valid_len != len) { 399 gvt_err("len is not valid: len=%u valid_len=%u\n", 400 len, valid_len); 401 return -EFAULT; 402 } 403 return 0; 404 } 405 406 struct cmd_info { 407 const char *name; 408 u32 opcode; 409 410 #define F_LEN_MASK 3U 411 #define F_LEN_CONST 1U 412 #define F_LEN_VAR 0U 413 /* value is const although LEN maybe variable */ 414 #define F_LEN_VAR_FIXED (1<<1) 415 416 /* 417 * command has its own ip advance logic 418 * e.g. MI_BATCH_START, MI_BATCH_END 419 */ 420 #define F_IP_ADVANCE_CUSTOM (1<<2) 421 u32 flag; 422 423 #define R_RCS BIT(RCS0) 424 #define R_VCS1 BIT(VCS0) 425 #define R_VCS2 BIT(VCS1) 426 #define R_VCS (R_VCS1 | R_VCS2) 427 #define R_BCS BIT(BCS0) 428 #define R_VECS BIT(VECS0) 429 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 430 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 431 intel_engine_mask_t rings; 432 433 /* devices that support this cmd: SNB/IVB/HSW/... */ 434 u16 devices; 435 436 /* which DWords are address that need fix up. 437 * bit 0 means a 32-bit non address operand in command 438 * bit 1 means address operand, which could be 32-bit 439 * or 64-bit depending on different architectures.( 440 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 441 * No matter the address length, each address only takes 442 * one bit in the bitmap. 443 */ 444 u16 addr_bitmap; 445 446 /* flag == F_LEN_CONST : command length 447 * flag == F_LEN_VAR : length bias bits 448 * Note: length is in DWord 449 */ 450 u32 len; 451 452 parser_cmd_handler handler; 453 454 /* valid length in DWord */ 455 u32 valid_len; 456 }; 457 458 struct cmd_entry { 459 struct hlist_node hlist; 460 const struct cmd_info *info; 461 }; 462 463 enum { 464 RING_BUFFER_INSTRUCTION, 465 BATCH_BUFFER_INSTRUCTION, 466 BATCH_BUFFER_2ND_LEVEL, 467 RING_BUFFER_CTX, 468 }; 469 470 enum { 471 GTT_BUFFER, 472 PPGTT_BUFFER 473 }; 474 475 struct parser_exec_state { 476 struct intel_vgpu *vgpu; 477 const struct intel_engine_cs *engine; 478 479 int buf_type; 480 481 /* batch buffer address type */ 482 int buf_addr_type; 483 484 /* graphics memory address of ring buffer start */ 485 unsigned long ring_start; 486 unsigned long ring_size; 487 unsigned long ring_head; 488 unsigned long ring_tail; 489 490 /* instruction graphics memory address */ 491 unsigned long ip_gma; 492 493 /* mapped va of the instr_gma */ 494 void *ip_va; 495 void *rb_va; 496 497 void *ret_bb_va; 498 /* next instruction when return from batch buffer to ring buffer */ 499 unsigned long ret_ip_gma_ring; 500 501 /* next instruction when return from 2nd batch buffer to batch buffer */ 502 unsigned long ret_ip_gma_bb; 503 504 /* batch buffer address type (GTT or PPGTT) 505 * used when ret from 2nd level batch buffer 506 */ 507 int saved_buf_addr_type; 508 bool is_ctx_wa; 509 bool is_init_ctx; 510 511 const struct cmd_info *info; 512 513 struct intel_vgpu_workload *workload; 514 }; 515 516 #define gmadr_dw_number(s) \ 517 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 518 519 static unsigned long bypass_scan_mask = 0; 520 521 /* ring ALL, type = 0 */ 522 static const struct sub_op_bits sub_op_mi[] = { 523 {31, 29}, 524 {28, 23}, 525 }; 526 527 static const struct decode_info decode_info_mi = { 528 "MI", 529 OP_LEN_MI, 530 ARRAY_SIZE(sub_op_mi), 531 sub_op_mi, 532 }; 533 534 /* ring RCS, command type 2 */ 535 static const struct sub_op_bits sub_op_2d[] = { 536 {31, 29}, 537 {28, 22}, 538 }; 539 540 static const struct decode_info decode_info_2d = { 541 "2D", 542 OP_LEN_2D, 543 ARRAY_SIZE(sub_op_2d), 544 sub_op_2d, 545 }; 546 547 /* ring RCS, command type 3 */ 548 static const struct sub_op_bits sub_op_3d_media[] = { 549 {31, 29}, 550 {28, 27}, 551 {26, 24}, 552 {23, 16}, 553 }; 554 555 static const struct decode_info decode_info_3d_media = { 556 "3D_Media", 557 OP_LEN_3D_MEDIA, 558 ARRAY_SIZE(sub_op_3d_media), 559 sub_op_3d_media, 560 }; 561 562 /* ring VCS, command type 3 */ 563 static const struct sub_op_bits sub_op_mfx_vc[] = { 564 {31, 29}, 565 {28, 27}, 566 {26, 24}, 567 {23, 21}, 568 {20, 16}, 569 }; 570 571 static const struct decode_info decode_info_mfx_vc = { 572 "MFX_VC", 573 OP_LEN_MFX_VC, 574 ARRAY_SIZE(sub_op_mfx_vc), 575 sub_op_mfx_vc, 576 }; 577 578 /* ring VECS, command type 3 */ 579 static const struct sub_op_bits sub_op_vebox[] = { 580 {31, 29}, 581 {28, 27}, 582 {26, 24}, 583 {23, 21}, 584 {20, 16}, 585 }; 586 587 static const struct decode_info decode_info_vebox = { 588 "VEBOX", 589 OP_LEN_VEBOX, 590 ARRAY_SIZE(sub_op_vebox), 591 sub_op_vebox, 592 }; 593 594 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 595 [RCS0] = { 596 &decode_info_mi, 597 NULL, 598 NULL, 599 &decode_info_3d_media, 600 NULL, 601 NULL, 602 NULL, 603 NULL, 604 }, 605 606 [VCS0] = { 607 &decode_info_mi, 608 NULL, 609 NULL, 610 &decode_info_mfx_vc, 611 NULL, 612 NULL, 613 NULL, 614 NULL, 615 }, 616 617 [BCS0] = { 618 &decode_info_mi, 619 NULL, 620 &decode_info_2d, 621 NULL, 622 NULL, 623 NULL, 624 NULL, 625 NULL, 626 }, 627 628 [VECS0] = { 629 &decode_info_mi, 630 NULL, 631 NULL, 632 &decode_info_vebox, 633 NULL, 634 NULL, 635 NULL, 636 NULL, 637 }, 638 639 [VCS1] = { 640 &decode_info_mi, 641 NULL, 642 NULL, 643 &decode_info_mfx_vc, 644 NULL, 645 NULL, 646 NULL, 647 NULL, 648 }, 649 }; 650 651 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 652 { 653 const struct decode_info *d_info; 654 655 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 656 if (d_info == NULL) 657 return INVALID_OP; 658 659 return cmd >> (32 - d_info->op_len); 660 } 661 662 static inline const struct cmd_info * 663 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 664 const struct intel_engine_cs *engine) 665 { 666 struct cmd_entry *e; 667 668 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 669 if (opcode == e->info->opcode && 670 e->info->rings & engine->mask) 671 return e->info; 672 } 673 return NULL; 674 } 675 676 static inline const struct cmd_info * 677 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 678 const struct intel_engine_cs *engine) 679 { 680 u32 opcode; 681 682 opcode = get_opcode(cmd, engine); 683 if (opcode == INVALID_OP) 684 return NULL; 685 686 return find_cmd_entry(gvt, opcode, engine); 687 } 688 689 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 690 { 691 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 692 } 693 694 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 695 { 696 const struct decode_info *d_info; 697 int i; 698 699 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 700 if (d_info == NULL) 701 return; 702 703 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 704 cmd >> (32 - d_info->op_len), d_info->name); 705 706 for (i = 0; i < d_info->nr_sub_op; i++) 707 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 708 d_info->sub_op[i].low)); 709 710 pr_err("\n"); 711 } 712 713 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 714 { 715 return s->ip_va + (index << 2); 716 } 717 718 static inline u32 cmd_val(struct parser_exec_state *s, int index) 719 { 720 return *cmd_ptr(s, index); 721 } 722 723 static inline bool is_init_ctx(struct parser_exec_state *s) 724 { 725 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 726 } 727 728 static void parser_exec_state_dump(struct parser_exec_state *s) 729 { 730 int cnt = 0; 731 int i; 732 733 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 734 " ring_head(%08lx) ring_tail(%08lx)\n", 735 s->vgpu->id, s->engine->name, 736 s->ring_start, s->ring_start + s->ring_size, 737 s->ring_head, s->ring_tail); 738 739 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 740 s->buf_type == RING_BUFFER_INSTRUCTION ? 741 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 742 "CTX_BUFFER" : "BATCH_BUFFER"), 743 s->buf_addr_type == GTT_BUFFER ? 744 "GTT" : "PPGTT", s->ip_gma); 745 746 if (s->ip_va == NULL) { 747 gvt_dbg_cmd(" ip_va(NULL)"); 748 return; 749 } 750 751 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 752 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 753 cmd_val(s, 2), cmd_val(s, 3)); 754 755 print_opcode(cmd_val(s, 0), s->engine); 756 757 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 758 759 while (cnt < 1024) { 760 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 761 for (i = 0; i < 8; i++) 762 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 763 gvt_dbg_cmd("\n"); 764 765 s->ip_va += 8 * sizeof(u32); 766 cnt += 8; 767 } 768 } 769 770 static inline void update_ip_va(struct parser_exec_state *s) 771 { 772 unsigned long len = 0; 773 774 if (WARN_ON(s->ring_head == s->ring_tail)) 775 return; 776 777 if (s->buf_type == RING_BUFFER_INSTRUCTION || 778 s->buf_type == RING_BUFFER_CTX) { 779 unsigned long ring_top = s->ring_start + s->ring_size; 780 781 if (s->ring_head > s->ring_tail) { 782 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 783 len = (s->ip_gma - s->ring_head); 784 else if (s->ip_gma >= s->ring_start && 785 s->ip_gma <= s->ring_tail) 786 len = (ring_top - s->ring_head) + 787 (s->ip_gma - s->ring_start); 788 } else 789 len = (s->ip_gma - s->ring_head); 790 791 s->ip_va = s->rb_va + len; 792 } else {/* shadow batch buffer */ 793 s->ip_va = s->ret_bb_va; 794 } 795 } 796 797 static inline int ip_gma_set(struct parser_exec_state *s, 798 unsigned long ip_gma) 799 { 800 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 801 802 s->ip_gma = ip_gma; 803 update_ip_va(s); 804 return 0; 805 } 806 807 static inline int ip_gma_advance(struct parser_exec_state *s, 808 unsigned int dw_len) 809 { 810 s->ip_gma += (dw_len << 2); 811 812 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 813 if (s->ip_gma >= s->ring_start + s->ring_size) 814 s->ip_gma -= s->ring_size; 815 update_ip_va(s); 816 } else { 817 s->ip_va += (dw_len << 2); 818 } 819 820 return 0; 821 } 822 823 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 824 { 825 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 826 return info->len; 827 else 828 return (cmd & ((1U << info->len) - 1)) + 2; 829 return 0; 830 } 831 832 static inline int cmd_length(struct parser_exec_state *s) 833 { 834 return get_cmd_length(s->info, cmd_val(s, 0)); 835 } 836 837 /* do not remove this, some platform may need clflush here */ 838 #define patch_value(s, addr, val) do { \ 839 *addr = val; \ 840 } while (0) 841 842 static inline bool is_mocs_mmio(unsigned int offset) 843 { 844 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 845 ((offset >= 0xb020) && (offset <= 0xb0a0)); 846 } 847 848 static int is_cmd_update_pdps(unsigned int offset, 849 struct parser_exec_state *s) 850 { 851 u32 base = s->workload->engine->mmio_base; 852 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 853 } 854 855 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 856 unsigned int offset, unsigned int index) 857 { 858 struct intel_vgpu *vgpu = s->vgpu; 859 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 860 struct intel_vgpu_mm *mm; 861 u64 pdps[GEN8_3LVL_PDPES]; 862 863 if (shadow_mm->ppgtt_mm.root_entry_type == 864 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 865 pdps[0] = (u64)cmd_val(s, 2) << 32; 866 pdps[0] |= cmd_val(s, 4); 867 868 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 869 if (!mm) { 870 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 871 return -EINVAL; 872 } 873 intel_vgpu_mm_get(mm); 874 list_add_tail(&mm->ppgtt_mm.link, 875 &s->workload->lri_shadow_mm); 876 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 877 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 878 } else { 879 /* Currently all guests use PML4 table and now can't 880 * have a guest with 3-level table but uses LRI for 881 * PPGTT update. So this is simply un-testable. */ 882 GEM_BUG_ON(1); 883 gvt_vgpu_err("invalid shared shadow vm type\n"); 884 return -EINVAL; 885 } 886 return 0; 887 } 888 889 static int cmd_reg_handler(struct parser_exec_state *s, 890 unsigned int offset, unsigned int index, char *cmd) 891 { 892 struct intel_vgpu *vgpu = s->vgpu; 893 struct intel_gvt *gvt = vgpu->gvt; 894 u32 ctx_sr_ctl; 895 u32 *vreg, vreg_old; 896 897 if (offset + 4 > gvt->device_info.mmio_size) { 898 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 899 cmd, offset); 900 return -EFAULT; 901 } 902 903 if (is_init_ctx(s)) { 904 struct intel_gvt_mmio_info *mmio_info; 905 906 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 907 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 908 if (mmio_info && mmio_info->write) 909 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 910 return 0; 911 } 912 913 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 914 gvt_vgpu_err("%s access to non-render register (%x)\n", 915 cmd, offset); 916 return -EBADRQC; 917 } 918 919 if (!strncmp(cmd, "srm", 3) || 920 !strncmp(cmd, "lrm", 3)) { 921 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 922 offset == 0x21f0 || 923 (IS_BROADWELL(gvt->gt->i915) && 924 offset == i915_mmio_reg_offset(INSTPM))) 925 return 0; 926 else { 927 gvt_vgpu_err("%s access to register (%x)\n", 928 cmd, offset); 929 return -EPERM; 930 } 931 } 932 933 if (!strncmp(cmd, "lrr-src", 7) || 934 !strncmp(cmd, "lrr-dst", 7)) { 935 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 936 return 0; 937 else { 938 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 939 return -EPERM; 940 } 941 } 942 943 if (!strncmp(cmd, "pipe_ctrl", 9)) { 944 /* TODO: add LRI POST logic here */ 945 return 0; 946 } 947 948 if (strncmp(cmd, "lri", 3)) 949 return -EPERM; 950 951 /* below are all lri handlers */ 952 vreg = &vgpu_vreg(s->vgpu, offset); 953 954 if (is_cmd_update_pdps(offset, s) && 955 cmd_pdp_mmio_update_handler(s, offset, index)) 956 return -EINVAL; 957 958 if (offset == i915_mmio_reg_offset(DERRMR) || 959 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 960 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 961 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 962 } 963 964 if (is_mocs_mmio(offset)) 965 *vreg = cmd_val(s, index + 1); 966 967 vreg_old = *vreg; 968 969 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 970 u32 cmdval_new, cmdval; 971 struct intel_gvt_mmio_info *mmio_info; 972 973 cmdval = cmd_val(s, index + 1); 974 975 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 976 if (!mmio_info) { 977 cmdval_new = cmdval; 978 } else { 979 u64 ro_mask = mmio_info->ro_mask; 980 int ret; 981 982 if (likely(!ro_mask)) 983 ret = mmio_info->write(s->vgpu, offset, 984 &cmdval, 4); 985 else { 986 gvt_vgpu_err("try to write RO reg %x\n", 987 offset); 988 ret = -EBADRQC; 989 } 990 if (ret) 991 return ret; 992 cmdval_new = *vreg; 993 } 994 if (cmdval_new != cmdval) 995 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 996 } 997 998 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 999 *vreg = vreg_old; 1000 1001 /* TODO 1002 * In order to let workload with inhibit context to generate 1003 * correct image data into memory, vregs values will be loaded to 1004 * hw via LRIs in the workload with inhibit context. But as 1005 * indirect context is loaded prior to LRIs in workload, we don't 1006 * want reg values specified in indirect context overwritten by 1007 * LRIs in workloads. So, when scanning an indirect context, we 1008 * update reg values in it into vregs, so LRIs in workload with 1009 * inhibit context will restore with correct values 1010 */ 1011 if (GRAPHICS_VER(s->engine->i915) == 9 && 1012 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1013 !strncmp(cmd, "lri", 3)) { 1014 intel_gvt_read_gpa(s->vgpu, 1015 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1016 /* check inhibit context */ 1017 if (ctx_sr_ctl & 1) { 1018 u32 data = cmd_val(s, index + 1); 1019 1020 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1021 intel_vgpu_mask_mmio_write(vgpu, 1022 offset, &data, 4); 1023 else 1024 vgpu_vreg(vgpu, offset) = data; 1025 } 1026 } 1027 1028 return 0; 1029 } 1030 1031 #define cmd_reg(s, i) \ 1032 (cmd_val(s, i) & GENMASK(22, 2)) 1033 1034 #define cmd_reg_inhibit(s, i) \ 1035 (cmd_val(s, i) & GENMASK(22, 18)) 1036 1037 #define cmd_gma(s, i) \ 1038 (cmd_val(s, i) & GENMASK(31, 2)) 1039 1040 #define cmd_gma_hi(s, i) \ 1041 (cmd_val(s, i) & GENMASK(15, 0)) 1042 1043 static int cmd_handler_lri(struct parser_exec_state *s) 1044 { 1045 int i, ret = 0; 1046 int cmd_len = cmd_length(s); 1047 1048 for (i = 1; i < cmd_len; i += 2) { 1049 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1050 if (s->engine->id == BCS0 && 1051 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1052 ret |= 0; 1053 else 1054 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1055 } 1056 if (ret) 1057 break; 1058 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1059 if (ret) 1060 break; 1061 } 1062 return ret; 1063 } 1064 1065 static int cmd_handler_lrr(struct parser_exec_state *s) 1066 { 1067 int i, ret = 0; 1068 int cmd_len = cmd_length(s); 1069 1070 for (i = 1; i < cmd_len; i += 2) { 1071 if (IS_BROADWELL(s->engine->i915)) 1072 ret |= ((cmd_reg_inhibit(s, i) || 1073 (cmd_reg_inhibit(s, i + 1)))) ? 1074 -EBADRQC : 0; 1075 if (ret) 1076 break; 1077 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1078 if (ret) 1079 break; 1080 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1081 if (ret) 1082 break; 1083 } 1084 return ret; 1085 } 1086 1087 static inline int cmd_address_audit(struct parser_exec_state *s, 1088 unsigned long guest_gma, int op_size, bool index_mode); 1089 1090 static int cmd_handler_lrm(struct parser_exec_state *s) 1091 { 1092 struct intel_gvt *gvt = s->vgpu->gvt; 1093 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1094 unsigned long gma; 1095 int i, ret = 0; 1096 int cmd_len = cmd_length(s); 1097 1098 for (i = 1; i < cmd_len;) { 1099 if (IS_BROADWELL(s->engine->i915)) 1100 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1101 if (ret) 1102 break; 1103 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1104 if (ret) 1105 break; 1106 if (cmd_val(s, 0) & (1 << 22)) { 1107 gma = cmd_gma(s, i + 1); 1108 if (gmadr_bytes == 8) 1109 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1110 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1111 if (ret) 1112 break; 1113 } 1114 i += gmadr_dw_number(s) + 1; 1115 } 1116 return ret; 1117 } 1118 1119 static int cmd_handler_srm(struct parser_exec_state *s) 1120 { 1121 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1122 unsigned long gma; 1123 int i, ret = 0; 1124 int cmd_len = cmd_length(s); 1125 1126 for (i = 1; i < cmd_len;) { 1127 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1128 if (ret) 1129 break; 1130 if (cmd_val(s, 0) & (1 << 22)) { 1131 gma = cmd_gma(s, i + 1); 1132 if (gmadr_bytes == 8) 1133 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1134 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1135 if (ret) 1136 break; 1137 } 1138 i += gmadr_dw_number(s) + 1; 1139 } 1140 return ret; 1141 } 1142 1143 struct cmd_interrupt_event { 1144 int pipe_control_notify; 1145 int mi_flush_dw; 1146 int mi_user_interrupt; 1147 }; 1148 1149 static const struct cmd_interrupt_event cmd_interrupt_events[] = { 1150 [RCS0] = { 1151 .pipe_control_notify = RCS_PIPE_CONTROL, 1152 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1153 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1154 }, 1155 [BCS0] = { 1156 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1157 .mi_flush_dw = BCS_MI_FLUSH_DW, 1158 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1159 }, 1160 [VCS0] = { 1161 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1162 .mi_flush_dw = VCS_MI_FLUSH_DW, 1163 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1164 }, 1165 [VCS1] = { 1166 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1167 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1168 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1169 }, 1170 [VECS0] = { 1171 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1172 .mi_flush_dw = VECS_MI_FLUSH_DW, 1173 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1174 }, 1175 }; 1176 1177 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1178 { 1179 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1180 unsigned long gma; 1181 bool index_mode = false; 1182 unsigned int post_sync; 1183 int ret = 0; 1184 u32 hws_pga, val; 1185 1186 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1187 1188 /* LRI post sync */ 1189 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1190 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1191 /* post sync */ 1192 else if (post_sync) { 1193 if (post_sync == 2) 1194 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1195 else if (post_sync == 3) 1196 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1197 else if (post_sync == 1) { 1198 /* check ggtt*/ 1199 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1200 gma = cmd_val(s, 2) & GENMASK(31, 3); 1201 if (gmadr_bytes == 8) 1202 gma |= (cmd_gma_hi(s, 3)) << 32; 1203 /* Store Data Index */ 1204 if (cmd_val(s, 1) & (1 << 21)) 1205 index_mode = true; 1206 ret |= cmd_address_audit(s, gma, sizeof(u64), 1207 index_mode); 1208 if (ret) 1209 return ret; 1210 if (index_mode) { 1211 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1212 gma = hws_pga + gma; 1213 patch_value(s, cmd_ptr(s, 2), gma); 1214 val = cmd_val(s, 1) & (~(1 << 21)); 1215 patch_value(s, cmd_ptr(s, 1), val); 1216 } 1217 } 1218 } 1219 } 1220 1221 if (ret) 1222 return ret; 1223 1224 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1225 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1226 s->workload->pending_events); 1227 return 0; 1228 } 1229 1230 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1231 { 1232 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1233 s->workload->pending_events); 1234 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1235 return 0; 1236 } 1237 1238 static int cmd_advance_default(struct parser_exec_state *s) 1239 { 1240 return ip_gma_advance(s, cmd_length(s)); 1241 } 1242 1243 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1244 { 1245 int ret; 1246 1247 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1248 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1249 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1250 s->buf_addr_type = s->saved_buf_addr_type; 1251 } else if (s->buf_type == RING_BUFFER_CTX) { 1252 ret = ip_gma_set(s, s->ring_tail); 1253 } else { 1254 s->buf_type = RING_BUFFER_INSTRUCTION; 1255 s->buf_addr_type = GTT_BUFFER; 1256 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1257 s->ret_ip_gma_ring -= s->ring_size; 1258 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1259 } 1260 return ret; 1261 } 1262 1263 struct mi_display_flip_command_info { 1264 int pipe; 1265 int plane; 1266 int event; 1267 i915_reg_t stride_reg; 1268 i915_reg_t ctrl_reg; 1269 i915_reg_t surf_reg; 1270 u64 stride_val; 1271 u64 tile_val; 1272 u64 surf_val; 1273 bool async_flip; 1274 }; 1275 1276 struct plane_code_mapping { 1277 int pipe; 1278 int plane; 1279 int event; 1280 }; 1281 1282 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1283 struct mi_display_flip_command_info *info) 1284 { 1285 struct drm_i915_private *dev_priv = s->engine->i915; 1286 struct plane_code_mapping gen8_plane_code[] = { 1287 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1288 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1289 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1290 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1291 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1292 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1293 }; 1294 u32 dword0, dword1, dword2; 1295 u32 v; 1296 1297 dword0 = cmd_val(s, 0); 1298 dword1 = cmd_val(s, 1); 1299 dword2 = cmd_val(s, 2); 1300 1301 v = (dword0 & GENMASK(21, 19)) >> 19; 1302 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1303 return -EBADRQC; 1304 1305 info->pipe = gen8_plane_code[v].pipe; 1306 info->plane = gen8_plane_code[v].plane; 1307 info->event = gen8_plane_code[v].event; 1308 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1309 info->tile_val = (dword1 & 0x1); 1310 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1311 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1312 1313 if (info->plane == PLANE_A) { 1314 info->ctrl_reg = DSPCNTR(info->pipe); 1315 info->stride_reg = DSPSTRIDE(info->pipe); 1316 info->surf_reg = DSPSURF(info->pipe); 1317 } else if (info->plane == PLANE_B) { 1318 info->ctrl_reg = SPRCTL(info->pipe); 1319 info->stride_reg = SPRSTRIDE(info->pipe); 1320 info->surf_reg = SPRSURF(info->pipe); 1321 } else { 1322 drm_WARN_ON(&dev_priv->drm, 1); 1323 return -EBADRQC; 1324 } 1325 return 0; 1326 } 1327 1328 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1329 struct mi_display_flip_command_info *info) 1330 { 1331 struct drm_i915_private *dev_priv = s->engine->i915; 1332 struct intel_vgpu *vgpu = s->vgpu; 1333 u32 dword0 = cmd_val(s, 0); 1334 u32 dword1 = cmd_val(s, 1); 1335 u32 dword2 = cmd_val(s, 2); 1336 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1337 1338 info->plane = PRIMARY_PLANE; 1339 1340 switch (plane) { 1341 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1342 info->pipe = PIPE_A; 1343 info->event = PRIMARY_A_FLIP_DONE; 1344 break; 1345 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1346 info->pipe = PIPE_B; 1347 info->event = PRIMARY_B_FLIP_DONE; 1348 break; 1349 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1350 info->pipe = PIPE_C; 1351 info->event = PRIMARY_C_FLIP_DONE; 1352 break; 1353 1354 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1355 info->pipe = PIPE_A; 1356 info->event = SPRITE_A_FLIP_DONE; 1357 info->plane = SPRITE_PLANE; 1358 break; 1359 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1360 info->pipe = PIPE_B; 1361 info->event = SPRITE_B_FLIP_DONE; 1362 info->plane = SPRITE_PLANE; 1363 break; 1364 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1365 info->pipe = PIPE_C; 1366 info->event = SPRITE_C_FLIP_DONE; 1367 info->plane = SPRITE_PLANE; 1368 break; 1369 1370 default: 1371 gvt_vgpu_err("unknown plane code %d\n", plane); 1372 return -EBADRQC; 1373 } 1374 1375 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1376 info->tile_val = (dword1 & GENMASK(2, 0)); 1377 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1378 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1379 1380 info->ctrl_reg = DSPCNTR(info->pipe); 1381 info->stride_reg = DSPSTRIDE(info->pipe); 1382 info->surf_reg = DSPSURF(info->pipe); 1383 1384 return 0; 1385 } 1386 1387 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1388 struct mi_display_flip_command_info *info) 1389 { 1390 u32 stride, tile; 1391 1392 if (!info->async_flip) 1393 return 0; 1394 1395 if (GRAPHICS_VER(s->engine->i915) >= 9) { 1396 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1397 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1398 GENMASK(12, 10)) >> 10; 1399 } else { 1400 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1401 GENMASK(15, 6)) >> 6; 1402 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1403 } 1404 1405 if (stride != info->stride_val) 1406 gvt_dbg_cmd("cannot change stride during async flip\n"); 1407 1408 if (tile != info->tile_val) 1409 gvt_dbg_cmd("cannot change tile during async flip\n"); 1410 1411 return 0; 1412 } 1413 1414 static int gen8_update_plane_mmio_from_mi_display_flip( 1415 struct parser_exec_state *s, 1416 struct mi_display_flip_command_info *info) 1417 { 1418 struct drm_i915_private *dev_priv = s->engine->i915; 1419 struct intel_vgpu *vgpu = s->vgpu; 1420 1421 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1422 info->surf_val << 12); 1423 if (GRAPHICS_VER(dev_priv) >= 9) { 1424 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1425 info->stride_val); 1426 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1427 info->tile_val << 10); 1428 } else { 1429 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1430 info->stride_val << 6); 1431 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1432 info->tile_val << 10); 1433 } 1434 1435 if (info->plane == PLANE_PRIMARY) 1436 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1437 1438 if (info->async_flip) 1439 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1440 else 1441 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1442 1443 return 0; 1444 } 1445 1446 static int decode_mi_display_flip(struct parser_exec_state *s, 1447 struct mi_display_flip_command_info *info) 1448 { 1449 if (IS_BROADWELL(s->engine->i915)) 1450 return gen8_decode_mi_display_flip(s, info); 1451 if (GRAPHICS_VER(s->engine->i915) >= 9) 1452 return skl_decode_mi_display_flip(s, info); 1453 1454 return -ENODEV; 1455 } 1456 1457 static int check_mi_display_flip(struct parser_exec_state *s, 1458 struct mi_display_flip_command_info *info) 1459 { 1460 return gen8_check_mi_display_flip(s, info); 1461 } 1462 1463 static int update_plane_mmio_from_mi_display_flip( 1464 struct parser_exec_state *s, 1465 struct mi_display_flip_command_info *info) 1466 { 1467 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1468 } 1469 1470 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1471 { 1472 struct mi_display_flip_command_info info; 1473 struct intel_vgpu *vgpu = s->vgpu; 1474 int ret; 1475 int i; 1476 int len = cmd_length(s); 1477 u32 valid_len = CMD_LEN(1); 1478 1479 /* Flip Type == Stereo 3D Flip */ 1480 if (DWORD_FIELD(2, 1, 0) == 2) 1481 valid_len++; 1482 ret = gvt_check_valid_cmd_length(cmd_length(s), 1483 valid_len); 1484 if (ret) 1485 return ret; 1486 1487 ret = decode_mi_display_flip(s, &info); 1488 if (ret) { 1489 gvt_vgpu_err("fail to decode MI display flip command\n"); 1490 return ret; 1491 } 1492 1493 ret = check_mi_display_flip(s, &info); 1494 if (ret) { 1495 gvt_vgpu_err("invalid MI display flip command\n"); 1496 return ret; 1497 } 1498 1499 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1500 if (ret) { 1501 gvt_vgpu_err("fail to update plane mmio\n"); 1502 return ret; 1503 } 1504 1505 for (i = 0; i < len; i++) 1506 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1507 return 0; 1508 } 1509 1510 static bool is_wait_for_flip_pending(u32 cmd) 1511 { 1512 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1513 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1514 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1515 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1516 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1517 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1518 } 1519 1520 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1521 { 1522 u32 cmd = cmd_val(s, 0); 1523 1524 if (!is_wait_for_flip_pending(cmd)) 1525 return 0; 1526 1527 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1528 return 0; 1529 } 1530 1531 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1532 { 1533 unsigned long addr; 1534 unsigned long gma_high, gma_low; 1535 struct intel_vgpu *vgpu = s->vgpu; 1536 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1537 1538 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1539 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1540 return INTEL_GVT_INVALID_ADDR; 1541 } 1542 1543 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1544 if (gmadr_bytes == 4) { 1545 addr = gma_low; 1546 } else { 1547 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1548 addr = (((unsigned long)gma_high) << 32) | gma_low; 1549 } 1550 return addr; 1551 } 1552 1553 static inline int cmd_address_audit(struct parser_exec_state *s, 1554 unsigned long guest_gma, int op_size, bool index_mode) 1555 { 1556 struct intel_vgpu *vgpu = s->vgpu; 1557 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1558 int i; 1559 int ret; 1560 1561 if (op_size > max_surface_size) { 1562 gvt_vgpu_err("command address audit fail name %s\n", 1563 s->info->name); 1564 return -EFAULT; 1565 } 1566 1567 if (index_mode) { 1568 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1569 ret = -EFAULT; 1570 goto err; 1571 } 1572 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1573 ret = -EFAULT; 1574 goto err; 1575 } 1576 1577 return 0; 1578 1579 err: 1580 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1581 s->info->name, guest_gma, op_size); 1582 1583 pr_err("cmd dump: "); 1584 for (i = 0; i < cmd_length(s); i++) { 1585 if (!(i % 4)) 1586 pr_err("\n%08x ", cmd_val(s, i)); 1587 else 1588 pr_err("%08x ", cmd_val(s, i)); 1589 } 1590 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1591 vgpu->id, 1592 vgpu_aperture_gmadr_base(vgpu), 1593 vgpu_aperture_gmadr_end(vgpu), 1594 vgpu_hidden_gmadr_base(vgpu), 1595 vgpu_hidden_gmadr_end(vgpu)); 1596 return ret; 1597 } 1598 1599 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1600 { 1601 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1602 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1603 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1604 unsigned long gma, gma_low, gma_high; 1605 u32 valid_len = CMD_LEN(2); 1606 int ret = 0; 1607 1608 /* check ppggt */ 1609 if (!(cmd_val(s, 0) & (1 << 22))) 1610 return 0; 1611 1612 /* check if QWORD */ 1613 if (DWORD_FIELD(0, 21, 21)) 1614 valid_len++; 1615 ret = gvt_check_valid_cmd_length(cmd_length(s), 1616 valid_len); 1617 if (ret) 1618 return ret; 1619 1620 gma = cmd_val(s, 2) & GENMASK(31, 2); 1621 1622 if (gmadr_bytes == 8) { 1623 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1624 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1625 gma = (gma_high << 32) | gma_low; 1626 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1627 } 1628 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1629 return ret; 1630 } 1631 1632 static inline int unexpected_cmd(struct parser_exec_state *s) 1633 { 1634 struct intel_vgpu *vgpu = s->vgpu; 1635 1636 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1637 1638 return -EBADRQC; 1639 } 1640 1641 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1642 { 1643 return unexpected_cmd(s); 1644 } 1645 1646 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1647 { 1648 return unexpected_cmd(s); 1649 } 1650 1651 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1652 { 1653 return unexpected_cmd(s); 1654 } 1655 1656 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1657 { 1658 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1659 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1660 sizeof(u32); 1661 unsigned long gma, gma_high; 1662 u32 valid_len = CMD_LEN(1); 1663 int ret = 0; 1664 1665 if (!(cmd_val(s, 0) & (1 << 22))) 1666 return ret; 1667 1668 /* check inline data */ 1669 if (cmd_val(s, 0) & BIT(18)) 1670 valid_len = CMD_LEN(9); 1671 ret = gvt_check_valid_cmd_length(cmd_length(s), 1672 valid_len); 1673 if (ret) 1674 return ret; 1675 1676 gma = cmd_val(s, 1) & GENMASK(31, 2); 1677 if (gmadr_bytes == 8) { 1678 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1679 gma = (gma_high << 32) | gma; 1680 } 1681 ret = cmd_address_audit(s, gma, op_size, false); 1682 return ret; 1683 } 1684 1685 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1686 { 1687 return unexpected_cmd(s); 1688 } 1689 1690 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1691 { 1692 return unexpected_cmd(s); 1693 } 1694 1695 static int cmd_handler_mi_conditional_batch_buffer_end( 1696 struct parser_exec_state *s) 1697 { 1698 return unexpected_cmd(s); 1699 } 1700 1701 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1702 { 1703 return unexpected_cmd(s); 1704 } 1705 1706 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1707 { 1708 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1709 unsigned long gma; 1710 bool index_mode = false; 1711 int ret = 0; 1712 u32 hws_pga, val; 1713 u32 valid_len = CMD_LEN(2); 1714 1715 ret = gvt_check_valid_cmd_length(cmd_length(s), 1716 valid_len); 1717 if (ret) { 1718 /* Check again for Qword */ 1719 ret = gvt_check_valid_cmd_length(cmd_length(s), 1720 ++valid_len); 1721 return ret; 1722 } 1723 1724 /* Check post-sync and ppgtt bit */ 1725 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1726 gma = cmd_val(s, 1) & GENMASK(31, 3); 1727 if (gmadr_bytes == 8) 1728 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1729 /* Store Data Index */ 1730 if (cmd_val(s, 0) & (1 << 21)) 1731 index_mode = true; 1732 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1733 if (ret) 1734 return ret; 1735 if (index_mode) { 1736 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1737 gma = hws_pga + gma; 1738 patch_value(s, cmd_ptr(s, 1), gma); 1739 val = cmd_val(s, 0) & (~(1 << 21)); 1740 patch_value(s, cmd_ptr(s, 0), val); 1741 } 1742 } 1743 /* Check notify bit */ 1744 if ((cmd_val(s, 0) & (1 << 8))) 1745 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1746 s->workload->pending_events); 1747 return ret; 1748 } 1749 1750 static void addr_type_update_snb(struct parser_exec_state *s) 1751 { 1752 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1753 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1754 s->buf_addr_type = PPGTT_BUFFER; 1755 } 1756 } 1757 1758 1759 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1760 unsigned long gma, unsigned long end_gma, void *va) 1761 { 1762 unsigned long copy_len, offset; 1763 unsigned long len = 0; 1764 unsigned long gpa; 1765 1766 while (gma != end_gma) { 1767 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1768 if (gpa == INTEL_GVT_INVALID_ADDR) { 1769 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1770 return -EFAULT; 1771 } 1772 1773 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1774 1775 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1776 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1777 1778 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); 1779 1780 len += copy_len; 1781 gma += copy_len; 1782 } 1783 return len; 1784 } 1785 1786 1787 /* 1788 * Check whether a batch buffer needs to be scanned. Currently 1789 * the only criteria is based on privilege. 1790 */ 1791 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1792 { 1793 /* Decide privilege based on address space */ 1794 if (cmd_val(s, 0) & BIT(8) && 1795 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1796 return 0; 1797 1798 return 1; 1799 } 1800 1801 static const char *repr_addr_type(unsigned int type) 1802 { 1803 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1804 } 1805 1806 static int find_bb_size(struct parser_exec_state *s, 1807 unsigned long *bb_size, 1808 unsigned long *bb_end_cmd_offset) 1809 { 1810 unsigned long gma = 0; 1811 const struct cmd_info *info; 1812 u32 cmd_len = 0; 1813 bool bb_end = false; 1814 struct intel_vgpu *vgpu = s->vgpu; 1815 u32 cmd; 1816 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1817 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1818 1819 *bb_size = 0; 1820 *bb_end_cmd_offset = 0; 1821 1822 /* get the start gm address of the batch buffer */ 1823 gma = get_gma_bb_from_cmd(s, 1); 1824 if (gma == INTEL_GVT_INVALID_ADDR) 1825 return -EFAULT; 1826 1827 cmd = cmd_val(s, 0); 1828 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1829 if (info == NULL) { 1830 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1831 cmd, get_opcode(cmd, s->engine), 1832 repr_addr_type(s->buf_addr_type), 1833 s->engine->name, s->workload); 1834 return -EBADRQC; 1835 } 1836 do { 1837 if (copy_gma_to_hva(s->vgpu, mm, 1838 gma, gma + 4, &cmd) < 0) 1839 return -EFAULT; 1840 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1841 if (info == NULL) { 1842 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1843 cmd, get_opcode(cmd, s->engine), 1844 repr_addr_type(s->buf_addr_type), 1845 s->engine->name, s->workload); 1846 return -EBADRQC; 1847 } 1848 1849 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1850 bb_end = true; 1851 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1852 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1853 /* chained batch buffer */ 1854 bb_end = true; 1855 } 1856 1857 if (bb_end) 1858 *bb_end_cmd_offset = *bb_size; 1859 1860 cmd_len = get_cmd_length(info, cmd) << 2; 1861 *bb_size += cmd_len; 1862 gma += cmd_len; 1863 } while (!bb_end); 1864 1865 return 0; 1866 } 1867 1868 static int audit_bb_end(struct parser_exec_state *s, void *va) 1869 { 1870 struct intel_vgpu *vgpu = s->vgpu; 1871 u32 cmd = *(u32 *)va; 1872 const struct cmd_info *info; 1873 1874 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1875 if (info == NULL) { 1876 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1877 cmd, get_opcode(cmd, s->engine), 1878 repr_addr_type(s->buf_addr_type), 1879 s->engine->name, s->workload); 1880 return -EBADRQC; 1881 } 1882 1883 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1884 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1885 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1886 return 0; 1887 1888 return -EBADRQC; 1889 } 1890 1891 static int perform_bb_shadow(struct parser_exec_state *s) 1892 { 1893 struct intel_vgpu *vgpu = s->vgpu; 1894 struct intel_vgpu_shadow_bb *bb; 1895 unsigned long gma = 0; 1896 unsigned long bb_size; 1897 unsigned long bb_end_cmd_offset; 1898 int ret = 0; 1899 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1900 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1901 unsigned long start_offset = 0; 1902 1903 /* get the start gm address of the batch buffer */ 1904 gma = get_gma_bb_from_cmd(s, 1); 1905 if (gma == INTEL_GVT_INVALID_ADDR) 1906 return -EFAULT; 1907 1908 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1909 if (ret) 1910 return ret; 1911 1912 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1913 if (!bb) 1914 return -ENOMEM; 1915 1916 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1917 1918 /* the start_offset stores the batch buffer's start gma's 1919 * offset relative to page boundary. so for non-privileged batch 1920 * buffer, the shadowed gem object holds exactly the same page 1921 * layout as original gem object. This is for the convience of 1922 * replacing the whole non-privilged batch buffer page to this 1923 * shadowed one in PPGTT at the same gma address. (this replacing 1924 * action is not implemented yet now, but may be necessary in 1925 * future). 1926 * for prileged batch buffer, we just change start gma address to 1927 * that of shadowed page. 1928 */ 1929 if (bb->ppgtt) 1930 start_offset = gma & ~I915_GTT_PAGE_MASK; 1931 1932 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1933 round_up(bb_size + start_offset, 1934 PAGE_SIZE)); 1935 if (IS_ERR(bb->obj)) { 1936 ret = PTR_ERR(bb->obj); 1937 goto err_free_bb; 1938 } 1939 1940 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1941 if (IS_ERR(bb->va)) { 1942 ret = PTR_ERR(bb->va); 1943 goto err_free_obj; 1944 } 1945 1946 ret = copy_gma_to_hva(s->vgpu, mm, 1947 gma, gma + bb_size, 1948 bb->va + start_offset); 1949 if (ret < 0) { 1950 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1951 ret = -EFAULT; 1952 goto err_unmap; 1953 } 1954 1955 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1956 if (ret) 1957 goto err_unmap; 1958 1959 i915_gem_object_unlock(bb->obj); 1960 INIT_LIST_HEAD(&bb->list); 1961 list_add(&bb->list, &s->workload->shadow_bb); 1962 1963 bb->bb_start_cmd_va = s->ip_va; 1964 1965 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1966 bb->bb_offset = s->ip_va - s->rb_va; 1967 else 1968 bb->bb_offset = 0; 1969 1970 /* 1971 * ip_va saves the virtual address of the shadow batch buffer, while 1972 * ip_gma saves the graphics address of the original batch buffer. 1973 * As the shadow batch buffer is just a copy from the originial one, 1974 * it should be right to use shadow batch buffer'va and original batch 1975 * buffer's gma in pair. After all, we don't want to pin the shadow 1976 * buffer here (too early). 1977 */ 1978 s->ip_va = bb->va + start_offset; 1979 s->ip_gma = gma; 1980 return 0; 1981 err_unmap: 1982 i915_gem_object_unpin_map(bb->obj); 1983 err_free_obj: 1984 i915_gem_object_put(bb->obj); 1985 err_free_bb: 1986 kfree(bb); 1987 return ret; 1988 } 1989 1990 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1991 { 1992 bool second_level; 1993 int ret = 0; 1994 struct intel_vgpu *vgpu = s->vgpu; 1995 1996 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1997 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1998 return -EFAULT; 1999 } 2000 2001 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2002 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2003 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2004 return -EFAULT; 2005 } 2006 2007 s->saved_buf_addr_type = s->buf_addr_type; 2008 addr_type_update_snb(s); 2009 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2010 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2011 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2012 } else if (second_level) { 2013 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2014 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2015 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2016 } 2017 2018 if (batch_buffer_needs_scan(s)) { 2019 ret = perform_bb_shadow(s); 2020 if (ret < 0) 2021 gvt_vgpu_err("invalid shadow batch buffer\n"); 2022 } else { 2023 /* emulate a batch buffer end to do return right */ 2024 ret = cmd_handler_mi_batch_buffer_end(s); 2025 if (ret < 0) 2026 return ret; 2027 } 2028 return ret; 2029 } 2030 2031 static int mi_noop_index; 2032 2033 static const struct cmd_info cmd_info[] = { 2034 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2035 2036 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2037 0, 1, NULL}, 2038 2039 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2040 0, 1, cmd_handler_mi_user_interrupt}, 2041 2042 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2043 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2044 2045 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2046 2047 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2048 NULL}, 2049 2050 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2051 NULL}, 2052 2053 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2054 NULL}, 2055 2056 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2057 NULL}, 2058 2059 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2060 D_ALL, 0, 1, NULL}, 2061 2062 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2063 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2064 cmd_handler_mi_batch_buffer_end}, 2065 2066 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2067 0, 1, NULL}, 2068 2069 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2070 NULL}, 2071 2072 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2073 D_ALL, 0, 1, NULL}, 2074 2075 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2076 NULL}, 2077 2078 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2079 NULL}, 2080 2081 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2082 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2083 2084 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2085 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2086 2087 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2088 2089 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2090 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2091 2092 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2093 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2094 NULL, CMD_LEN(0)}, 2095 2096 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2097 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2098 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2099 2100 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2101 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2102 2103 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2104 0, 8, cmd_handler_mi_store_data_index}, 2105 2106 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2107 D_ALL, 0, 8, cmd_handler_lri}, 2108 2109 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2110 cmd_handler_mi_update_gtt}, 2111 2112 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2113 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2114 cmd_handler_srm, CMD_LEN(2)}, 2115 2116 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2117 cmd_handler_mi_flush_dw}, 2118 2119 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2120 10, cmd_handler_mi_clflush}, 2121 2122 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2123 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2124 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2125 2126 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2127 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2128 cmd_handler_lrm, CMD_LEN(2)}, 2129 2130 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2131 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2132 cmd_handler_lrr, CMD_LEN(1)}, 2133 2134 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2135 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2136 8, NULL, CMD_LEN(2)}, 2137 2138 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2139 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2140 2141 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2142 ADDR_FIX_1(2), 8, NULL}, 2143 2144 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2145 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2146 2147 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2148 8, cmd_handler_mi_op_2f}, 2149 2150 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2151 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2152 cmd_handler_mi_batch_buffer_start}, 2153 2154 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2155 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2156 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2157 2158 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2159 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2160 2161 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2162 ADDR_FIX_2(4, 7), 8, NULL}, 2163 2164 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2165 0, 8, NULL}, 2166 2167 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2168 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2169 2170 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2171 2172 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2173 0, 8, NULL}, 2174 2175 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2176 ADDR_FIX_1(3), 8, NULL}, 2177 2178 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2179 D_ALL, 0, 8, NULL}, 2180 2181 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2182 ADDR_FIX_1(4), 8, NULL}, 2183 2184 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2185 ADDR_FIX_2(4, 5), 8, NULL}, 2186 2187 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2188 ADDR_FIX_1(4), 8, NULL}, 2189 2190 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2191 ADDR_FIX_2(4, 7), 8, NULL}, 2192 2193 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2194 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2195 2196 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2197 2198 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2199 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2200 2201 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2202 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2203 2204 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2205 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2206 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2207 2208 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2209 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2210 2211 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2212 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2213 2214 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2215 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2216 2217 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2218 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2219 2220 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2221 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2222 2223 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2224 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2225 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2226 2227 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2228 ADDR_FIX_2(4, 5), 8, NULL}, 2229 2230 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2231 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2232 2233 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2234 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2235 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2236 2237 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2238 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2239 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2240 2241 {"3DSTATE_BLEND_STATE_POINTERS", 2242 OP_3DSTATE_BLEND_STATE_POINTERS, 2243 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2244 2245 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2246 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2248 2249 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2250 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2251 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2252 2253 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2254 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2255 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2256 2257 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2258 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2259 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2260 2261 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2262 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2263 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2264 2265 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2266 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2268 2269 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2270 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2272 2273 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2274 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2276 2277 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2278 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2280 2281 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2282 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2284 2285 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2286 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2287 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2288 2289 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2290 0, 8, NULL}, 2291 2292 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2293 0, 8, NULL}, 2294 2295 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2296 0, 8, NULL}, 2297 2298 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2299 0, 8, NULL}, 2300 2301 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2302 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2303 2304 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2305 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2306 2307 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2308 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2309 2310 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2311 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2312 2313 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2314 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2315 2316 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2317 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2318 2319 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2320 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2321 2322 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2323 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2324 2325 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2326 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2327 2328 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2329 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2330 2331 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2332 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2333 2334 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2335 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2336 2337 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2338 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2339 2340 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2341 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2342 2343 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2344 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2345 2346 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2347 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2348 2349 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2350 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2351 2352 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2353 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2354 2355 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2356 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2357 2358 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2359 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2360 2361 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2362 D_BDW_PLUS, 0, 8, NULL}, 2363 2364 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2365 NULL}, 2366 2367 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2368 D_BDW_PLUS, 0, 8, NULL}, 2369 2370 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2371 D_BDW_PLUS, 0, 8, NULL}, 2372 2373 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2374 8, NULL}, 2375 2376 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2377 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2378 2379 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2380 8, NULL}, 2381 2382 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2383 NULL}, 2384 2385 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2386 NULL}, 2387 2388 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2389 NULL}, 2390 2391 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2392 D_BDW_PLUS, 0, 8, NULL}, 2393 2394 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2395 R_RCS, D_ALL, 0, 8, NULL}, 2396 2397 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2398 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2399 2400 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2401 R_RCS, D_ALL, 0, 1, NULL}, 2402 2403 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2404 2405 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2406 R_RCS, D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2409 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2410 2411 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2412 2413 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2414 2415 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2416 2417 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2418 D_BDW_PLUS, 0, 8, NULL}, 2419 2420 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2421 D_BDW_PLUS, 0, 8, NULL}, 2422 2423 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2424 D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2427 D_BDW_PLUS, 0, 8, NULL}, 2428 2429 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2430 D_BDW_PLUS, 0, 8, NULL}, 2431 2432 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2433 2434 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2435 2436 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2439 D_ALL, 0, 8, NULL}, 2440 2441 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2442 2443 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2444 2445 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2446 R_RCS, D_ALL, 0, 8, NULL}, 2447 2448 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2449 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2450 2451 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2452 0, 8, NULL}, 2453 2454 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2455 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2456 2457 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2458 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2459 2460 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2461 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2462 2463 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2464 D_ALL, 0, 8, NULL}, 2465 2466 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2467 D_ALL, 0, 8, NULL}, 2468 2469 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2470 D_ALL, 0, 8, NULL}, 2471 2472 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2473 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2474 2475 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2476 D_BDW_PLUS, 0, 8, NULL}, 2477 2478 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2479 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2480 2481 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2482 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2483 2484 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2485 R_RCS, D_ALL, 0, 8, NULL}, 2486 2487 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2488 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2489 2490 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2491 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2492 2493 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2494 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2495 2496 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2497 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2498 2499 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2500 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2501 2502 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2503 R_RCS, D_ALL, 0, 8, NULL}, 2504 2505 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2506 D_ALL, 0, 9, NULL}, 2507 2508 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2509 ADDR_FIX_2(2, 4), 8, NULL}, 2510 2511 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2512 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2513 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2514 2515 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2516 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2517 2518 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2519 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2520 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2521 2522 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2523 D_BDW_PLUS, 0, 8, NULL}, 2524 2525 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2526 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2527 2528 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2529 2530 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2531 1, NULL}, 2532 2533 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2534 ADDR_FIX_1(1), 8, NULL}, 2535 2536 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2537 2538 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2539 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2540 2541 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2542 ADDR_FIX_1(1), 8, NULL}, 2543 2544 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2545 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2546 2547 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2548 2549 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2550 2551 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2552 0, 8, NULL}, 2553 2554 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2555 D_SKL_PLUS, 0, 8, NULL}, 2556 2557 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2558 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2559 2560 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2561 0, 16, NULL}, 2562 2563 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2564 0, 16, NULL}, 2565 2566 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2567 0, 16, NULL}, 2568 2569 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2570 2571 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2572 0, 16, NULL}, 2573 2574 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2575 0, 16, NULL}, 2576 2577 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2578 0, 16, NULL}, 2579 2580 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2581 0, 8, NULL}, 2582 2583 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2584 NULL}, 2585 2586 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2587 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2588 2589 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2590 R_VCS, D_ALL, 0, 12, NULL}, 2591 2592 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2593 R_VCS, D_ALL, 0, 12, NULL}, 2594 2595 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2596 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2597 2598 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2599 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2600 2601 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2602 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2603 2604 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2605 2606 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2607 R_VCS, D_ALL, 0, 12, NULL}, 2608 2609 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2610 R_VCS, D_ALL, 0, 12, NULL}, 2611 2612 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2613 R_VCS, D_ALL, 0, 12, NULL}, 2614 2615 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2616 R_VCS, D_ALL, 0, 12, NULL}, 2617 2618 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2619 R_VCS, D_ALL, 0, 12, NULL}, 2620 2621 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2622 R_VCS, D_ALL, 0, 12, NULL}, 2623 2624 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2625 R_VCS, D_ALL, 0, 6, NULL}, 2626 2627 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2628 R_VCS, D_ALL, 0, 12, NULL}, 2629 2630 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2631 R_VCS, D_ALL, 0, 12, NULL}, 2632 2633 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2634 R_VCS, D_ALL, 0, 12, NULL}, 2635 2636 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2637 R_VCS, D_ALL, 0, 12, NULL}, 2638 2639 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2640 R_VCS, D_ALL, 0, 12, NULL}, 2641 2642 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2643 R_VCS, D_ALL, 0, 12, NULL}, 2644 2645 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2646 R_VCS, D_ALL, 0, 12, NULL}, 2647 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2648 R_VCS, D_ALL, 0, 12, NULL}, 2649 2650 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2651 R_VCS, D_ALL, 0, 12, NULL}, 2652 2653 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2654 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2655 2656 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2657 R_VCS, D_ALL, 0, 12, NULL}, 2658 2659 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2660 R_VCS, D_ALL, 0, 12, NULL}, 2661 2662 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2663 R_VCS, D_ALL, 0, 12, NULL}, 2664 2665 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2666 R_VCS, D_ALL, 0, 12, NULL}, 2667 2668 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2669 R_VCS, D_ALL, 0, 12, NULL}, 2670 2671 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2672 R_VCS, D_ALL, 0, 12, NULL}, 2673 2674 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2675 R_VCS, D_ALL, 0, 12, NULL}, 2676 2677 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2678 R_VCS, D_ALL, 0, 12, NULL}, 2679 2680 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2681 R_VCS, D_ALL, 0, 12, NULL}, 2682 2683 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2684 R_VCS, D_ALL, 0, 12, NULL}, 2685 2686 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2687 R_VCS, D_ALL, 0, 12, NULL}, 2688 2689 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2690 0, 16, NULL}, 2691 2692 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2693 2694 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2695 2696 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2697 R_VCS, D_ALL, 0, 12, NULL}, 2698 2699 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2700 R_VCS, D_ALL, 0, 12, NULL}, 2701 2702 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2703 R_VCS, D_ALL, 0, 12, NULL}, 2704 2705 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2706 2707 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2708 0, 12, NULL}, 2709 2710 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2711 0, 12, NULL}, 2712 }; 2713 2714 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2715 { 2716 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2717 } 2718 2719 /* call the cmd handler, and advance ip */ 2720 static int cmd_parser_exec(struct parser_exec_state *s) 2721 { 2722 struct intel_vgpu *vgpu = s->vgpu; 2723 const struct cmd_info *info; 2724 u32 cmd; 2725 int ret = 0; 2726 2727 cmd = cmd_val(s, 0); 2728 2729 /* fastpath for MI_NOOP */ 2730 if (cmd == MI_NOOP) 2731 info = &cmd_info[mi_noop_index]; 2732 else 2733 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2734 2735 if (info == NULL) { 2736 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2737 cmd, get_opcode(cmd, s->engine), 2738 repr_addr_type(s->buf_addr_type), 2739 s->engine->name, s->workload); 2740 return -EBADRQC; 2741 } 2742 2743 s->info = info; 2744 2745 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2746 cmd_length(s), s->buf_type, s->buf_addr_type, 2747 s->workload, info->name); 2748 2749 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2750 ret = gvt_check_valid_cmd_length(cmd_length(s), 2751 info->valid_len); 2752 if (ret) 2753 return ret; 2754 } 2755 2756 if (info->handler) { 2757 ret = info->handler(s); 2758 if (ret < 0) { 2759 gvt_vgpu_err("%s handler error\n", info->name); 2760 return ret; 2761 } 2762 } 2763 2764 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2765 ret = cmd_advance_default(s); 2766 if (ret) { 2767 gvt_vgpu_err("%s IP advance error\n", info->name); 2768 return ret; 2769 } 2770 } 2771 return 0; 2772 } 2773 2774 static inline bool gma_out_of_range(unsigned long gma, 2775 unsigned long gma_head, unsigned int gma_tail) 2776 { 2777 if (gma_tail >= gma_head) 2778 return (gma < gma_head) || (gma > gma_tail); 2779 else 2780 return (gma > gma_tail) && (gma < gma_head); 2781 } 2782 2783 /* Keep the consistent return type, e.g EBADRQC for unknown 2784 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2785 * works as the input of VM healthy status. 2786 */ 2787 static int command_scan(struct parser_exec_state *s, 2788 unsigned long rb_head, unsigned long rb_tail, 2789 unsigned long rb_start, unsigned long rb_len) 2790 { 2791 2792 unsigned long gma_head, gma_tail, gma_bottom; 2793 int ret = 0; 2794 struct intel_vgpu *vgpu = s->vgpu; 2795 2796 gma_head = rb_start + rb_head; 2797 gma_tail = rb_start + rb_tail; 2798 gma_bottom = rb_start + rb_len; 2799 2800 while (s->ip_gma != gma_tail) { 2801 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2802 s->buf_type == RING_BUFFER_CTX) { 2803 if (!(s->ip_gma >= rb_start) || 2804 !(s->ip_gma < gma_bottom)) { 2805 gvt_vgpu_err("ip_gma %lx out of ring scope." 2806 "(base:0x%lx, bottom: 0x%lx)\n", 2807 s->ip_gma, rb_start, 2808 gma_bottom); 2809 parser_exec_state_dump(s); 2810 return -EFAULT; 2811 } 2812 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2813 gvt_vgpu_err("ip_gma %lx out of range." 2814 "base 0x%lx head 0x%lx tail 0x%lx\n", 2815 s->ip_gma, rb_start, 2816 rb_head, rb_tail); 2817 parser_exec_state_dump(s); 2818 break; 2819 } 2820 } 2821 ret = cmd_parser_exec(s); 2822 if (ret) { 2823 gvt_vgpu_err("cmd parser error\n"); 2824 parser_exec_state_dump(s); 2825 break; 2826 } 2827 } 2828 2829 return ret; 2830 } 2831 2832 static int scan_workload(struct intel_vgpu_workload *workload) 2833 { 2834 unsigned long gma_head, gma_tail, gma_bottom; 2835 struct parser_exec_state s; 2836 int ret = 0; 2837 2838 /* ring base is page aligned */ 2839 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2840 return -EINVAL; 2841 2842 gma_head = workload->rb_start + workload->rb_head; 2843 gma_tail = workload->rb_start + workload->rb_tail; 2844 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2845 2846 s.buf_type = RING_BUFFER_INSTRUCTION; 2847 s.buf_addr_type = GTT_BUFFER; 2848 s.vgpu = workload->vgpu; 2849 s.engine = workload->engine; 2850 s.ring_start = workload->rb_start; 2851 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2852 s.ring_head = gma_head; 2853 s.ring_tail = gma_tail; 2854 s.rb_va = workload->shadow_ring_buffer_va; 2855 s.workload = workload; 2856 s.is_ctx_wa = false; 2857 2858 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2859 return 0; 2860 2861 ret = ip_gma_set(&s, gma_head); 2862 if (ret) 2863 goto out; 2864 2865 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2866 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2867 2868 out: 2869 return ret; 2870 } 2871 2872 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2873 { 2874 2875 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2876 struct parser_exec_state s; 2877 int ret = 0; 2878 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2879 struct intel_vgpu_workload, 2880 wa_ctx); 2881 2882 /* ring base is page aligned */ 2883 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2884 I915_GTT_PAGE_SIZE))) 2885 return -EINVAL; 2886 2887 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2888 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2889 PAGE_SIZE); 2890 gma_head = wa_ctx->indirect_ctx.guest_gma; 2891 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2892 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2893 2894 s.buf_type = RING_BUFFER_INSTRUCTION; 2895 s.buf_addr_type = GTT_BUFFER; 2896 s.vgpu = workload->vgpu; 2897 s.engine = workload->engine; 2898 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2899 s.ring_size = ring_size; 2900 s.ring_head = gma_head; 2901 s.ring_tail = gma_tail; 2902 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2903 s.workload = workload; 2904 s.is_ctx_wa = true; 2905 2906 ret = ip_gma_set(&s, gma_head); 2907 if (ret) 2908 goto out; 2909 2910 ret = command_scan(&s, 0, ring_tail, 2911 wa_ctx->indirect_ctx.guest_gma, ring_size); 2912 out: 2913 return ret; 2914 } 2915 2916 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2917 { 2918 struct intel_vgpu *vgpu = workload->vgpu; 2919 struct intel_vgpu_submission *s = &vgpu->submission; 2920 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2921 void *shadow_ring_buffer_va; 2922 int ret; 2923 2924 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2925 2926 /* calculate workload ring buffer size */ 2927 workload->rb_len = (workload->rb_tail + guest_rb_size - 2928 workload->rb_head) % guest_rb_size; 2929 2930 gma_head = workload->rb_start + workload->rb_head; 2931 gma_tail = workload->rb_start + workload->rb_tail; 2932 gma_top = workload->rb_start + guest_rb_size; 2933 2934 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2935 void *p; 2936 2937 /* realloc the new ring buffer if needed */ 2938 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2939 workload->rb_len, GFP_KERNEL); 2940 if (!p) { 2941 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2942 return -ENOMEM; 2943 } 2944 s->ring_scan_buffer[workload->engine->id] = p; 2945 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2946 } 2947 2948 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2949 2950 /* get shadow ring buffer va */ 2951 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2952 2953 /* head > tail --> copy head <-> top */ 2954 if (gma_head > gma_tail) { 2955 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2956 gma_head, gma_top, shadow_ring_buffer_va); 2957 if (ret < 0) { 2958 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2959 return ret; 2960 } 2961 shadow_ring_buffer_va += ret; 2962 gma_head = workload->rb_start; 2963 } 2964 2965 /* copy head or start <-> tail */ 2966 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2967 shadow_ring_buffer_va); 2968 if (ret < 0) { 2969 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2970 return ret; 2971 } 2972 return 0; 2973 } 2974 2975 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2976 { 2977 int ret; 2978 struct intel_vgpu *vgpu = workload->vgpu; 2979 2980 ret = shadow_workload_ring_buffer(workload); 2981 if (ret) { 2982 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2983 return ret; 2984 } 2985 2986 ret = scan_workload(workload); 2987 if (ret) { 2988 gvt_vgpu_err("scan workload error\n"); 2989 return ret; 2990 } 2991 return 0; 2992 } 2993 2994 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2995 { 2996 int ctx_size = wa_ctx->indirect_ctx.size; 2997 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2998 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2999 struct intel_vgpu_workload, 3000 wa_ctx); 3001 struct intel_vgpu *vgpu = workload->vgpu; 3002 struct drm_i915_gem_object *obj; 3003 int ret = 0; 3004 void *map; 3005 3006 obj = i915_gem_object_create_shmem(workload->engine->i915, 3007 roundup(ctx_size + CACHELINE_BYTES, 3008 PAGE_SIZE)); 3009 if (IS_ERR(obj)) 3010 return PTR_ERR(obj); 3011 3012 /* get the va of the shadow batch buffer */ 3013 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3014 if (IS_ERR(map)) { 3015 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3016 ret = PTR_ERR(map); 3017 goto put_obj; 3018 } 3019 3020 i915_gem_object_lock(obj, NULL); 3021 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3022 i915_gem_object_unlock(obj); 3023 if (ret) { 3024 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3025 goto unmap_src; 3026 } 3027 3028 ret = copy_gma_to_hva(workload->vgpu, 3029 workload->vgpu->gtt.ggtt_mm, 3030 guest_gma, guest_gma + ctx_size, 3031 map); 3032 if (ret < 0) { 3033 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3034 goto unmap_src; 3035 } 3036 3037 wa_ctx->indirect_ctx.obj = obj; 3038 wa_ctx->indirect_ctx.shadow_va = map; 3039 return 0; 3040 3041 unmap_src: 3042 i915_gem_object_unpin_map(obj); 3043 put_obj: 3044 i915_gem_object_put(obj); 3045 return ret; 3046 } 3047 3048 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3049 { 3050 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3051 unsigned char *bb_start_sva; 3052 3053 if (!wa_ctx->per_ctx.valid) 3054 return 0; 3055 3056 per_ctx_start[0] = 0x18800001; 3057 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3058 3059 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3060 wa_ctx->indirect_ctx.size; 3061 3062 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3063 3064 return 0; 3065 } 3066 3067 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3068 { 3069 int ret; 3070 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3071 struct intel_vgpu_workload, 3072 wa_ctx); 3073 struct intel_vgpu *vgpu = workload->vgpu; 3074 3075 if (wa_ctx->indirect_ctx.size == 0) 3076 return 0; 3077 3078 ret = shadow_indirect_ctx(wa_ctx); 3079 if (ret) { 3080 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3081 return ret; 3082 } 3083 3084 combine_wa_ctx(wa_ctx); 3085 3086 ret = scan_wa_ctx(wa_ctx); 3087 if (ret) { 3088 gvt_vgpu_err("scan wa ctx error\n"); 3089 return ret; 3090 } 3091 3092 return 0; 3093 } 3094 3095 /* generate dummy contexts by sending empty requests to HW, and let 3096 * the HW to fill Engine Contexts. This dummy contexts are used for 3097 * initialization purpose (update reg whitelist), so referred to as 3098 * init context here 3099 */ 3100 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3101 { 3102 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3103 struct intel_gvt *gvt = vgpu->gvt; 3104 struct intel_engine_cs *engine; 3105 enum intel_engine_id id; 3106 3107 if (gvt->is_reg_whitelist_updated) 3108 return; 3109 3110 /* scan init ctx to update cmd accessible list */ 3111 for_each_engine(engine, gvt->gt, id) { 3112 struct parser_exec_state s; 3113 void *vaddr; 3114 int ret; 3115 3116 if (!engine->default_state) 3117 continue; 3118 3119 vaddr = shmem_pin_map(engine->default_state); 3120 if (!vaddr) { 3121 gvt_err("failed to map %s->default state\n", 3122 engine->name); 3123 return; 3124 } 3125 3126 s.buf_type = RING_BUFFER_CTX; 3127 s.buf_addr_type = GTT_BUFFER; 3128 s.vgpu = vgpu; 3129 s.engine = engine; 3130 s.ring_start = 0; 3131 s.ring_size = engine->context_size - start; 3132 s.ring_head = 0; 3133 s.ring_tail = s.ring_size; 3134 s.rb_va = vaddr + start; 3135 s.workload = NULL; 3136 s.is_ctx_wa = false; 3137 s.is_init_ctx = true; 3138 3139 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3140 ret = ip_gma_set(&s, RING_CTX_SIZE); 3141 if (ret == 0) { 3142 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3143 if (ret) 3144 gvt_err("Scan init ctx error\n"); 3145 } 3146 3147 shmem_unpin_map(engine->default_state, vaddr); 3148 if (ret) 3149 return; 3150 } 3151 3152 gvt->is_reg_whitelist_updated = true; 3153 } 3154 3155 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3156 { 3157 struct intel_vgpu *vgpu = workload->vgpu; 3158 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3159 struct parser_exec_state s; 3160 int ring_id = workload->engine->id; 3161 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3162 int ret; 3163 3164 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3165 3166 ctx_size = workload->engine->context_size - PAGE_SIZE; 3167 3168 /* Only ring contxt is loaded to HW for inhibit context, no need to 3169 * scan engine context 3170 */ 3171 if (is_inhibit_context(ce)) 3172 return 0; 3173 3174 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3175 gma_head = 0; 3176 gma_tail = ctx_size; 3177 3178 s.buf_type = RING_BUFFER_CTX; 3179 s.buf_addr_type = GTT_BUFFER; 3180 s.vgpu = workload->vgpu; 3181 s.engine = workload->engine; 3182 s.ring_start = gma_start; 3183 s.ring_size = ctx_size; 3184 s.ring_head = gma_start + gma_head; 3185 s.ring_tail = gma_start + gma_tail; 3186 s.rb_va = ce->lrc_reg_state; 3187 s.workload = workload; 3188 s.is_ctx_wa = false; 3189 s.is_init_ctx = false; 3190 3191 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3192 * context 3193 */ 3194 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3195 if (ret) 3196 goto out; 3197 3198 ret = command_scan(&s, gma_head, gma_tail, 3199 gma_start, ctx_size); 3200 out: 3201 if (ret) 3202 gvt_vgpu_err("scan shadow ctx error\n"); 3203 3204 return ret; 3205 } 3206 3207 static int init_cmd_table(struct intel_gvt *gvt) 3208 { 3209 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3210 int i; 3211 3212 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3213 struct cmd_entry *e; 3214 3215 if (!(cmd_info[i].devices & gen_type)) 3216 continue; 3217 3218 e = kzalloc(sizeof(*e), GFP_KERNEL); 3219 if (!e) 3220 return -ENOMEM; 3221 3222 e->info = &cmd_info[i]; 3223 if (cmd_info[i].opcode == OP_MI_NOOP) 3224 mi_noop_index = i; 3225 3226 INIT_HLIST_NODE(&e->hlist); 3227 add_cmd_entry(gvt, e); 3228 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3229 e->info->name, e->info->opcode, e->info->flag, 3230 e->info->devices, e->info->rings); 3231 } 3232 3233 return 0; 3234 } 3235 3236 static void clean_cmd_table(struct intel_gvt *gvt) 3237 { 3238 struct hlist_node *tmp; 3239 struct cmd_entry *e; 3240 int i; 3241 3242 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3243 kfree(e); 3244 3245 hash_init(gvt->cmd_table); 3246 } 3247 3248 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3249 { 3250 clean_cmd_table(gvt); 3251 } 3252 3253 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3254 { 3255 int ret; 3256 3257 ret = init_cmd_table(gvt); 3258 if (ret) { 3259 intel_gvt_clean_cmd_parser(gvt); 3260 return ret; 3261 } 3262 return 0; 3263 } 3264