xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176 
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181 
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248 
249 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260 
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289 
290 /* VCCP Command Parser */
291 
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298 
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300 	(3 << 13 | \
301 	 (pipeline) << 11 | \
302 	 (op) << 8 | \
303 	 (sub_opa) << 5 | \
304 	 (sub_opb))
305 
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317 
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319 
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332 
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338 
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344 
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348 
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352 
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354 	(3 << 13 | \
355 	 (pipeline) << 11 | \
356 	 (op) << 8 | \
357 	 (sub_opa) << 5 | \
358 	 (sub_opb))
359 
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363 
364 struct parser_exec_state;
365 
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367 
368 #define GVT_CMD_HASH_BITS   7
369 
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)			(1 << (x1))
372 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376 
377 struct cmd_info {
378 	char *name;
379 	u32 opcode;
380 
381 #define F_LEN_MASK	(1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384 
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390 
391 #define F_POST_HANDLE	(1<<2)
392 	u32 flag;
393 
394 #define R_RCS	(1 << RCS)
395 #define R_VCS1  (1 << VCS)
396 #define R_VCS2  (1 << VCS2)
397 #define R_VCS	(R_VCS1 | R_VCS2)
398 #define R_BCS	(1 << BCS)
399 #define R_VECS	(1 << VECS)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
402 	uint16_t rings;
403 
404 	/* devices that support this cmd: SNB/IVB/HSW/... */
405 	uint16_t devices;
406 
407 	/* which DWords are address that need fix up.
408 	 * bit 0 means a 32-bit non address operand in command
409 	 * bit 1 means address operand, which could be 32-bit
410 	 * or 64-bit depending on different architectures.(
411 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412 	 * No matter the address length, each address only takes
413 	 * one bit in the bitmap.
414 	 */
415 	uint16_t addr_bitmap;
416 
417 	/* flag == F_LEN_CONST : command length
418 	 * flag == F_LEN_VAR : length bias bits
419 	 * Note: length is in DWord
420 	 */
421 	uint8_t	len;
422 
423 	parser_cmd_handler handler;
424 };
425 
426 struct cmd_entry {
427 	struct hlist_node hlist;
428 	struct cmd_info *info;
429 };
430 
431 enum {
432 	RING_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_INSTRUCTION,
434 	BATCH_BUFFER_2ND_LEVEL,
435 };
436 
437 enum {
438 	GTT_BUFFER,
439 	PPGTT_BUFFER
440 };
441 
442 struct parser_exec_state {
443 	struct intel_vgpu *vgpu;
444 	int ring_id;
445 
446 	int buf_type;
447 
448 	/* batch buffer address type */
449 	int buf_addr_type;
450 
451 	/* graphics memory address of ring buffer start */
452 	unsigned long ring_start;
453 	unsigned long ring_size;
454 	unsigned long ring_head;
455 	unsigned long ring_tail;
456 
457 	/* instruction graphics memory address */
458 	unsigned long ip_gma;
459 
460 	/* mapped va of the instr_gma */
461 	void *ip_va;
462 	void *rb_va;
463 
464 	void *ret_bb_va;
465 	/* next instruction when return from  batch buffer to ring buffer */
466 	unsigned long ret_ip_gma_ring;
467 
468 	/* next instruction when return from 2nd batch buffer to batch buffer */
469 	unsigned long ret_ip_gma_bb;
470 
471 	/* batch buffer address type (GTT or PPGTT)
472 	 * used when ret from 2nd level batch buffer
473 	 */
474 	int saved_buf_addr_type;
475 	bool is_ctx_wa;
476 
477 	struct cmd_info *info;
478 
479 	struct intel_vgpu_workload *workload;
480 };
481 
482 #define gmadr_dw_number(s)	\
483 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484 
485 static unsigned long bypass_scan_mask = 0;
486 
487 /* ring ALL, type = 0 */
488 static struct sub_op_bits sub_op_mi[] = {
489 	{31, 29},
490 	{28, 23},
491 };
492 
493 static struct decode_info decode_info_mi = {
494 	"MI",
495 	OP_LEN_MI,
496 	ARRAY_SIZE(sub_op_mi),
497 	sub_op_mi,
498 };
499 
500 /* ring RCS, command type 2 */
501 static struct sub_op_bits sub_op_2d[] = {
502 	{31, 29},
503 	{28, 22},
504 };
505 
506 static struct decode_info decode_info_2d = {
507 	"2D",
508 	OP_LEN_2D,
509 	ARRAY_SIZE(sub_op_2d),
510 	sub_op_2d,
511 };
512 
513 /* ring RCS, command type 3 */
514 static struct sub_op_bits sub_op_3d_media[] = {
515 	{31, 29},
516 	{28, 27},
517 	{26, 24},
518 	{23, 16},
519 };
520 
521 static struct decode_info decode_info_3d_media = {
522 	"3D_Media",
523 	OP_LEN_3D_MEDIA,
524 	ARRAY_SIZE(sub_op_3d_media),
525 	sub_op_3d_media,
526 };
527 
528 /* ring VCS, command type 3 */
529 static struct sub_op_bits sub_op_mfx_vc[] = {
530 	{31, 29},
531 	{28, 27},
532 	{26, 24},
533 	{23, 21},
534 	{20, 16},
535 };
536 
537 static struct decode_info decode_info_mfx_vc = {
538 	"MFX_VC",
539 	OP_LEN_MFX_VC,
540 	ARRAY_SIZE(sub_op_mfx_vc),
541 	sub_op_mfx_vc,
542 };
543 
544 /* ring VECS, command type 3 */
545 static struct sub_op_bits sub_op_vebox[] = {
546 	{31, 29},
547 	{28, 27},
548 	{26, 24},
549 	{23, 21},
550 	{20, 16},
551 };
552 
553 static struct decode_info decode_info_vebox = {
554 	"VEBOX",
555 	OP_LEN_VEBOX,
556 	ARRAY_SIZE(sub_op_vebox),
557 	sub_op_vebox,
558 };
559 
560 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561 	[RCS] = {
562 		&decode_info_mi,
563 		NULL,
564 		NULL,
565 		&decode_info_3d_media,
566 		NULL,
567 		NULL,
568 		NULL,
569 		NULL,
570 	},
571 
572 	[VCS] = {
573 		&decode_info_mi,
574 		NULL,
575 		NULL,
576 		&decode_info_mfx_vc,
577 		NULL,
578 		NULL,
579 		NULL,
580 		NULL,
581 	},
582 
583 	[BCS] = {
584 		&decode_info_mi,
585 		NULL,
586 		&decode_info_2d,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 		NULL,
592 	},
593 
594 	[VECS] = {
595 		&decode_info_mi,
596 		NULL,
597 		NULL,
598 		&decode_info_vebox,
599 		NULL,
600 		NULL,
601 		NULL,
602 		NULL,
603 	},
604 
605 	[VCS2] = {
606 		&decode_info_mi,
607 		NULL,
608 		NULL,
609 		&decode_info_mfx_vc,
610 		NULL,
611 		NULL,
612 		NULL,
613 		NULL,
614 	},
615 };
616 
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619 	struct decode_info *d_info;
620 
621 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622 	if (d_info == NULL)
623 		return INVALID_OP;
624 
625 	return cmd >> (32 - d_info->op_len);
626 }
627 
628 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629 		unsigned int opcode, int ring_id)
630 {
631 	struct cmd_entry *e;
632 
633 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634 		if ((opcode == e->info->opcode) &&
635 				(e->info->rings & (1 << ring_id)))
636 			return e->info;
637 	}
638 	return NULL;
639 }
640 
641 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
642 		u32 cmd, int ring_id)
643 {
644 	u32 opcode;
645 
646 	opcode = get_opcode(cmd, ring_id);
647 	if (opcode == INVALID_OP)
648 		return NULL;
649 
650 	return find_cmd_entry(gvt, opcode, ring_id);
651 }
652 
653 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
654 {
655 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
656 }
657 
658 static inline void print_opcode(u32 cmd, int ring_id)
659 {
660 	struct decode_info *d_info;
661 	int i;
662 
663 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
664 	if (d_info == NULL)
665 		return;
666 
667 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
668 			cmd >> (32 - d_info->op_len), d_info->name);
669 
670 	for (i = 0; i < d_info->nr_sub_op; i++)
671 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
672 					d_info->sub_op[i].low));
673 
674 	pr_err("\n");
675 }
676 
677 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
678 {
679 	return s->ip_va + (index << 2);
680 }
681 
682 static inline u32 cmd_val(struct parser_exec_state *s, int index)
683 {
684 	return *cmd_ptr(s, index);
685 }
686 
687 static void parser_exec_state_dump(struct parser_exec_state *s)
688 {
689 	int cnt = 0;
690 	int i;
691 
692 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
693 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
694 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
695 			s->ring_head, s->ring_tail);
696 
697 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
698 			s->buf_type == RING_BUFFER_INSTRUCTION ?
699 			"RING_BUFFER" : "BATCH_BUFFER",
700 			s->buf_addr_type == GTT_BUFFER ?
701 			"GTT" : "PPGTT", s->ip_gma);
702 
703 	if (s->ip_va == NULL) {
704 		gvt_dbg_cmd(" ip_va(NULL)");
705 		return;
706 	}
707 
708 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
709 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
710 			cmd_val(s, 2), cmd_val(s, 3));
711 
712 	print_opcode(cmd_val(s, 0), s->ring_id);
713 
714 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
715 
716 	while (cnt < 1024) {
717 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
718 		for (i = 0; i < 8; i++)
719 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
720 		gvt_dbg_cmd("\n");
721 
722 		s->ip_va += 8 * sizeof(u32);
723 		cnt += 8;
724 	}
725 }
726 
727 static inline void update_ip_va(struct parser_exec_state *s)
728 {
729 	unsigned long len = 0;
730 
731 	if (WARN_ON(s->ring_head == s->ring_tail))
732 		return;
733 
734 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
735 		unsigned long ring_top = s->ring_start + s->ring_size;
736 
737 		if (s->ring_head > s->ring_tail) {
738 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
739 				len = (s->ip_gma - s->ring_head);
740 			else if (s->ip_gma >= s->ring_start &&
741 					s->ip_gma <= s->ring_tail)
742 				len = (ring_top - s->ring_head) +
743 					(s->ip_gma - s->ring_start);
744 		} else
745 			len = (s->ip_gma - s->ring_head);
746 
747 		s->ip_va = s->rb_va + len;
748 	} else {/* shadow batch buffer */
749 		s->ip_va = s->ret_bb_va;
750 	}
751 }
752 
753 static inline int ip_gma_set(struct parser_exec_state *s,
754 		unsigned long ip_gma)
755 {
756 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
757 
758 	s->ip_gma = ip_gma;
759 	update_ip_va(s);
760 	return 0;
761 }
762 
763 static inline int ip_gma_advance(struct parser_exec_state *s,
764 		unsigned int dw_len)
765 {
766 	s->ip_gma += (dw_len << 2);
767 
768 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
769 		if (s->ip_gma >= s->ring_start + s->ring_size)
770 			s->ip_gma -= s->ring_size;
771 		update_ip_va(s);
772 	} else {
773 		s->ip_va += (dw_len << 2);
774 	}
775 
776 	return 0;
777 }
778 
779 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
780 {
781 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
782 		return info->len;
783 	else
784 		return (cmd & ((1U << info->len) - 1)) + 2;
785 	return 0;
786 }
787 
788 static inline int cmd_length(struct parser_exec_state *s)
789 {
790 	return get_cmd_length(s->info, cmd_val(s, 0));
791 }
792 
793 /* do not remove this, some platform may need clflush here */
794 #define patch_value(s, addr, val) do { \
795 	*addr = val; \
796 } while (0)
797 
798 static bool is_shadowed_mmio(unsigned int offset)
799 {
800 	bool ret = false;
801 
802 	if ((offset == 0x2168) || /*BB current head register UDW */
803 	    (offset == 0x2140) || /*BB current header register */
804 	    (offset == 0x211c) || /*second BB header register UDW */
805 	    (offset == 0x2114)) { /*second BB header register UDW */
806 		ret = true;
807 	}
808 	return ret;
809 }
810 
811 static inline bool is_force_nonpriv_mmio(unsigned int offset)
812 {
813 	return (offset >= 0x24d0 && offset < 0x2500);
814 }
815 
816 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
817 		unsigned int offset, unsigned int index, char *cmd)
818 {
819 	struct intel_gvt *gvt = s->vgpu->gvt;
820 	unsigned int data;
821 	u32 ring_base;
822 	u32 nopid;
823 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
824 
825 	if (!strcmp(cmd, "lri"))
826 		data = cmd_val(s, index + 1);
827 	else {
828 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
829 			offset, cmd);
830 		return -EINVAL;
831 	}
832 
833 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
834 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
835 
836 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
837 			data != nopid) {
838 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
839 			offset, data);
840 		patch_value(s, cmd_ptr(s, index), nopid);
841 		return 0;
842 	}
843 	return 0;
844 }
845 
846 static inline bool is_mocs_mmio(unsigned int offset)
847 {
848 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
849 		((offset >= 0xb020) && (offset <= 0xb0a0));
850 }
851 
852 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
853 				unsigned int offset, unsigned int index)
854 {
855 	if (!is_mocs_mmio(offset))
856 		return -EINVAL;
857 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
858 	return 0;
859 }
860 
861 static int cmd_reg_handler(struct parser_exec_state *s,
862 	unsigned int offset, unsigned int index, char *cmd)
863 {
864 	struct intel_vgpu *vgpu = s->vgpu;
865 	struct intel_gvt *gvt = vgpu->gvt;
866 
867 	if (offset + 4 > gvt->device_info.mmio_size) {
868 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
869 				cmd, offset);
870 		return -EFAULT;
871 	}
872 
873 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
874 		gvt_vgpu_err("%s access to non-render register (%x)\n",
875 				cmd, offset);
876 		return 0;
877 	}
878 
879 	if (is_shadowed_mmio(offset)) {
880 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
881 		return 0;
882 	}
883 
884 	if (is_mocs_mmio(offset) &&
885 	    mocs_cmd_reg_handler(s, offset, index))
886 		return -EINVAL;
887 
888 	if (is_force_nonpriv_mmio(offset) &&
889 		force_nonpriv_reg_handler(s, offset, index, cmd))
890 		return -EPERM;
891 
892 	if (offset == i915_mmio_reg_offset(DERRMR) ||
893 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
894 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
895 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
896 	}
897 
898 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
899 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
900 	return 0;
901 }
902 
903 #define cmd_reg(s, i) \
904 	(cmd_val(s, i) & GENMASK(22, 2))
905 
906 #define cmd_reg_inhibit(s, i) \
907 	(cmd_val(s, i) & GENMASK(22, 18))
908 
909 #define cmd_gma(s, i) \
910 	(cmd_val(s, i) & GENMASK(31, 2))
911 
912 #define cmd_gma_hi(s, i) \
913 	(cmd_val(s, i) & GENMASK(15, 0))
914 
915 static int cmd_handler_lri(struct parser_exec_state *s)
916 {
917 	int i, ret = 0;
918 	int cmd_len = cmd_length(s);
919 	struct intel_gvt *gvt = s->vgpu->gvt;
920 
921 	for (i = 1; i < cmd_len; i += 2) {
922 		if (IS_BROADWELL(gvt->dev_priv) &&
923 				(s->ring_id != RCS)) {
924 			if (s->ring_id == BCS &&
925 					cmd_reg(s, i) ==
926 					i915_mmio_reg_offset(DERRMR))
927 				ret |= 0;
928 			else
929 				ret |= (cmd_reg_inhibit(s, i)) ?
930 					-EBADRQC : 0;
931 		}
932 		if (ret)
933 			break;
934 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
935 		if (ret)
936 			break;
937 	}
938 	return ret;
939 }
940 
941 static int cmd_handler_lrr(struct parser_exec_state *s)
942 {
943 	int i, ret = 0;
944 	int cmd_len = cmd_length(s);
945 
946 	for (i = 1; i < cmd_len; i += 2) {
947 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
948 			ret |= ((cmd_reg_inhibit(s, i) ||
949 					(cmd_reg_inhibit(s, i + 1)))) ?
950 				-EBADRQC : 0;
951 		if (ret)
952 			break;
953 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
954 		if (ret)
955 			break;
956 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
957 		if (ret)
958 			break;
959 	}
960 	return ret;
961 }
962 
963 static inline int cmd_address_audit(struct parser_exec_state *s,
964 		unsigned long guest_gma, int op_size, bool index_mode);
965 
966 static int cmd_handler_lrm(struct parser_exec_state *s)
967 {
968 	struct intel_gvt *gvt = s->vgpu->gvt;
969 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
970 	unsigned long gma;
971 	int i, ret = 0;
972 	int cmd_len = cmd_length(s);
973 
974 	for (i = 1; i < cmd_len;) {
975 		if (IS_BROADWELL(gvt->dev_priv))
976 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
977 		if (ret)
978 			break;
979 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
980 		if (ret)
981 			break;
982 		if (cmd_val(s, 0) & (1 << 22)) {
983 			gma = cmd_gma(s, i + 1);
984 			if (gmadr_bytes == 8)
985 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
986 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
987 			if (ret)
988 				break;
989 		}
990 		i += gmadr_dw_number(s) + 1;
991 	}
992 	return ret;
993 }
994 
995 static int cmd_handler_srm(struct parser_exec_state *s)
996 {
997 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
998 	unsigned long gma;
999 	int i, ret = 0;
1000 	int cmd_len = cmd_length(s);
1001 
1002 	for (i = 1; i < cmd_len;) {
1003 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1004 		if (ret)
1005 			break;
1006 		if (cmd_val(s, 0) & (1 << 22)) {
1007 			gma = cmd_gma(s, i + 1);
1008 			if (gmadr_bytes == 8)
1009 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1010 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1011 			if (ret)
1012 				break;
1013 		}
1014 		i += gmadr_dw_number(s) + 1;
1015 	}
1016 	return ret;
1017 }
1018 
1019 struct cmd_interrupt_event {
1020 	int pipe_control_notify;
1021 	int mi_flush_dw;
1022 	int mi_user_interrupt;
1023 };
1024 
1025 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1026 	[RCS] = {
1027 		.pipe_control_notify = RCS_PIPE_CONTROL,
1028 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1029 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1030 	},
1031 	[BCS] = {
1032 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1033 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1034 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1035 	},
1036 	[VCS] = {
1037 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1038 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1039 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1040 	},
1041 	[VCS2] = {
1042 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1043 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1044 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1045 	},
1046 	[VECS] = {
1047 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1048 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1049 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1050 	},
1051 };
1052 
1053 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1054 {
1055 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1056 	unsigned long gma;
1057 	bool index_mode = false;
1058 	unsigned int post_sync;
1059 	int ret = 0;
1060 
1061 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1062 
1063 	/* LRI post sync */
1064 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1065 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1066 	/* post sync */
1067 	else if (post_sync) {
1068 		if (post_sync == 2)
1069 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1070 		else if (post_sync == 3)
1071 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1072 		else if (post_sync == 1) {
1073 			/* check ggtt*/
1074 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1075 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1076 				if (gmadr_bytes == 8)
1077 					gma |= (cmd_gma_hi(s, 3)) << 32;
1078 				/* Store Data Index */
1079 				if (cmd_val(s, 1) & (1 << 21))
1080 					index_mode = true;
1081 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1082 						index_mode);
1083 			}
1084 		}
1085 	}
1086 
1087 	if (ret)
1088 		return ret;
1089 
1090 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1091 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1092 				s->workload->pending_events);
1093 	return 0;
1094 }
1095 
1096 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1097 {
1098 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1099 			s->workload->pending_events);
1100 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1101 	return 0;
1102 }
1103 
1104 static int cmd_advance_default(struct parser_exec_state *s)
1105 {
1106 	return ip_gma_advance(s, cmd_length(s));
1107 }
1108 
1109 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1110 {
1111 	int ret;
1112 
1113 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1114 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1115 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1116 		s->buf_addr_type = s->saved_buf_addr_type;
1117 	} else {
1118 		s->buf_type = RING_BUFFER_INSTRUCTION;
1119 		s->buf_addr_type = GTT_BUFFER;
1120 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1121 			s->ret_ip_gma_ring -= s->ring_size;
1122 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1123 	}
1124 	return ret;
1125 }
1126 
1127 struct mi_display_flip_command_info {
1128 	int pipe;
1129 	int plane;
1130 	int event;
1131 	i915_reg_t stride_reg;
1132 	i915_reg_t ctrl_reg;
1133 	i915_reg_t surf_reg;
1134 	u64 stride_val;
1135 	u64 tile_val;
1136 	u64 surf_val;
1137 	bool async_flip;
1138 };
1139 
1140 struct plane_code_mapping {
1141 	int pipe;
1142 	int plane;
1143 	int event;
1144 };
1145 
1146 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1147 		struct mi_display_flip_command_info *info)
1148 {
1149 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1150 	struct plane_code_mapping gen8_plane_code[] = {
1151 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1152 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1153 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1154 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1155 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1156 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1157 	};
1158 	u32 dword0, dword1, dword2;
1159 	u32 v;
1160 
1161 	dword0 = cmd_val(s, 0);
1162 	dword1 = cmd_val(s, 1);
1163 	dword2 = cmd_val(s, 2);
1164 
1165 	v = (dword0 & GENMASK(21, 19)) >> 19;
1166 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1167 		return -EBADRQC;
1168 
1169 	info->pipe = gen8_plane_code[v].pipe;
1170 	info->plane = gen8_plane_code[v].plane;
1171 	info->event = gen8_plane_code[v].event;
1172 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1173 	info->tile_val = (dword1 & 0x1);
1174 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1175 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1176 
1177 	if (info->plane == PLANE_A) {
1178 		info->ctrl_reg = DSPCNTR(info->pipe);
1179 		info->stride_reg = DSPSTRIDE(info->pipe);
1180 		info->surf_reg = DSPSURF(info->pipe);
1181 	} else if (info->plane == PLANE_B) {
1182 		info->ctrl_reg = SPRCTL(info->pipe);
1183 		info->stride_reg = SPRSTRIDE(info->pipe);
1184 		info->surf_reg = SPRSURF(info->pipe);
1185 	} else {
1186 		WARN_ON(1);
1187 		return -EBADRQC;
1188 	}
1189 	return 0;
1190 }
1191 
1192 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1193 		struct mi_display_flip_command_info *info)
1194 {
1195 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1196 	struct intel_vgpu *vgpu = s->vgpu;
1197 	u32 dword0 = cmd_val(s, 0);
1198 	u32 dword1 = cmd_val(s, 1);
1199 	u32 dword2 = cmd_val(s, 2);
1200 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1201 
1202 	info->plane = PRIMARY_PLANE;
1203 
1204 	switch (plane) {
1205 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1206 		info->pipe = PIPE_A;
1207 		info->event = PRIMARY_A_FLIP_DONE;
1208 		break;
1209 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1210 		info->pipe = PIPE_B;
1211 		info->event = PRIMARY_B_FLIP_DONE;
1212 		break;
1213 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1214 		info->pipe = PIPE_C;
1215 		info->event = PRIMARY_C_FLIP_DONE;
1216 		break;
1217 
1218 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1219 		info->pipe = PIPE_A;
1220 		info->event = SPRITE_A_FLIP_DONE;
1221 		info->plane = SPRITE_PLANE;
1222 		break;
1223 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1224 		info->pipe = PIPE_B;
1225 		info->event = SPRITE_B_FLIP_DONE;
1226 		info->plane = SPRITE_PLANE;
1227 		break;
1228 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1229 		info->pipe = PIPE_C;
1230 		info->event = SPRITE_C_FLIP_DONE;
1231 		info->plane = SPRITE_PLANE;
1232 		break;
1233 
1234 	default:
1235 		gvt_vgpu_err("unknown plane code %d\n", plane);
1236 		return -EBADRQC;
1237 	}
1238 
1239 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1240 	info->tile_val = (dword1 & GENMASK(2, 0));
1241 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1242 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1243 
1244 	info->ctrl_reg = DSPCNTR(info->pipe);
1245 	info->stride_reg = DSPSTRIDE(info->pipe);
1246 	info->surf_reg = DSPSURF(info->pipe);
1247 
1248 	return 0;
1249 }
1250 
1251 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1252 		struct mi_display_flip_command_info *info)
1253 {
1254 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1255 	u32 stride, tile;
1256 
1257 	if (!info->async_flip)
1258 		return 0;
1259 
1260 	if (IS_SKYLAKE(dev_priv)
1261 		|| IS_KABYLAKE(dev_priv)
1262 		|| IS_BROXTON(dev_priv)) {
1263 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1264 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1265 				GENMASK(12, 10)) >> 10;
1266 	} else {
1267 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1268 				GENMASK(15, 6)) >> 6;
1269 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1270 	}
1271 
1272 	if (stride != info->stride_val)
1273 		gvt_dbg_cmd("cannot change stride during async flip\n");
1274 
1275 	if (tile != info->tile_val)
1276 		gvt_dbg_cmd("cannot change tile during async flip\n");
1277 
1278 	return 0;
1279 }
1280 
1281 static int gen8_update_plane_mmio_from_mi_display_flip(
1282 		struct parser_exec_state *s,
1283 		struct mi_display_flip_command_info *info)
1284 {
1285 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1286 	struct intel_vgpu *vgpu = s->vgpu;
1287 
1288 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1289 		      info->surf_val << 12);
1290 	if (IS_SKYLAKE(dev_priv)
1291 		|| IS_KABYLAKE(dev_priv)
1292 		|| IS_BROXTON(dev_priv)) {
1293 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1294 			      info->stride_val);
1295 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1296 			      info->tile_val << 10);
1297 	} else {
1298 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1299 			      info->stride_val << 6);
1300 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1301 			      info->tile_val << 10);
1302 	}
1303 
1304 	vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1305 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1306 	return 0;
1307 }
1308 
1309 static int decode_mi_display_flip(struct parser_exec_state *s,
1310 		struct mi_display_flip_command_info *info)
1311 {
1312 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1313 
1314 	if (IS_BROADWELL(dev_priv))
1315 		return gen8_decode_mi_display_flip(s, info);
1316 	if (IS_SKYLAKE(dev_priv)
1317 		|| IS_KABYLAKE(dev_priv)
1318 		|| IS_BROXTON(dev_priv))
1319 		return skl_decode_mi_display_flip(s, info);
1320 
1321 	return -ENODEV;
1322 }
1323 
1324 static int check_mi_display_flip(struct parser_exec_state *s,
1325 		struct mi_display_flip_command_info *info)
1326 {
1327 	return gen8_check_mi_display_flip(s, info);
1328 }
1329 
1330 static int update_plane_mmio_from_mi_display_flip(
1331 		struct parser_exec_state *s,
1332 		struct mi_display_flip_command_info *info)
1333 {
1334 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1335 }
1336 
1337 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1338 {
1339 	struct mi_display_flip_command_info info;
1340 	struct intel_vgpu *vgpu = s->vgpu;
1341 	int ret;
1342 	int i;
1343 	int len = cmd_length(s);
1344 
1345 	ret = decode_mi_display_flip(s, &info);
1346 	if (ret) {
1347 		gvt_vgpu_err("fail to decode MI display flip command\n");
1348 		return ret;
1349 	}
1350 
1351 	ret = check_mi_display_flip(s, &info);
1352 	if (ret) {
1353 		gvt_vgpu_err("invalid MI display flip command\n");
1354 		return ret;
1355 	}
1356 
1357 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1358 	if (ret) {
1359 		gvt_vgpu_err("fail to update plane mmio\n");
1360 		return ret;
1361 	}
1362 
1363 	for (i = 0; i < len; i++)
1364 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1365 	return 0;
1366 }
1367 
1368 static bool is_wait_for_flip_pending(u32 cmd)
1369 {
1370 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1371 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1372 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1373 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1374 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1375 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1376 }
1377 
1378 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1379 {
1380 	u32 cmd = cmd_val(s, 0);
1381 
1382 	if (!is_wait_for_flip_pending(cmd))
1383 		return 0;
1384 
1385 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1386 	return 0;
1387 }
1388 
1389 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1390 {
1391 	unsigned long addr;
1392 	unsigned long gma_high, gma_low;
1393 	struct intel_vgpu *vgpu = s->vgpu;
1394 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1395 
1396 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1397 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1398 		return INTEL_GVT_INVALID_ADDR;
1399 	}
1400 
1401 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1402 	if (gmadr_bytes == 4) {
1403 		addr = gma_low;
1404 	} else {
1405 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1406 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1407 	}
1408 	return addr;
1409 }
1410 
1411 static inline int cmd_address_audit(struct parser_exec_state *s,
1412 		unsigned long guest_gma, int op_size, bool index_mode)
1413 {
1414 	struct intel_vgpu *vgpu = s->vgpu;
1415 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1416 	int i;
1417 	int ret;
1418 
1419 	if (op_size > max_surface_size) {
1420 		gvt_vgpu_err("command address audit fail name %s\n",
1421 			s->info->name);
1422 		return -EFAULT;
1423 	}
1424 
1425 	if (index_mode)	{
1426 		if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
1427 			ret = -EFAULT;
1428 			goto err;
1429 		}
1430 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1431 		ret = -EFAULT;
1432 		goto err;
1433 	}
1434 
1435 	return 0;
1436 
1437 err:
1438 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1439 			s->info->name, guest_gma, op_size);
1440 
1441 	pr_err("cmd dump: ");
1442 	for (i = 0; i < cmd_length(s); i++) {
1443 		if (!(i % 4))
1444 			pr_err("\n%08x ", cmd_val(s, i));
1445 		else
1446 			pr_err("%08x ", cmd_val(s, i));
1447 	}
1448 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1449 			vgpu->id,
1450 			vgpu_aperture_gmadr_base(vgpu),
1451 			vgpu_aperture_gmadr_end(vgpu),
1452 			vgpu_hidden_gmadr_base(vgpu),
1453 			vgpu_hidden_gmadr_end(vgpu));
1454 	return ret;
1455 }
1456 
1457 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1458 {
1459 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1460 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1461 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1462 	unsigned long gma, gma_low, gma_high;
1463 	int ret = 0;
1464 
1465 	/* check ppggt */
1466 	if (!(cmd_val(s, 0) & (1 << 22)))
1467 		return 0;
1468 
1469 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1470 
1471 	if (gmadr_bytes == 8) {
1472 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1473 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1474 		gma = (gma_high << 32) | gma_low;
1475 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1476 	}
1477 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1478 	return ret;
1479 }
1480 
1481 static inline int unexpected_cmd(struct parser_exec_state *s)
1482 {
1483 	struct intel_vgpu *vgpu = s->vgpu;
1484 
1485 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1486 
1487 	return -EBADRQC;
1488 }
1489 
1490 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1491 {
1492 	return unexpected_cmd(s);
1493 }
1494 
1495 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1496 {
1497 	return unexpected_cmd(s);
1498 }
1499 
1500 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1501 {
1502 	return unexpected_cmd(s);
1503 }
1504 
1505 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1506 {
1507 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1508 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1509 			sizeof(u32);
1510 	unsigned long gma, gma_high;
1511 	int ret = 0;
1512 
1513 	if (!(cmd_val(s, 0) & (1 << 22)))
1514 		return ret;
1515 
1516 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1517 	if (gmadr_bytes == 8) {
1518 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1519 		gma = (gma_high << 32) | gma;
1520 	}
1521 	ret = cmd_address_audit(s, gma, op_size, false);
1522 	return ret;
1523 }
1524 
1525 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1526 {
1527 	return unexpected_cmd(s);
1528 }
1529 
1530 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1531 {
1532 	return unexpected_cmd(s);
1533 }
1534 
1535 static int cmd_handler_mi_conditional_batch_buffer_end(
1536 		struct parser_exec_state *s)
1537 {
1538 	return unexpected_cmd(s);
1539 }
1540 
1541 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1542 {
1543 	return unexpected_cmd(s);
1544 }
1545 
1546 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1547 {
1548 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1549 	unsigned long gma;
1550 	bool index_mode = false;
1551 	int ret = 0;
1552 
1553 	/* Check post-sync and ppgtt bit */
1554 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1555 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1556 		if (gmadr_bytes == 8)
1557 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1558 		/* Store Data Index */
1559 		if (cmd_val(s, 0) & (1 << 21))
1560 			index_mode = true;
1561 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1562 	}
1563 	/* Check notify bit */
1564 	if ((cmd_val(s, 0) & (1 << 8)))
1565 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1566 				s->workload->pending_events);
1567 	return ret;
1568 }
1569 
1570 static void addr_type_update_snb(struct parser_exec_state *s)
1571 {
1572 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1573 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1574 		s->buf_addr_type = PPGTT_BUFFER;
1575 	}
1576 }
1577 
1578 
1579 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1580 		unsigned long gma, unsigned long end_gma, void *va)
1581 {
1582 	unsigned long copy_len, offset;
1583 	unsigned long len = 0;
1584 	unsigned long gpa;
1585 
1586 	while (gma != end_gma) {
1587 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1588 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1589 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1590 			return -EFAULT;
1591 		}
1592 
1593 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1594 
1595 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1596 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1597 
1598 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1599 
1600 		len += copy_len;
1601 		gma += copy_len;
1602 	}
1603 	return len;
1604 }
1605 
1606 
1607 /*
1608  * Check whether a batch buffer needs to be scanned. Currently
1609  * the only criteria is based on privilege.
1610  */
1611 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1612 {
1613 	/* Decide privilege based on address space */
1614 	if (cmd_val(s, 0) & (1 << 8) &&
1615 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1616 		return 0;
1617 	return 1;
1618 }
1619 
1620 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1621 {
1622 	unsigned long gma = 0;
1623 	struct cmd_info *info;
1624 	uint32_t cmd_len = 0;
1625 	bool bb_end = false;
1626 	struct intel_vgpu *vgpu = s->vgpu;
1627 	u32 cmd;
1628 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1629 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1630 
1631 	*bb_size = 0;
1632 
1633 	/* get the start gm address of the batch buffer */
1634 	gma = get_gma_bb_from_cmd(s, 1);
1635 	if (gma == INTEL_GVT_INVALID_ADDR)
1636 		return -EFAULT;
1637 
1638 	cmd = cmd_val(s, 0);
1639 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1640 	if (info == NULL) {
1641 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1642 				cmd, get_opcode(cmd, s->ring_id),
1643 				(s->buf_addr_type == PPGTT_BUFFER) ?
1644 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1645 		return -EBADRQC;
1646 	}
1647 	do {
1648 		if (copy_gma_to_hva(s->vgpu, mm,
1649 				gma, gma + 4, &cmd) < 0)
1650 			return -EFAULT;
1651 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1652 		if (info == NULL) {
1653 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1654 				cmd, get_opcode(cmd, s->ring_id),
1655 				(s->buf_addr_type == PPGTT_BUFFER) ?
1656 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1657 			return -EBADRQC;
1658 		}
1659 
1660 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1661 			bb_end = true;
1662 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1663 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1664 				/* chained batch buffer */
1665 				bb_end = true;
1666 		}
1667 		cmd_len = get_cmd_length(info, cmd) << 2;
1668 		*bb_size += cmd_len;
1669 		gma += cmd_len;
1670 	} while (!bb_end);
1671 
1672 	return 0;
1673 }
1674 
1675 static int perform_bb_shadow(struct parser_exec_state *s)
1676 {
1677 	struct intel_vgpu *vgpu = s->vgpu;
1678 	struct intel_vgpu_shadow_bb *bb;
1679 	unsigned long gma = 0;
1680 	unsigned long bb_size;
1681 	int ret = 0;
1682 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1683 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1684 	unsigned long gma_start_offset = 0;
1685 
1686 	/* get the start gm address of the batch buffer */
1687 	gma = get_gma_bb_from_cmd(s, 1);
1688 	if (gma == INTEL_GVT_INVALID_ADDR)
1689 		return -EFAULT;
1690 
1691 	ret = find_bb_size(s, &bb_size);
1692 	if (ret)
1693 		return ret;
1694 
1695 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1696 	if (!bb)
1697 		return -ENOMEM;
1698 
1699 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1700 
1701 	/* the gma_start_offset stores the batch buffer's start gma's
1702 	 * offset relative to page boundary. so for non-privileged batch
1703 	 * buffer, the shadowed gem object holds exactly the same page
1704 	 * layout as original gem object. This is for the convience of
1705 	 * replacing the whole non-privilged batch buffer page to this
1706 	 * shadowed one in PPGTT at the same gma address. (this replacing
1707 	 * action is not implemented yet now, but may be necessary in
1708 	 * future).
1709 	 * for prileged batch buffer, we just change start gma address to
1710 	 * that of shadowed page.
1711 	 */
1712 	if (bb->ppgtt)
1713 		gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1714 
1715 	bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1716 			 roundup(bb_size + gma_start_offset, PAGE_SIZE));
1717 	if (IS_ERR(bb->obj)) {
1718 		ret = PTR_ERR(bb->obj);
1719 		goto err_free_bb;
1720 	}
1721 
1722 	ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1723 	if (ret)
1724 		goto err_free_obj;
1725 
1726 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1727 	if (IS_ERR(bb->va)) {
1728 		ret = PTR_ERR(bb->va);
1729 		goto err_finish_shmem_access;
1730 	}
1731 
1732 	if (bb->clflush & CLFLUSH_BEFORE) {
1733 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1734 		bb->clflush &= ~CLFLUSH_BEFORE;
1735 	}
1736 
1737 	ret = copy_gma_to_hva(s->vgpu, mm,
1738 			      gma, gma + bb_size,
1739 			      bb->va + gma_start_offset);
1740 	if (ret < 0) {
1741 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1742 		ret = -EFAULT;
1743 		goto err_unmap;
1744 	}
1745 
1746 	INIT_LIST_HEAD(&bb->list);
1747 	list_add(&bb->list, &s->workload->shadow_bb);
1748 
1749 	bb->accessing = true;
1750 	bb->bb_start_cmd_va = s->ip_va;
1751 
1752 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1753 		bb->bb_offset = s->ip_va - s->rb_va;
1754 	else
1755 		bb->bb_offset = 0;
1756 
1757 	/*
1758 	 * ip_va saves the virtual address of the shadow batch buffer, while
1759 	 * ip_gma saves the graphics address of the original batch buffer.
1760 	 * As the shadow batch buffer is just a copy from the originial one,
1761 	 * it should be right to use shadow batch buffer'va and original batch
1762 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1763 	 * buffer here (too early).
1764 	 */
1765 	s->ip_va = bb->va + gma_start_offset;
1766 	s->ip_gma = gma;
1767 	return 0;
1768 err_unmap:
1769 	i915_gem_object_unpin_map(bb->obj);
1770 err_finish_shmem_access:
1771 	i915_gem_obj_finish_shmem_access(bb->obj);
1772 err_free_obj:
1773 	i915_gem_object_put(bb->obj);
1774 err_free_bb:
1775 	kfree(bb);
1776 	return ret;
1777 }
1778 
1779 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1780 {
1781 	bool second_level;
1782 	int ret = 0;
1783 	struct intel_vgpu *vgpu = s->vgpu;
1784 
1785 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1786 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1787 		return -EFAULT;
1788 	}
1789 
1790 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1791 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1792 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1793 		return -EFAULT;
1794 	}
1795 
1796 	s->saved_buf_addr_type = s->buf_addr_type;
1797 	addr_type_update_snb(s);
1798 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1799 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1800 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1801 	} else if (second_level) {
1802 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1803 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1804 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1805 	}
1806 
1807 	if (batch_buffer_needs_scan(s)) {
1808 		ret = perform_bb_shadow(s);
1809 		if (ret < 0)
1810 			gvt_vgpu_err("invalid shadow batch buffer\n");
1811 	} else {
1812 		/* emulate a batch buffer end to do return right */
1813 		ret = cmd_handler_mi_batch_buffer_end(s);
1814 		if (ret < 0)
1815 			return ret;
1816 	}
1817 	return ret;
1818 }
1819 
1820 static struct cmd_info cmd_info[] = {
1821 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1822 
1823 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1824 		0, 1, NULL},
1825 
1826 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1827 		0, 1, cmd_handler_mi_user_interrupt},
1828 
1829 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1830 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1831 
1832 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1833 
1834 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1835 		NULL},
1836 
1837 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1838 		NULL},
1839 
1840 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1841 		NULL},
1842 
1843 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1844 		NULL},
1845 
1846 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1847 		D_ALL, 0, 1, NULL},
1848 
1849 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1850 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1851 		cmd_handler_mi_batch_buffer_end},
1852 
1853 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1854 		0, 1, NULL},
1855 
1856 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1857 		NULL},
1858 
1859 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1860 		D_ALL, 0, 1, NULL},
1861 
1862 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1863 		NULL},
1864 
1865 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1866 		NULL},
1867 
1868 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1869 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1870 
1871 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1872 		0, 8, NULL},
1873 
1874 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1875 
1876 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1877 
1878 	{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1879 		D_BDW_PLUS, 0, 8, NULL},
1880 
1881 	{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1882 		ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1883 
1884 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1885 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1886 
1887 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1888 		0, 8, cmd_handler_mi_store_data_index},
1889 
1890 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1891 		D_ALL, 0, 8, cmd_handler_lri},
1892 
1893 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1894 		cmd_handler_mi_update_gtt},
1895 
1896 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1897 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1898 
1899 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1900 		cmd_handler_mi_flush_dw},
1901 
1902 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1903 		10, cmd_handler_mi_clflush},
1904 
1905 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1906 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1907 
1908 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1909 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1910 
1911 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1912 		D_ALL, 0, 8, cmd_handler_lrr},
1913 
1914 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1915 		D_ALL, 0, 8, NULL},
1916 
1917 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1918 		ADDR_FIX_1(2), 8, NULL},
1919 
1920 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1921 		ADDR_FIX_1(2), 8, NULL},
1922 
1923 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1924 		8, cmd_handler_mi_op_2e},
1925 
1926 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1927 		8, cmd_handler_mi_op_2f},
1928 
1929 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1930 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1931 		cmd_handler_mi_batch_buffer_start},
1932 
1933 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1934 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1935 		cmd_handler_mi_conditional_batch_buffer_end},
1936 
1937 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1938 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1939 
1940 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1941 		ADDR_FIX_2(4, 7), 8, NULL},
1942 
1943 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1944 		0, 8, NULL},
1945 
1946 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1947 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1948 
1949 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1950 
1951 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1952 		0, 8, NULL},
1953 
1954 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1955 		ADDR_FIX_1(3), 8, NULL},
1956 
1957 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1958 		D_ALL, 0, 8, NULL},
1959 
1960 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1961 		ADDR_FIX_1(4), 8, NULL},
1962 
1963 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1964 		ADDR_FIX_2(4, 5), 8, NULL},
1965 
1966 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1967 		ADDR_FIX_1(4), 8, NULL},
1968 
1969 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1970 		ADDR_FIX_2(4, 7), 8, NULL},
1971 
1972 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1973 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1974 
1975 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1976 
1977 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1978 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1979 
1980 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1981 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1982 
1983 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1984 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1985 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1986 
1987 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1988 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1989 
1990 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
1991 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1992 
1993 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
1994 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1995 
1996 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
1997 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1998 
1999 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2000 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2001 
2002 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2003 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2004 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2005 
2006 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2007 		ADDR_FIX_2(4, 5), 8, NULL},
2008 
2009 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2010 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2011 
2012 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2013 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2014 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2015 
2016 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2017 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2018 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2019 
2020 	{"3DSTATE_BLEND_STATE_POINTERS",
2021 		OP_3DSTATE_BLEND_STATE_POINTERS,
2022 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2023 
2024 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2025 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2026 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2027 
2028 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2029 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2030 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2031 
2032 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2033 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2034 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2035 
2036 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2037 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2038 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2039 
2040 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2041 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2042 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2043 
2044 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2045 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2046 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2047 
2048 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2049 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2050 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2051 
2052 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2053 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2054 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2055 
2056 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2057 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2058 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2059 
2060 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2061 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2062 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2063 
2064 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2065 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2066 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2067 
2068 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2069 		0, 8, NULL},
2070 
2071 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2072 		0, 8, NULL},
2073 
2074 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2075 		0, 8, NULL},
2076 
2077 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2078 		0, 8, NULL},
2079 
2080 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2081 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2082 
2083 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2084 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2085 
2086 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2087 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2088 
2089 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2090 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2091 
2092 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2093 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2094 
2095 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2096 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2097 
2098 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2099 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2100 
2101 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2102 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2103 
2104 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2105 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2106 
2107 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2108 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2109 
2110 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2111 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2112 
2113 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2114 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2115 
2116 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2117 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2118 
2119 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2120 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2121 
2122 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2123 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2124 
2125 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2126 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2127 
2128 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2129 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2130 
2131 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2132 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2133 
2134 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2135 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2136 
2137 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2138 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2139 
2140 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2141 		D_BDW_PLUS, 0, 8, NULL},
2142 
2143 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2144 		NULL},
2145 
2146 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2147 		D_BDW_PLUS, 0, 8, NULL},
2148 
2149 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2150 		D_BDW_PLUS, 0, 8, NULL},
2151 
2152 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2153 		8, NULL},
2154 
2155 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2156 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2157 
2158 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2159 		8, NULL},
2160 
2161 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2162 		NULL},
2163 
2164 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2165 		NULL},
2166 
2167 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2168 		NULL},
2169 
2170 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2171 		D_BDW_PLUS, 0, 8, NULL},
2172 
2173 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2174 		R_RCS, D_ALL, 0, 8, NULL},
2175 
2176 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2177 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2178 
2179 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2180 		R_RCS, D_ALL, 0, 1, NULL},
2181 
2182 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2183 
2184 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2185 		R_RCS, D_ALL, 0, 8, NULL},
2186 
2187 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2188 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2189 
2190 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2191 
2192 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2193 
2194 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2195 
2196 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2197 		D_BDW_PLUS, 0, 8, NULL},
2198 
2199 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2200 		D_BDW_PLUS, 0, 8, NULL},
2201 
2202 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2203 		D_ALL, 0, 8, NULL},
2204 
2205 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2206 		D_BDW_PLUS, 0, 8, NULL},
2207 
2208 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2209 		D_BDW_PLUS, 0, 8, NULL},
2210 
2211 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2212 
2213 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2214 
2215 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2216 
2217 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2218 		D_ALL, 0, 8, NULL},
2219 
2220 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2221 
2222 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2223 
2224 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2225 		R_RCS, D_ALL, 0, 8, NULL},
2226 
2227 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2228 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2229 
2230 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2231 		0, 8, NULL},
2232 
2233 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2234 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2235 
2236 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2237 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238 
2239 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2240 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 
2242 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2243 		D_ALL, 0, 8, NULL},
2244 
2245 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2246 		D_ALL, 0, 8, NULL},
2247 
2248 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2249 		D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2255 		D_BDW_PLUS, 0, 8, NULL},
2256 
2257 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2258 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2259 
2260 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2261 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2262 
2263 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2264 		R_RCS, D_ALL, 0, 8, NULL},
2265 
2266 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2267 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268 
2269 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2270 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271 
2272 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2273 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274 
2275 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2279 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280 
2281 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2282 		R_RCS, D_ALL, 0, 8, NULL},
2283 
2284 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2285 		D_ALL, 0, 9, NULL},
2286 
2287 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2288 		ADDR_FIX_2(2, 4), 8, NULL},
2289 
2290 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2291 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2292 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2293 
2294 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2295 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2296 
2297 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2298 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2299 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2300 
2301 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2302 		D_BDW_PLUS, 0, 8, NULL},
2303 
2304 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2305 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2306 
2307 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308 
2309 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2310 		1, NULL},
2311 
2312 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2313 		ADDR_FIX_1(1), 8, NULL},
2314 
2315 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316 
2317 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2318 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2319 
2320 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2321 		ADDR_FIX_1(1), 8, NULL},
2322 
2323 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324 
2325 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326 
2327 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2328 		0, 8, NULL},
2329 
2330 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2331 		D_SKL_PLUS, 0, 8, NULL},
2332 
2333 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2334 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2335 
2336 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2337 		0, 16, NULL},
2338 
2339 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2340 		0, 16, NULL},
2341 
2342 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2343 		0, 16, NULL},
2344 
2345 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2346 
2347 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2348 		0, 16, NULL},
2349 
2350 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2351 		0, 16, NULL},
2352 
2353 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2354 		0, 16, NULL},
2355 
2356 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2357 		0, 8, NULL},
2358 
2359 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2360 		NULL},
2361 
2362 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2363 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2364 
2365 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2366 		R_VCS, D_ALL, 0, 12, NULL},
2367 
2368 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2369 		R_VCS, D_ALL, 0, 12, NULL},
2370 
2371 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2372 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2373 
2374 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2375 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2376 
2377 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2378 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2379 
2380 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2381 
2382 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2383 		R_VCS, D_ALL, 0, 12, NULL},
2384 
2385 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2386 		R_VCS, D_ALL, 0, 12, NULL},
2387 
2388 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2389 		R_VCS, D_ALL, 0, 12, NULL},
2390 
2391 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2392 		R_VCS, D_ALL, 0, 12, NULL},
2393 
2394 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2395 		R_VCS, D_ALL, 0, 12, NULL},
2396 
2397 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2398 		R_VCS, D_ALL, 0, 12, NULL},
2399 
2400 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2401 		R_VCS, D_ALL, 0, 6, NULL},
2402 
2403 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2404 		R_VCS, D_ALL, 0, 12, NULL},
2405 
2406 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2407 		R_VCS, D_ALL, 0, 12, NULL},
2408 
2409 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2410 		R_VCS, D_ALL, 0, 12, NULL},
2411 
2412 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2413 		R_VCS, D_ALL, 0, 12, NULL},
2414 
2415 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2416 		R_VCS, D_ALL, 0, 12, NULL},
2417 
2418 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2419 		R_VCS, D_ALL, 0, 12, NULL},
2420 
2421 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2422 		R_VCS, D_ALL, 0, 12, NULL},
2423 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2424 		R_VCS, D_ALL, 0, 12, NULL},
2425 
2426 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2427 		R_VCS, D_ALL, 0, 12, NULL},
2428 
2429 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2430 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2431 
2432 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2433 		R_VCS, D_ALL, 0, 12, NULL},
2434 
2435 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2436 		R_VCS, D_ALL, 0, 12, NULL},
2437 
2438 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2439 		R_VCS, D_ALL, 0, 12, NULL},
2440 
2441 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2442 		R_VCS, D_ALL, 0, 12, NULL},
2443 
2444 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2445 		R_VCS, D_ALL, 0, 12, NULL},
2446 
2447 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2448 		R_VCS, D_ALL, 0, 12, NULL},
2449 
2450 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2451 		R_VCS, D_ALL, 0, 12, NULL},
2452 
2453 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2454 		R_VCS, D_ALL, 0, 12, NULL},
2455 
2456 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2457 		R_VCS, D_ALL, 0, 12, NULL},
2458 
2459 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2460 		R_VCS, D_ALL, 0, 12, NULL},
2461 
2462 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2463 		R_VCS, D_ALL, 0, 12, NULL},
2464 
2465 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2466 		0, 16, NULL},
2467 
2468 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2469 
2470 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2471 
2472 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2473 		R_VCS, D_ALL, 0, 12, NULL},
2474 
2475 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2476 		R_VCS, D_ALL, 0, 12, NULL},
2477 
2478 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2479 		R_VCS, D_ALL, 0, 12, NULL},
2480 
2481 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2482 
2483 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2484 		0, 12, NULL},
2485 
2486 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2487 		0, 20, NULL},
2488 };
2489 
2490 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2491 {
2492 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2493 }
2494 
2495 /* call the cmd handler, and advance ip */
2496 static int cmd_parser_exec(struct parser_exec_state *s)
2497 {
2498 	struct intel_vgpu *vgpu = s->vgpu;
2499 	struct cmd_info *info;
2500 	u32 cmd;
2501 	int ret = 0;
2502 
2503 	cmd = cmd_val(s, 0);
2504 
2505 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2506 	if (info == NULL) {
2507 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2508 				cmd, get_opcode(cmd, s->ring_id),
2509 				(s->buf_addr_type == PPGTT_BUFFER) ?
2510 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2511 		return -EBADRQC;
2512 	}
2513 
2514 	s->info = info;
2515 
2516 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2517 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2518 			  s->workload, info->name);
2519 
2520 	if (info->handler) {
2521 		ret = info->handler(s);
2522 		if (ret < 0) {
2523 			gvt_vgpu_err("%s handler error\n", info->name);
2524 			return ret;
2525 		}
2526 	}
2527 
2528 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2529 		ret = cmd_advance_default(s);
2530 		if (ret) {
2531 			gvt_vgpu_err("%s IP advance error\n", info->name);
2532 			return ret;
2533 		}
2534 	}
2535 	return 0;
2536 }
2537 
2538 static inline bool gma_out_of_range(unsigned long gma,
2539 		unsigned long gma_head, unsigned int gma_tail)
2540 {
2541 	if (gma_tail >= gma_head)
2542 		return (gma < gma_head) || (gma > gma_tail);
2543 	else
2544 		return (gma > gma_tail) && (gma < gma_head);
2545 }
2546 
2547 /* Keep the consistent return type, e.g EBADRQC for unknown
2548  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2549  * works as the input of VM healthy status.
2550  */
2551 static int command_scan(struct parser_exec_state *s,
2552 		unsigned long rb_head, unsigned long rb_tail,
2553 		unsigned long rb_start, unsigned long rb_len)
2554 {
2555 
2556 	unsigned long gma_head, gma_tail, gma_bottom;
2557 	int ret = 0;
2558 	struct intel_vgpu *vgpu = s->vgpu;
2559 
2560 	gma_head = rb_start + rb_head;
2561 	gma_tail = rb_start + rb_tail;
2562 	gma_bottom = rb_start +  rb_len;
2563 
2564 	while (s->ip_gma != gma_tail) {
2565 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2566 			if (!(s->ip_gma >= rb_start) ||
2567 				!(s->ip_gma < gma_bottom)) {
2568 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2569 					"(base:0x%lx, bottom: 0x%lx)\n",
2570 					s->ip_gma, rb_start,
2571 					gma_bottom);
2572 				parser_exec_state_dump(s);
2573 				return -EFAULT;
2574 			}
2575 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2576 				gvt_vgpu_err("ip_gma %lx out of range."
2577 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2578 					s->ip_gma, rb_start,
2579 					rb_head, rb_tail);
2580 				parser_exec_state_dump(s);
2581 				break;
2582 			}
2583 		}
2584 		ret = cmd_parser_exec(s);
2585 		if (ret) {
2586 			gvt_vgpu_err("cmd parser error\n");
2587 			parser_exec_state_dump(s);
2588 			break;
2589 		}
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 static int scan_workload(struct intel_vgpu_workload *workload)
2596 {
2597 	unsigned long gma_head, gma_tail, gma_bottom;
2598 	struct parser_exec_state s;
2599 	int ret = 0;
2600 
2601 	/* ring base is page aligned */
2602 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2603 		return -EINVAL;
2604 
2605 	gma_head = workload->rb_start + workload->rb_head;
2606 	gma_tail = workload->rb_start + workload->rb_tail;
2607 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2608 
2609 	s.buf_type = RING_BUFFER_INSTRUCTION;
2610 	s.buf_addr_type = GTT_BUFFER;
2611 	s.vgpu = workload->vgpu;
2612 	s.ring_id = workload->ring_id;
2613 	s.ring_start = workload->rb_start;
2614 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2615 	s.ring_head = gma_head;
2616 	s.ring_tail = gma_tail;
2617 	s.rb_va = workload->shadow_ring_buffer_va;
2618 	s.workload = workload;
2619 	s.is_ctx_wa = false;
2620 
2621 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2622 		gma_head == gma_tail)
2623 		return 0;
2624 
2625 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2626 		ret = -EINVAL;
2627 		goto out;
2628 	}
2629 
2630 	ret = ip_gma_set(&s, gma_head);
2631 	if (ret)
2632 		goto out;
2633 
2634 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2635 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2636 
2637 out:
2638 	return ret;
2639 }
2640 
2641 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2642 {
2643 
2644 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2645 	struct parser_exec_state s;
2646 	int ret = 0;
2647 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2648 				struct intel_vgpu_workload,
2649 				wa_ctx);
2650 
2651 	/* ring base is page aligned */
2652 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2653 					I915_GTT_PAGE_SIZE)))
2654 		return -EINVAL;
2655 
2656 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2657 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2658 			PAGE_SIZE);
2659 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2660 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2661 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2662 
2663 	s.buf_type = RING_BUFFER_INSTRUCTION;
2664 	s.buf_addr_type = GTT_BUFFER;
2665 	s.vgpu = workload->vgpu;
2666 	s.ring_id = workload->ring_id;
2667 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2668 	s.ring_size = ring_size;
2669 	s.ring_head = gma_head;
2670 	s.ring_tail = gma_tail;
2671 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2672 	s.workload = workload;
2673 	s.is_ctx_wa = true;
2674 
2675 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2676 		ret = -EINVAL;
2677 		goto out;
2678 	}
2679 
2680 	ret = ip_gma_set(&s, gma_head);
2681 	if (ret)
2682 		goto out;
2683 
2684 	ret = command_scan(&s, 0, ring_tail,
2685 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2686 out:
2687 	return ret;
2688 }
2689 
2690 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2691 {
2692 	struct intel_vgpu *vgpu = workload->vgpu;
2693 	struct intel_vgpu_submission *s = &vgpu->submission;
2694 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2695 	void *shadow_ring_buffer_va;
2696 	int ring_id = workload->ring_id;
2697 	int ret;
2698 
2699 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2700 
2701 	/* calculate workload ring buffer size */
2702 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2703 			workload->rb_head) % guest_rb_size;
2704 
2705 	gma_head = workload->rb_start + workload->rb_head;
2706 	gma_tail = workload->rb_start + workload->rb_tail;
2707 	gma_top = workload->rb_start + guest_rb_size;
2708 
2709 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2710 		void *p;
2711 
2712 		/* realloc the new ring buffer if needed */
2713 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2714 				GFP_KERNEL);
2715 		if (!p) {
2716 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2717 			return -ENOMEM;
2718 		}
2719 		s->ring_scan_buffer[ring_id] = p;
2720 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2721 	}
2722 
2723 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2724 
2725 	/* get shadow ring buffer va */
2726 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2727 
2728 	/* head > tail --> copy head <-> top */
2729 	if (gma_head > gma_tail) {
2730 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2731 				      gma_head, gma_top, shadow_ring_buffer_va);
2732 		if (ret < 0) {
2733 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2734 			return ret;
2735 		}
2736 		shadow_ring_buffer_va += ret;
2737 		gma_head = workload->rb_start;
2738 	}
2739 
2740 	/* copy head or start <-> tail */
2741 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2742 				shadow_ring_buffer_va);
2743 	if (ret < 0) {
2744 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2745 		return ret;
2746 	}
2747 	return 0;
2748 }
2749 
2750 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2751 {
2752 	int ret;
2753 	struct intel_vgpu *vgpu = workload->vgpu;
2754 
2755 	ret = shadow_workload_ring_buffer(workload);
2756 	if (ret) {
2757 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2758 		return ret;
2759 	}
2760 
2761 	ret = scan_workload(workload);
2762 	if (ret) {
2763 		gvt_vgpu_err("scan workload error\n");
2764 		return ret;
2765 	}
2766 	return 0;
2767 }
2768 
2769 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2770 {
2771 	int ctx_size = wa_ctx->indirect_ctx.size;
2772 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2773 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2774 					struct intel_vgpu_workload,
2775 					wa_ctx);
2776 	struct intel_vgpu *vgpu = workload->vgpu;
2777 	struct drm_i915_gem_object *obj;
2778 	int ret = 0;
2779 	void *map;
2780 
2781 	obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2782 				     roundup(ctx_size + CACHELINE_BYTES,
2783 					     PAGE_SIZE));
2784 	if (IS_ERR(obj))
2785 		return PTR_ERR(obj);
2786 
2787 	/* get the va of the shadow batch buffer */
2788 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2789 	if (IS_ERR(map)) {
2790 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2791 		ret = PTR_ERR(map);
2792 		goto put_obj;
2793 	}
2794 
2795 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2796 	if (ret) {
2797 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2798 		goto unmap_src;
2799 	}
2800 
2801 	ret = copy_gma_to_hva(workload->vgpu,
2802 				workload->vgpu->gtt.ggtt_mm,
2803 				guest_gma, guest_gma + ctx_size,
2804 				map);
2805 	if (ret < 0) {
2806 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2807 		goto unmap_src;
2808 	}
2809 
2810 	wa_ctx->indirect_ctx.obj = obj;
2811 	wa_ctx->indirect_ctx.shadow_va = map;
2812 	return 0;
2813 
2814 unmap_src:
2815 	i915_gem_object_unpin_map(obj);
2816 put_obj:
2817 	i915_gem_object_put(obj);
2818 	return ret;
2819 }
2820 
2821 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2822 {
2823 	uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2824 	unsigned char *bb_start_sva;
2825 
2826 	if (!wa_ctx->per_ctx.valid)
2827 		return 0;
2828 
2829 	per_ctx_start[0] = 0x18800001;
2830 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2831 
2832 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2833 				wa_ctx->indirect_ctx.size;
2834 
2835 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2836 
2837 	return 0;
2838 }
2839 
2840 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2841 {
2842 	int ret;
2843 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2844 					struct intel_vgpu_workload,
2845 					wa_ctx);
2846 	struct intel_vgpu *vgpu = workload->vgpu;
2847 
2848 	if (wa_ctx->indirect_ctx.size == 0)
2849 		return 0;
2850 
2851 	ret = shadow_indirect_ctx(wa_ctx);
2852 	if (ret) {
2853 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2854 		return ret;
2855 	}
2856 
2857 	combine_wa_ctx(wa_ctx);
2858 
2859 	ret = scan_wa_ctx(wa_ctx);
2860 	if (ret) {
2861 		gvt_vgpu_err("scan wa ctx error\n");
2862 		return ret;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2869 		unsigned int opcode, unsigned long rings)
2870 {
2871 	struct cmd_info *info = NULL;
2872 	unsigned int ring;
2873 
2874 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2875 		info = find_cmd_entry(gvt, opcode, ring);
2876 		if (info)
2877 			break;
2878 	}
2879 	return info;
2880 }
2881 
2882 static int init_cmd_table(struct intel_gvt *gvt)
2883 {
2884 	int i;
2885 	struct cmd_entry *e;
2886 	struct cmd_info	*info;
2887 	unsigned int gen_type;
2888 
2889 	gen_type = intel_gvt_get_device_type(gvt);
2890 
2891 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2892 		if (!(cmd_info[i].devices & gen_type))
2893 			continue;
2894 
2895 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2896 		if (!e)
2897 			return -ENOMEM;
2898 
2899 		e->info = &cmd_info[i];
2900 		info = find_cmd_entry_any_ring(gvt,
2901 				e->info->opcode, e->info->rings);
2902 		if (info) {
2903 			gvt_err("%s %s duplicated\n", e->info->name,
2904 					info->name);
2905 			kfree(e);
2906 			return -EEXIST;
2907 		}
2908 
2909 		INIT_HLIST_NODE(&e->hlist);
2910 		add_cmd_entry(gvt, e);
2911 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2912 				e->info->name, e->info->opcode, e->info->flag,
2913 				e->info->devices, e->info->rings);
2914 	}
2915 	return 0;
2916 }
2917 
2918 static void clean_cmd_table(struct intel_gvt *gvt)
2919 {
2920 	struct hlist_node *tmp;
2921 	struct cmd_entry *e;
2922 	int i;
2923 
2924 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2925 		kfree(e);
2926 
2927 	hash_init(gvt->cmd_table);
2928 }
2929 
2930 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2931 {
2932 	clean_cmd_table(gvt);
2933 }
2934 
2935 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2936 {
2937 	int ret;
2938 
2939 	ret = init_cmd_table(gvt);
2940 	if (ret) {
2941 		intel_gvt_clean_cmd_parser(gvt);
2942 		return ret;
2943 	}
2944 	return 0;
2945 }
2946