1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 176 177 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 178 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 179 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 180 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 181 182 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 183 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 184 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 185 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 186 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 187 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 188 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 189 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 190 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 191 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 193 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 194 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 195 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 196 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 197 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 198 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 199 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 200 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 201 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 202 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 203 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 204 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 205 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 206 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 207 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 208 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 209 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 212 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 224 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 225 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 226 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 227 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 248 249 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 250 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 251 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 252 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 253 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 254 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 255 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 256 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 257 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 258 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 259 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 260 261 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 263 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 264 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 267 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 268 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 269 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 271 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 272 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 274 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 275 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 281 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 282 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 284 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 286 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 287 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 288 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 289 290 /* VCCP Command Parser */ 291 292 /* 293 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 294 * git://anongit.freedesktop.org/vaapi/intel-driver 295 * src/i965_defines.h 296 * 297 */ 298 299 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 300 (3 << 13 | \ 301 (pipeline) << 11 | \ 302 (op) << 8 | \ 303 (sub_opa) << 5 | \ 304 (sub_opb)) 305 306 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 307 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 308 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 311 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 312 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 313 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 314 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 315 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 316 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 317 318 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 319 320 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 321 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 322 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 323 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 324 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 325 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 327 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 328 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 329 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 330 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 331 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 332 333 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 334 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 335 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 336 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 337 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 338 339 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 340 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 341 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 342 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 343 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 344 345 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 346 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 347 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 348 349 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 350 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 351 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 352 353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 354 (3 << 13 | \ 355 (pipeline) << 11 | \ 356 (op) << 8 | \ 357 (sub_opa) << 5 | \ 358 (sub_opb)) 359 360 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 361 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 362 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 363 364 struct parser_exec_state; 365 366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 367 368 #define GVT_CMD_HASH_BITS 7 369 370 /* which DWords need address fix */ 371 #define ADDR_FIX_1(x1) (1 << (x1)) 372 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 373 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 374 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 375 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 376 377 struct cmd_info { 378 char *name; 379 u32 opcode; 380 381 #define F_LEN_MASK (1U<<0) 382 #define F_LEN_CONST 1U 383 #define F_LEN_VAR 0U 384 385 /* 386 * command has its own ip advance logic 387 * e.g. MI_BATCH_START, MI_BATCH_END 388 */ 389 #define F_IP_ADVANCE_CUSTOM (1<<1) 390 391 #define F_POST_HANDLE (1<<2) 392 u32 flag; 393 394 #define R_RCS (1 << RCS) 395 #define R_VCS1 (1 << VCS) 396 #define R_VCS2 (1 << VCS2) 397 #define R_VCS (R_VCS1 | R_VCS2) 398 #define R_BCS (1 << BCS) 399 #define R_VECS (1 << VECS) 400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 401 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 402 uint16_t rings; 403 404 /* devices that support this cmd: SNB/IVB/HSW/... */ 405 uint16_t devices; 406 407 /* which DWords are address that need fix up. 408 * bit 0 means a 32-bit non address operand in command 409 * bit 1 means address operand, which could be 32-bit 410 * or 64-bit depending on different architectures.( 411 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 412 * No matter the address length, each address only takes 413 * one bit in the bitmap. 414 */ 415 uint16_t addr_bitmap; 416 417 /* flag == F_LEN_CONST : command length 418 * flag == F_LEN_VAR : length bias bits 419 * Note: length is in DWord 420 */ 421 uint8_t len; 422 423 parser_cmd_handler handler; 424 }; 425 426 struct cmd_entry { 427 struct hlist_node hlist; 428 struct cmd_info *info; 429 }; 430 431 enum { 432 RING_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_INSTRUCTION, 434 BATCH_BUFFER_2ND_LEVEL, 435 }; 436 437 enum { 438 GTT_BUFFER, 439 PPGTT_BUFFER 440 }; 441 442 struct parser_exec_state { 443 struct intel_vgpu *vgpu; 444 int ring_id; 445 446 int buf_type; 447 448 /* batch buffer address type */ 449 int buf_addr_type; 450 451 /* graphics memory address of ring buffer start */ 452 unsigned long ring_start; 453 unsigned long ring_size; 454 unsigned long ring_head; 455 unsigned long ring_tail; 456 457 /* instruction graphics memory address */ 458 unsigned long ip_gma; 459 460 /* mapped va of the instr_gma */ 461 void *ip_va; 462 void *rb_va; 463 464 void *ret_bb_va; 465 /* next instruction when return from batch buffer to ring buffer */ 466 unsigned long ret_ip_gma_ring; 467 468 /* next instruction when return from 2nd batch buffer to batch buffer */ 469 unsigned long ret_ip_gma_bb; 470 471 /* batch buffer address type (GTT or PPGTT) 472 * used when ret from 2nd level batch buffer 473 */ 474 int saved_buf_addr_type; 475 bool is_ctx_wa; 476 477 struct cmd_info *info; 478 479 struct intel_vgpu_workload *workload; 480 }; 481 482 #define gmadr_dw_number(s) \ 483 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 484 485 static unsigned long bypass_scan_mask = 0; 486 487 /* ring ALL, type = 0 */ 488 static struct sub_op_bits sub_op_mi[] = { 489 {31, 29}, 490 {28, 23}, 491 }; 492 493 static struct decode_info decode_info_mi = { 494 "MI", 495 OP_LEN_MI, 496 ARRAY_SIZE(sub_op_mi), 497 sub_op_mi, 498 }; 499 500 /* ring RCS, command type 2 */ 501 static struct sub_op_bits sub_op_2d[] = { 502 {31, 29}, 503 {28, 22}, 504 }; 505 506 static struct decode_info decode_info_2d = { 507 "2D", 508 OP_LEN_2D, 509 ARRAY_SIZE(sub_op_2d), 510 sub_op_2d, 511 }; 512 513 /* ring RCS, command type 3 */ 514 static struct sub_op_bits sub_op_3d_media[] = { 515 {31, 29}, 516 {28, 27}, 517 {26, 24}, 518 {23, 16}, 519 }; 520 521 static struct decode_info decode_info_3d_media = { 522 "3D_Media", 523 OP_LEN_3D_MEDIA, 524 ARRAY_SIZE(sub_op_3d_media), 525 sub_op_3d_media, 526 }; 527 528 /* ring VCS, command type 3 */ 529 static struct sub_op_bits sub_op_mfx_vc[] = { 530 {31, 29}, 531 {28, 27}, 532 {26, 24}, 533 {23, 21}, 534 {20, 16}, 535 }; 536 537 static struct decode_info decode_info_mfx_vc = { 538 "MFX_VC", 539 OP_LEN_MFX_VC, 540 ARRAY_SIZE(sub_op_mfx_vc), 541 sub_op_mfx_vc, 542 }; 543 544 /* ring VECS, command type 3 */ 545 static struct sub_op_bits sub_op_vebox[] = { 546 {31, 29}, 547 {28, 27}, 548 {26, 24}, 549 {23, 21}, 550 {20, 16}, 551 }; 552 553 static struct decode_info decode_info_vebox = { 554 "VEBOX", 555 OP_LEN_VEBOX, 556 ARRAY_SIZE(sub_op_vebox), 557 sub_op_vebox, 558 }; 559 560 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 561 [RCS] = { 562 &decode_info_mi, 563 NULL, 564 NULL, 565 &decode_info_3d_media, 566 NULL, 567 NULL, 568 NULL, 569 NULL, 570 }, 571 572 [VCS] = { 573 &decode_info_mi, 574 NULL, 575 NULL, 576 &decode_info_mfx_vc, 577 NULL, 578 NULL, 579 NULL, 580 NULL, 581 }, 582 583 [BCS] = { 584 &decode_info_mi, 585 NULL, 586 &decode_info_2d, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 NULL, 592 }, 593 594 [VECS] = { 595 &decode_info_mi, 596 NULL, 597 NULL, 598 &decode_info_vebox, 599 NULL, 600 NULL, 601 NULL, 602 NULL, 603 }, 604 605 [VCS2] = { 606 &decode_info_mi, 607 NULL, 608 NULL, 609 &decode_info_mfx_vc, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 }, 615 }; 616 617 static inline u32 get_opcode(u32 cmd, int ring_id) 618 { 619 struct decode_info *d_info; 620 621 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 622 if (d_info == NULL) 623 return INVALID_OP; 624 625 return cmd >> (32 - d_info->op_len); 626 } 627 628 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 629 unsigned int opcode, int ring_id) 630 { 631 struct cmd_entry *e; 632 633 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 634 if ((opcode == e->info->opcode) && 635 (e->info->rings & (1 << ring_id))) 636 return e->info; 637 } 638 return NULL; 639 } 640 641 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 642 u32 cmd, int ring_id) 643 { 644 u32 opcode; 645 646 opcode = get_opcode(cmd, ring_id); 647 if (opcode == INVALID_OP) 648 return NULL; 649 650 return find_cmd_entry(gvt, opcode, ring_id); 651 } 652 653 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 654 { 655 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 656 } 657 658 static inline void print_opcode(u32 cmd, int ring_id) 659 { 660 struct decode_info *d_info; 661 int i; 662 663 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 664 if (d_info == NULL) 665 return; 666 667 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 668 cmd >> (32 - d_info->op_len), d_info->name); 669 670 for (i = 0; i < d_info->nr_sub_op; i++) 671 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 672 d_info->sub_op[i].low)); 673 674 pr_err("\n"); 675 } 676 677 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 678 { 679 return s->ip_va + (index << 2); 680 } 681 682 static inline u32 cmd_val(struct parser_exec_state *s, int index) 683 { 684 return *cmd_ptr(s, index); 685 } 686 687 static void parser_exec_state_dump(struct parser_exec_state *s) 688 { 689 int cnt = 0; 690 int i; 691 692 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 693 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 694 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 695 s->ring_head, s->ring_tail); 696 697 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 698 s->buf_type == RING_BUFFER_INSTRUCTION ? 699 "RING_BUFFER" : "BATCH_BUFFER", 700 s->buf_addr_type == GTT_BUFFER ? 701 "GTT" : "PPGTT", s->ip_gma); 702 703 if (s->ip_va == NULL) { 704 gvt_dbg_cmd(" ip_va(NULL)"); 705 return; 706 } 707 708 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 709 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 710 cmd_val(s, 2), cmd_val(s, 3)); 711 712 print_opcode(cmd_val(s, 0), s->ring_id); 713 714 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 715 716 while (cnt < 1024) { 717 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 718 for (i = 0; i < 8; i++) 719 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 720 gvt_dbg_cmd("\n"); 721 722 s->ip_va += 8 * sizeof(u32); 723 cnt += 8; 724 } 725 } 726 727 static inline void update_ip_va(struct parser_exec_state *s) 728 { 729 unsigned long len = 0; 730 731 if (WARN_ON(s->ring_head == s->ring_tail)) 732 return; 733 734 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 735 unsigned long ring_top = s->ring_start + s->ring_size; 736 737 if (s->ring_head > s->ring_tail) { 738 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 739 len = (s->ip_gma - s->ring_head); 740 else if (s->ip_gma >= s->ring_start && 741 s->ip_gma <= s->ring_tail) 742 len = (ring_top - s->ring_head) + 743 (s->ip_gma - s->ring_start); 744 } else 745 len = (s->ip_gma - s->ring_head); 746 747 s->ip_va = s->rb_va + len; 748 } else {/* shadow batch buffer */ 749 s->ip_va = s->ret_bb_va; 750 } 751 } 752 753 static inline int ip_gma_set(struct parser_exec_state *s, 754 unsigned long ip_gma) 755 { 756 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 757 758 s->ip_gma = ip_gma; 759 update_ip_va(s); 760 return 0; 761 } 762 763 static inline int ip_gma_advance(struct parser_exec_state *s, 764 unsigned int dw_len) 765 { 766 s->ip_gma += (dw_len << 2); 767 768 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 769 if (s->ip_gma >= s->ring_start + s->ring_size) 770 s->ip_gma -= s->ring_size; 771 update_ip_va(s); 772 } else { 773 s->ip_va += (dw_len << 2); 774 } 775 776 return 0; 777 } 778 779 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 780 { 781 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 782 return info->len; 783 else 784 return (cmd & ((1U << info->len) - 1)) + 2; 785 return 0; 786 } 787 788 static inline int cmd_length(struct parser_exec_state *s) 789 { 790 return get_cmd_length(s->info, cmd_val(s, 0)); 791 } 792 793 /* do not remove this, some platform may need clflush here */ 794 #define patch_value(s, addr, val) do { \ 795 *addr = val; \ 796 } while (0) 797 798 static bool is_shadowed_mmio(unsigned int offset) 799 { 800 bool ret = false; 801 802 if ((offset == 0x2168) || /*BB current head register UDW */ 803 (offset == 0x2140) || /*BB current header register */ 804 (offset == 0x211c) || /*second BB header register UDW */ 805 (offset == 0x2114)) { /*second BB header register UDW */ 806 ret = true; 807 } 808 return ret; 809 } 810 811 static inline bool is_force_nonpriv_mmio(unsigned int offset) 812 { 813 return (offset >= 0x24d0 && offset < 0x2500); 814 } 815 816 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 817 unsigned int offset, unsigned int index, char *cmd) 818 { 819 struct intel_gvt *gvt = s->vgpu->gvt; 820 unsigned int data; 821 u32 ring_base; 822 u32 nopid; 823 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 824 825 if (!strcmp(cmd, "lri")) 826 data = cmd_val(s, index + 1); 827 else { 828 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 829 offset, cmd); 830 return -EINVAL; 831 } 832 833 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 834 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 835 836 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 837 data != nopid) { 838 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 839 offset, data); 840 patch_value(s, cmd_ptr(s, index), nopid); 841 return 0; 842 } 843 return 0; 844 } 845 846 static inline bool is_mocs_mmio(unsigned int offset) 847 { 848 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 849 ((offset >= 0xb020) && (offset <= 0xb0a0)); 850 } 851 852 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 853 unsigned int offset, unsigned int index) 854 { 855 if (!is_mocs_mmio(offset)) 856 return -EINVAL; 857 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 858 return 0; 859 } 860 861 static int cmd_reg_handler(struct parser_exec_state *s, 862 unsigned int offset, unsigned int index, char *cmd) 863 { 864 struct intel_vgpu *vgpu = s->vgpu; 865 struct intel_gvt *gvt = vgpu->gvt; 866 867 if (offset + 4 > gvt->device_info.mmio_size) { 868 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 869 cmd, offset); 870 return -EFAULT; 871 } 872 873 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 874 gvt_vgpu_err("%s access to non-render register (%x)\n", 875 cmd, offset); 876 return 0; 877 } 878 879 if (is_shadowed_mmio(offset)) { 880 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 881 return 0; 882 } 883 884 if (is_mocs_mmio(offset) && 885 mocs_cmd_reg_handler(s, offset, index)) 886 return -EINVAL; 887 888 if (is_force_nonpriv_mmio(offset) && 889 force_nonpriv_reg_handler(s, offset, index, cmd)) 890 return -EPERM; 891 892 if (offset == i915_mmio_reg_offset(DERRMR) || 893 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 894 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 895 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 896 } 897 898 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 899 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 900 return 0; 901 } 902 903 #define cmd_reg(s, i) \ 904 (cmd_val(s, i) & GENMASK(22, 2)) 905 906 #define cmd_reg_inhibit(s, i) \ 907 (cmd_val(s, i) & GENMASK(22, 18)) 908 909 #define cmd_gma(s, i) \ 910 (cmd_val(s, i) & GENMASK(31, 2)) 911 912 #define cmd_gma_hi(s, i) \ 913 (cmd_val(s, i) & GENMASK(15, 0)) 914 915 static int cmd_handler_lri(struct parser_exec_state *s) 916 { 917 int i, ret = 0; 918 int cmd_len = cmd_length(s); 919 struct intel_gvt *gvt = s->vgpu->gvt; 920 921 for (i = 1; i < cmd_len; i += 2) { 922 if (IS_BROADWELL(gvt->dev_priv) && 923 (s->ring_id != RCS)) { 924 if (s->ring_id == BCS && 925 cmd_reg(s, i) == 926 i915_mmio_reg_offset(DERRMR)) 927 ret |= 0; 928 else 929 ret |= (cmd_reg_inhibit(s, i)) ? 930 -EBADRQC : 0; 931 } 932 if (ret) 933 break; 934 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 935 if (ret) 936 break; 937 } 938 return ret; 939 } 940 941 static int cmd_handler_lrr(struct parser_exec_state *s) 942 { 943 int i, ret = 0; 944 int cmd_len = cmd_length(s); 945 946 for (i = 1; i < cmd_len; i += 2) { 947 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 948 ret |= ((cmd_reg_inhibit(s, i) || 949 (cmd_reg_inhibit(s, i + 1)))) ? 950 -EBADRQC : 0; 951 if (ret) 952 break; 953 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 954 if (ret) 955 break; 956 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 957 if (ret) 958 break; 959 } 960 return ret; 961 } 962 963 static inline int cmd_address_audit(struct parser_exec_state *s, 964 unsigned long guest_gma, int op_size, bool index_mode); 965 966 static int cmd_handler_lrm(struct parser_exec_state *s) 967 { 968 struct intel_gvt *gvt = s->vgpu->gvt; 969 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 970 unsigned long gma; 971 int i, ret = 0; 972 int cmd_len = cmd_length(s); 973 974 for (i = 1; i < cmd_len;) { 975 if (IS_BROADWELL(gvt->dev_priv)) 976 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 977 if (ret) 978 break; 979 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 980 if (ret) 981 break; 982 if (cmd_val(s, 0) & (1 << 22)) { 983 gma = cmd_gma(s, i + 1); 984 if (gmadr_bytes == 8) 985 gma |= (cmd_gma_hi(s, i + 2)) << 32; 986 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 987 if (ret) 988 break; 989 } 990 i += gmadr_dw_number(s) + 1; 991 } 992 return ret; 993 } 994 995 static int cmd_handler_srm(struct parser_exec_state *s) 996 { 997 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 998 unsigned long gma; 999 int i, ret = 0; 1000 int cmd_len = cmd_length(s); 1001 1002 for (i = 1; i < cmd_len;) { 1003 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1004 if (ret) 1005 break; 1006 if (cmd_val(s, 0) & (1 << 22)) { 1007 gma = cmd_gma(s, i + 1); 1008 if (gmadr_bytes == 8) 1009 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1010 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1011 if (ret) 1012 break; 1013 } 1014 i += gmadr_dw_number(s) + 1; 1015 } 1016 return ret; 1017 } 1018 1019 struct cmd_interrupt_event { 1020 int pipe_control_notify; 1021 int mi_flush_dw; 1022 int mi_user_interrupt; 1023 }; 1024 1025 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1026 [RCS] = { 1027 .pipe_control_notify = RCS_PIPE_CONTROL, 1028 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1029 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1030 }, 1031 [BCS] = { 1032 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1033 .mi_flush_dw = BCS_MI_FLUSH_DW, 1034 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1035 }, 1036 [VCS] = { 1037 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1038 .mi_flush_dw = VCS_MI_FLUSH_DW, 1039 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1040 }, 1041 [VCS2] = { 1042 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1043 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1044 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1045 }, 1046 [VECS] = { 1047 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1048 .mi_flush_dw = VECS_MI_FLUSH_DW, 1049 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1050 }, 1051 }; 1052 1053 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1054 { 1055 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1056 unsigned long gma; 1057 bool index_mode = false; 1058 unsigned int post_sync; 1059 int ret = 0; 1060 1061 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1062 1063 /* LRI post sync */ 1064 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1065 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1066 /* post sync */ 1067 else if (post_sync) { 1068 if (post_sync == 2) 1069 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1070 else if (post_sync == 3) 1071 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1072 else if (post_sync == 1) { 1073 /* check ggtt*/ 1074 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1075 gma = cmd_val(s, 2) & GENMASK(31, 3); 1076 if (gmadr_bytes == 8) 1077 gma |= (cmd_gma_hi(s, 3)) << 32; 1078 /* Store Data Index */ 1079 if (cmd_val(s, 1) & (1 << 21)) 1080 index_mode = true; 1081 ret |= cmd_address_audit(s, gma, sizeof(u64), 1082 index_mode); 1083 } 1084 } 1085 } 1086 1087 if (ret) 1088 return ret; 1089 1090 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1091 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1092 s->workload->pending_events); 1093 return 0; 1094 } 1095 1096 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1097 { 1098 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1099 s->workload->pending_events); 1100 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1101 return 0; 1102 } 1103 1104 static int cmd_advance_default(struct parser_exec_state *s) 1105 { 1106 return ip_gma_advance(s, cmd_length(s)); 1107 } 1108 1109 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1110 { 1111 int ret; 1112 1113 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1114 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1115 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1116 s->buf_addr_type = s->saved_buf_addr_type; 1117 } else { 1118 s->buf_type = RING_BUFFER_INSTRUCTION; 1119 s->buf_addr_type = GTT_BUFFER; 1120 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1121 s->ret_ip_gma_ring -= s->ring_size; 1122 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1123 } 1124 return ret; 1125 } 1126 1127 struct mi_display_flip_command_info { 1128 int pipe; 1129 int plane; 1130 int event; 1131 i915_reg_t stride_reg; 1132 i915_reg_t ctrl_reg; 1133 i915_reg_t surf_reg; 1134 u64 stride_val; 1135 u64 tile_val; 1136 u64 surf_val; 1137 bool async_flip; 1138 }; 1139 1140 struct plane_code_mapping { 1141 int pipe; 1142 int plane; 1143 int event; 1144 }; 1145 1146 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1147 struct mi_display_flip_command_info *info) 1148 { 1149 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1150 struct plane_code_mapping gen8_plane_code[] = { 1151 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1152 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1153 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1154 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1155 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1156 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1157 }; 1158 u32 dword0, dword1, dword2; 1159 u32 v; 1160 1161 dword0 = cmd_val(s, 0); 1162 dword1 = cmd_val(s, 1); 1163 dword2 = cmd_val(s, 2); 1164 1165 v = (dword0 & GENMASK(21, 19)) >> 19; 1166 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1167 return -EBADRQC; 1168 1169 info->pipe = gen8_plane_code[v].pipe; 1170 info->plane = gen8_plane_code[v].plane; 1171 info->event = gen8_plane_code[v].event; 1172 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1173 info->tile_val = (dword1 & 0x1); 1174 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1175 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1176 1177 if (info->plane == PLANE_A) { 1178 info->ctrl_reg = DSPCNTR(info->pipe); 1179 info->stride_reg = DSPSTRIDE(info->pipe); 1180 info->surf_reg = DSPSURF(info->pipe); 1181 } else if (info->plane == PLANE_B) { 1182 info->ctrl_reg = SPRCTL(info->pipe); 1183 info->stride_reg = SPRSTRIDE(info->pipe); 1184 info->surf_reg = SPRSURF(info->pipe); 1185 } else { 1186 WARN_ON(1); 1187 return -EBADRQC; 1188 } 1189 return 0; 1190 } 1191 1192 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1193 struct mi_display_flip_command_info *info) 1194 { 1195 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1196 struct intel_vgpu *vgpu = s->vgpu; 1197 u32 dword0 = cmd_val(s, 0); 1198 u32 dword1 = cmd_val(s, 1); 1199 u32 dword2 = cmd_val(s, 2); 1200 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1201 1202 info->plane = PRIMARY_PLANE; 1203 1204 switch (plane) { 1205 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1206 info->pipe = PIPE_A; 1207 info->event = PRIMARY_A_FLIP_DONE; 1208 break; 1209 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1210 info->pipe = PIPE_B; 1211 info->event = PRIMARY_B_FLIP_DONE; 1212 break; 1213 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1214 info->pipe = PIPE_C; 1215 info->event = PRIMARY_C_FLIP_DONE; 1216 break; 1217 1218 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1219 info->pipe = PIPE_A; 1220 info->event = SPRITE_A_FLIP_DONE; 1221 info->plane = SPRITE_PLANE; 1222 break; 1223 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1224 info->pipe = PIPE_B; 1225 info->event = SPRITE_B_FLIP_DONE; 1226 info->plane = SPRITE_PLANE; 1227 break; 1228 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1229 info->pipe = PIPE_C; 1230 info->event = SPRITE_C_FLIP_DONE; 1231 info->plane = SPRITE_PLANE; 1232 break; 1233 1234 default: 1235 gvt_vgpu_err("unknown plane code %d\n", plane); 1236 return -EBADRQC; 1237 } 1238 1239 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1240 info->tile_val = (dword1 & GENMASK(2, 0)); 1241 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1242 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1243 1244 info->ctrl_reg = DSPCNTR(info->pipe); 1245 info->stride_reg = DSPSTRIDE(info->pipe); 1246 info->surf_reg = DSPSURF(info->pipe); 1247 1248 return 0; 1249 } 1250 1251 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1252 struct mi_display_flip_command_info *info) 1253 { 1254 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1255 u32 stride, tile; 1256 1257 if (!info->async_flip) 1258 return 0; 1259 1260 if (IS_SKYLAKE(dev_priv) 1261 || IS_KABYLAKE(dev_priv) 1262 || IS_BROXTON(dev_priv)) { 1263 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1264 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1265 GENMASK(12, 10)) >> 10; 1266 } else { 1267 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1268 GENMASK(15, 6)) >> 6; 1269 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1270 } 1271 1272 if (stride != info->stride_val) 1273 gvt_dbg_cmd("cannot change stride during async flip\n"); 1274 1275 if (tile != info->tile_val) 1276 gvt_dbg_cmd("cannot change tile during async flip\n"); 1277 1278 return 0; 1279 } 1280 1281 static int gen8_update_plane_mmio_from_mi_display_flip( 1282 struct parser_exec_state *s, 1283 struct mi_display_flip_command_info *info) 1284 { 1285 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1286 struct intel_vgpu *vgpu = s->vgpu; 1287 1288 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1289 info->surf_val << 12); 1290 if (IS_SKYLAKE(dev_priv) 1291 || IS_KABYLAKE(dev_priv) 1292 || IS_BROXTON(dev_priv)) { 1293 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1294 info->stride_val); 1295 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1296 info->tile_val << 10); 1297 } else { 1298 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1299 info->stride_val << 6); 1300 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1301 info->tile_val << 10); 1302 } 1303 1304 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1305 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1306 return 0; 1307 } 1308 1309 static int decode_mi_display_flip(struct parser_exec_state *s, 1310 struct mi_display_flip_command_info *info) 1311 { 1312 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1313 1314 if (IS_BROADWELL(dev_priv)) 1315 return gen8_decode_mi_display_flip(s, info); 1316 if (IS_SKYLAKE(dev_priv) 1317 || IS_KABYLAKE(dev_priv) 1318 || IS_BROXTON(dev_priv)) 1319 return skl_decode_mi_display_flip(s, info); 1320 1321 return -ENODEV; 1322 } 1323 1324 static int check_mi_display_flip(struct parser_exec_state *s, 1325 struct mi_display_flip_command_info *info) 1326 { 1327 return gen8_check_mi_display_flip(s, info); 1328 } 1329 1330 static int update_plane_mmio_from_mi_display_flip( 1331 struct parser_exec_state *s, 1332 struct mi_display_flip_command_info *info) 1333 { 1334 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1335 } 1336 1337 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1338 { 1339 struct mi_display_flip_command_info info; 1340 struct intel_vgpu *vgpu = s->vgpu; 1341 int ret; 1342 int i; 1343 int len = cmd_length(s); 1344 1345 ret = decode_mi_display_flip(s, &info); 1346 if (ret) { 1347 gvt_vgpu_err("fail to decode MI display flip command\n"); 1348 return ret; 1349 } 1350 1351 ret = check_mi_display_flip(s, &info); 1352 if (ret) { 1353 gvt_vgpu_err("invalid MI display flip command\n"); 1354 return ret; 1355 } 1356 1357 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1358 if (ret) { 1359 gvt_vgpu_err("fail to update plane mmio\n"); 1360 return ret; 1361 } 1362 1363 for (i = 0; i < len; i++) 1364 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1365 return 0; 1366 } 1367 1368 static bool is_wait_for_flip_pending(u32 cmd) 1369 { 1370 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1371 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1372 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1373 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1374 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1375 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1376 } 1377 1378 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1379 { 1380 u32 cmd = cmd_val(s, 0); 1381 1382 if (!is_wait_for_flip_pending(cmd)) 1383 return 0; 1384 1385 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1386 return 0; 1387 } 1388 1389 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1390 { 1391 unsigned long addr; 1392 unsigned long gma_high, gma_low; 1393 struct intel_vgpu *vgpu = s->vgpu; 1394 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1395 1396 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1397 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1398 return INTEL_GVT_INVALID_ADDR; 1399 } 1400 1401 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1402 if (gmadr_bytes == 4) { 1403 addr = gma_low; 1404 } else { 1405 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1406 addr = (((unsigned long)gma_high) << 32) | gma_low; 1407 } 1408 return addr; 1409 } 1410 1411 static inline int cmd_address_audit(struct parser_exec_state *s, 1412 unsigned long guest_gma, int op_size, bool index_mode) 1413 { 1414 struct intel_vgpu *vgpu = s->vgpu; 1415 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1416 int i; 1417 int ret; 1418 1419 if (op_size > max_surface_size) { 1420 gvt_vgpu_err("command address audit fail name %s\n", 1421 s->info->name); 1422 return -EFAULT; 1423 } 1424 1425 if (index_mode) { 1426 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) { 1427 ret = -EFAULT; 1428 goto err; 1429 } 1430 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1431 ret = -EFAULT; 1432 goto err; 1433 } 1434 1435 return 0; 1436 1437 err: 1438 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1439 s->info->name, guest_gma, op_size); 1440 1441 pr_err("cmd dump: "); 1442 for (i = 0; i < cmd_length(s); i++) { 1443 if (!(i % 4)) 1444 pr_err("\n%08x ", cmd_val(s, i)); 1445 else 1446 pr_err("%08x ", cmd_val(s, i)); 1447 } 1448 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1449 vgpu->id, 1450 vgpu_aperture_gmadr_base(vgpu), 1451 vgpu_aperture_gmadr_end(vgpu), 1452 vgpu_hidden_gmadr_base(vgpu), 1453 vgpu_hidden_gmadr_end(vgpu)); 1454 return ret; 1455 } 1456 1457 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1458 { 1459 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1460 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1461 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1462 unsigned long gma, gma_low, gma_high; 1463 int ret = 0; 1464 1465 /* check ppggt */ 1466 if (!(cmd_val(s, 0) & (1 << 22))) 1467 return 0; 1468 1469 gma = cmd_val(s, 2) & GENMASK(31, 2); 1470 1471 if (gmadr_bytes == 8) { 1472 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1473 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1474 gma = (gma_high << 32) | gma_low; 1475 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1476 } 1477 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1478 return ret; 1479 } 1480 1481 static inline int unexpected_cmd(struct parser_exec_state *s) 1482 { 1483 struct intel_vgpu *vgpu = s->vgpu; 1484 1485 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1486 1487 return -EBADRQC; 1488 } 1489 1490 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1491 { 1492 return unexpected_cmd(s); 1493 } 1494 1495 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1496 { 1497 return unexpected_cmd(s); 1498 } 1499 1500 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1501 { 1502 return unexpected_cmd(s); 1503 } 1504 1505 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1506 { 1507 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1508 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1509 sizeof(u32); 1510 unsigned long gma, gma_high; 1511 int ret = 0; 1512 1513 if (!(cmd_val(s, 0) & (1 << 22))) 1514 return ret; 1515 1516 gma = cmd_val(s, 1) & GENMASK(31, 2); 1517 if (gmadr_bytes == 8) { 1518 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1519 gma = (gma_high << 32) | gma; 1520 } 1521 ret = cmd_address_audit(s, gma, op_size, false); 1522 return ret; 1523 } 1524 1525 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1526 { 1527 return unexpected_cmd(s); 1528 } 1529 1530 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1531 { 1532 return unexpected_cmd(s); 1533 } 1534 1535 static int cmd_handler_mi_conditional_batch_buffer_end( 1536 struct parser_exec_state *s) 1537 { 1538 return unexpected_cmd(s); 1539 } 1540 1541 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1542 { 1543 return unexpected_cmd(s); 1544 } 1545 1546 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1547 { 1548 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1549 unsigned long gma; 1550 bool index_mode = false; 1551 int ret = 0; 1552 1553 /* Check post-sync and ppgtt bit */ 1554 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1555 gma = cmd_val(s, 1) & GENMASK(31, 3); 1556 if (gmadr_bytes == 8) 1557 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1558 /* Store Data Index */ 1559 if (cmd_val(s, 0) & (1 << 21)) 1560 index_mode = true; 1561 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1562 } 1563 /* Check notify bit */ 1564 if ((cmd_val(s, 0) & (1 << 8))) 1565 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1566 s->workload->pending_events); 1567 return ret; 1568 } 1569 1570 static void addr_type_update_snb(struct parser_exec_state *s) 1571 { 1572 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1573 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1574 s->buf_addr_type = PPGTT_BUFFER; 1575 } 1576 } 1577 1578 1579 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1580 unsigned long gma, unsigned long end_gma, void *va) 1581 { 1582 unsigned long copy_len, offset; 1583 unsigned long len = 0; 1584 unsigned long gpa; 1585 1586 while (gma != end_gma) { 1587 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1588 if (gpa == INTEL_GVT_INVALID_ADDR) { 1589 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1590 return -EFAULT; 1591 } 1592 1593 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1594 1595 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1596 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1597 1598 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1599 1600 len += copy_len; 1601 gma += copy_len; 1602 } 1603 return len; 1604 } 1605 1606 1607 /* 1608 * Check whether a batch buffer needs to be scanned. Currently 1609 * the only criteria is based on privilege. 1610 */ 1611 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1612 { 1613 /* Decide privilege based on address space */ 1614 if (cmd_val(s, 0) & (1 << 8) && 1615 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1616 return 0; 1617 return 1; 1618 } 1619 1620 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1621 { 1622 unsigned long gma = 0; 1623 struct cmd_info *info; 1624 uint32_t cmd_len = 0; 1625 bool bb_end = false; 1626 struct intel_vgpu *vgpu = s->vgpu; 1627 u32 cmd; 1628 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1629 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1630 1631 *bb_size = 0; 1632 1633 /* get the start gm address of the batch buffer */ 1634 gma = get_gma_bb_from_cmd(s, 1); 1635 if (gma == INTEL_GVT_INVALID_ADDR) 1636 return -EFAULT; 1637 1638 cmd = cmd_val(s, 0); 1639 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1640 if (info == NULL) { 1641 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1642 cmd, get_opcode(cmd, s->ring_id), 1643 (s->buf_addr_type == PPGTT_BUFFER) ? 1644 "ppgtt" : "ggtt", s->ring_id, s->workload); 1645 return -EBADRQC; 1646 } 1647 do { 1648 if (copy_gma_to_hva(s->vgpu, mm, 1649 gma, gma + 4, &cmd) < 0) 1650 return -EFAULT; 1651 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1652 if (info == NULL) { 1653 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1654 cmd, get_opcode(cmd, s->ring_id), 1655 (s->buf_addr_type == PPGTT_BUFFER) ? 1656 "ppgtt" : "ggtt", s->ring_id, s->workload); 1657 return -EBADRQC; 1658 } 1659 1660 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1661 bb_end = true; 1662 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1663 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1664 /* chained batch buffer */ 1665 bb_end = true; 1666 } 1667 cmd_len = get_cmd_length(info, cmd) << 2; 1668 *bb_size += cmd_len; 1669 gma += cmd_len; 1670 } while (!bb_end); 1671 1672 return 0; 1673 } 1674 1675 static int perform_bb_shadow(struct parser_exec_state *s) 1676 { 1677 struct intel_vgpu *vgpu = s->vgpu; 1678 struct intel_vgpu_shadow_bb *bb; 1679 unsigned long gma = 0; 1680 unsigned long bb_size; 1681 int ret = 0; 1682 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1683 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1684 unsigned long gma_start_offset = 0; 1685 1686 /* get the start gm address of the batch buffer */ 1687 gma = get_gma_bb_from_cmd(s, 1); 1688 if (gma == INTEL_GVT_INVALID_ADDR) 1689 return -EFAULT; 1690 1691 ret = find_bb_size(s, &bb_size); 1692 if (ret) 1693 return ret; 1694 1695 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1696 if (!bb) 1697 return -ENOMEM; 1698 1699 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1700 1701 /* the gma_start_offset stores the batch buffer's start gma's 1702 * offset relative to page boundary. so for non-privileged batch 1703 * buffer, the shadowed gem object holds exactly the same page 1704 * layout as original gem object. This is for the convience of 1705 * replacing the whole non-privilged batch buffer page to this 1706 * shadowed one in PPGTT at the same gma address. (this replacing 1707 * action is not implemented yet now, but may be necessary in 1708 * future). 1709 * for prileged batch buffer, we just change start gma address to 1710 * that of shadowed page. 1711 */ 1712 if (bb->ppgtt) 1713 gma_start_offset = gma & ~I915_GTT_PAGE_MASK; 1714 1715 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv, 1716 roundup(bb_size + gma_start_offset, PAGE_SIZE)); 1717 if (IS_ERR(bb->obj)) { 1718 ret = PTR_ERR(bb->obj); 1719 goto err_free_bb; 1720 } 1721 1722 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush); 1723 if (ret) 1724 goto err_free_obj; 1725 1726 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1727 if (IS_ERR(bb->va)) { 1728 ret = PTR_ERR(bb->va); 1729 goto err_finish_shmem_access; 1730 } 1731 1732 if (bb->clflush & CLFLUSH_BEFORE) { 1733 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1734 bb->clflush &= ~CLFLUSH_BEFORE; 1735 } 1736 1737 ret = copy_gma_to_hva(s->vgpu, mm, 1738 gma, gma + bb_size, 1739 bb->va + gma_start_offset); 1740 if (ret < 0) { 1741 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1742 ret = -EFAULT; 1743 goto err_unmap; 1744 } 1745 1746 INIT_LIST_HEAD(&bb->list); 1747 list_add(&bb->list, &s->workload->shadow_bb); 1748 1749 bb->accessing = true; 1750 bb->bb_start_cmd_va = s->ip_va; 1751 1752 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1753 bb->bb_offset = s->ip_va - s->rb_va; 1754 else 1755 bb->bb_offset = 0; 1756 1757 /* 1758 * ip_va saves the virtual address of the shadow batch buffer, while 1759 * ip_gma saves the graphics address of the original batch buffer. 1760 * As the shadow batch buffer is just a copy from the originial one, 1761 * it should be right to use shadow batch buffer'va and original batch 1762 * buffer's gma in pair. After all, we don't want to pin the shadow 1763 * buffer here (too early). 1764 */ 1765 s->ip_va = bb->va + gma_start_offset; 1766 s->ip_gma = gma; 1767 return 0; 1768 err_unmap: 1769 i915_gem_object_unpin_map(bb->obj); 1770 err_finish_shmem_access: 1771 i915_gem_obj_finish_shmem_access(bb->obj); 1772 err_free_obj: 1773 i915_gem_object_put(bb->obj); 1774 err_free_bb: 1775 kfree(bb); 1776 return ret; 1777 } 1778 1779 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1780 { 1781 bool second_level; 1782 int ret = 0; 1783 struct intel_vgpu *vgpu = s->vgpu; 1784 1785 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1786 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1787 return -EFAULT; 1788 } 1789 1790 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1791 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1792 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1793 return -EFAULT; 1794 } 1795 1796 s->saved_buf_addr_type = s->buf_addr_type; 1797 addr_type_update_snb(s); 1798 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1799 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1800 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1801 } else if (second_level) { 1802 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1803 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1804 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1805 } 1806 1807 if (batch_buffer_needs_scan(s)) { 1808 ret = perform_bb_shadow(s); 1809 if (ret < 0) 1810 gvt_vgpu_err("invalid shadow batch buffer\n"); 1811 } else { 1812 /* emulate a batch buffer end to do return right */ 1813 ret = cmd_handler_mi_batch_buffer_end(s); 1814 if (ret < 0) 1815 return ret; 1816 } 1817 return ret; 1818 } 1819 1820 static struct cmd_info cmd_info[] = { 1821 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1822 1823 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1824 0, 1, NULL}, 1825 1826 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1827 0, 1, cmd_handler_mi_user_interrupt}, 1828 1829 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1830 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1831 1832 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1833 1834 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1835 NULL}, 1836 1837 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1838 NULL}, 1839 1840 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1841 NULL}, 1842 1843 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1844 NULL}, 1845 1846 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1847 D_ALL, 0, 1, NULL}, 1848 1849 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1850 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1851 cmd_handler_mi_batch_buffer_end}, 1852 1853 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1854 0, 1, NULL}, 1855 1856 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1857 NULL}, 1858 1859 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1860 D_ALL, 0, 1, NULL}, 1861 1862 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1863 NULL}, 1864 1865 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1866 NULL}, 1867 1868 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1869 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1870 1871 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1872 0, 8, NULL}, 1873 1874 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1875 1876 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1877 1878 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1879 D_BDW_PLUS, 0, 8, NULL}, 1880 1881 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1882 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1883 1884 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1885 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1886 1887 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1888 0, 8, cmd_handler_mi_store_data_index}, 1889 1890 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1891 D_ALL, 0, 8, cmd_handler_lri}, 1892 1893 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1894 cmd_handler_mi_update_gtt}, 1895 1896 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1897 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1898 1899 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1900 cmd_handler_mi_flush_dw}, 1901 1902 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1903 10, cmd_handler_mi_clflush}, 1904 1905 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1906 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1907 1908 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1909 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1910 1911 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1912 D_ALL, 0, 8, cmd_handler_lrr}, 1913 1914 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1915 D_ALL, 0, 8, NULL}, 1916 1917 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1918 ADDR_FIX_1(2), 8, NULL}, 1919 1920 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1921 ADDR_FIX_1(2), 8, NULL}, 1922 1923 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1924 8, cmd_handler_mi_op_2e}, 1925 1926 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1927 8, cmd_handler_mi_op_2f}, 1928 1929 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1930 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1931 cmd_handler_mi_batch_buffer_start}, 1932 1933 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1934 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1935 cmd_handler_mi_conditional_batch_buffer_end}, 1936 1937 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1938 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1939 1940 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1941 ADDR_FIX_2(4, 7), 8, NULL}, 1942 1943 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1944 0, 8, NULL}, 1945 1946 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1947 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1948 1949 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1950 1951 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1952 0, 8, NULL}, 1953 1954 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1955 ADDR_FIX_1(3), 8, NULL}, 1956 1957 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1958 D_ALL, 0, 8, NULL}, 1959 1960 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1961 ADDR_FIX_1(4), 8, NULL}, 1962 1963 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1964 ADDR_FIX_2(4, 5), 8, NULL}, 1965 1966 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1967 ADDR_FIX_1(4), 8, NULL}, 1968 1969 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1970 ADDR_FIX_2(4, 7), 8, NULL}, 1971 1972 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1973 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1974 1975 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1976 1977 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 1978 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 1979 1980 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 1981 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1982 1983 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 1984 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 1985 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1986 1987 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 1988 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1989 1990 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 1991 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1992 1993 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 1994 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1995 1996 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 1997 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1998 1999 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2000 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2001 2002 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2003 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2004 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2005 2006 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2007 ADDR_FIX_2(4, 5), 8, NULL}, 2008 2009 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2010 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2011 2012 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2013 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2014 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2015 2016 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2017 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2018 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2019 2020 {"3DSTATE_BLEND_STATE_POINTERS", 2021 OP_3DSTATE_BLEND_STATE_POINTERS, 2022 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2023 2024 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2025 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2026 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2027 2028 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2029 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2030 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2031 2032 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2033 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2034 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2035 2036 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2037 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2038 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2039 2040 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2041 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2042 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2043 2044 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2045 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2046 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2047 2048 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2049 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2050 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2051 2052 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2053 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2054 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2055 2056 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2057 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2058 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2059 2060 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2061 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2062 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2063 2064 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2065 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2066 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2067 2068 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2069 0, 8, NULL}, 2070 2071 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2072 0, 8, NULL}, 2073 2074 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2075 0, 8, NULL}, 2076 2077 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2078 0, 8, NULL}, 2079 2080 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2081 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2082 2083 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2084 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2085 2086 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2087 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2088 2089 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2090 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2091 2092 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2093 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2094 2095 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2096 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2097 2098 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2099 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2100 2101 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2102 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2103 2104 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2105 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2106 2107 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2108 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2109 2110 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2111 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2112 2113 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2114 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2115 2116 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2117 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2118 2119 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2120 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2121 2122 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2123 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2124 2125 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2126 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2127 2128 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2129 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2130 2131 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2132 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2133 2134 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2135 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2136 2137 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2138 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2139 2140 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2141 D_BDW_PLUS, 0, 8, NULL}, 2142 2143 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2144 NULL}, 2145 2146 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2147 D_BDW_PLUS, 0, 8, NULL}, 2148 2149 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2150 D_BDW_PLUS, 0, 8, NULL}, 2151 2152 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2153 8, NULL}, 2154 2155 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2156 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2157 2158 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2159 8, NULL}, 2160 2161 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2162 NULL}, 2163 2164 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2165 NULL}, 2166 2167 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2168 NULL}, 2169 2170 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2171 D_BDW_PLUS, 0, 8, NULL}, 2172 2173 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2174 R_RCS, D_ALL, 0, 8, NULL}, 2175 2176 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2177 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2178 2179 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2180 R_RCS, D_ALL, 0, 1, NULL}, 2181 2182 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2183 2184 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2185 R_RCS, D_ALL, 0, 8, NULL}, 2186 2187 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2188 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2189 2190 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2191 2192 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2193 2194 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2195 2196 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2197 D_BDW_PLUS, 0, 8, NULL}, 2198 2199 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2200 D_BDW_PLUS, 0, 8, NULL}, 2201 2202 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2203 D_ALL, 0, 8, NULL}, 2204 2205 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2206 D_BDW_PLUS, 0, 8, NULL}, 2207 2208 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2209 D_BDW_PLUS, 0, 8, NULL}, 2210 2211 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2212 2213 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2214 2215 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2216 2217 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2218 D_ALL, 0, 8, NULL}, 2219 2220 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2221 2222 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2223 2224 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2225 R_RCS, D_ALL, 0, 8, NULL}, 2226 2227 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2228 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2229 2230 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2231 0, 8, NULL}, 2232 2233 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2234 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2235 2236 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2240 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2241 2242 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2243 D_ALL, 0, 8, NULL}, 2244 2245 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2246 D_ALL, 0, 8, NULL}, 2247 2248 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2249 D_ALL, 0, 8, NULL}, 2250 2251 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2253 2254 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2255 D_BDW_PLUS, 0, 8, NULL}, 2256 2257 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2258 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2259 2260 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2261 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2262 2263 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2264 R_RCS, D_ALL, 0, 8, NULL}, 2265 2266 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2268 2269 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2274 2275 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2277 2278 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2280 2281 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2282 R_RCS, D_ALL, 0, 8, NULL}, 2283 2284 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2285 D_ALL, 0, 9, NULL}, 2286 2287 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2288 ADDR_FIX_2(2, 4), 8, NULL}, 2289 2290 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2291 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2292 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2293 2294 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2295 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2296 2297 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2298 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2299 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2300 2301 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2302 D_BDW_PLUS, 0, 8, NULL}, 2303 2304 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2305 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2306 2307 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2308 2309 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2310 1, NULL}, 2311 2312 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2313 ADDR_FIX_1(1), 8, NULL}, 2314 2315 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2316 2317 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2318 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2319 2320 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2321 ADDR_FIX_1(1), 8, NULL}, 2322 2323 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2324 2325 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2326 2327 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2328 0, 8, NULL}, 2329 2330 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2331 D_SKL_PLUS, 0, 8, NULL}, 2332 2333 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2334 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2335 2336 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2337 0, 16, NULL}, 2338 2339 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2340 0, 16, NULL}, 2341 2342 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2343 0, 16, NULL}, 2344 2345 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2346 2347 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2348 0, 16, NULL}, 2349 2350 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2351 0, 16, NULL}, 2352 2353 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2354 0, 16, NULL}, 2355 2356 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2357 0, 8, NULL}, 2358 2359 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2360 NULL}, 2361 2362 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2363 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2364 2365 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2366 R_VCS, D_ALL, 0, 12, NULL}, 2367 2368 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2369 R_VCS, D_ALL, 0, 12, NULL}, 2370 2371 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2372 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2373 2374 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2375 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2376 2377 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2378 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2379 2380 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2381 2382 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2383 R_VCS, D_ALL, 0, 12, NULL}, 2384 2385 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2386 R_VCS, D_ALL, 0, 12, NULL}, 2387 2388 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2389 R_VCS, D_ALL, 0, 12, NULL}, 2390 2391 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2392 R_VCS, D_ALL, 0, 12, NULL}, 2393 2394 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2395 R_VCS, D_ALL, 0, 12, NULL}, 2396 2397 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2398 R_VCS, D_ALL, 0, 12, NULL}, 2399 2400 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2401 R_VCS, D_ALL, 0, 6, NULL}, 2402 2403 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2404 R_VCS, D_ALL, 0, 12, NULL}, 2405 2406 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2407 R_VCS, D_ALL, 0, 12, NULL}, 2408 2409 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2410 R_VCS, D_ALL, 0, 12, NULL}, 2411 2412 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2413 R_VCS, D_ALL, 0, 12, NULL}, 2414 2415 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2416 R_VCS, D_ALL, 0, 12, NULL}, 2417 2418 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2419 R_VCS, D_ALL, 0, 12, NULL}, 2420 2421 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2422 R_VCS, D_ALL, 0, 12, NULL}, 2423 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2424 R_VCS, D_ALL, 0, 12, NULL}, 2425 2426 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2427 R_VCS, D_ALL, 0, 12, NULL}, 2428 2429 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2430 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2431 2432 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2433 R_VCS, D_ALL, 0, 12, NULL}, 2434 2435 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2436 R_VCS, D_ALL, 0, 12, NULL}, 2437 2438 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2439 R_VCS, D_ALL, 0, 12, NULL}, 2440 2441 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2442 R_VCS, D_ALL, 0, 12, NULL}, 2443 2444 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2445 R_VCS, D_ALL, 0, 12, NULL}, 2446 2447 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2448 R_VCS, D_ALL, 0, 12, NULL}, 2449 2450 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2451 R_VCS, D_ALL, 0, 12, NULL}, 2452 2453 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2454 R_VCS, D_ALL, 0, 12, NULL}, 2455 2456 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2457 R_VCS, D_ALL, 0, 12, NULL}, 2458 2459 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2460 R_VCS, D_ALL, 0, 12, NULL}, 2461 2462 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2463 R_VCS, D_ALL, 0, 12, NULL}, 2464 2465 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2466 0, 16, NULL}, 2467 2468 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2469 2470 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2471 2472 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2473 R_VCS, D_ALL, 0, 12, NULL}, 2474 2475 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2476 R_VCS, D_ALL, 0, 12, NULL}, 2477 2478 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2479 R_VCS, D_ALL, 0, 12, NULL}, 2480 2481 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2482 2483 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2484 0, 12, NULL}, 2485 2486 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2487 0, 20, NULL}, 2488 }; 2489 2490 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2491 { 2492 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2493 } 2494 2495 /* call the cmd handler, and advance ip */ 2496 static int cmd_parser_exec(struct parser_exec_state *s) 2497 { 2498 struct intel_vgpu *vgpu = s->vgpu; 2499 struct cmd_info *info; 2500 u32 cmd; 2501 int ret = 0; 2502 2503 cmd = cmd_val(s, 0); 2504 2505 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2506 if (info == NULL) { 2507 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2508 cmd, get_opcode(cmd, s->ring_id), 2509 (s->buf_addr_type == PPGTT_BUFFER) ? 2510 "ppgtt" : "ggtt", s->ring_id, s->workload); 2511 return -EBADRQC; 2512 } 2513 2514 s->info = info; 2515 2516 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2517 cmd_length(s), s->buf_type, s->buf_addr_type, 2518 s->workload, info->name); 2519 2520 if (info->handler) { 2521 ret = info->handler(s); 2522 if (ret < 0) { 2523 gvt_vgpu_err("%s handler error\n", info->name); 2524 return ret; 2525 } 2526 } 2527 2528 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2529 ret = cmd_advance_default(s); 2530 if (ret) { 2531 gvt_vgpu_err("%s IP advance error\n", info->name); 2532 return ret; 2533 } 2534 } 2535 return 0; 2536 } 2537 2538 static inline bool gma_out_of_range(unsigned long gma, 2539 unsigned long gma_head, unsigned int gma_tail) 2540 { 2541 if (gma_tail >= gma_head) 2542 return (gma < gma_head) || (gma > gma_tail); 2543 else 2544 return (gma > gma_tail) && (gma < gma_head); 2545 } 2546 2547 /* Keep the consistent return type, e.g EBADRQC for unknown 2548 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2549 * works as the input of VM healthy status. 2550 */ 2551 static int command_scan(struct parser_exec_state *s, 2552 unsigned long rb_head, unsigned long rb_tail, 2553 unsigned long rb_start, unsigned long rb_len) 2554 { 2555 2556 unsigned long gma_head, gma_tail, gma_bottom; 2557 int ret = 0; 2558 struct intel_vgpu *vgpu = s->vgpu; 2559 2560 gma_head = rb_start + rb_head; 2561 gma_tail = rb_start + rb_tail; 2562 gma_bottom = rb_start + rb_len; 2563 2564 while (s->ip_gma != gma_tail) { 2565 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2566 if (!(s->ip_gma >= rb_start) || 2567 !(s->ip_gma < gma_bottom)) { 2568 gvt_vgpu_err("ip_gma %lx out of ring scope." 2569 "(base:0x%lx, bottom: 0x%lx)\n", 2570 s->ip_gma, rb_start, 2571 gma_bottom); 2572 parser_exec_state_dump(s); 2573 return -EFAULT; 2574 } 2575 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2576 gvt_vgpu_err("ip_gma %lx out of range." 2577 "base 0x%lx head 0x%lx tail 0x%lx\n", 2578 s->ip_gma, rb_start, 2579 rb_head, rb_tail); 2580 parser_exec_state_dump(s); 2581 break; 2582 } 2583 } 2584 ret = cmd_parser_exec(s); 2585 if (ret) { 2586 gvt_vgpu_err("cmd parser error\n"); 2587 parser_exec_state_dump(s); 2588 break; 2589 } 2590 } 2591 2592 return ret; 2593 } 2594 2595 static int scan_workload(struct intel_vgpu_workload *workload) 2596 { 2597 unsigned long gma_head, gma_tail, gma_bottom; 2598 struct parser_exec_state s; 2599 int ret = 0; 2600 2601 /* ring base is page aligned */ 2602 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2603 return -EINVAL; 2604 2605 gma_head = workload->rb_start + workload->rb_head; 2606 gma_tail = workload->rb_start + workload->rb_tail; 2607 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2608 2609 s.buf_type = RING_BUFFER_INSTRUCTION; 2610 s.buf_addr_type = GTT_BUFFER; 2611 s.vgpu = workload->vgpu; 2612 s.ring_id = workload->ring_id; 2613 s.ring_start = workload->rb_start; 2614 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2615 s.ring_head = gma_head; 2616 s.ring_tail = gma_tail; 2617 s.rb_va = workload->shadow_ring_buffer_va; 2618 s.workload = workload; 2619 s.is_ctx_wa = false; 2620 2621 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2622 gma_head == gma_tail) 2623 return 0; 2624 2625 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2626 ret = -EINVAL; 2627 goto out; 2628 } 2629 2630 ret = ip_gma_set(&s, gma_head); 2631 if (ret) 2632 goto out; 2633 2634 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2635 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2636 2637 out: 2638 return ret; 2639 } 2640 2641 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2642 { 2643 2644 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2645 struct parser_exec_state s; 2646 int ret = 0; 2647 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2648 struct intel_vgpu_workload, 2649 wa_ctx); 2650 2651 /* ring base is page aligned */ 2652 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2653 I915_GTT_PAGE_SIZE))) 2654 return -EINVAL; 2655 2656 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2657 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2658 PAGE_SIZE); 2659 gma_head = wa_ctx->indirect_ctx.guest_gma; 2660 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2661 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2662 2663 s.buf_type = RING_BUFFER_INSTRUCTION; 2664 s.buf_addr_type = GTT_BUFFER; 2665 s.vgpu = workload->vgpu; 2666 s.ring_id = workload->ring_id; 2667 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2668 s.ring_size = ring_size; 2669 s.ring_head = gma_head; 2670 s.ring_tail = gma_tail; 2671 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2672 s.workload = workload; 2673 s.is_ctx_wa = true; 2674 2675 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2676 ret = -EINVAL; 2677 goto out; 2678 } 2679 2680 ret = ip_gma_set(&s, gma_head); 2681 if (ret) 2682 goto out; 2683 2684 ret = command_scan(&s, 0, ring_tail, 2685 wa_ctx->indirect_ctx.guest_gma, ring_size); 2686 out: 2687 return ret; 2688 } 2689 2690 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2691 { 2692 struct intel_vgpu *vgpu = workload->vgpu; 2693 struct intel_vgpu_submission *s = &vgpu->submission; 2694 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2695 void *shadow_ring_buffer_va; 2696 int ring_id = workload->ring_id; 2697 int ret; 2698 2699 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2700 2701 /* calculate workload ring buffer size */ 2702 workload->rb_len = (workload->rb_tail + guest_rb_size - 2703 workload->rb_head) % guest_rb_size; 2704 2705 gma_head = workload->rb_start + workload->rb_head; 2706 gma_tail = workload->rb_start + workload->rb_tail; 2707 gma_top = workload->rb_start + guest_rb_size; 2708 2709 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2710 void *p; 2711 2712 /* realloc the new ring buffer if needed */ 2713 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2714 GFP_KERNEL); 2715 if (!p) { 2716 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2717 return -ENOMEM; 2718 } 2719 s->ring_scan_buffer[ring_id] = p; 2720 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2721 } 2722 2723 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2724 2725 /* get shadow ring buffer va */ 2726 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2727 2728 /* head > tail --> copy head <-> top */ 2729 if (gma_head > gma_tail) { 2730 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2731 gma_head, gma_top, shadow_ring_buffer_va); 2732 if (ret < 0) { 2733 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2734 return ret; 2735 } 2736 shadow_ring_buffer_va += ret; 2737 gma_head = workload->rb_start; 2738 } 2739 2740 /* copy head or start <-> tail */ 2741 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2742 shadow_ring_buffer_va); 2743 if (ret < 0) { 2744 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2745 return ret; 2746 } 2747 return 0; 2748 } 2749 2750 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2751 { 2752 int ret; 2753 struct intel_vgpu *vgpu = workload->vgpu; 2754 2755 ret = shadow_workload_ring_buffer(workload); 2756 if (ret) { 2757 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2758 return ret; 2759 } 2760 2761 ret = scan_workload(workload); 2762 if (ret) { 2763 gvt_vgpu_err("scan workload error\n"); 2764 return ret; 2765 } 2766 return 0; 2767 } 2768 2769 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2770 { 2771 int ctx_size = wa_ctx->indirect_ctx.size; 2772 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2773 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2774 struct intel_vgpu_workload, 2775 wa_ctx); 2776 struct intel_vgpu *vgpu = workload->vgpu; 2777 struct drm_i915_gem_object *obj; 2778 int ret = 0; 2779 void *map; 2780 2781 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv, 2782 roundup(ctx_size + CACHELINE_BYTES, 2783 PAGE_SIZE)); 2784 if (IS_ERR(obj)) 2785 return PTR_ERR(obj); 2786 2787 /* get the va of the shadow batch buffer */ 2788 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2789 if (IS_ERR(map)) { 2790 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2791 ret = PTR_ERR(map); 2792 goto put_obj; 2793 } 2794 2795 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2796 if (ret) { 2797 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2798 goto unmap_src; 2799 } 2800 2801 ret = copy_gma_to_hva(workload->vgpu, 2802 workload->vgpu->gtt.ggtt_mm, 2803 guest_gma, guest_gma + ctx_size, 2804 map); 2805 if (ret < 0) { 2806 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2807 goto unmap_src; 2808 } 2809 2810 wa_ctx->indirect_ctx.obj = obj; 2811 wa_ctx->indirect_ctx.shadow_va = map; 2812 return 0; 2813 2814 unmap_src: 2815 i915_gem_object_unpin_map(obj); 2816 put_obj: 2817 i915_gem_object_put(obj); 2818 return ret; 2819 } 2820 2821 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2822 { 2823 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2824 unsigned char *bb_start_sva; 2825 2826 if (!wa_ctx->per_ctx.valid) 2827 return 0; 2828 2829 per_ctx_start[0] = 0x18800001; 2830 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2831 2832 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2833 wa_ctx->indirect_ctx.size; 2834 2835 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2836 2837 return 0; 2838 } 2839 2840 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2841 { 2842 int ret; 2843 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2844 struct intel_vgpu_workload, 2845 wa_ctx); 2846 struct intel_vgpu *vgpu = workload->vgpu; 2847 2848 if (wa_ctx->indirect_ctx.size == 0) 2849 return 0; 2850 2851 ret = shadow_indirect_ctx(wa_ctx); 2852 if (ret) { 2853 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2854 return ret; 2855 } 2856 2857 combine_wa_ctx(wa_ctx); 2858 2859 ret = scan_wa_ctx(wa_ctx); 2860 if (ret) { 2861 gvt_vgpu_err("scan wa ctx error\n"); 2862 return ret; 2863 } 2864 2865 return 0; 2866 } 2867 2868 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2869 unsigned int opcode, unsigned long rings) 2870 { 2871 struct cmd_info *info = NULL; 2872 unsigned int ring; 2873 2874 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2875 info = find_cmd_entry(gvt, opcode, ring); 2876 if (info) 2877 break; 2878 } 2879 return info; 2880 } 2881 2882 static int init_cmd_table(struct intel_gvt *gvt) 2883 { 2884 int i; 2885 struct cmd_entry *e; 2886 struct cmd_info *info; 2887 unsigned int gen_type; 2888 2889 gen_type = intel_gvt_get_device_type(gvt); 2890 2891 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2892 if (!(cmd_info[i].devices & gen_type)) 2893 continue; 2894 2895 e = kzalloc(sizeof(*e), GFP_KERNEL); 2896 if (!e) 2897 return -ENOMEM; 2898 2899 e->info = &cmd_info[i]; 2900 info = find_cmd_entry_any_ring(gvt, 2901 e->info->opcode, e->info->rings); 2902 if (info) { 2903 gvt_err("%s %s duplicated\n", e->info->name, 2904 info->name); 2905 kfree(e); 2906 return -EEXIST; 2907 } 2908 2909 INIT_HLIST_NODE(&e->hlist); 2910 add_cmd_entry(gvt, e); 2911 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2912 e->info->name, e->info->opcode, e->info->flag, 2913 e->info->devices, e->info->rings); 2914 } 2915 return 0; 2916 } 2917 2918 static void clean_cmd_table(struct intel_gvt *gvt) 2919 { 2920 struct hlist_node *tmp; 2921 struct cmd_entry *e; 2922 int i; 2923 2924 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2925 kfree(e); 2926 2927 hash_init(gvt->cmd_table); 2928 } 2929 2930 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2931 { 2932 clean_cmd_table(gvt); 2933 } 2934 2935 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2936 { 2937 int ret; 2938 2939 ret = init_cmd_table(gvt); 2940 if (ret) { 2941 intel_gvt_clean_cmd_parser(gvt); 2942 return ret; 2943 } 2944 return 0; 2945 } 2946