1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 180 181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 247 248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 259 260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 288 289 /* VCCP Command Parser */ 290 291 /* 292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 293 * git://anongit.freedesktop.org/vaapi/intel-driver 294 * src/i965_defines.h 295 * 296 */ 297 298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 299 (3 << 13 | \ 300 (pipeline) << 11 | \ 301 (op) << 8 | \ 302 (sub_opa) << 5 | \ 303 (sub_opb)) 304 305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 316 317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 318 319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 331 332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 337 338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 343 344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 347 348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 351 352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 353 (3 << 13 | \ 354 (pipeline) << 11 | \ 355 (op) << 8 | \ 356 (sub_opa) << 5 | \ 357 (sub_opb)) 358 359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 362 363 struct parser_exec_state; 364 365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 366 367 #define GVT_CMD_HASH_BITS 7 368 369 /* which DWords need address fix */ 370 #define ADDR_FIX_1(x1) (1 << (x1)) 371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 375 376 struct cmd_info { 377 char *name; 378 u32 opcode; 379 380 #define F_LEN_MASK (1U<<0) 381 #define F_LEN_CONST 1U 382 #define F_LEN_VAR 0U 383 384 /* 385 * command has its own ip advance logic 386 * e.g. MI_BATCH_START, MI_BATCH_END 387 */ 388 #define F_IP_ADVANCE_CUSTOM (1<<1) 389 390 #define F_POST_HANDLE (1<<2) 391 u32 flag; 392 393 #define R_RCS (1 << RCS) 394 #define R_VCS1 (1 << VCS) 395 #define R_VCS2 (1 << VCS2) 396 #define R_VCS (R_VCS1 | R_VCS2) 397 #define R_BCS (1 << BCS) 398 #define R_VECS (1 << VECS) 399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 400 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 401 uint16_t rings; 402 403 /* devices that support this cmd: SNB/IVB/HSW/... */ 404 uint16_t devices; 405 406 /* which DWords are address that need fix up. 407 * bit 0 means a 32-bit non address operand in command 408 * bit 1 means address operand, which could be 32-bit 409 * or 64-bit depending on different architectures.( 410 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 411 * No matter the address length, each address only takes 412 * one bit in the bitmap. 413 */ 414 uint16_t addr_bitmap; 415 416 /* flag == F_LEN_CONST : command length 417 * flag == F_LEN_VAR : length bias bits 418 * Note: length is in DWord 419 */ 420 uint8_t len; 421 422 parser_cmd_handler handler; 423 }; 424 425 struct cmd_entry { 426 struct hlist_node hlist; 427 struct cmd_info *info; 428 }; 429 430 enum { 431 RING_BUFFER_INSTRUCTION, 432 BATCH_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_2ND_LEVEL, 434 }; 435 436 enum { 437 GTT_BUFFER, 438 PPGTT_BUFFER 439 }; 440 441 struct parser_exec_state { 442 struct intel_vgpu *vgpu; 443 int ring_id; 444 445 int buf_type; 446 447 /* batch buffer address type */ 448 int buf_addr_type; 449 450 /* graphics memory address of ring buffer start */ 451 unsigned long ring_start; 452 unsigned long ring_size; 453 unsigned long ring_head; 454 unsigned long ring_tail; 455 456 /* instruction graphics memory address */ 457 unsigned long ip_gma; 458 459 /* mapped va of the instr_gma */ 460 void *ip_va; 461 void *rb_va; 462 463 void *ret_bb_va; 464 /* next instruction when return from batch buffer to ring buffer */ 465 unsigned long ret_ip_gma_ring; 466 467 /* next instruction when return from 2nd batch buffer to batch buffer */ 468 unsigned long ret_ip_gma_bb; 469 470 /* batch buffer address type (GTT or PPGTT) 471 * used when ret from 2nd level batch buffer 472 */ 473 int saved_buf_addr_type; 474 475 struct cmd_info *info; 476 477 struct intel_vgpu_workload *workload; 478 }; 479 480 #define gmadr_dw_number(s) \ 481 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 482 483 static unsigned long bypass_scan_mask = 0; 484 485 /* ring ALL, type = 0 */ 486 static struct sub_op_bits sub_op_mi[] = { 487 {31, 29}, 488 {28, 23}, 489 }; 490 491 static struct decode_info decode_info_mi = { 492 "MI", 493 OP_LEN_MI, 494 ARRAY_SIZE(sub_op_mi), 495 sub_op_mi, 496 }; 497 498 /* ring RCS, command type 2 */ 499 static struct sub_op_bits sub_op_2d[] = { 500 {31, 29}, 501 {28, 22}, 502 }; 503 504 static struct decode_info decode_info_2d = { 505 "2D", 506 OP_LEN_2D, 507 ARRAY_SIZE(sub_op_2d), 508 sub_op_2d, 509 }; 510 511 /* ring RCS, command type 3 */ 512 static struct sub_op_bits sub_op_3d_media[] = { 513 {31, 29}, 514 {28, 27}, 515 {26, 24}, 516 {23, 16}, 517 }; 518 519 static struct decode_info decode_info_3d_media = { 520 "3D_Media", 521 OP_LEN_3D_MEDIA, 522 ARRAY_SIZE(sub_op_3d_media), 523 sub_op_3d_media, 524 }; 525 526 /* ring VCS, command type 3 */ 527 static struct sub_op_bits sub_op_mfx_vc[] = { 528 {31, 29}, 529 {28, 27}, 530 {26, 24}, 531 {23, 21}, 532 {20, 16}, 533 }; 534 535 static struct decode_info decode_info_mfx_vc = { 536 "MFX_VC", 537 OP_LEN_MFX_VC, 538 ARRAY_SIZE(sub_op_mfx_vc), 539 sub_op_mfx_vc, 540 }; 541 542 /* ring VECS, command type 3 */ 543 static struct sub_op_bits sub_op_vebox[] = { 544 {31, 29}, 545 {28, 27}, 546 {26, 24}, 547 {23, 21}, 548 {20, 16}, 549 }; 550 551 static struct decode_info decode_info_vebox = { 552 "VEBOX", 553 OP_LEN_VEBOX, 554 ARRAY_SIZE(sub_op_vebox), 555 sub_op_vebox, 556 }; 557 558 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 559 [RCS] = { 560 &decode_info_mi, 561 NULL, 562 NULL, 563 &decode_info_3d_media, 564 NULL, 565 NULL, 566 NULL, 567 NULL, 568 }, 569 570 [VCS] = { 571 &decode_info_mi, 572 NULL, 573 NULL, 574 &decode_info_mfx_vc, 575 NULL, 576 NULL, 577 NULL, 578 NULL, 579 }, 580 581 [BCS] = { 582 &decode_info_mi, 583 NULL, 584 &decode_info_2d, 585 NULL, 586 NULL, 587 NULL, 588 NULL, 589 NULL, 590 }, 591 592 [VECS] = { 593 &decode_info_mi, 594 NULL, 595 NULL, 596 &decode_info_vebox, 597 NULL, 598 NULL, 599 NULL, 600 NULL, 601 }, 602 603 [VCS2] = { 604 &decode_info_mi, 605 NULL, 606 NULL, 607 &decode_info_mfx_vc, 608 NULL, 609 NULL, 610 NULL, 611 NULL, 612 }, 613 }; 614 615 static inline u32 get_opcode(u32 cmd, int ring_id) 616 { 617 struct decode_info *d_info; 618 619 if (ring_id >= I915_NUM_ENGINES) 620 return INVALID_OP; 621 622 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 623 if (d_info == NULL) 624 return INVALID_OP; 625 626 return cmd >> (32 - d_info->op_len); 627 } 628 629 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 630 unsigned int opcode, int ring_id) 631 { 632 struct cmd_entry *e; 633 634 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 635 if ((opcode == e->info->opcode) && 636 (e->info->rings & (1 << ring_id))) 637 return e->info; 638 } 639 return NULL; 640 } 641 642 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 643 u32 cmd, int ring_id) 644 { 645 u32 opcode; 646 647 opcode = get_opcode(cmd, ring_id); 648 if (opcode == INVALID_OP) 649 return NULL; 650 651 return find_cmd_entry(gvt, opcode, ring_id); 652 } 653 654 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 655 { 656 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 657 } 658 659 static inline void print_opcode(u32 cmd, int ring_id) 660 { 661 struct decode_info *d_info; 662 int i; 663 664 if (ring_id >= I915_NUM_ENGINES) 665 return; 666 667 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 668 if (d_info == NULL) 669 return; 670 671 gvt_err("opcode=0x%x %s sub_ops:", 672 cmd >> (32 - d_info->op_len), d_info->name); 673 674 for (i = 0; i < d_info->nr_sub_op; i++) 675 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 676 d_info->sub_op[i].low)); 677 678 pr_err("\n"); 679 } 680 681 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 682 { 683 return s->ip_va + (index << 2); 684 } 685 686 static inline u32 cmd_val(struct parser_exec_state *s, int index) 687 { 688 return *cmd_ptr(s, index); 689 } 690 691 static void parser_exec_state_dump(struct parser_exec_state *s) 692 { 693 int cnt = 0; 694 int i; 695 696 gvt_err(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 697 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 698 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 699 s->ring_head, s->ring_tail); 700 701 gvt_err(" %s %s ip_gma(%08lx) ", 702 s->buf_type == RING_BUFFER_INSTRUCTION ? 703 "RING_BUFFER" : "BATCH_BUFFER", 704 s->buf_addr_type == GTT_BUFFER ? 705 "GTT" : "PPGTT", s->ip_gma); 706 707 if (s->ip_va == NULL) { 708 gvt_err(" ip_va(NULL)"); 709 return; 710 } 711 712 gvt_err(" ip_va=%p: %08x %08x %08x %08x\n", 713 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 714 cmd_val(s, 2), cmd_val(s, 3)); 715 716 print_opcode(cmd_val(s, 0), s->ring_id); 717 718 /* print the whole page to trace */ 719 pr_err(" ip_va=%p: %08x %08x %08x %08x\n", 720 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 721 cmd_val(s, 2), cmd_val(s, 3)); 722 723 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 724 725 while (cnt < 1024) { 726 pr_err("ip_va=%p: ", s->ip_va); 727 for (i = 0; i < 8; i++) 728 pr_err("%08x ", cmd_val(s, i)); 729 pr_err("\n"); 730 731 s->ip_va += 8 * sizeof(u32); 732 cnt += 8; 733 } 734 } 735 736 static inline void update_ip_va(struct parser_exec_state *s) 737 { 738 unsigned long len = 0; 739 740 if (WARN_ON(s->ring_head == s->ring_tail)) 741 return; 742 743 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 744 unsigned long ring_top = s->ring_start + s->ring_size; 745 746 if (s->ring_head > s->ring_tail) { 747 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 748 len = (s->ip_gma - s->ring_head); 749 else if (s->ip_gma >= s->ring_start && 750 s->ip_gma <= s->ring_tail) 751 len = (ring_top - s->ring_head) + 752 (s->ip_gma - s->ring_start); 753 } else 754 len = (s->ip_gma - s->ring_head); 755 756 s->ip_va = s->rb_va + len; 757 } else {/* shadow batch buffer */ 758 s->ip_va = s->ret_bb_va; 759 } 760 } 761 762 static inline int ip_gma_set(struct parser_exec_state *s, 763 unsigned long ip_gma) 764 { 765 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 766 767 s->ip_gma = ip_gma; 768 update_ip_va(s); 769 return 0; 770 } 771 772 static inline int ip_gma_advance(struct parser_exec_state *s, 773 unsigned int dw_len) 774 { 775 s->ip_gma += (dw_len << 2); 776 777 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 778 if (s->ip_gma >= s->ring_start + s->ring_size) 779 s->ip_gma -= s->ring_size; 780 update_ip_va(s); 781 } else { 782 s->ip_va += (dw_len << 2); 783 } 784 785 return 0; 786 } 787 788 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 789 { 790 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 791 return info->len; 792 else 793 return (cmd & ((1U << info->len) - 1)) + 2; 794 return 0; 795 } 796 797 static inline int cmd_length(struct parser_exec_state *s) 798 { 799 return get_cmd_length(s->info, cmd_val(s, 0)); 800 } 801 802 /* do not remove this, some platform may need clflush here */ 803 #define patch_value(s, addr, val) do { \ 804 *addr = val; \ 805 } while (0) 806 807 static bool is_shadowed_mmio(unsigned int offset) 808 { 809 bool ret = false; 810 811 if ((offset == 0x2168) || /*BB current head register UDW */ 812 (offset == 0x2140) || /*BB current header register */ 813 (offset == 0x211c) || /*second BB header register UDW */ 814 (offset == 0x2114)) { /*second BB header register UDW */ 815 ret = true; 816 } 817 return ret; 818 } 819 820 static int cmd_reg_handler(struct parser_exec_state *s, 821 unsigned int offset, unsigned int index, char *cmd) 822 { 823 struct intel_vgpu *vgpu = s->vgpu; 824 struct intel_gvt *gvt = vgpu->gvt; 825 826 if (offset + 4 > gvt->device_info.mmio_size) { 827 gvt_err("%s access to (%x) outside of MMIO range\n", 828 cmd, offset); 829 return -EINVAL; 830 } 831 832 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 833 gvt_err("vgpu%d: %s access to non-render register (%x)\n", 834 s->vgpu->id, cmd, offset); 835 return 0; 836 } 837 838 if (is_shadowed_mmio(offset)) { 839 gvt_err("vgpu%d: found access of shadowed MMIO %x\n", 840 s->vgpu->id, offset); 841 return 0; 842 } 843 844 if (offset == i915_mmio_reg_offset(DERRMR) || 845 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 846 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 847 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 848 } 849 850 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 851 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 852 return 0; 853 } 854 855 #define cmd_reg(s, i) \ 856 (cmd_val(s, i) & GENMASK(22, 2)) 857 858 #define cmd_reg_inhibit(s, i) \ 859 (cmd_val(s, i) & GENMASK(22, 18)) 860 861 #define cmd_gma(s, i) \ 862 (cmd_val(s, i) & GENMASK(31, 2)) 863 864 #define cmd_gma_hi(s, i) \ 865 (cmd_val(s, i) & GENMASK(15, 0)) 866 867 static int cmd_handler_lri(struct parser_exec_state *s) 868 { 869 int i, ret = 0; 870 int cmd_len = cmd_length(s); 871 struct intel_gvt *gvt = s->vgpu->gvt; 872 873 for (i = 1; i < cmd_len; i += 2) { 874 if (IS_BROADWELL(gvt->dev_priv) && 875 (s->ring_id != RCS)) { 876 if (s->ring_id == BCS && 877 cmd_reg(s, i) == 878 i915_mmio_reg_offset(DERRMR)) 879 ret |= 0; 880 else 881 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0; 882 } 883 if (ret) 884 break; 885 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 886 } 887 return ret; 888 } 889 890 static int cmd_handler_lrr(struct parser_exec_state *s) 891 { 892 int i, ret = 0; 893 int cmd_len = cmd_length(s); 894 895 for (i = 1; i < cmd_len; i += 2) { 896 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 897 ret |= ((cmd_reg_inhibit(s, i) || 898 (cmd_reg_inhibit(s, i + 1)))) ? 899 -EINVAL : 0; 900 if (ret) 901 break; 902 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 903 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 904 } 905 return ret; 906 } 907 908 static inline int cmd_address_audit(struct parser_exec_state *s, 909 unsigned long guest_gma, int op_size, bool index_mode); 910 911 static int cmd_handler_lrm(struct parser_exec_state *s) 912 { 913 struct intel_gvt *gvt = s->vgpu->gvt; 914 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 915 unsigned long gma; 916 int i, ret = 0; 917 int cmd_len = cmd_length(s); 918 919 for (i = 1; i < cmd_len;) { 920 if (IS_BROADWELL(gvt->dev_priv)) 921 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0; 922 if (ret) 923 break; 924 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 925 if (cmd_val(s, 0) & (1 << 22)) { 926 gma = cmd_gma(s, i + 1); 927 if (gmadr_bytes == 8) 928 gma |= (cmd_gma_hi(s, i + 2)) << 32; 929 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 930 } 931 i += gmadr_dw_number(s) + 1; 932 } 933 return ret; 934 } 935 936 static int cmd_handler_srm(struct parser_exec_state *s) 937 { 938 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 939 unsigned long gma; 940 int i, ret = 0; 941 int cmd_len = cmd_length(s); 942 943 for (i = 1; i < cmd_len;) { 944 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 945 if (cmd_val(s, 0) & (1 << 22)) { 946 gma = cmd_gma(s, i + 1); 947 if (gmadr_bytes == 8) 948 gma |= (cmd_gma_hi(s, i + 2)) << 32; 949 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 950 } 951 i += gmadr_dw_number(s) + 1; 952 } 953 return ret; 954 } 955 956 struct cmd_interrupt_event { 957 int pipe_control_notify; 958 int mi_flush_dw; 959 int mi_user_interrupt; 960 }; 961 962 static struct cmd_interrupt_event cmd_interrupt_events[] = { 963 [RCS] = { 964 .pipe_control_notify = RCS_PIPE_CONTROL, 965 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 966 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 967 }, 968 [BCS] = { 969 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 970 .mi_flush_dw = BCS_MI_FLUSH_DW, 971 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 972 }, 973 [VCS] = { 974 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 975 .mi_flush_dw = VCS_MI_FLUSH_DW, 976 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 977 }, 978 [VCS2] = { 979 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 980 .mi_flush_dw = VCS2_MI_FLUSH_DW, 981 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 982 }, 983 [VECS] = { 984 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 985 .mi_flush_dw = VECS_MI_FLUSH_DW, 986 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 987 }, 988 }; 989 990 static int cmd_handler_pipe_control(struct parser_exec_state *s) 991 { 992 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 993 unsigned long gma; 994 bool index_mode = false; 995 unsigned int post_sync; 996 int ret = 0; 997 998 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 999 1000 /* LRI post sync */ 1001 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1002 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1003 /* post sync */ 1004 else if (post_sync) { 1005 if (post_sync == 2) 1006 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1007 else if (post_sync == 3) 1008 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1009 else if (post_sync == 1) { 1010 /* check ggtt*/ 1011 if ((cmd_val(s, 2) & (1 << 2))) { 1012 gma = cmd_val(s, 2) & GENMASK(31, 3); 1013 if (gmadr_bytes == 8) 1014 gma |= (cmd_gma_hi(s, 3)) << 32; 1015 /* Store Data Index */ 1016 if (cmd_val(s, 1) & (1 << 21)) 1017 index_mode = true; 1018 ret |= cmd_address_audit(s, gma, sizeof(u64), 1019 index_mode); 1020 } 1021 } 1022 } 1023 1024 if (ret) 1025 return ret; 1026 1027 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1028 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1029 s->workload->pending_events); 1030 return 0; 1031 } 1032 1033 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1034 { 1035 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1036 s->workload->pending_events); 1037 return 0; 1038 } 1039 1040 static int cmd_advance_default(struct parser_exec_state *s) 1041 { 1042 return ip_gma_advance(s, cmd_length(s)); 1043 } 1044 1045 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1046 { 1047 int ret; 1048 1049 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1050 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1051 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1052 s->buf_addr_type = s->saved_buf_addr_type; 1053 } else { 1054 s->buf_type = RING_BUFFER_INSTRUCTION; 1055 s->buf_addr_type = GTT_BUFFER; 1056 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1057 s->ret_ip_gma_ring -= s->ring_size; 1058 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1059 } 1060 return ret; 1061 } 1062 1063 struct mi_display_flip_command_info { 1064 int pipe; 1065 int plane; 1066 int event; 1067 i915_reg_t stride_reg; 1068 i915_reg_t ctrl_reg; 1069 i915_reg_t surf_reg; 1070 u64 stride_val; 1071 u64 tile_val; 1072 u64 surf_val; 1073 bool async_flip; 1074 }; 1075 1076 struct plane_code_mapping { 1077 int pipe; 1078 int plane; 1079 int event; 1080 }; 1081 1082 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1083 struct mi_display_flip_command_info *info) 1084 { 1085 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1086 struct plane_code_mapping gen8_plane_code[] = { 1087 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1088 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1089 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1090 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1091 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1092 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1093 }; 1094 u32 dword0, dword1, dword2; 1095 u32 v; 1096 1097 dword0 = cmd_val(s, 0); 1098 dword1 = cmd_val(s, 1); 1099 dword2 = cmd_val(s, 2); 1100 1101 v = (dword0 & GENMASK(21, 19)) >> 19; 1102 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1103 return -EINVAL; 1104 1105 info->pipe = gen8_plane_code[v].pipe; 1106 info->plane = gen8_plane_code[v].plane; 1107 info->event = gen8_plane_code[v].event; 1108 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1109 info->tile_val = (dword1 & 0x1); 1110 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1111 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1112 1113 if (info->plane == PLANE_A) { 1114 info->ctrl_reg = DSPCNTR(info->pipe); 1115 info->stride_reg = DSPSTRIDE(info->pipe); 1116 info->surf_reg = DSPSURF(info->pipe); 1117 } else if (info->plane == PLANE_B) { 1118 info->ctrl_reg = SPRCTL(info->pipe); 1119 info->stride_reg = SPRSTRIDE(info->pipe); 1120 info->surf_reg = SPRSURF(info->pipe); 1121 } else { 1122 WARN_ON(1); 1123 return -EINVAL; 1124 } 1125 return 0; 1126 } 1127 1128 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1129 struct mi_display_flip_command_info *info) 1130 { 1131 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1132 u32 dword0 = cmd_val(s, 0); 1133 u32 dword1 = cmd_val(s, 1); 1134 u32 dword2 = cmd_val(s, 2); 1135 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1136 1137 info->plane = PRIMARY_PLANE; 1138 1139 switch (plane) { 1140 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1141 info->pipe = PIPE_A; 1142 info->event = PRIMARY_A_FLIP_DONE; 1143 break; 1144 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1145 info->pipe = PIPE_B; 1146 info->event = PRIMARY_B_FLIP_DONE; 1147 break; 1148 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1149 info->pipe = PIPE_C; 1150 info->event = PRIMARY_C_FLIP_DONE; 1151 break; 1152 1153 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1154 info->pipe = PIPE_A; 1155 info->event = SPRITE_A_FLIP_DONE; 1156 info->plane = SPRITE_PLANE; 1157 break; 1158 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1159 info->pipe = PIPE_B; 1160 info->event = SPRITE_B_FLIP_DONE; 1161 info->plane = SPRITE_PLANE; 1162 break; 1163 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1164 info->pipe = PIPE_C; 1165 info->event = SPRITE_C_FLIP_DONE; 1166 info->plane = SPRITE_PLANE; 1167 break; 1168 1169 default: 1170 gvt_err("unknown plane code %d\n", plane); 1171 return -EINVAL; 1172 } 1173 1174 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1175 info->tile_val = (dword1 & GENMASK(2, 0)); 1176 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1177 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1178 1179 info->ctrl_reg = DSPCNTR(info->pipe); 1180 info->stride_reg = DSPSTRIDE(info->pipe); 1181 info->surf_reg = DSPSURF(info->pipe); 1182 1183 return 0; 1184 } 1185 1186 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1187 struct mi_display_flip_command_info *info) 1188 { 1189 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1190 u32 stride, tile; 1191 1192 if (!info->async_flip) 1193 return 0; 1194 1195 if (IS_SKYLAKE(dev_priv)) { 1196 stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1197 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & 1198 GENMASK(12, 10)) >> 10; 1199 } else { 1200 stride = (vgpu_vreg(s->vgpu, info->stride_reg) & 1201 GENMASK(15, 6)) >> 6; 1202 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1203 } 1204 1205 if (stride != info->stride_val) 1206 gvt_dbg_cmd("cannot change stride during async flip\n"); 1207 1208 if (tile != info->tile_val) 1209 gvt_dbg_cmd("cannot change tile during async flip\n"); 1210 1211 return 0; 1212 } 1213 1214 static int gen8_update_plane_mmio_from_mi_display_flip( 1215 struct parser_exec_state *s, 1216 struct mi_display_flip_command_info *info) 1217 { 1218 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1219 struct intel_vgpu *vgpu = s->vgpu; 1220 1221 set_mask_bits(&vgpu_vreg(vgpu, info->surf_reg), GENMASK(31, 12), 1222 info->surf_val << 12); 1223 if (IS_SKYLAKE(dev_priv)) { 1224 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(9, 0), 1225 info->stride_val); 1226 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(12, 10), 1227 info->tile_val << 10); 1228 } else { 1229 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(15, 6), 1230 info->stride_val << 6); 1231 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(10, 10), 1232 info->tile_val << 10); 1233 } 1234 1235 vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1236 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1237 return 0; 1238 } 1239 1240 static int decode_mi_display_flip(struct parser_exec_state *s, 1241 struct mi_display_flip_command_info *info) 1242 { 1243 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1244 1245 if (IS_BROADWELL(dev_priv)) 1246 return gen8_decode_mi_display_flip(s, info); 1247 if (IS_SKYLAKE(dev_priv)) 1248 return skl_decode_mi_display_flip(s, info); 1249 1250 return -ENODEV; 1251 } 1252 1253 static int check_mi_display_flip(struct parser_exec_state *s, 1254 struct mi_display_flip_command_info *info) 1255 { 1256 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1257 1258 if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv)) 1259 return gen8_check_mi_display_flip(s, info); 1260 return -ENODEV; 1261 } 1262 1263 static int update_plane_mmio_from_mi_display_flip( 1264 struct parser_exec_state *s, 1265 struct mi_display_flip_command_info *info) 1266 { 1267 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1268 1269 if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv)) 1270 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1271 return -ENODEV; 1272 } 1273 1274 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1275 { 1276 struct mi_display_flip_command_info info; 1277 int ret; 1278 int i; 1279 int len = cmd_length(s); 1280 1281 ret = decode_mi_display_flip(s, &info); 1282 if (ret) { 1283 gvt_err("fail to decode MI display flip command\n"); 1284 return ret; 1285 } 1286 1287 ret = check_mi_display_flip(s, &info); 1288 if (ret) { 1289 gvt_err("invalid MI display flip command\n"); 1290 return ret; 1291 } 1292 1293 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1294 if (ret) { 1295 gvt_err("fail to update plane mmio\n"); 1296 return ret; 1297 } 1298 1299 for (i = 0; i < len; i++) 1300 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1301 return 0; 1302 } 1303 1304 static bool is_wait_for_flip_pending(u32 cmd) 1305 { 1306 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1307 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1308 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1309 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1310 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1311 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1312 } 1313 1314 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1315 { 1316 u32 cmd = cmd_val(s, 0); 1317 1318 if (!is_wait_for_flip_pending(cmd)) 1319 return 0; 1320 1321 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1322 return 0; 1323 } 1324 1325 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1326 { 1327 unsigned long addr; 1328 unsigned long gma_high, gma_low; 1329 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1330 1331 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) 1332 return INTEL_GVT_INVALID_ADDR; 1333 1334 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1335 if (gmadr_bytes == 4) { 1336 addr = gma_low; 1337 } else { 1338 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1339 addr = (((unsigned long)gma_high) << 32) | gma_low; 1340 } 1341 return addr; 1342 } 1343 1344 static inline int cmd_address_audit(struct parser_exec_state *s, 1345 unsigned long guest_gma, int op_size, bool index_mode) 1346 { 1347 struct intel_vgpu *vgpu = s->vgpu; 1348 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1349 int i; 1350 int ret; 1351 1352 if (op_size > max_surface_size) { 1353 gvt_err("command address audit fail name %s\n", s->info->name); 1354 return -EINVAL; 1355 } 1356 1357 if (index_mode) { 1358 if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) { 1359 ret = -EINVAL; 1360 goto err; 1361 } 1362 } else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) || 1363 (!vgpu_gmadr_is_valid(s->vgpu, 1364 guest_gma + op_size - 1))) { 1365 ret = -EINVAL; 1366 goto err; 1367 } 1368 return 0; 1369 err: 1370 gvt_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1371 s->info->name, guest_gma, op_size); 1372 1373 pr_err("cmd dump: "); 1374 for (i = 0; i < cmd_length(s); i++) { 1375 if (!(i % 4)) 1376 pr_err("\n%08x ", cmd_val(s, i)); 1377 else 1378 pr_err("%08x ", cmd_val(s, i)); 1379 } 1380 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1381 vgpu->id, 1382 vgpu_aperture_gmadr_base(vgpu), 1383 vgpu_aperture_gmadr_end(vgpu), 1384 vgpu_hidden_gmadr_base(vgpu), 1385 vgpu_hidden_gmadr_end(vgpu)); 1386 return ret; 1387 } 1388 1389 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1390 { 1391 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1392 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1393 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1394 unsigned long gma, gma_low, gma_high; 1395 int ret = 0; 1396 1397 /* check ppggt */ 1398 if (!(cmd_val(s, 0) & (1 << 22))) 1399 return 0; 1400 1401 gma = cmd_val(s, 2) & GENMASK(31, 2); 1402 1403 if (gmadr_bytes == 8) { 1404 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1405 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1406 gma = (gma_high << 32) | gma_low; 1407 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1408 } 1409 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1410 return ret; 1411 } 1412 1413 static inline int unexpected_cmd(struct parser_exec_state *s) 1414 { 1415 gvt_err("vgpu%d: Unexpected %s in command buffer!\n", 1416 s->vgpu->id, s->info->name); 1417 return -EINVAL; 1418 } 1419 1420 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1421 { 1422 return unexpected_cmd(s); 1423 } 1424 1425 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1426 { 1427 return unexpected_cmd(s); 1428 } 1429 1430 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1431 { 1432 return unexpected_cmd(s); 1433 } 1434 1435 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1436 { 1437 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1438 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1439 sizeof(u32); 1440 unsigned long gma, gma_high; 1441 int ret = 0; 1442 1443 if (!(cmd_val(s, 0) & (1 << 22))) 1444 return ret; 1445 1446 gma = cmd_val(s, 1) & GENMASK(31, 2); 1447 if (gmadr_bytes == 8) { 1448 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1449 gma = (gma_high << 32) | gma; 1450 } 1451 ret = cmd_address_audit(s, gma, op_size, false); 1452 return ret; 1453 } 1454 1455 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1456 { 1457 return unexpected_cmd(s); 1458 } 1459 1460 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1461 { 1462 return unexpected_cmd(s); 1463 } 1464 1465 static int cmd_handler_mi_conditional_batch_buffer_end( 1466 struct parser_exec_state *s) 1467 { 1468 return unexpected_cmd(s); 1469 } 1470 1471 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1472 { 1473 return unexpected_cmd(s); 1474 } 1475 1476 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1477 { 1478 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1479 unsigned long gma; 1480 bool index_mode = false; 1481 int ret = 0; 1482 1483 /* Check post-sync and ppgtt bit */ 1484 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1485 gma = cmd_val(s, 1) & GENMASK(31, 3); 1486 if (gmadr_bytes == 8) 1487 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1488 /* Store Data Index */ 1489 if (cmd_val(s, 0) & (1 << 21)) 1490 index_mode = true; 1491 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1492 } 1493 /* Check notify bit */ 1494 if ((cmd_val(s, 0) & (1 << 8))) 1495 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1496 s->workload->pending_events); 1497 return ret; 1498 } 1499 1500 static void addr_type_update_snb(struct parser_exec_state *s) 1501 { 1502 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1503 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1504 s->buf_addr_type = PPGTT_BUFFER; 1505 } 1506 } 1507 1508 1509 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1510 unsigned long gma, unsigned long end_gma, void *va) 1511 { 1512 unsigned long copy_len, offset; 1513 unsigned long len = 0; 1514 unsigned long gpa; 1515 1516 while (gma != end_gma) { 1517 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1518 if (gpa == INTEL_GVT_INVALID_ADDR) { 1519 gvt_err("invalid gma address: %lx\n", gma); 1520 return -EFAULT; 1521 } 1522 1523 offset = gma & (GTT_PAGE_SIZE - 1); 1524 1525 copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ? 1526 GTT_PAGE_SIZE - offset : end_gma - gma; 1527 1528 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1529 1530 len += copy_len; 1531 gma += copy_len; 1532 } 1533 return 0; 1534 } 1535 1536 1537 /* 1538 * Check whether a batch buffer needs to be scanned. Currently 1539 * the only criteria is based on privilege. 1540 */ 1541 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1542 { 1543 struct intel_gvt *gvt = s->vgpu->gvt; 1544 1545 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) { 1546 /* BDW decides privilege based on address space */ 1547 if (cmd_val(s, 0) & (1 << 8)) 1548 return 0; 1549 } 1550 return 1; 1551 } 1552 1553 static uint32_t find_bb_size(struct parser_exec_state *s) 1554 { 1555 unsigned long gma = 0; 1556 struct cmd_info *info; 1557 uint32_t bb_size = 0; 1558 uint32_t cmd_len = 0; 1559 bool met_bb_end = false; 1560 u32 cmd; 1561 1562 /* get the start gm address of the batch buffer */ 1563 gma = get_gma_bb_from_cmd(s, 1); 1564 cmd = cmd_val(s, 0); 1565 1566 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1567 if (info == NULL) { 1568 gvt_err("unknown cmd 0x%x, opcode=0x%x\n", 1569 cmd, get_opcode(cmd, s->ring_id)); 1570 return -EINVAL; 1571 } 1572 do { 1573 copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1574 gma, gma + 4, &cmd); 1575 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1576 if (info == NULL) { 1577 gvt_err("unknown cmd 0x%x, opcode=0x%x\n", 1578 cmd, get_opcode(cmd, s->ring_id)); 1579 return -EINVAL; 1580 } 1581 1582 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1583 met_bb_end = true; 1584 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1585 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) { 1586 /* chained batch buffer */ 1587 met_bb_end = true; 1588 } 1589 } 1590 cmd_len = get_cmd_length(info, cmd) << 2; 1591 bb_size += cmd_len; 1592 gma += cmd_len; 1593 1594 } while (!met_bb_end); 1595 1596 return bb_size; 1597 } 1598 1599 static int perform_bb_shadow(struct parser_exec_state *s) 1600 { 1601 struct intel_shadow_bb_entry *entry_obj; 1602 unsigned long gma = 0; 1603 uint32_t bb_size; 1604 void *dst = NULL; 1605 int ret = 0; 1606 1607 /* get the start gm address of the batch buffer */ 1608 gma = get_gma_bb_from_cmd(s, 1); 1609 1610 /* get the size of the batch buffer */ 1611 bb_size = find_bb_size(s); 1612 1613 /* allocate shadow batch buffer */ 1614 entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL); 1615 if (entry_obj == NULL) 1616 return -ENOMEM; 1617 1618 entry_obj->obj = 1619 i915_gem_object_create(s->vgpu->gvt->dev_priv, 1620 roundup(bb_size, PAGE_SIZE)); 1621 if (IS_ERR(entry_obj->obj)) { 1622 ret = PTR_ERR(entry_obj->obj); 1623 goto free_entry; 1624 } 1625 entry_obj->len = bb_size; 1626 INIT_LIST_HEAD(&entry_obj->list); 1627 1628 dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB); 1629 if (IS_ERR(dst)) { 1630 ret = PTR_ERR(dst); 1631 goto put_obj; 1632 } 1633 1634 ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false); 1635 if (ret) { 1636 gvt_err("failed to set shadow batch to CPU\n"); 1637 goto unmap_src; 1638 } 1639 1640 entry_obj->va = dst; 1641 entry_obj->bb_start_cmd_va = s->ip_va; 1642 1643 /* copy batch buffer to shadow batch buffer*/ 1644 ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm, 1645 gma, gma + bb_size, 1646 dst); 1647 if (ret) { 1648 gvt_err("fail to copy guest ring buffer\n"); 1649 goto unmap_src; 1650 } 1651 1652 list_add(&entry_obj->list, &s->workload->shadow_bb); 1653 /* 1654 * ip_va saves the virtual address of the shadow batch buffer, while 1655 * ip_gma saves the graphics address of the original batch buffer. 1656 * As the shadow batch buffer is just a copy from the originial one, 1657 * it should be right to use shadow batch buffer'va and original batch 1658 * buffer's gma in pair. After all, we don't want to pin the shadow 1659 * buffer here (too early). 1660 */ 1661 s->ip_va = dst; 1662 s->ip_gma = gma; 1663 1664 return 0; 1665 1666 unmap_src: 1667 i915_gem_object_unpin_map(entry_obj->obj); 1668 put_obj: 1669 i915_gem_object_put(entry_obj->obj); 1670 free_entry: 1671 kfree(entry_obj); 1672 return ret; 1673 } 1674 1675 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1676 { 1677 bool second_level; 1678 int ret = 0; 1679 1680 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1681 gvt_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1682 return -EINVAL; 1683 } 1684 1685 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1686 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1687 gvt_err("Jumping to 2nd level BB from RB is not allowed\n"); 1688 return -EINVAL; 1689 } 1690 1691 s->saved_buf_addr_type = s->buf_addr_type; 1692 addr_type_update_snb(s); 1693 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1694 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1695 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1696 } else if (second_level) { 1697 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1698 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1699 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1700 } 1701 1702 if (batch_buffer_needs_scan(s)) { 1703 ret = perform_bb_shadow(s); 1704 if (ret < 0) 1705 gvt_err("invalid shadow batch buffer\n"); 1706 } else { 1707 /* emulate a batch buffer end to do return right */ 1708 ret = cmd_handler_mi_batch_buffer_end(s); 1709 if (ret < 0) 1710 return ret; 1711 } 1712 1713 return ret; 1714 } 1715 1716 static struct cmd_info cmd_info[] = { 1717 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1718 1719 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1720 0, 1, NULL}, 1721 1722 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1723 0, 1, cmd_handler_mi_user_interrupt}, 1724 1725 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1726 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1727 1728 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1729 1730 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1731 NULL}, 1732 1733 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1734 NULL}, 1735 1736 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1737 NULL}, 1738 1739 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1740 NULL}, 1741 1742 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1743 D_ALL, 0, 1, NULL}, 1744 1745 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1746 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1747 cmd_handler_mi_batch_buffer_end}, 1748 1749 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1750 0, 1, NULL}, 1751 1752 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1753 NULL}, 1754 1755 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1756 D_ALL, 0, 1, NULL}, 1757 1758 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1759 NULL}, 1760 1761 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1762 NULL}, 1763 1764 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1765 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1766 1767 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1768 0, 8, NULL}, 1769 1770 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1771 1772 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1773 1774 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1775 D_BDW_PLUS, 0, 8, NULL}, 1776 1777 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1778 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1779 1780 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1781 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1782 1783 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1784 0, 8, cmd_handler_mi_store_data_index}, 1785 1786 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1787 D_ALL, 0, 8, cmd_handler_lri}, 1788 1789 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1790 cmd_handler_mi_update_gtt}, 1791 1792 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1793 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1794 1795 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1796 cmd_handler_mi_flush_dw}, 1797 1798 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1799 10, cmd_handler_mi_clflush}, 1800 1801 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1802 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1803 1804 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1805 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1806 1807 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1808 D_ALL, 0, 8, cmd_handler_lrr}, 1809 1810 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1811 D_ALL, 0, 8, NULL}, 1812 1813 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1814 ADDR_FIX_1(2), 8, NULL}, 1815 1816 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1817 ADDR_FIX_1(2), 8, NULL}, 1818 1819 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1820 8, cmd_handler_mi_op_2e}, 1821 1822 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1823 8, cmd_handler_mi_op_2f}, 1824 1825 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1826 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1827 cmd_handler_mi_batch_buffer_start}, 1828 1829 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1830 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1831 cmd_handler_mi_conditional_batch_buffer_end}, 1832 1833 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1834 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1835 1836 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1837 ADDR_FIX_2(4, 7), 8, NULL}, 1838 1839 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1840 0, 8, NULL}, 1841 1842 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1843 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1844 1845 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1846 1847 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1848 0, 8, NULL}, 1849 1850 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1851 ADDR_FIX_1(3), 8, NULL}, 1852 1853 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1854 D_ALL, 0, 8, NULL}, 1855 1856 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1857 ADDR_FIX_1(4), 8, NULL}, 1858 1859 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1860 ADDR_FIX_2(4, 5), 8, NULL}, 1861 1862 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1863 ADDR_FIX_1(4), 8, NULL}, 1864 1865 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1866 ADDR_FIX_2(4, 7), 8, NULL}, 1867 1868 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1869 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1870 1871 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1872 1873 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 1874 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 1875 1876 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 1877 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1878 1879 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 1880 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 1881 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1882 1883 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 1884 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1885 1886 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 1887 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1888 1889 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 1890 D_ALL, ADDR_FIX_1(4), 8, NULL}, 1891 1892 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 1893 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1894 1895 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 1896 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 1897 1898 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 1899 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 1900 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1901 1902 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 1903 ADDR_FIX_2(4, 5), 8, NULL}, 1904 1905 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 1906 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1907 1908 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 1909 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 1910 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1911 1912 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 1913 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 1914 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1915 1916 {"3DSTATE_BLEND_STATE_POINTERS", 1917 OP_3DSTATE_BLEND_STATE_POINTERS, 1918 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1919 1920 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 1921 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 1922 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1923 1924 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 1925 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 1926 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1927 1928 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 1929 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 1930 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1931 1932 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 1933 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 1934 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1935 1936 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 1937 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 1938 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1939 1940 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 1941 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 1942 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1943 1944 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 1945 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 1946 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1947 1948 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 1949 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 1950 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1951 1952 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 1953 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 1954 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1955 1956 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 1957 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 1958 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1959 1960 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 1961 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 1962 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1963 1964 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 1965 0, 8, NULL}, 1966 1967 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 1968 0, 8, NULL}, 1969 1970 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 1971 0, 8, NULL}, 1972 1973 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 1974 0, 8, NULL}, 1975 1976 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 1977 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1978 1979 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 1980 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1981 1982 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 1983 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1984 1985 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 1986 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1987 1988 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 1989 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1990 1991 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 1992 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 1993 1994 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 1995 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 1996 1997 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 1998 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1999 2000 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2001 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2002 2003 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2004 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2005 2006 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2007 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2008 2009 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2010 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2011 2012 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2013 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2014 2015 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2016 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2017 2018 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2019 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2020 2021 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2022 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2023 2024 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2025 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2026 2027 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2028 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2029 2030 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2031 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2032 2033 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2034 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2035 2036 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2037 D_BDW_PLUS, 0, 8, NULL}, 2038 2039 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2040 NULL}, 2041 2042 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2043 D_BDW_PLUS, 0, 8, NULL}, 2044 2045 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2046 D_BDW_PLUS, 0, 8, NULL}, 2047 2048 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2049 8, NULL}, 2050 2051 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2052 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2053 2054 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2055 8, NULL}, 2056 2057 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2058 NULL}, 2059 2060 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2061 NULL}, 2062 2063 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2064 NULL}, 2065 2066 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2067 D_BDW_PLUS, 0, 8, NULL}, 2068 2069 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2070 R_RCS, D_ALL, 0, 8, NULL}, 2071 2072 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2073 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2074 2075 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2076 R_RCS, D_ALL, 0, 1, NULL}, 2077 2078 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2079 2080 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2081 R_RCS, D_ALL, 0, 8, NULL}, 2082 2083 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2084 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2085 2086 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2087 2088 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2089 2090 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2091 2092 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2093 D_BDW_PLUS, 0, 8, NULL}, 2094 2095 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2096 D_BDW_PLUS, 0, 8, NULL}, 2097 2098 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2099 D_ALL, 0, 8, NULL}, 2100 2101 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2102 D_BDW_PLUS, 0, 8, NULL}, 2103 2104 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2105 D_BDW_PLUS, 0, 8, NULL}, 2106 2107 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2108 2109 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2110 2111 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2112 2113 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2114 D_ALL, 0, 8, NULL}, 2115 2116 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2117 2118 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2119 2120 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2121 R_RCS, D_ALL, 0, 8, NULL}, 2122 2123 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2124 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2125 2126 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2127 0, 8, NULL}, 2128 2129 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2130 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2131 2132 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2133 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2134 2135 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2136 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2137 2138 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2139 D_ALL, 0, 8, NULL}, 2140 2141 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2142 D_ALL, 0, 8, NULL}, 2143 2144 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2145 D_ALL, 0, 8, NULL}, 2146 2147 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2148 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2149 2150 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2151 D_BDW_PLUS, 0, 8, NULL}, 2152 2153 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2154 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2155 2156 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2157 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2158 2159 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2160 R_RCS, D_ALL, 0, 8, NULL}, 2161 2162 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2163 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2164 2165 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2166 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2167 2168 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2169 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2170 2171 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2172 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2173 2174 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2175 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2176 2177 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2178 R_RCS, D_ALL, 0, 8, NULL}, 2179 2180 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2181 D_ALL, 0, 9, NULL}, 2182 2183 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2184 ADDR_FIX_2(2, 4), 8, NULL}, 2185 2186 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2187 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2188 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2189 2190 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2191 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2192 2193 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2194 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2195 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2196 2197 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2198 D_BDW_PLUS, 0, 8, NULL}, 2199 2200 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2201 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2202 2203 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2204 2205 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2206 1, NULL}, 2207 2208 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2209 ADDR_FIX_1(1), 8, NULL}, 2210 2211 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2212 2213 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2214 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2215 2216 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2217 ADDR_FIX_1(1), 8, NULL}, 2218 2219 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2220 2221 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2222 2223 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2224 0, 8, NULL}, 2225 2226 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2227 D_SKL_PLUS, 0, 8, NULL}, 2228 2229 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2230 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2231 2232 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2233 0, 16, NULL}, 2234 2235 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2236 0, 16, NULL}, 2237 2238 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2239 2240 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2241 0, 16, NULL}, 2242 2243 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2244 0, 16, NULL}, 2245 2246 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2247 0, 16, NULL}, 2248 2249 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2250 0, 8, NULL}, 2251 2252 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2253 NULL}, 2254 2255 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2256 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2257 2258 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2259 R_VCS, D_ALL, 0, 12, NULL}, 2260 2261 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2262 R_VCS, D_ALL, 0, 12, NULL}, 2263 2264 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2265 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2266 2267 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2268 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2269 2270 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2271 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2272 2273 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2274 2275 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2276 R_VCS, D_ALL, 0, 12, NULL}, 2277 2278 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2279 R_VCS, D_ALL, 0, 12, NULL}, 2280 2281 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2282 R_VCS, D_ALL, 0, 12, NULL}, 2283 2284 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2285 R_VCS, D_ALL, 0, 12, NULL}, 2286 2287 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2288 R_VCS, D_ALL, 0, 12, NULL}, 2289 2290 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2291 R_VCS, D_ALL, 0, 12, NULL}, 2292 2293 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2294 R_VCS, D_ALL, 0, 6, NULL}, 2295 2296 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2297 R_VCS, D_ALL, 0, 12, NULL}, 2298 2299 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2300 R_VCS, D_ALL, 0, 12, NULL}, 2301 2302 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2303 R_VCS, D_ALL, 0, 12, NULL}, 2304 2305 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2306 R_VCS, D_ALL, 0, 12, NULL}, 2307 2308 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2309 R_VCS, D_ALL, 0, 12, NULL}, 2310 2311 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2312 R_VCS, D_ALL, 0, 12, NULL}, 2313 2314 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2315 R_VCS, D_ALL, 0, 12, NULL}, 2316 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2317 R_VCS, D_ALL, 0, 12, NULL}, 2318 2319 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2320 R_VCS, D_ALL, 0, 12, NULL}, 2321 2322 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2323 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2324 2325 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2326 R_VCS, D_ALL, 0, 12, NULL}, 2327 2328 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2329 R_VCS, D_ALL, 0, 12, NULL}, 2330 2331 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2332 R_VCS, D_ALL, 0, 12, NULL}, 2333 2334 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2335 R_VCS, D_ALL, 0, 12, NULL}, 2336 2337 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2338 R_VCS, D_ALL, 0, 12, NULL}, 2339 2340 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2341 R_VCS, D_ALL, 0, 12, NULL}, 2342 2343 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2344 R_VCS, D_ALL, 0, 12, NULL}, 2345 2346 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2347 R_VCS, D_ALL, 0, 12, NULL}, 2348 2349 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2350 R_VCS, D_ALL, 0, 12, NULL}, 2351 2352 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2353 R_VCS, D_ALL, 0, 12, NULL}, 2354 2355 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2356 R_VCS, D_ALL, 0, 12, NULL}, 2357 2358 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2359 0, 16, NULL}, 2360 2361 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2362 2363 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2364 2365 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2366 R_VCS, D_ALL, 0, 12, NULL}, 2367 2368 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2369 R_VCS, D_ALL, 0, 12, NULL}, 2370 2371 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2372 R_VCS, D_ALL, 0, 12, NULL}, 2373 2374 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2375 2376 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2377 0, 12, NULL}, 2378 2379 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2380 0, 20, NULL}, 2381 }; 2382 2383 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2384 { 2385 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2386 } 2387 2388 #define GVT_MAX_CMD_LENGTH 20 /* In Dword */ 2389 2390 static void trace_cs_command(struct parser_exec_state *s, 2391 cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler) 2392 { 2393 /* This buffer is used by ftrace to store all commands copied from 2394 * guest gma space. Sometimes commands can cross pages, this should 2395 * not be handled in ftrace logic. So this is just used as a 2396 * 'bounce buffer' 2397 */ 2398 u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH]; 2399 int i; 2400 u32 cmd_len = cmd_length(s); 2401 /* The chosen value of GVT_MAX_CMD_LENGTH are just based on 2402 * following two considerations: 2403 * 1) From observation, most common ring commands is not that long. 2404 * But there are execeptions. So it indeed makes sence to observe 2405 * longer commands. 2406 * 2) From the performance and debugging point of view, dumping all 2407 * contents of very commands is not necessary. 2408 * We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in 2409 * future for performance considerations. 2410 */ 2411 if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) { 2412 gvt_dbg_cmd("cmd length exceed tracing limitation!\n"); 2413 cmd_len = GVT_MAX_CMD_LENGTH; 2414 } 2415 2416 for (i = 0; i < cmd_len; i++) 2417 cmd_trace_buf[i] = cmd_val(s, i); 2418 2419 trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf, 2420 cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION, 2421 cost_pre_cmd_handler, cost_cmd_handler); 2422 } 2423 2424 /* call the cmd handler, and advance ip */ 2425 static int cmd_parser_exec(struct parser_exec_state *s) 2426 { 2427 struct cmd_info *info; 2428 u32 cmd; 2429 int ret = 0; 2430 cycles_t t0, t1, t2; 2431 struct parser_exec_state s_before_advance_custom; 2432 2433 t0 = get_cycles(); 2434 2435 cmd = cmd_val(s, 0); 2436 2437 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2438 if (info == NULL) { 2439 gvt_err("unknown cmd 0x%x, opcode=0x%x\n", 2440 cmd, get_opcode(cmd, s->ring_id)); 2441 return -EINVAL; 2442 } 2443 2444 gvt_dbg_cmd("%s\n", info->name); 2445 2446 s->info = info; 2447 2448 t1 = get_cycles(); 2449 2450 memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state)); 2451 2452 if (info->handler) { 2453 ret = info->handler(s); 2454 if (ret < 0) { 2455 gvt_err("%s handler error\n", info->name); 2456 return ret; 2457 } 2458 } 2459 t2 = get_cycles(); 2460 2461 trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1); 2462 2463 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2464 ret = cmd_advance_default(s); 2465 if (ret) { 2466 gvt_err("%s IP advance error\n", info->name); 2467 return ret; 2468 } 2469 } 2470 return 0; 2471 } 2472 2473 static inline bool gma_out_of_range(unsigned long gma, 2474 unsigned long gma_head, unsigned int gma_tail) 2475 { 2476 if (gma_tail >= gma_head) 2477 return (gma < gma_head) || (gma > gma_tail); 2478 else 2479 return (gma > gma_tail) && (gma < gma_head); 2480 } 2481 2482 static int command_scan(struct parser_exec_state *s, 2483 unsigned long rb_head, unsigned long rb_tail, 2484 unsigned long rb_start, unsigned long rb_len) 2485 { 2486 2487 unsigned long gma_head, gma_tail, gma_bottom; 2488 int ret = 0; 2489 2490 gma_head = rb_start + rb_head; 2491 gma_tail = rb_start + rb_tail; 2492 gma_bottom = rb_start + rb_len; 2493 2494 gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail); 2495 2496 while (s->ip_gma != gma_tail) { 2497 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2498 if (!(s->ip_gma >= rb_start) || 2499 !(s->ip_gma < gma_bottom)) { 2500 gvt_err("ip_gma %lx out of ring scope." 2501 "(base:0x%lx, bottom: 0x%lx)\n", 2502 s->ip_gma, rb_start, 2503 gma_bottom); 2504 parser_exec_state_dump(s); 2505 return -EINVAL; 2506 } 2507 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2508 gvt_err("ip_gma %lx out of range." 2509 "base 0x%lx head 0x%lx tail 0x%lx\n", 2510 s->ip_gma, rb_start, 2511 rb_head, rb_tail); 2512 parser_exec_state_dump(s); 2513 break; 2514 } 2515 } 2516 ret = cmd_parser_exec(s); 2517 if (ret) { 2518 gvt_err("cmd parser error\n"); 2519 parser_exec_state_dump(s); 2520 break; 2521 } 2522 } 2523 2524 gvt_dbg_cmd("scan_end\n"); 2525 2526 return ret; 2527 } 2528 2529 static int scan_workload(struct intel_vgpu_workload *workload) 2530 { 2531 unsigned long gma_head, gma_tail, gma_bottom; 2532 struct parser_exec_state s; 2533 int ret = 0; 2534 2535 /* ring base is page aligned */ 2536 if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE))) 2537 return -EINVAL; 2538 2539 gma_head = workload->rb_start + workload->rb_head; 2540 gma_tail = workload->rb_start + workload->rb_tail; 2541 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2542 2543 s.buf_type = RING_BUFFER_INSTRUCTION; 2544 s.buf_addr_type = GTT_BUFFER; 2545 s.vgpu = workload->vgpu; 2546 s.ring_id = workload->ring_id; 2547 s.ring_start = workload->rb_start; 2548 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2549 s.ring_head = gma_head; 2550 s.ring_tail = gma_tail; 2551 s.rb_va = workload->shadow_ring_buffer_va; 2552 s.workload = workload; 2553 2554 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2555 gma_head == gma_tail) 2556 return 0; 2557 2558 ret = ip_gma_set(&s, gma_head); 2559 if (ret) 2560 goto out; 2561 2562 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2563 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2564 2565 out: 2566 return ret; 2567 } 2568 2569 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2570 { 2571 2572 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2573 struct parser_exec_state s; 2574 int ret = 0; 2575 2576 /* ring base is page aligned */ 2577 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE))) 2578 return -EINVAL; 2579 2580 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2581 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2582 PAGE_SIZE); 2583 gma_head = wa_ctx->indirect_ctx.guest_gma; 2584 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2585 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2586 2587 s.buf_type = RING_BUFFER_INSTRUCTION; 2588 s.buf_addr_type = GTT_BUFFER; 2589 s.vgpu = wa_ctx->workload->vgpu; 2590 s.ring_id = wa_ctx->workload->ring_id; 2591 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2592 s.ring_size = ring_size; 2593 s.ring_head = gma_head; 2594 s.ring_tail = gma_tail; 2595 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2596 s.workload = wa_ctx->workload; 2597 2598 ret = ip_gma_set(&s, gma_head); 2599 if (ret) 2600 goto out; 2601 2602 ret = command_scan(&s, 0, ring_tail, 2603 wa_ctx->indirect_ctx.guest_gma, ring_size); 2604 out: 2605 return ret; 2606 } 2607 2608 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2609 { 2610 struct intel_vgpu *vgpu = workload->vgpu; 2611 int ring_id = workload->ring_id; 2612 struct i915_gem_context *shadow_ctx = vgpu->shadow_ctx; 2613 struct intel_ring *ring = shadow_ctx->engine[ring_id].ring; 2614 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2615 unsigned int copy_len = 0; 2616 int ret; 2617 2618 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2619 2620 /* calculate workload ring buffer size */ 2621 workload->rb_len = (workload->rb_tail + guest_rb_size - 2622 workload->rb_head) % guest_rb_size; 2623 2624 gma_head = workload->rb_start + workload->rb_head; 2625 gma_tail = workload->rb_start + workload->rb_tail; 2626 gma_top = workload->rb_start + guest_rb_size; 2627 2628 /* allocate shadow ring buffer */ 2629 ret = intel_ring_begin(workload->req, workload->rb_len / 4); 2630 if (ret) 2631 return ret; 2632 2633 /* get shadow ring buffer va */ 2634 workload->shadow_ring_buffer_va = ring->vaddr + ring->tail; 2635 2636 /* head > tail --> copy head <-> top */ 2637 if (gma_head > gma_tail) { 2638 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2639 gma_head, gma_top, 2640 workload->shadow_ring_buffer_va); 2641 if (ret) { 2642 gvt_err("fail to copy guest ring buffer\n"); 2643 return ret; 2644 } 2645 copy_len = gma_top - gma_head; 2646 gma_head = workload->rb_start; 2647 } 2648 2649 /* copy head or start <-> tail */ 2650 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2651 gma_head, gma_tail, 2652 workload->shadow_ring_buffer_va + copy_len); 2653 if (ret) { 2654 gvt_err("fail to copy guest ring buffer\n"); 2655 return ret; 2656 } 2657 ring->tail += workload->rb_len; 2658 intel_ring_advance(ring); 2659 return 0; 2660 } 2661 2662 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 2663 { 2664 int ret; 2665 2666 ret = shadow_workload_ring_buffer(workload); 2667 if (ret) { 2668 gvt_err("fail to shadow workload ring_buffer\n"); 2669 return ret; 2670 } 2671 2672 ret = scan_workload(workload); 2673 if (ret) { 2674 gvt_err("scan workload error\n"); 2675 return ret; 2676 } 2677 return 0; 2678 } 2679 2680 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2681 { 2682 int ctx_size = wa_ctx->indirect_ctx.size; 2683 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2684 struct drm_i915_gem_object *obj; 2685 int ret = 0; 2686 void *map; 2687 2688 obj = i915_gem_object_create(wa_ctx->workload->vgpu->gvt->dev_priv, 2689 roundup(ctx_size + CACHELINE_BYTES, 2690 PAGE_SIZE)); 2691 if (IS_ERR(obj)) 2692 return PTR_ERR(obj); 2693 2694 /* get the va of the shadow batch buffer */ 2695 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2696 if (IS_ERR(map)) { 2697 gvt_err("failed to vmap shadow indirect ctx\n"); 2698 ret = PTR_ERR(map); 2699 goto put_obj; 2700 } 2701 2702 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2703 if (ret) { 2704 gvt_err("failed to set shadow indirect ctx to CPU\n"); 2705 goto unmap_src; 2706 } 2707 2708 ret = copy_gma_to_hva(wa_ctx->workload->vgpu, 2709 wa_ctx->workload->vgpu->gtt.ggtt_mm, 2710 guest_gma, guest_gma + ctx_size, 2711 map); 2712 if (ret) { 2713 gvt_err("fail to copy guest indirect ctx\n"); 2714 goto unmap_src; 2715 } 2716 2717 wa_ctx->indirect_ctx.obj = obj; 2718 wa_ctx->indirect_ctx.shadow_va = map; 2719 return 0; 2720 2721 unmap_src: 2722 i915_gem_object_unpin_map(obj); 2723 put_obj: 2724 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 2725 return ret; 2726 } 2727 2728 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2729 { 2730 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2731 unsigned char *bb_start_sva; 2732 2733 per_ctx_start[0] = 0x18800001; 2734 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2735 2736 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2737 wa_ctx->indirect_ctx.size; 2738 2739 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2740 2741 return 0; 2742 } 2743 2744 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2745 { 2746 int ret; 2747 2748 if (wa_ctx->indirect_ctx.size == 0) 2749 return 0; 2750 2751 ret = shadow_indirect_ctx(wa_ctx); 2752 if (ret) { 2753 gvt_err("fail to shadow indirect ctx\n"); 2754 return ret; 2755 } 2756 2757 combine_wa_ctx(wa_ctx); 2758 2759 ret = scan_wa_ctx(wa_ctx); 2760 if (ret) { 2761 gvt_err("scan wa ctx error\n"); 2762 return ret; 2763 } 2764 2765 return 0; 2766 } 2767 2768 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2769 unsigned int opcode, int rings) 2770 { 2771 struct cmd_info *info = NULL; 2772 unsigned int ring; 2773 2774 for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) { 2775 info = find_cmd_entry(gvt, opcode, ring); 2776 if (info) 2777 break; 2778 } 2779 return info; 2780 } 2781 2782 static int init_cmd_table(struct intel_gvt *gvt) 2783 { 2784 int i; 2785 struct cmd_entry *e; 2786 struct cmd_info *info; 2787 unsigned int gen_type; 2788 2789 gen_type = intel_gvt_get_device_type(gvt); 2790 2791 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2792 if (!(cmd_info[i].devices & gen_type)) 2793 continue; 2794 2795 e = kzalloc(sizeof(*e), GFP_KERNEL); 2796 if (!e) 2797 return -ENOMEM; 2798 2799 e->info = &cmd_info[i]; 2800 info = find_cmd_entry_any_ring(gvt, 2801 e->info->opcode, e->info->rings); 2802 if (info) { 2803 gvt_err("%s %s duplicated\n", e->info->name, 2804 info->name); 2805 return -EEXIST; 2806 } 2807 2808 INIT_HLIST_NODE(&e->hlist); 2809 add_cmd_entry(gvt, e); 2810 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2811 e->info->name, e->info->opcode, e->info->flag, 2812 e->info->devices, e->info->rings); 2813 } 2814 return 0; 2815 } 2816 2817 static void clean_cmd_table(struct intel_gvt *gvt) 2818 { 2819 struct hlist_node *tmp; 2820 struct cmd_entry *e; 2821 int i; 2822 2823 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2824 kfree(e); 2825 2826 hash_init(gvt->cmd_table); 2827 } 2828 2829 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2830 { 2831 clean_cmd_table(gvt); 2832 } 2833 2834 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2835 { 2836 int ret; 2837 2838 ret = init_cmd_table(gvt); 2839 if (ret) { 2840 intel_gvt_clean_cmd_parser(gvt); 2841 return ret; 2842 } 2843 return 0; 2844 } 2845