xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 31e67366)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_gt_requests.h"
44 #include "gt/shmem_utils.h"
45 #include "gvt.h"
46 #include "i915_pvinfo.h"
47 #include "trace.h"
48 
49 #include "gem/i915_gem_context.h"
50 #include "gem/i915_gem_pm.h"
51 #include "gt/intel_context.h"
52 
53 #define INVALID_OP    (~0U)
54 
55 #define OP_LEN_MI           9
56 #define OP_LEN_2D           10
57 #define OP_LEN_3D_MEDIA     16
58 #define OP_LEN_MFX_VC       16
59 #define OP_LEN_VEBOX	    16
60 
61 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
62 
63 struct sub_op_bits {
64 	int hi;
65 	int low;
66 };
67 struct decode_info {
68 	const char *name;
69 	int op_len;
70 	int nr_sub_op;
71 	const struct sub_op_bits *sub_op;
72 };
73 
74 #define   MAX_CMD_BUDGET			0x7fffffff
75 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
76 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
77 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
78 
79 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
80 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
81 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
82 
83 /* Render Command Map */
84 
85 /* MI_* command Opcode (28:23) */
86 #define OP_MI_NOOP                          0x0
87 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
88 #define OP_MI_USER_INTERRUPT                0x2
89 #define OP_MI_WAIT_FOR_EVENT                0x3
90 #define OP_MI_FLUSH                         0x4
91 #define OP_MI_ARB_CHECK                     0x5
92 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
93 #define OP_MI_REPORT_HEAD                   0x7
94 #define OP_MI_ARB_ON_OFF                    0x8
95 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
96 #define OP_MI_BATCH_BUFFER_END              0xA
97 #define OP_MI_SUSPEND_FLUSH                 0xB
98 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
99 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
100 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
101 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
102 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
103 #define OP_MI_DISPLAY_FLIP                  0x14
104 #define OP_MI_SEMAPHORE_MBOX                0x16
105 #define OP_MI_SET_CONTEXT                   0x18
106 #define OP_MI_MATH                          0x1A
107 #define OP_MI_URB_CLEAR                     0x19
108 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
109 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
110 
111 #define OP_MI_STORE_DATA_IMM                0x20
112 #define OP_MI_STORE_DATA_INDEX              0x21
113 #define OP_MI_LOAD_REGISTER_IMM             0x22
114 #define OP_MI_UPDATE_GTT                    0x23
115 #define OP_MI_STORE_REGISTER_MEM            0x24
116 #define OP_MI_FLUSH_DW                      0x26
117 #define OP_MI_CLFLUSH                       0x27
118 #define OP_MI_REPORT_PERF_COUNT             0x28
119 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
120 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
121 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
122 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
123 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
124 #define OP_MI_2E			    0x2E  /* BDW+ */
125 #define OP_MI_2F			    0x2F  /* BDW+ */
126 #define OP_MI_BATCH_BUFFER_START            0x31
127 
128 /* Bit definition for dword 0 */
129 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
130 
131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
132 
133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
135 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
137 
138 /* 2D command: Opcode (28:22) */
139 #define OP_2D(x)    ((2<<7) | x)
140 
141 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
142 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
144 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
145 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
146 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
147 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
148 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
149 #define OP_XY_PAT_BLT                               OP_2D(0x51)
150 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
151 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
152 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
153 #define OP_XY_FULL_BLT                              OP_2D(0x55)
154 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
155 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
157 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
159 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
160 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
163 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
165 
166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
168 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
169 
170 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
171 
172 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
173 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
174 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
175 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
176 
177 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
178 
179 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
180 
181 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
182 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
184 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
185 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
186 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
187 
188 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
189 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
190 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
191 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
192 
193 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
194 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
195 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
196 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
197 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
198 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
199 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
200 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
201 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
202 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
204 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
205 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
206 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
207 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
208 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
209 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
210 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
211 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
212 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
213 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
214 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
215 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
216 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
217 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
218 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
219 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
220 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
223 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
235 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
236 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
237 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
238 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
240 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
259 
260 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
261 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
262 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
263 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
264 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
265 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
266 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
267 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
268 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
269 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
270 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
271 
272 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
274 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
275 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
278 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
279 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
280 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
282 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
283 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
285 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
286 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
292 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
293 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
295 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
297 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
298 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
299 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
300 
301 /* VCCP Command Parser */
302 
303 /*
304  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
305  * git://anongit.freedesktop.org/vaapi/intel-driver
306  * src/i965_defines.h
307  *
308  */
309 
310 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
311 	(3 << 13 | \
312 	 (pipeline) << 11 | \
313 	 (op) << 8 | \
314 	 (sub_opa) << 5 | \
315 	 (sub_opb))
316 
317 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
318 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
319 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
322 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
323 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
324 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
325 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
326 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
327 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
328 
329 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
330 
331 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
332 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
333 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
334 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
335 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
336 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
338 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
339 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
340 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
341 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
342 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
343 
344 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
345 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
346 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
347 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
348 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
349 
350 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
351 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
352 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
353 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
354 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
355 
356 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
357 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
358 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
359 
360 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
361 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
362 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
363 
364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
365 	(3 << 13 | \
366 	 (pipeline) << 11 | \
367 	 (op) << 8 | \
368 	 (sub_opa) << 5 | \
369 	 (sub_opb))
370 
371 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
372 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
373 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
374 
375 struct parser_exec_state;
376 
377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
378 
379 #define GVT_CMD_HASH_BITS   7
380 
381 /* which DWords need address fix */
382 #define ADDR_FIX_1(x1)			(1 << (x1))
383 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
384 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
385 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
386 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
387 
388 #define DWORD_FIELD(dword, end, start) \
389 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
390 
391 #define OP_LENGTH_BIAS 2
392 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
393 
394 static int gvt_check_valid_cmd_length(int len, int valid_len)
395 {
396 	if (valid_len != len) {
397 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
398 			len, valid_len);
399 		return -EFAULT;
400 	}
401 	return 0;
402 }
403 
404 struct cmd_info {
405 	const char *name;
406 	u32 opcode;
407 
408 #define F_LEN_MASK	3U
409 #define F_LEN_CONST  1U
410 #define F_LEN_VAR    0U
411 /* value is const although LEN maybe variable */
412 #define F_LEN_VAR_FIXED    (1<<1)
413 
414 /*
415  * command has its own ip advance logic
416  * e.g. MI_BATCH_START, MI_BATCH_END
417  */
418 #define F_IP_ADVANCE_CUSTOM (1<<2)
419 	u32 flag;
420 
421 #define R_RCS	BIT(RCS0)
422 #define R_VCS1  BIT(VCS0)
423 #define R_VCS2  BIT(VCS1)
424 #define R_VCS	(R_VCS1 | R_VCS2)
425 #define R_BCS	BIT(BCS0)
426 #define R_VECS	BIT(VECS0)
427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
428 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
429 	u16 rings;
430 
431 	/* devices that support this cmd: SNB/IVB/HSW/... */
432 	u16 devices;
433 
434 	/* which DWords are address that need fix up.
435 	 * bit 0 means a 32-bit non address operand in command
436 	 * bit 1 means address operand, which could be 32-bit
437 	 * or 64-bit depending on different architectures.(
438 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
439 	 * No matter the address length, each address only takes
440 	 * one bit in the bitmap.
441 	 */
442 	u16 addr_bitmap;
443 
444 	/* flag == F_LEN_CONST : command length
445 	 * flag == F_LEN_VAR : length bias bits
446 	 * Note: length is in DWord
447 	 */
448 	u32 len;
449 
450 	parser_cmd_handler handler;
451 
452 	/* valid length in DWord */
453 	u32 valid_len;
454 };
455 
456 struct cmd_entry {
457 	struct hlist_node hlist;
458 	const struct cmd_info *info;
459 };
460 
461 enum {
462 	RING_BUFFER_INSTRUCTION,
463 	BATCH_BUFFER_INSTRUCTION,
464 	BATCH_BUFFER_2ND_LEVEL,
465 	RING_BUFFER_CTX,
466 };
467 
468 enum {
469 	GTT_BUFFER,
470 	PPGTT_BUFFER
471 };
472 
473 struct parser_exec_state {
474 	struct intel_vgpu *vgpu;
475 	const struct intel_engine_cs *engine;
476 
477 	int buf_type;
478 
479 	/* batch buffer address type */
480 	int buf_addr_type;
481 
482 	/* graphics memory address of ring buffer start */
483 	unsigned long ring_start;
484 	unsigned long ring_size;
485 	unsigned long ring_head;
486 	unsigned long ring_tail;
487 
488 	/* instruction graphics memory address */
489 	unsigned long ip_gma;
490 
491 	/* mapped va of the instr_gma */
492 	void *ip_va;
493 	void *rb_va;
494 
495 	void *ret_bb_va;
496 	/* next instruction when return from  batch buffer to ring buffer */
497 	unsigned long ret_ip_gma_ring;
498 
499 	/* next instruction when return from 2nd batch buffer to batch buffer */
500 	unsigned long ret_ip_gma_bb;
501 
502 	/* batch buffer address type (GTT or PPGTT)
503 	 * used when ret from 2nd level batch buffer
504 	 */
505 	int saved_buf_addr_type;
506 	bool is_ctx_wa;
507 	bool is_init_ctx;
508 
509 	const struct cmd_info *info;
510 
511 	struct intel_vgpu_workload *workload;
512 };
513 
514 #define gmadr_dw_number(s)	\
515 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
516 
517 static unsigned long bypass_scan_mask = 0;
518 
519 /* ring ALL, type = 0 */
520 static const struct sub_op_bits sub_op_mi[] = {
521 	{31, 29},
522 	{28, 23},
523 };
524 
525 static const struct decode_info decode_info_mi = {
526 	"MI",
527 	OP_LEN_MI,
528 	ARRAY_SIZE(sub_op_mi),
529 	sub_op_mi,
530 };
531 
532 /* ring RCS, command type 2 */
533 static const struct sub_op_bits sub_op_2d[] = {
534 	{31, 29},
535 	{28, 22},
536 };
537 
538 static const struct decode_info decode_info_2d = {
539 	"2D",
540 	OP_LEN_2D,
541 	ARRAY_SIZE(sub_op_2d),
542 	sub_op_2d,
543 };
544 
545 /* ring RCS, command type 3 */
546 static const struct sub_op_bits sub_op_3d_media[] = {
547 	{31, 29},
548 	{28, 27},
549 	{26, 24},
550 	{23, 16},
551 };
552 
553 static const struct decode_info decode_info_3d_media = {
554 	"3D_Media",
555 	OP_LEN_3D_MEDIA,
556 	ARRAY_SIZE(sub_op_3d_media),
557 	sub_op_3d_media,
558 };
559 
560 /* ring VCS, command type 3 */
561 static const struct sub_op_bits sub_op_mfx_vc[] = {
562 	{31, 29},
563 	{28, 27},
564 	{26, 24},
565 	{23, 21},
566 	{20, 16},
567 };
568 
569 static const struct decode_info decode_info_mfx_vc = {
570 	"MFX_VC",
571 	OP_LEN_MFX_VC,
572 	ARRAY_SIZE(sub_op_mfx_vc),
573 	sub_op_mfx_vc,
574 };
575 
576 /* ring VECS, command type 3 */
577 static const struct sub_op_bits sub_op_vebox[] = {
578 	{31, 29},
579 	{28, 27},
580 	{26, 24},
581 	{23, 21},
582 	{20, 16},
583 };
584 
585 static const struct decode_info decode_info_vebox = {
586 	"VEBOX",
587 	OP_LEN_VEBOX,
588 	ARRAY_SIZE(sub_op_vebox),
589 	sub_op_vebox,
590 };
591 
592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
593 	[RCS0] = {
594 		&decode_info_mi,
595 		NULL,
596 		NULL,
597 		&decode_info_3d_media,
598 		NULL,
599 		NULL,
600 		NULL,
601 		NULL,
602 	},
603 
604 	[VCS0] = {
605 		&decode_info_mi,
606 		NULL,
607 		NULL,
608 		&decode_info_mfx_vc,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 
615 	[BCS0] = {
616 		&decode_info_mi,
617 		NULL,
618 		&decode_info_2d,
619 		NULL,
620 		NULL,
621 		NULL,
622 		NULL,
623 		NULL,
624 	},
625 
626 	[VECS0] = {
627 		&decode_info_mi,
628 		NULL,
629 		NULL,
630 		&decode_info_vebox,
631 		NULL,
632 		NULL,
633 		NULL,
634 		NULL,
635 	},
636 
637 	[VCS1] = {
638 		&decode_info_mi,
639 		NULL,
640 		NULL,
641 		&decode_info_mfx_vc,
642 		NULL,
643 		NULL,
644 		NULL,
645 		NULL,
646 	},
647 };
648 
649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
650 {
651 	const struct decode_info *d_info;
652 
653 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
654 	if (d_info == NULL)
655 		return INVALID_OP;
656 
657 	return cmd >> (32 - d_info->op_len);
658 }
659 
660 static inline const struct cmd_info *
661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
662 	       const struct intel_engine_cs *engine)
663 {
664 	struct cmd_entry *e;
665 
666 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
667 		if (opcode == e->info->opcode &&
668 		    e->info->rings & engine->mask)
669 			return e->info;
670 	}
671 	return NULL;
672 }
673 
674 static inline const struct cmd_info *
675 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
676 	     const struct intel_engine_cs *engine)
677 {
678 	u32 opcode;
679 
680 	opcode = get_opcode(cmd, engine);
681 	if (opcode == INVALID_OP)
682 		return NULL;
683 
684 	return find_cmd_entry(gvt, opcode, engine);
685 }
686 
687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
688 {
689 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
690 }
691 
692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
693 {
694 	const struct decode_info *d_info;
695 	int i;
696 
697 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
698 	if (d_info == NULL)
699 		return;
700 
701 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
702 			cmd >> (32 - d_info->op_len), d_info->name);
703 
704 	for (i = 0; i < d_info->nr_sub_op; i++)
705 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
706 					d_info->sub_op[i].low));
707 
708 	pr_err("\n");
709 }
710 
711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
712 {
713 	return s->ip_va + (index << 2);
714 }
715 
716 static inline u32 cmd_val(struct parser_exec_state *s, int index)
717 {
718 	return *cmd_ptr(s, index);
719 }
720 
721 static inline bool is_init_ctx(struct parser_exec_state *s)
722 {
723 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
724 }
725 
726 static void parser_exec_state_dump(struct parser_exec_state *s)
727 {
728 	int cnt = 0;
729 	int i;
730 
731 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
732 		    " ring_head(%08lx) ring_tail(%08lx)\n",
733 		    s->vgpu->id, s->engine->name,
734 		    s->ring_start, s->ring_start + s->ring_size,
735 		    s->ring_head, s->ring_tail);
736 
737 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
738 			s->buf_type == RING_BUFFER_INSTRUCTION ?
739 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
740 				"CTX_BUFFER" : "BATCH_BUFFER"),
741 			s->buf_addr_type == GTT_BUFFER ?
742 			"GTT" : "PPGTT", s->ip_gma);
743 
744 	if (s->ip_va == NULL) {
745 		gvt_dbg_cmd(" ip_va(NULL)");
746 		return;
747 	}
748 
749 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
750 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
751 			cmd_val(s, 2), cmd_val(s, 3));
752 
753 	print_opcode(cmd_val(s, 0), s->engine);
754 
755 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
756 
757 	while (cnt < 1024) {
758 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
759 		for (i = 0; i < 8; i++)
760 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
761 		gvt_dbg_cmd("\n");
762 
763 		s->ip_va += 8 * sizeof(u32);
764 		cnt += 8;
765 	}
766 }
767 
768 static inline void update_ip_va(struct parser_exec_state *s)
769 {
770 	unsigned long len = 0;
771 
772 	if (WARN_ON(s->ring_head == s->ring_tail))
773 		return;
774 
775 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
776 			s->buf_type == RING_BUFFER_CTX) {
777 		unsigned long ring_top = s->ring_start + s->ring_size;
778 
779 		if (s->ring_head > s->ring_tail) {
780 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
781 				len = (s->ip_gma - s->ring_head);
782 			else if (s->ip_gma >= s->ring_start &&
783 					s->ip_gma <= s->ring_tail)
784 				len = (ring_top - s->ring_head) +
785 					(s->ip_gma - s->ring_start);
786 		} else
787 			len = (s->ip_gma - s->ring_head);
788 
789 		s->ip_va = s->rb_va + len;
790 	} else {/* shadow batch buffer */
791 		s->ip_va = s->ret_bb_va;
792 	}
793 }
794 
795 static inline int ip_gma_set(struct parser_exec_state *s,
796 		unsigned long ip_gma)
797 {
798 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
799 
800 	s->ip_gma = ip_gma;
801 	update_ip_va(s);
802 	return 0;
803 }
804 
805 static inline int ip_gma_advance(struct parser_exec_state *s,
806 		unsigned int dw_len)
807 {
808 	s->ip_gma += (dw_len << 2);
809 
810 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
811 		if (s->ip_gma >= s->ring_start + s->ring_size)
812 			s->ip_gma -= s->ring_size;
813 		update_ip_va(s);
814 	} else {
815 		s->ip_va += (dw_len << 2);
816 	}
817 
818 	return 0;
819 }
820 
821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
822 {
823 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
824 		return info->len;
825 	else
826 		return (cmd & ((1U << info->len) - 1)) + 2;
827 	return 0;
828 }
829 
830 static inline int cmd_length(struct parser_exec_state *s)
831 {
832 	return get_cmd_length(s->info, cmd_val(s, 0));
833 }
834 
835 /* do not remove this, some platform may need clflush here */
836 #define patch_value(s, addr, val) do { \
837 	*addr = val; \
838 } while (0)
839 
840 static inline bool is_mocs_mmio(unsigned int offset)
841 {
842 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
843 		((offset >= 0xb020) && (offset <= 0xb0a0));
844 }
845 
846 static int is_cmd_update_pdps(unsigned int offset,
847 			      struct parser_exec_state *s)
848 {
849 	u32 base = s->workload->engine->mmio_base;
850 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
851 }
852 
853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
854 				       unsigned int offset, unsigned int index)
855 {
856 	struct intel_vgpu *vgpu = s->vgpu;
857 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
858 	struct intel_vgpu_mm *mm;
859 	u64 pdps[GEN8_3LVL_PDPES];
860 
861 	if (shadow_mm->ppgtt_mm.root_entry_type ==
862 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
863 		pdps[0] = (u64)cmd_val(s, 2) << 32;
864 		pdps[0] |= cmd_val(s, 4);
865 
866 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
867 		if (!mm) {
868 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
869 			return -EINVAL;
870 		}
871 		intel_vgpu_mm_get(mm);
872 		list_add_tail(&mm->ppgtt_mm.link,
873 			      &s->workload->lri_shadow_mm);
874 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
875 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
876 	} else {
877 		/* Currently all guests use PML4 table and now can't
878 		 * have a guest with 3-level table but uses LRI for
879 		 * PPGTT update. So this is simply un-testable. */
880 		GEM_BUG_ON(1);
881 		gvt_vgpu_err("invalid shared shadow vm type\n");
882 		return -EINVAL;
883 	}
884 	return 0;
885 }
886 
887 static int cmd_reg_handler(struct parser_exec_state *s,
888 	unsigned int offset, unsigned int index, char *cmd)
889 {
890 	struct intel_vgpu *vgpu = s->vgpu;
891 	struct intel_gvt *gvt = vgpu->gvt;
892 	u32 ctx_sr_ctl;
893 	u32 *vreg, vreg_old;
894 
895 	if (offset + 4 > gvt->device_info.mmio_size) {
896 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
897 				cmd, offset);
898 		return -EFAULT;
899 	}
900 
901 	if (is_init_ctx(s)) {
902 		struct intel_gvt_mmio_info *mmio_info;
903 
904 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
905 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
906 		if (mmio_info && mmio_info->write)
907 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
908 		return 0;
909 	}
910 
911 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
912 		gvt_vgpu_err("%s access to non-render register (%x)\n",
913 				cmd, offset);
914 		return -EBADRQC;
915 	}
916 
917 	if (!strncmp(cmd, "srm", 3) ||
918 			!strncmp(cmd, "lrm", 3)) {
919 		if (offset != i915_mmio_reg_offset(GEN8_L3SQCREG4) &&
920 				offset != 0x21f0) {
921 			gvt_vgpu_err("%s access to register (%x)\n",
922 					cmd, offset);
923 			return -EPERM;
924 		} else
925 			return 0;
926 	}
927 
928 	if (!strncmp(cmd, "lrr-src", 7) ||
929 			!strncmp(cmd, "lrr-dst", 7)) {
930 		gvt_vgpu_err("not allowed cmd %s\n", cmd);
931 		return -EPERM;
932 	}
933 
934 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
935 		/* TODO: add LRI POST logic here */
936 		return 0;
937 	}
938 
939 	if (strncmp(cmd, "lri", 3))
940 		return -EPERM;
941 
942 	/* below are all lri handlers */
943 	vreg = &vgpu_vreg(s->vgpu, offset);
944 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
945 		gvt_vgpu_err("%s access to non-render register (%x)\n",
946 				cmd, offset);
947 		return -EBADRQC;
948 	}
949 
950 	if (is_cmd_update_pdps(offset, s) &&
951 	    cmd_pdp_mmio_update_handler(s, offset, index))
952 		return -EINVAL;
953 
954 	if (offset == i915_mmio_reg_offset(DERRMR) ||
955 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
956 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
957 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
958 	}
959 
960 	if (is_mocs_mmio(offset))
961 		*vreg = cmd_val(s, index + 1);
962 
963 	vreg_old = *vreg;
964 
965 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
966 		u32 cmdval_new, cmdval;
967 		struct intel_gvt_mmio_info *mmio_info;
968 
969 		cmdval = cmd_val(s, index + 1);
970 
971 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
972 		if (!mmio_info) {
973 			cmdval_new = cmdval;
974 		} else {
975 			u64 ro_mask = mmio_info->ro_mask;
976 			int ret;
977 
978 			if (likely(!ro_mask))
979 				ret = mmio_info->write(s->vgpu, offset,
980 						&cmdval, 4);
981 			else {
982 				gvt_vgpu_err("try to write RO reg %x\n",
983 						offset);
984 				ret = -EBADRQC;
985 			}
986 			if (ret)
987 				return ret;
988 			cmdval_new = *vreg;
989 		}
990 		if (cmdval_new != cmdval)
991 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
992 	}
993 
994 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
995 	*vreg = vreg_old;
996 
997 	/* TODO
998 	 * In order to let workload with inhibit context to generate
999 	 * correct image data into memory, vregs values will be loaded to
1000 	 * hw via LRIs in the workload with inhibit context. But as
1001 	 * indirect context is loaded prior to LRIs in workload, we don't
1002 	 * want reg values specified in indirect context overwritten by
1003 	 * LRIs in workloads. So, when scanning an indirect context, we
1004 	 * update reg values in it into vregs, so LRIs in workload with
1005 	 * inhibit context will restore with correct values
1006 	 */
1007 	if (IS_GEN(s->engine->i915, 9) &&
1008 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1009 	    !strncmp(cmd, "lri", 3)) {
1010 		intel_gvt_hypervisor_read_gpa(s->vgpu,
1011 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1012 		/* check inhibit context */
1013 		if (ctx_sr_ctl & 1) {
1014 			u32 data = cmd_val(s, index + 1);
1015 
1016 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1017 				intel_vgpu_mask_mmio_write(vgpu,
1018 							offset, &data, 4);
1019 			else
1020 				vgpu_vreg(vgpu, offset) = data;
1021 		}
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 #define cmd_reg(s, i) \
1028 	(cmd_val(s, i) & GENMASK(22, 2))
1029 
1030 #define cmd_reg_inhibit(s, i) \
1031 	(cmd_val(s, i) & GENMASK(22, 18))
1032 
1033 #define cmd_gma(s, i) \
1034 	(cmd_val(s, i) & GENMASK(31, 2))
1035 
1036 #define cmd_gma_hi(s, i) \
1037 	(cmd_val(s, i) & GENMASK(15, 0))
1038 
1039 static int cmd_handler_lri(struct parser_exec_state *s)
1040 {
1041 	int i, ret = 0;
1042 	int cmd_len = cmd_length(s);
1043 
1044 	for (i = 1; i < cmd_len; i += 2) {
1045 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1046 			if (s->engine->id == BCS0 &&
1047 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1048 				ret |= 0;
1049 			else
1050 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1051 		}
1052 		if (ret)
1053 			break;
1054 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1055 		if (ret)
1056 			break;
1057 	}
1058 	return ret;
1059 }
1060 
1061 static int cmd_handler_lrr(struct parser_exec_state *s)
1062 {
1063 	int i, ret = 0;
1064 	int cmd_len = cmd_length(s);
1065 
1066 	for (i = 1; i < cmd_len; i += 2) {
1067 		if (IS_BROADWELL(s->engine->i915))
1068 			ret |= ((cmd_reg_inhibit(s, i) ||
1069 				 (cmd_reg_inhibit(s, i + 1)))) ?
1070 				-EBADRQC : 0;
1071 		if (ret)
1072 			break;
1073 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1074 		if (ret)
1075 			break;
1076 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1077 		if (ret)
1078 			break;
1079 	}
1080 	return ret;
1081 }
1082 
1083 static inline int cmd_address_audit(struct parser_exec_state *s,
1084 		unsigned long guest_gma, int op_size, bool index_mode);
1085 
1086 static int cmd_handler_lrm(struct parser_exec_state *s)
1087 {
1088 	struct intel_gvt *gvt = s->vgpu->gvt;
1089 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1090 	unsigned long gma;
1091 	int i, ret = 0;
1092 	int cmd_len = cmd_length(s);
1093 
1094 	for (i = 1; i < cmd_len;) {
1095 		if (IS_BROADWELL(s->engine->i915))
1096 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1097 		if (ret)
1098 			break;
1099 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1100 		if (ret)
1101 			break;
1102 		if (cmd_val(s, 0) & (1 << 22)) {
1103 			gma = cmd_gma(s, i + 1);
1104 			if (gmadr_bytes == 8)
1105 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1106 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1107 			if (ret)
1108 				break;
1109 		}
1110 		i += gmadr_dw_number(s) + 1;
1111 	}
1112 	return ret;
1113 }
1114 
1115 static int cmd_handler_srm(struct parser_exec_state *s)
1116 {
1117 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1118 	unsigned long gma;
1119 	int i, ret = 0;
1120 	int cmd_len = cmd_length(s);
1121 
1122 	for (i = 1; i < cmd_len;) {
1123 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1124 		if (ret)
1125 			break;
1126 		if (cmd_val(s, 0) & (1 << 22)) {
1127 			gma = cmd_gma(s, i + 1);
1128 			if (gmadr_bytes == 8)
1129 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1130 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1131 			if (ret)
1132 				break;
1133 		}
1134 		i += gmadr_dw_number(s) + 1;
1135 	}
1136 	return ret;
1137 }
1138 
1139 struct cmd_interrupt_event {
1140 	int pipe_control_notify;
1141 	int mi_flush_dw;
1142 	int mi_user_interrupt;
1143 };
1144 
1145 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1146 	[RCS0] = {
1147 		.pipe_control_notify = RCS_PIPE_CONTROL,
1148 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1149 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1150 	},
1151 	[BCS0] = {
1152 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1153 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1154 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1155 	},
1156 	[VCS0] = {
1157 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1158 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1159 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1160 	},
1161 	[VCS1] = {
1162 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1163 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1164 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1165 	},
1166 	[VECS0] = {
1167 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1168 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1169 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1170 	},
1171 };
1172 
1173 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1174 {
1175 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1176 	unsigned long gma;
1177 	bool index_mode = false;
1178 	unsigned int post_sync;
1179 	int ret = 0;
1180 	u32 hws_pga, val;
1181 
1182 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1183 
1184 	/* LRI post sync */
1185 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1186 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1187 	/* post sync */
1188 	else if (post_sync) {
1189 		if (post_sync == 2)
1190 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1191 		else if (post_sync == 3)
1192 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1193 		else if (post_sync == 1) {
1194 			/* check ggtt*/
1195 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1196 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1197 				if (gmadr_bytes == 8)
1198 					gma |= (cmd_gma_hi(s, 3)) << 32;
1199 				/* Store Data Index */
1200 				if (cmd_val(s, 1) & (1 << 21))
1201 					index_mode = true;
1202 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1203 						index_mode);
1204 				if (ret)
1205 					return ret;
1206 				if (index_mode) {
1207 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1208 					gma = hws_pga + gma;
1209 					patch_value(s, cmd_ptr(s, 2), gma);
1210 					val = cmd_val(s, 1) & (~(1 << 21));
1211 					patch_value(s, cmd_ptr(s, 1), val);
1212 				}
1213 			}
1214 		}
1215 	}
1216 
1217 	if (ret)
1218 		return ret;
1219 
1220 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1221 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1222 			s->workload->pending_events);
1223 	return 0;
1224 }
1225 
1226 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1227 {
1228 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1229 		s->workload->pending_events);
1230 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1231 	return 0;
1232 }
1233 
1234 static int cmd_advance_default(struct parser_exec_state *s)
1235 {
1236 	return ip_gma_advance(s, cmd_length(s));
1237 }
1238 
1239 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1240 {
1241 	int ret;
1242 
1243 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1244 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1245 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1246 		s->buf_addr_type = s->saved_buf_addr_type;
1247 	} else if (s->buf_type == RING_BUFFER_CTX) {
1248 		ret = ip_gma_set(s, s->ring_tail);
1249 	} else {
1250 		s->buf_type = RING_BUFFER_INSTRUCTION;
1251 		s->buf_addr_type = GTT_BUFFER;
1252 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1253 			s->ret_ip_gma_ring -= s->ring_size;
1254 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1255 	}
1256 	return ret;
1257 }
1258 
1259 struct mi_display_flip_command_info {
1260 	int pipe;
1261 	int plane;
1262 	int event;
1263 	i915_reg_t stride_reg;
1264 	i915_reg_t ctrl_reg;
1265 	i915_reg_t surf_reg;
1266 	u64 stride_val;
1267 	u64 tile_val;
1268 	u64 surf_val;
1269 	bool async_flip;
1270 };
1271 
1272 struct plane_code_mapping {
1273 	int pipe;
1274 	int plane;
1275 	int event;
1276 };
1277 
1278 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1279 		struct mi_display_flip_command_info *info)
1280 {
1281 	struct drm_i915_private *dev_priv = s->engine->i915;
1282 	struct plane_code_mapping gen8_plane_code[] = {
1283 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1284 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1285 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1286 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1287 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1288 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1289 	};
1290 	u32 dword0, dword1, dword2;
1291 	u32 v;
1292 
1293 	dword0 = cmd_val(s, 0);
1294 	dword1 = cmd_val(s, 1);
1295 	dword2 = cmd_val(s, 2);
1296 
1297 	v = (dword0 & GENMASK(21, 19)) >> 19;
1298 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1299 		return -EBADRQC;
1300 
1301 	info->pipe = gen8_plane_code[v].pipe;
1302 	info->plane = gen8_plane_code[v].plane;
1303 	info->event = gen8_plane_code[v].event;
1304 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1305 	info->tile_val = (dword1 & 0x1);
1306 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1307 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1308 
1309 	if (info->plane == PLANE_A) {
1310 		info->ctrl_reg = DSPCNTR(info->pipe);
1311 		info->stride_reg = DSPSTRIDE(info->pipe);
1312 		info->surf_reg = DSPSURF(info->pipe);
1313 	} else if (info->plane == PLANE_B) {
1314 		info->ctrl_reg = SPRCTL(info->pipe);
1315 		info->stride_reg = SPRSTRIDE(info->pipe);
1316 		info->surf_reg = SPRSURF(info->pipe);
1317 	} else {
1318 		drm_WARN_ON(&dev_priv->drm, 1);
1319 		return -EBADRQC;
1320 	}
1321 	return 0;
1322 }
1323 
1324 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1325 		struct mi_display_flip_command_info *info)
1326 {
1327 	struct drm_i915_private *dev_priv = s->engine->i915;
1328 	struct intel_vgpu *vgpu = s->vgpu;
1329 	u32 dword0 = cmd_val(s, 0);
1330 	u32 dword1 = cmd_val(s, 1);
1331 	u32 dword2 = cmd_val(s, 2);
1332 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1333 
1334 	info->plane = PRIMARY_PLANE;
1335 
1336 	switch (plane) {
1337 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1338 		info->pipe = PIPE_A;
1339 		info->event = PRIMARY_A_FLIP_DONE;
1340 		break;
1341 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1342 		info->pipe = PIPE_B;
1343 		info->event = PRIMARY_B_FLIP_DONE;
1344 		break;
1345 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1346 		info->pipe = PIPE_C;
1347 		info->event = PRIMARY_C_FLIP_DONE;
1348 		break;
1349 
1350 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1351 		info->pipe = PIPE_A;
1352 		info->event = SPRITE_A_FLIP_DONE;
1353 		info->plane = SPRITE_PLANE;
1354 		break;
1355 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1356 		info->pipe = PIPE_B;
1357 		info->event = SPRITE_B_FLIP_DONE;
1358 		info->plane = SPRITE_PLANE;
1359 		break;
1360 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1361 		info->pipe = PIPE_C;
1362 		info->event = SPRITE_C_FLIP_DONE;
1363 		info->plane = SPRITE_PLANE;
1364 		break;
1365 
1366 	default:
1367 		gvt_vgpu_err("unknown plane code %d\n", plane);
1368 		return -EBADRQC;
1369 	}
1370 
1371 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1372 	info->tile_val = (dword1 & GENMASK(2, 0));
1373 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1374 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1375 
1376 	info->ctrl_reg = DSPCNTR(info->pipe);
1377 	info->stride_reg = DSPSTRIDE(info->pipe);
1378 	info->surf_reg = DSPSURF(info->pipe);
1379 
1380 	return 0;
1381 }
1382 
1383 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1384 		struct mi_display_flip_command_info *info)
1385 {
1386 	u32 stride, tile;
1387 
1388 	if (!info->async_flip)
1389 		return 0;
1390 
1391 	if (INTEL_GEN(s->engine->i915) >= 9) {
1392 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1393 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1394 				GENMASK(12, 10)) >> 10;
1395 	} else {
1396 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1397 				GENMASK(15, 6)) >> 6;
1398 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1399 	}
1400 
1401 	if (stride != info->stride_val)
1402 		gvt_dbg_cmd("cannot change stride during async flip\n");
1403 
1404 	if (tile != info->tile_val)
1405 		gvt_dbg_cmd("cannot change tile during async flip\n");
1406 
1407 	return 0;
1408 }
1409 
1410 static int gen8_update_plane_mmio_from_mi_display_flip(
1411 		struct parser_exec_state *s,
1412 		struct mi_display_flip_command_info *info)
1413 {
1414 	struct drm_i915_private *dev_priv = s->engine->i915;
1415 	struct intel_vgpu *vgpu = s->vgpu;
1416 
1417 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1418 		      info->surf_val << 12);
1419 	if (INTEL_GEN(dev_priv) >= 9) {
1420 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1421 			      info->stride_val);
1422 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1423 			      info->tile_val << 10);
1424 	} else {
1425 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1426 			      info->stride_val << 6);
1427 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1428 			      info->tile_val << 10);
1429 	}
1430 
1431 	if (info->plane == PLANE_PRIMARY)
1432 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1433 
1434 	if (info->async_flip)
1435 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1436 	else
1437 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1438 
1439 	return 0;
1440 }
1441 
1442 static int decode_mi_display_flip(struct parser_exec_state *s,
1443 		struct mi_display_flip_command_info *info)
1444 {
1445 	if (IS_BROADWELL(s->engine->i915))
1446 		return gen8_decode_mi_display_flip(s, info);
1447 	if (INTEL_GEN(s->engine->i915) >= 9)
1448 		return skl_decode_mi_display_flip(s, info);
1449 
1450 	return -ENODEV;
1451 }
1452 
1453 static int check_mi_display_flip(struct parser_exec_state *s,
1454 		struct mi_display_flip_command_info *info)
1455 {
1456 	return gen8_check_mi_display_flip(s, info);
1457 }
1458 
1459 static int update_plane_mmio_from_mi_display_flip(
1460 		struct parser_exec_state *s,
1461 		struct mi_display_flip_command_info *info)
1462 {
1463 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1464 }
1465 
1466 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1467 {
1468 	struct mi_display_flip_command_info info;
1469 	struct intel_vgpu *vgpu = s->vgpu;
1470 	int ret;
1471 	int i;
1472 	int len = cmd_length(s);
1473 	u32 valid_len = CMD_LEN(1);
1474 
1475 	/* Flip Type == Stereo 3D Flip */
1476 	if (DWORD_FIELD(2, 1, 0) == 2)
1477 		valid_len++;
1478 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1479 			valid_len);
1480 	if (ret)
1481 		return ret;
1482 
1483 	ret = decode_mi_display_flip(s, &info);
1484 	if (ret) {
1485 		gvt_vgpu_err("fail to decode MI display flip command\n");
1486 		return ret;
1487 	}
1488 
1489 	ret = check_mi_display_flip(s, &info);
1490 	if (ret) {
1491 		gvt_vgpu_err("invalid MI display flip command\n");
1492 		return ret;
1493 	}
1494 
1495 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1496 	if (ret) {
1497 		gvt_vgpu_err("fail to update plane mmio\n");
1498 		return ret;
1499 	}
1500 
1501 	for (i = 0; i < len; i++)
1502 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1503 	return 0;
1504 }
1505 
1506 static bool is_wait_for_flip_pending(u32 cmd)
1507 {
1508 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1509 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1510 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1511 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1512 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1513 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1514 }
1515 
1516 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1517 {
1518 	u32 cmd = cmd_val(s, 0);
1519 
1520 	if (!is_wait_for_flip_pending(cmd))
1521 		return 0;
1522 
1523 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1524 	return 0;
1525 }
1526 
1527 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1528 {
1529 	unsigned long addr;
1530 	unsigned long gma_high, gma_low;
1531 	struct intel_vgpu *vgpu = s->vgpu;
1532 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1533 
1534 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1535 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1536 		return INTEL_GVT_INVALID_ADDR;
1537 	}
1538 
1539 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1540 	if (gmadr_bytes == 4) {
1541 		addr = gma_low;
1542 	} else {
1543 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1544 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1545 	}
1546 	return addr;
1547 }
1548 
1549 static inline int cmd_address_audit(struct parser_exec_state *s,
1550 		unsigned long guest_gma, int op_size, bool index_mode)
1551 {
1552 	struct intel_vgpu *vgpu = s->vgpu;
1553 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1554 	int i;
1555 	int ret;
1556 
1557 	if (op_size > max_surface_size) {
1558 		gvt_vgpu_err("command address audit fail name %s\n",
1559 			s->info->name);
1560 		return -EFAULT;
1561 	}
1562 
1563 	if (index_mode)	{
1564 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1565 			ret = -EFAULT;
1566 			goto err;
1567 		}
1568 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1569 		ret = -EFAULT;
1570 		goto err;
1571 	}
1572 
1573 	return 0;
1574 
1575 err:
1576 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1577 			s->info->name, guest_gma, op_size);
1578 
1579 	pr_err("cmd dump: ");
1580 	for (i = 0; i < cmd_length(s); i++) {
1581 		if (!(i % 4))
1582 			pr_err("\n%08x ", cmd_val(s, i));
1583 		else
1584 			pr_err("%08x ", cmd_val(s, i));
1585 	}
1586 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1587 			vgpu->id,
1588 			vgpu_aperture_gmadr_base(vgpu),
1589 			vgpu_aperture_gmadr_end(vgpu),
1590 			vgpu_hidden_gmadr_base(vgpu),
1591 			vgpu_hidden_gmadr_end(vgpu));
1592 	return ret;
1593 }
1594 
1595 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1596 {
1597 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1598 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1599 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1600 	unsigned long gma, gma_low, gma_high;
1601 	u32 valid_len = CMD_LEN(2);
1602 	int ret = 0;
1603 
1604 	/* check ppggt */
1605 	if (!(cmd_val(s, 0) & (1 << 22)))
1606 		return 0;
1607 
1608 	/* check if QWORD */
1609 	if (DWORD_FIELD(0, 21, 21))
1610 		valid_len++;
1611 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1612 			valid_len);
1613 	if (ret)
1614 		return ret;
1615 
1616 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1617 
1618 	if (gmadr_bytes == 8) {
1619 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1620 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1621 		gma = (gma_high << 32) | gma_low;
1622 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1623 	}
1624 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1625 	return ret;
1626 }
1627 
1628 static inline int unexpected_cmd(struct parser_exec_state *s)
1629 {
1630 	struct intel_vgpu *vgpu = s->vgpu;
1631 
1632 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1633 
1634 	return -EBADRQC;
1635 }
1636 
1637 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1638 {
1639 	return unexpected_cmd(s);
1640 }
1641 
1642 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1643 {
1644 	return unexpected_cmd(s);
1645 }
1646 
1647 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1648 {
1649 	return unexpected_cmd(s);
1650 }
1651 
1652 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1653 {
1654 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1655 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1656 			sizeof(u32);
1657 	unsigned long gma, gma_high;
1658 	u32 valid_len = CMD_LEN(1);
1659 	int ret = 0;
1660 
1661 	if (!(cmd_val(s, 0) & (1 << 22)))
1662 		return ret;
1663 
1664 	/* check inline data */
1665 	if (cmd_val(s, 0) & BIT(18))
1666 		valid_len = CMD_LEN(9);
1667 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1668 			valid_len);
1669 	if (ret)
1670 		return ret;
1671 
1672 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1673 	if (gmadr_bytes == 8) {
1674 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1675 		gma = (gma_high << 32) | gma;
1676 	}
1677 	ret = cmd_address_audit(s, gma, op_size, false);
1678 	return ret;
1679 }
1680 
1681 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1682 {
1683 	return unexpected_cmd(s);
1684 }
1685 
1686 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1687 {
1688 	return unexpected_cmd(s);
1689 }
1690 
1691 static int cmd_handler_mi_conditional_batch_buffer_end(
1692 		struct parser_exec_state *s)
1693 {
1694 	return unexpected_cmd(s);
1695 }
1696 
1697 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1698 {
1699 	return unexpected_cmd(s);
1700 }
1701 
1702 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1703 {
1704 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1705 	unsigned long gma;
1706 	bool index_mode = false;
1707 	int ret = 0;
1708 	u32 hws_pga, val;
1709 	u32 valid_len = CMD_LEN(2);
1710 
1711 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1712 			valid_len);
1713 	if (ret) {
1714 		/* Check again for Qword */
1715 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1716 			++valid_len);
1717 		return ret;
1718 	}
1719 
1720 	/* Check post-sync and ppgtt bit */
1721 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1722 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1723 		if (gmadr_bytes == 8)
1724 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1725 		/* Store Data Index */
1726 		if (cmd_val(s, 0) & (1 << 21))
1727 			index_mode = true;
1728 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1729 		if (ret)
1730 			return ret;
1731 		if (index_mode) {
1732 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1733 			gma = hws_pga + gma;
1734 			patch_value(s, cmd_ptr(s, 1), gma);
1735 			val = cmd_val(s, 0) & (~(1 << 21));
1736 			patch_value(s, cmd_ptr(s, 0), val);
1737 		}
1738 	}
1739 	/* Check notify bit */
1740 	if ((cmd_val(s, 0) & (1 << 8)))
1741 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1742 			s->workload->pending_events);
1743 	return ret;
1744 }
1745 
1746 static void addr_type_update_snb(struct parser_exec_state *s)
1747 {
1748 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1749 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1750 		s->buf_addr_type = PPGTT_BUFFER;
1751 	}
1752 }
1753 
1754 
1755 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1756 		unsigned long gma, unsigned long end_gma, void *va)
1757 {
1758 	unsigned long copy_len, offset;
1759 	unsigned long len = 0;
1760 	unsigned long gpa;
1761 
1762 	while (gma != end_gma) {
1763 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1764 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1765 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1766 			return -EFAULT;
1767 		}
1768 
1769 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1770 
1771 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1772 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1773 
1774 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1775 
1776 		len += copy_len;
1777 		gma += copy_len;
1778 	}
1779 	return len;
1780 }
1781 
1782 
1783 /*
1784  * Check whether a batch buffer needs to be scanned. Currently
1785  * the only criteria is based on privilege.
1786  */
1787 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1788 {
1789 	/* Decide privilege based on address space */
1790 	if (cmd_val(s, 0) & BIT(8) &&
1791 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1792 		return 0;
1793 
1794 	return 1;
1795 }
1796 
1797 static const char *repr_addr_type(unsigned int type)
1798 {
1799 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1800 }
1801 
1802 static int find_bb_size(struct parser_exec_state *s,
1803 			unsigned long *bb_size,
1804 			unsigned long *bb_end_cmd_offset)
1805 {
1806 	unsigned long gma = 0;
1807 	const struct cmd_info *info;
1808 	u32 cmd_len = 0;
1809 	bool bb_end = false;
1810 	struct intel_vgpu *vgpu = s->vgpu;
1811 	u32 cmd;
1812 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1813 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1814 
1815 	*bb_size = 0;
1816 	*bb_end_cmd_offset = 0;
1817 
1818 	/* get the start gm address of the batch buffer */
1819 	gma = get_gma_bb_from_cmd(s, 1);
1820 	if (gma == INTEL_GVT_INVALID_ADDR)
1821 		return -EFAULT;
1822 
1823 	cmd = cmd_val(s, 0);
1824 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1825 	if (info == NULL) {
1826 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1827 			     cmd, get_opcode(cmd, s->engine),
1828 			     repr_addr_type(s->buf_addr_type),
1829 			     s->engine->name, s->workload);
1830 		return -EBADRQC;
1831 	}
1832 	do {
1833 		if (copy_gma_to_hva(s->vgpu, mm,
1834 				    gma, gma + 4, &cmd) < 0)
1835 			return -EFAULT;
1836 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1837 		if (info == NULL) {
1838 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1839 				     cmd, get_opcode(cmd, s->engine),
1840 				     repr_addr_type(s->buf_addr_type),
1841 				     s->engine->name, s->workload);
1842 			return -EBADRQC;
1843 		}
1844 
1845 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1846 			bb_end = true;
1847 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1848 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1849 				/* chained batch buffer */
1850 				bb_end = true;
1851 		}
1852 
1853 		if (bb_end)
1854 			*bb_end_cmd_offset = *bb_size;
1855 
1856 		cmd_len = get_cmd_length(info, cmd) << 2;
1857 		*bb_size += cmd_len;
1858 		gma += cmd_len;
1859 	} while (!bb_end);
1860 
1861 	return 0;
1862 }
1863 
1864 static int audit_bb_end(struct parser_exec_state *s, void *va)
1865 {
1866 	struct intel_vgpu *vgpu = s->vgpu;
1867 	u32 cmd = *(u32 *)va;
1868 	const struct cmd_info *info;
1869 
1870 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1871 	if (info == NULL) {
1872 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1873 			     cmd, get_opcode(cmd, s->engine),
1874 			     repr_addr_type(s->buf_addr_type),
1875 			     s->engine->name, s->workload);
1876 		return -EBADRQC;
1877 	}
1878 
1879 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1880 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1881 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1882 		return 0;
1883 
1884 	return -EBADRQC;
1885 }
1886 
1887 static int perform_bb_shadow(struct parser_exec_state *s)
1888 {
1889 	struct intel_vgpu *vgpu = s->vgpu;
1890 	struct intel_vgpu_shadow_bb *bb;
1891 	unsigned long gma = 0;
1892 	unsigned long bb_size;
1893 	unsigned long bb_end_cmd_offset;
1894 	int ret = 0;
1895 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1896 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1897 	unsigned long start_offset = 0;
1898 
1899 	/* get the start gm address of the batch buffer */
1900 	gma = get_gma_bb_from_cmd(s, 1);
1901 	if (gma == INTEL_GVT_INVALID_ADDR)
1902 		return -EFAULT;
1903 
1904 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1905 	if (ret)
1906 		return ret;
1907 
1908 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1909 	if (!bb)
1910 		return -ENOMEM;
1911 
1912 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1913 
1914 	/* the start_offset stores the batch buffer's start gma's
1915 	 * offset relative to page boundary. so for non-privileged batch
1916 	 * buffer, the shadowed gem object holds exactly the same page
1917 	 * layout as original gem object. This is for the convience of
1918 	 * replacing the whole non-privilged batch buffer page to this
1919 	 * shadowed one in PPGTT at the same gma address. (this replacing
1920 	 * action is not implemented yet now, but may be necessary in
1921 	 * future).
1922 	 * for prileged batch buffer, we just change start gma address to
1923 	 * that of shadowed page.
1924 	 */
1925 	if (bb->ppgtt)
1926 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1927 
1928 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1929 					       round_up(bb_size + start_offset,
1930 							PAGE_SIZE));
1931 	if (IS_ERR(bb->obj)) {
1932 		ret = PTR_ERR(bb->obj);
1933 		goto err_free_bb;
1934 	}
1935 
1936 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1937 	if (IS_ERR(bb->va)) {
1938 		ret = PTR_ERR(bb->va);
1939 		goto err_free_obj;
1940 	}
1941 
1942 	ret = copy_gma_to_hva(s->vgpu, mm,
1943 			      gma, gma + bb_size,
1944 			      bb->va + start_offset);
1945 	if (ret < 0) {
1946 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1947 		ret = -EFAULT;
1948 		goto err_unmap;
1949 	}
1950 
1951 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1952 	if (ret)
1953 		goto err_unmap;
1954 
1955 	i915_gem_object_unlock(bb->obj);
1956 	INIT_LIST_HEAD(&bb->list);
1957 	list_add(&bb->list, &s->workload->shadow_bb);
1958 
1959 	bb->bb_start_cmd_va = s->ip_va;
1960 
1961 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1962 		bb->bb_offset = s->ip_va - s->rb_va;
1963 	else
1964 		bb->bb_offset = 0;
1965 
1966 	/*
1967 	 * ip_va saves the virtual address of the shadow batch buffer, while
1968 	 * ip_gma saves the graphics address of the original batch buffer.
1969 	 * As the shadow batch buffer is just a copy from the originial one,
1970 	 * it should be right to use shadow batch buffer'va and original batch
1971 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1972 	 * buffer here (too early).
1973 	 */
1974 	s->ip_va = bb->va + start_offset;
1975 	s->ip_gma = gma;
1976 	return 0;
1977 err_unmap:
1978 	i915_gem_object_unpin_map(bb->obj);
1979 err_free_obj:
1980 	i915_gem_object_put(bb->obj);
1981 err_free_bb:
1982 	kfree(bb);
1983 	return ret;
1984 }
1985 
1986 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1987 {
1988 	bool second_level;
1989 	int ret = 0;
1990 	struct intel_vgpu *vgpu = s->vgpu;
1991 
1992 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1993 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1994 		return -EFAULT;
1995 	}
1996 
1997 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1998 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1999 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2000 		return -EFAULT;
2001 	}
2002 
2003 	s->saved_buf_addr_type = s->buf_addr_type;
2004 	addr_type_update_snb(s);
2005 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2006 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2007 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2008 	} else if (second_level) {
2009 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2010 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2011 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2012 	}
2013 
2014 	if (batch_buffer_needs_scan(s)) {
2015 		ret = perform_bb_shadow(s);
2016 		if (ret < 0)
2017 			gvt_vgpu_err("invalid shadow batch buffer\n");
2018 	} else {
2019 		/* emulate a batch buffer end to do return right */
2020 		ret = cmd_handler_mi_batch_buffer_end(s);
2021 		if (ret < 0)
2022 			return ret;
2023 	}
2024 	return ret;
2025 }
2026 
2027 static int mi_noop_index;
2028 
2029 static const struct cmd_info cmd_info[] = {
2030 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2031 
2032 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2033 		0, 1, NULL},
2034 
2035 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2036 		0, 1, cmd_handler_mi_user_interrupt},
2037 
2038 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2039 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2040 
2041 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2042 
2043 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2044 		NULL},
2045 
2046 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2047 		NULL},
2048 
2049 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2050 		NULL},
2051 
2052 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2053 		NULL},
2054 
2055 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2056 		D_ALL, 0, 1, NULL},
2057 
2058 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2059 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2060 		cmd_handler_mi_batch_buffer_end},
2061 
2062 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2063 		0, 1, NULL},
2064 
2065 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2066 		NULL},
2067 
2068 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2069 		D_ALL, 0, 1, NULL},
2070 
2071 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2072 		NULL},
2073 
2074 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2075 		NULL},
2076 
2077 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2078 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2079 
2080 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2081 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2082 
2083 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2084 
2085 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2086 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2087 
2088 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2089 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2090 		NULL, CMD_LEN(0)},
2091 
2092 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2093 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2094 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2095 
2096 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2097 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2098 
2099 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2100 		0, 8, cmd_handler_mi_store_data_index},
2101 
2102 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2103 		D_ALL, 0, 8, cmd_handler_lri},
2104 
2105 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2106 		cmd_handler_mi_update_gtt},
2107 
2108 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2109 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2110 		cmd_handler_srm, CMD_LEN(2)},
2111 
2112 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2113 		cmd_handler_mi_flush_dw},
2114 
2115 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2116 		10, cmd_handler_mi_clflush},
2117 
2118 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2119 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2120 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2121 
2122 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2123 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2124 		cmd_handler_lrm, CMD_LEN(2)},
2125 
2126 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2127 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2128 		cmd_handler_lrr, CMD_LEN(1)},
2129 
2130 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2131 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2132 		8, NULL, CMD_LEN(2)},
2133 
2134 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2135 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2136 
2137 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2138 		ADDR_FIX_1(2), 8, NULL},
2139 
2140 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2141 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2142 
2143 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2144 		8, cmd_handler_mi_op_2f},
2145 
2146 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2147 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2148 		cmd_handler_mi_batch_buffer_start},
2149 
2150 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2151 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2152 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2153 
2154 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2155 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2156 
2157 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2158 		ADDR_FIX_2(4, 7), 8, NULL},
2159 
2160 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2161 		0, 8, NULL},
2162 
2163 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2164 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2165 
2166 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2167 
2168 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2169 		0, 8, NULL},
2170 
2171 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2172 		ADDR_FIX_1(3), 8, NULL},
2173 
2174 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2175 		D_ALL, 0, 8, NULL},
2176 
2177 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178 		ADDR_FIX_1(4), 8, NULL},
2179 
2180 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2181 		ADDR_FIX_2(4, 5), 8, NULL},
2182 
2183 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184 		ADDR_FIX_1(4), 8, NULL},
2185 
2186 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187 		ADDR_FIX_2(4, 7), 8, NULL},
2188 
2189 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2190 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2191 
2192 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2193 
2194 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2195 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2196 
2197 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2198 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2199 
2200 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2201 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2202 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2203 
2204 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2205 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2206 
2207 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2208 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2209 
2210 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2211 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2212 
2213 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2214 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2215 
2216 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2217 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2218 
2219 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2220 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2221 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2222 
2223 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2224 		ADDR_FIX_2(4, 5), 8, NULL},
2225 
2226 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2227 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2228 
2229 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2230 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2231 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2232 
2233 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2234 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2235 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236 
2237 	{"3DSTATE_BLEND_STATE_POINTERS",
2238 		OP_3DSTATE_BLEND_STATE_POINTERS,
2239 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2240 
2241 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2242 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2243 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2244 
2245 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2246 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2247 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248 
2249 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2250 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2251 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252 
2253 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2254 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2255 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256 
2257 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2258 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2259 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2260 
2261 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2262 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2263 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2264 
2265 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2266 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2267 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268 
2269 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2270 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2271 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272 
2273 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2274 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2275 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276 
2277 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2278 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2279 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280 
2281 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2282 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2283 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284 
2285 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2286 		0, 8, NULL},
2287 
2288 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2289 		0, 8, NULL},
2290 
2291 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2292 		0, 8, NULL},
2293 
2294 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2295 		0, 8, NULL},
2296 
2297 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2298 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2299 
2300 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2301 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2302 
2303 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2304 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305 
2306 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2307 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308 
2309 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2310 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2311 
2312 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2313 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2314 
2315 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2316 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2317 
2318 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2319 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2320 
2321 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2322 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2323 
2324 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2325 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326 
2327 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2328 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2329 
2330 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2331 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2332 
2333 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2334 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2335 
2336 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2337 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2338 
2339 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2340 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341 
2342 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2343 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2344 
2345 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2346 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2347 
2348 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2349 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2350 
2351 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2352 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2353 
2354 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2355 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2356 
2357 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2358 		D_BDW_PLUS, 0, 8, NULL},
2359 
2360 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2361 		NULL},
2362 
2363 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2364 		D_BDW_PLUS, 0, 8, NULL},
2365 
2366 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2367 		D_BDW_PLUS, 0, 8, NULL},
2368 
2369 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2370 		8, NULL},
2371 
2372 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2373 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2374 
2375 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2376 		8, NULL},
2377 
2378 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2379 		NULL},
2380 
2381 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2382 		NULL},
2383 
2384 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2385 		NULL},
2386 
2387 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2388 		D_BDW_PLUS, 0, 8, NULL},
2389 
2390 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2391 		R_RCS, D_ALL, 0, 8, NULL},
2392 
2393 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2394 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2395 
2396 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2397 		R_RCS, D_ALL, 0, 1, NULL},
2398 
2399 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2400 
2401 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2402 		R_RCS, D_ALL, 0, 8, NULL},
2403 
2404 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2405 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406 
2407 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2408 
2409 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410 
2411 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412 
2413 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2414 		D_BDW_PLUS, 0, 8, NULL},
2415 
2416 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2417 		D_BDW_PLUS, 0, 8, NULL},
2418 
2419 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2420 		D_ALL, 0, 8, NULL},
2421 
2422 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2423 		D_BDW_PLUS, 0, 8, NULL},
2424 
2425 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2426 		D_BDW_PLUS, 0, 8, NULL},
2427 
2428 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2429 
2430 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2431 
2432 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433 
2434 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2435 		D_ALL, 0, 8, NULL},
2436 
2437 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2438 
2439 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440 
2441 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2442 		R_RCS, D_ALL, 0, 8, NULL},
2443 
2444 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2445 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446 
2447 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2448 		0, 8, NULL},
2449 
2450 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2451 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2452 
2453 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2454 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2455 
2456 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2457 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2458 
2459 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2460 		D_ALL, 0, 8, NULL},
2461 
2462 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2463 		D_ALL, 0, 8, NULL},
2464 
2465 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2466 		D_ALL, 0, 8, NULL},
2467 
2468 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2469 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2470 
2471 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2472 		D_BDW_PLUS, 0, 8, NULL},
2473 
2474 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2475 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2476 
2477 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2478 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2479 
2480 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2481 		R_RCS, D_ALL, 0, 8, NULL},
2482 
2483 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2484 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2485 
2486 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2487 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2488 
2489 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2490 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491 
2492 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2493 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494 
2495 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2496 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2497 
2498 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2499 		R_RCS, D_ALL, 0, 8, NULL},
2500 
2501 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2502 		D_ALL, 0, 9, NULL},
2503 
2504 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2505 		ADDR_FIX_2(2, 4), 8, NULL},
2506 
2507 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2508 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2509 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2510 
2511 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2512 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2513 
2514 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2515 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2516 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2517 
2518 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2519 		D_BDW_PLUS, 0, 8, NULL},
2520 
2521 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2522 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2523 
2524 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2525 
2526 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2527 		1, NULL},
2528 
2529 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2530 		ADDR_FIX_1(1), 8, NULL},
2531 
2532 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2533 
2534 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2535 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2536 
2537 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2538 		ADDR_FIX_1(1), 8, NULL},
2539 
2540 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2541 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2542 
2543 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2544 
2545 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2546 
2547 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2548 		0, 8, NULL},
2549 
2550 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2551 		D_SKL_PLUS, 0, 8, NULL},
2552 
2553 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2554 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2555 
2556 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2557 		0, 16, NULL},
2558 
2559 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2560 		0, 16, NULL},
2561 
2562 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2563 		0, 16, NULL},
2564 
2565 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2566 
2567 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2568 		0, 16, NULL},
2569 
2570 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2571 		0, 16, NULL},
2572 
2573 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2574 		0, 16, NULL},
2575 
2576 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2577 		0, 8, NULL},
2578 
2579 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2580 		NULL},
2581 
2582 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2583 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2584 
2585 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2586 		R_VCS, D_ALL, 0, 12, NULL},
2587 
2588 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2589 		R_VCS, D_ALL, 0, 12, NULL},
2590 
2591 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2592 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2593 
2594 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2595 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2596 
2597 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2598 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2599 
2600 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2601 
2602 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2603 		R_VCS, D_ALL, 0, 12, NULL},
2604 
2605 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2606 		R_VCS, D_ALL, 0, 12, NULL},
2607 
2608 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2609 		R_VCS, D_ALL, 0, 12, NULL},
2610 
2611 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2612 		R_VCS, D_ALL, 0, 12, NULL},
2613 
2614 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2615 		R_VCS, D_ALL, 0, 12, NULL},
2616 
2617 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2618 		R_VCS, D_ALL, 0, 12, NULL},
2619 
2620 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2621 		R_VCS, D_ALL, 0, 6, NULL},
2622 
2623 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2624 		R_VCS, D_ALL, 0, 12, NULL},
2625 
2626 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2627 		R_VCS, D_ALL, 0, 12, NULL},
2628 
2629 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2630 		R_VCS, D_ALL, 0, 12, NULL},
2631 
2632 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2633 		R_VCS, D_ALL, 0, 12, NULL},
2634 
2635 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2636 		R_VCS, D_ALL, 0, 12, NULL},
2637 
2638 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2639 		R_VCS, D_ALL, 0, 12, NULL},
2640 
2641 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2642 		R_VCS, D_ALL, 0, 12, NULL},
2643 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2644 		R_VCS, D_ALL, 0, 12, NULL},
2645 
2646 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2647 		R_VCS, D_ALL, 0, 12, NULL},
2648 
2649 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2650 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2651 
2652 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2653 		R_VCS, D_ALL, 0, 12, NULL},
2654 
2655 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2656 		R_VCS, D_ALL, 0, 12, NULL},
2657 
2658 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2659 		R_VCS, D_ALL, 0, 12, NULL},
2660 
2661 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2662 		R_VCS, D_ALL, 0, 12, NULL},
2663 
2664 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2665 		R_VCS, D_ALL, 0, 12, NULL},
2666 
2667 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2668 		R_VCS, D_ALL, 0, 12, NULL},
2669 
2670 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2671 		R_VCS, D_ALL, 0, 12, NULL},
2672 
2673 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2674 		R_VCS, D_ALL, 0, 12, NULL},
2675 
2676 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2677 		R_VCS, D_ALL, 0, 12, NULL},
2678 
2679 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2680 		R_VCS, D_ALL, 0, 12, NULL},
2681 
2682 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2683 		R_VCS, D_ALL, 0, 12, NULL},
2684 
2685 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2686 		0, 16, NULL},
2687 
2688 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2689 
2690 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2691 
2692 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2693 		R_VCS, D_ALL, 0, 12, NULL},
2694 
2695 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2696 		R_VCS, D_ALL, 0, 12, NULL},
2697 
2698 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2699 		R_VCS, D_ALL, 0, 12, NULL},
2700 
2701 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2702 
2703 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2704 		0, 12, NULL},
2705 
2706 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2707 		0, 12, NULL},
2708 };
2709 
2710 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2711 {
2712 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2713 }
2714 
2715 /* call the cmd handler, and advance ip */
2716 static int cmd_parser_exec(struct parser_exec_state *s)
2717 {
2718 	struct intel_vgpu *vgpu = s->vgpu;
2719 	const struct cmd_info *info;
2720 	u32 cmd;
2721 	int ret = 0;
2722 
2723 	cmd = cmd_val(s, 0);
2724 
2725 	/* fastpath for MI_NOOP */
2726 	if (cmd == MI_NOOP)
2727 		info = &cmd_info[mi_noop_index];
2728 	else
2729 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2730 
2731 	if (info == NULL) {
2732 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2733 			     cmd, get_opcode(cmd, s->engine),
2734 			     repr_addr_type(s->buf_addr_type),
2735 			     s->engine->name, s->workload);
2736 		return -EBADRQC;
2737 	}
2738 
2739 	s->info = info;
2740 
2741 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2742 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2743 			  s->workload, info->name);
2744 
2745 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2746 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2747 						 info->valid_len);
2748 		if (ret)
2749 			return ret;
2750 	}
2751 
2752 	if (info->handler) {
2753 		ret = info->handler(s);
2754 		if (ret < 0) {
2755 			gvt_vgpu_err("%s handler error\n", info->name);
2756 			return ret;
2757 		}
2758 	}
2759 
2760 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2761 		ret = cmd_advance_default(s);
2762 		if (ret) {
2763 			gvt_vgpu_err("%s IP advance error\n", info->name);
2764 			return ret;
2765 		}
2766 	}
2767 	return 0;
2768 }
2769 
2770 static inline bool gma_out_of_range(unsigned long gma,
2771 		unsigned long gma_head, unsigned int gma_tail)
2772 {
2773 	if (gma_tail >= gma_head)
2774 		return (gma < gma_head) || (gma > gma_tail);
2775 	else
2776 		return (gma > gma_tail) && (gma < gma_head);
2777 }
2778 
2779 /* Keep the consistent return type, e.g EBADRQC for unknown
2780  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2781  * works as the input of VM healthy status.
2782  */
2783 static int command_scan(struct parser_exec_state *s,
2784 		unsigned long rb_head, unsigned long rb_tail,
2785 		unsigned long rb_start, unsigned long rb_len)
2786 {
2787 
2788 	unsigned long gma_head, gma_tail, gma_bottom;
2789 	int ret = 0;
2790 	struct intel_vgpu *vgpu = s->vgpu;
2791 
2792 	gma_head = rb_start + rb_head;
2793 	gma_tail = rb_start + rb_tail;
2794 	gma_bottom = rb_start +  rb_len;
2795 
2796 	while (s->ip_gma != gma_tail) {
2797 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2798 				s->buf_type == RING_BUFFER_CTX) {
2799 			if (!(s->ip_gma >= rb_start) ||
2800 				!(s->ip_gma < gma_bottom)) {
2801 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2802 					"(base:0x%lx, bottom: 0x%lx)\n",
2803 					s->ip_gma, rb_start,
2804 					gma_bottom);
2805 				parser_exec_state_dump(s);
2806 				return -EFAULT;
2807 			}
2808 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2809 				gvt_vgpu_err("ip_gma %lx out of range."
2810 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2811 					s->ip_gma, rb_start,
2812 					rb_head, rb_tail);
2813 				parser_exec_state_dump(s);
2814 				break;
2815 			}
2816 		}
2817 		ret = cmd_parser_exec(s);
2818 		if (ret) {
2819 			gvt_vgpu_err("cmd parser error\n");
2820 			parser_exec_state_dump(s);
2821 			break;
2822 		}
2823 	}
2824 
2825 	return ret;
2826 }
2827 
2828 static int scan_workload(struct intel_vgpu_workload *workload)
2829 {
2830 	unsigned long gma_head, gma_tail, gma_bottom;
2831 	struct parser_exec_state s;
2832 	int ret = 0;
2833 
2834 	/* ring base is page aligned */
2835 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2836 		return -EINVAL;
2837 
2838 	gma_head = workload->rb_start + workload->rb_head;
2839 	gma_tail = workload->rb_start + workload->rb_tail;
2840 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2841 
2842 	s.buf_type = RING_BUFFER_INSTRUCTION;
2843 	s.buf_addr_type = GTT_BUFFER;
2844 	s.vgpu = workload->vgpu;
2845 	s.engine = workload->engine;
2846 	s.ring_start = workload->rb_start;
2847 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2848 	s.ring_head = gma_head;
2849 	s.ring_tail = gma_tail;
2850 	s.rb_va = workload->shadow_ring_buffer_va;
2851 	s.workload = workload;
2852 	s.is_ctx_wa = false;
2853 
2854 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2855 		return 0;
2856 
2857 	ret = ip_gma_set(&s, gma_head);
2858 	if (ret)
2859 		goto out;
2860 
2861 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2862 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2863 
2864 out:
2865 	return ret;
2866 }
2867 
2868 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2869 {
2870 
2871 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2872 	struct parser_exec_state s;
2873 	int ret = 0;
2874 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2875 				struct intel_vgpu_workload,
2876 				wa_ctx);
2877 
2878 	/* ring base is page aligned */
2879 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2880 					I915_GTT_PAGE_SIZE)))
2881 		return -EINVAL;
2882 
2883 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2884 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2885 			PAGE_SIZE);
2886 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2887 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2888 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2889 
2890 	s.buf_type = RING_BUFFER_INSTRUCTION;
2891 	s.buf_addr_type = GTT_BUFFER;
2892 	s.vgpu = workload->vgpu;
2893 	s.engine = workload->engine;
2894 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2895 	s.ring_size = ring_size;
2896 	s.ring_head = gma_head;
2897 	s.ring_tail = gma_tail;
2898 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2899 	s.workload = workload;
2900 	s.is_ctx_wa = true;
2901 
2902 	ret = ip_gma_set(&s, gma_head);
2903 	if (ret)
2904 		goto out;
2905 
2906 	ret = command_scan(&s, 0, ring_tail,
2907 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2908 out:
2909 	return ret;
2910 }
2911 
2912 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2913 {
2914 	struct intel_vgpu *vgpu = workload->vgpu;
2915 	struct intel_vgpu_submission *s = &vgpu->submission;
2916 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2917 	void *shadow_ring_buffer_va;
2918 	int ret;
2919 
2920 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2921 
2922 	/* calculate workload ring buffer size */
2923 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2924 			workload->rb_head) % guest_rb_size;
2925 
2926 	gma_head = workload->rb_start + workload->rb_head;
2927 	gma_tail = workload->rb_start + workload->rb_tail;
2928 	gma_top = workload->rb_start + guest_rb_size;
2929 
2930 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2931 		void *p;
2932 
2933 		/* realloc the new ring buffer if needed */
2934 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2935 			     workload->rb_len, GFP_KERNEL);
2936 		if (!p) {
2937 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2938 			return -ENOMEM;
2939 		}
2940 		s->ring_scan_buffer[workload->engine->id] = p;
2941 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2942 	}
2943 
2944 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2945 
2946 	/* get shadow ring buffer va */
2947 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2948 
2949 	/* head > tail --> copy head <-> top */
2950 	if (gma_head > gma_tail) {
2951 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2952 				      gma_head, gma_top, shadow_ring_buffer_va);
2953 		if (ret < 0) {
2954 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2955 			return ret;
2956 		}
2957 		shadow_ring_buffer_va += ret;
2958 		gma_head = workload->rb_start;
2959 	}
2960 
2961 	/* copy head or start <-> tail */
2962 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2963 				shadow_ring_buffer_va);
2964 	if (ret < 0) {
2965 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2966 		return ret;
2967 	}
2968 	return 0;
2969 }
2970 
2971 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2972 {
2973 	int ret;
2974 	struct intel_vgpu *vgpu = workload->vgpu;
2975 
2976 	ret = shadow_workload_ring_buffer(workload);
2977 	if (ret) {
2978 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2979 		return ret;
2980 	}
2981 
2982 	ret = scan_workload(workload);
2983 	if (ret) {
2984 		gvt_vgpu_err("scan workload error\n");
2985 		return ret;
2986 	}
2987 	return 0;
2988 }
2989 
2990 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2991 {
2992 	int ctx_size = wa_ctx->indirect_ctx.size;
2993 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2994 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2995 					struct intel_vgpu_workload,
2996 					wa_ctx);
2997 	struct intel_vgpu *vgpu = workload->vgpu;
2998 	struct drm_i915_gem_object *obj;
2999 	int ret = 0;
3000 	void *map;
3001 
3002 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3003 					   roundup(ctx_size + CACHELINE_BYTES,
3004 						   PAGE_SIZE));
3005 	if (IS_ERR(obj))
3006 		return PTR_ERR(obj);
3007 
3008 	/* get the va of the shadow batch buffer */
3009 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3010 	if (IS_ERR(map)) {
3011 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3012 		ret = PTR_ERR(map);
3013 		goto put_obj;
3014 	}
3015 
3016 	i915_gem_object_lock(obj, NULL);
3017 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3018 	i915_gem_object_unlock(obj);
3019 	if (ret) {
3020 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3021 		goto unmap_src;
3022 	}
3023 
3024 	ret = copy_gma_to_hva(workload->vgpu,
3025 				workload->vgpu->gtt.ggtt_mm,
3026 				guest_gma, guest_gma + ctx_size,
3027 				map);
3028 	if (ret < 0) {
3029 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3030 		goto unmap_src;
3031 	}
3032 
3033 	wa_ctx->indirect_ctx.obj = obj;
3034 	wa_ctx->indirect_ctx.shadow_va = map;
3035 	return 0;
3036 
3037 unmap_src:
3038 	i915_gem_object_unpin_map(obj);
3039 put_obj:
3040 	i915_gem_object_put(obj);
3041 	return ret;
3042 }
3043 
3044 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3045 {
3046 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3047 	unsigned char *bb_start_sva;
3048 
3049 	if (!wa_ctx->per_ctx.valid)
3050 		return 0;
3051 
3052 	per_ctx_start[0] = 0x18800001;
3053 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3054 
3055 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3056 				wa_ctx->indirect_ctx.size;
3057 
3058 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3059 
3060 	return 0;
3061 }
3062 
3063 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3064 {
3065 	int ret;
3066 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3067 					struct intel_vgpu_workload,
3068 					wa_ctx);
3069 	struct intel_vgpu *vgpu = workload->vgpu;
3070 
3071 	if (wa_ctx->indirect_ctx.size == 0)
3072 		return 0;
3073 
3074 	ret = shadow_indirect_ctx(wa_ctx);
3075 	if (ret) {
3076 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3077 		return ret;
3078 	}
3079 
3080 	combine_wa_ctx(wa_ctx);
3081 
3082 	ret = scan_wa_ctx(wa_ctx);
3083 	if (ret) {
3084 		gvt_vgpu_err("scan wa ctx error\n");
3085 		return ret;
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* generate dummy contexts by sending empty requests to HW, and let
3092  * the HW to fill Engine Contexts. This dummy contexts are used for
3093  * initialization purpose (update reg whitelist), so referred to as
3094  * init context here
3095  */
3096 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3097 {
3098 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3099 	struct intel_gvt *gvt = vgpu->gvt;
3100 	struct intel_engine_cs *engine;
3101 	enum intel_engine_id id;
3102 
3103 	if (gvt->is_reg_whitelist_updated)
3104 		return;
3105 
3106 	/* scan init ctx to update cmd accessible list */
3107 	for_each_engine(engine, gvt->gt, id) {
3108 		struct parser_exec_state s;
3109 		void *vaddr;
3110 		int ret;
3111 
3112 		if (!engine->default_state)
3113 			continue;
3114 
3115 		vaddr = shmem_pin_map(engine->default_state);
3116 		if (IS_ERR(vaddr)) {
3117 			gvt_err("failed to map %s->default state, err:%zd\n",
3118 				engine->name, PTR_ERR(vaddr));
3119 			return;
3120 		}
3121 
3122 		s.buf_type = RING_BUFFER_CTX;
3123 		s.buf_addr_type = GTT_BUFFER;
3124 		s.vgpu = vgpu;
3125 		s.engine = engine;
3126 		s.ring_start = 0;
3127 		s.ring_size = engine->context_size - start;
3128 		s.ring_head = 0;
3129 		s.ring_tail = s.ring_size;
3130 		s.rb_va = vaddr + start;
3131 		s.workload = NULL;
3132 		s.is_ctx_wa = false;
3133 		s.is_init_ctx = true;
3134 
3135 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3136 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3137 		if (ret == 0) {
3138 			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3139 			if (ret)
3140 				gvt_err("Scan init ctx error\n");
3141 		}
3142 
3143 		shmem_unpin_map(engine->default_state, vaddr);
3144 		if (ret)
3145 			return;
3146 	}
3147 
3148 	gvt->is_reg_whitelist_updated = true;
3149 }
3150 
3151 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3152 {
3153 	struct intel_vgpu *vgpu = workload->vgpu;
3154 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3155 	struct parser_exec_state s;
3156 	int ring_id = workload->engine->id;
3157 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3158 	int ret;
3159 
3160 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3161 
3162 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3163 
3164 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3165 	 * scan engine context
3166 	 */
3167 	if (is_inhibit_context(ce))
3168 		return 0;
3169 
3170 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3171 	gma_head = 0;
3172 	gma_tail = ctx_size;
3173 
3174 	s.buf_type = RING_BUFFER_CTX;
3175 	s.buf_addr_type = GTT_BUFFER;
3176 	s.vgpu = workload->vgpu;
3177 	s.engine = workload->engine;
3178 	s.ring_start = gma_start;
3179 	s.ring_size = ctx_size;
3180 	s.ring_head = gma_start + gma_head;
3181 	s.ring_tail = gma_start + gma_tail;
3182 	s.rb_va = ce->lrc_reg_state;
3183 	s.workload = workload;
3184 	s.is_ctx_wa = false;
3185 	s.is_init_ctx = false;
3186 
3187 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3188 	 * context
3189 	 */
3190 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3191 	if (ret)
3192 		goto out;
3193 
3194 	ret = command_scan(&s, gma_head, gma_tail,
3195 		gma_start, ctx_size);
3196 out:
3197 	if (ret)
3198 		gvt_vgpu_err("scan shadow ctx error\n");
3199 
3200 	return ret;
3201 }
3202 
3203 static int init_cmd_table(struct intel_gvt *gvt)
3204 {
3205 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3206 	int i;
3207 
3208 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3209 		struct cmd_entry *e;
3210 
3211 		if (!(cmd_info[i].devices & gen_type))
3212 			continue;
3213 
3214 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3215 		if (!e)
3216 			return -ENOMEM;
3217 
3218 		e->info = &cmd_info[i];
3219 		if (cmd_info[i].opcode == OP_MI_NOOP)
3220 			mi_noop_index = i;
3221 
3222 		INIT_HLIST_NODE(&e->hlist);
3223 		add_cmd_entry(gvt, e);
3224 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3225 			    e->info->name, e->info->opcode, e->info->flag,
3226 			    e->info->devices, e->info->rings);
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 static void clean_cmd_table(struct intel_gvt *gvt)
3233 {
3234 	struct hlist_node *tmp;
3235 	struct cmd_entry *e;
3236 	int i;
3237 
3238 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3239 		kfree(e);
3240 
3241 	hash_init(gvt->cmd_table);
3242 }
3243 
3244 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3245 {
3246 	clean_cmd_table(gvt);
3247 }
3248 
3249 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3250 {
3251 	int ret;
3252 
3253 	ret = init_cmd_table(gvt);
3254 	if (ret) {
3255 		intel_gvt_clean_cmd_parser(gvt);
3256 		return ret;
3257 	}
3258 	return 0;
3259 }
3260