1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 const char *name; 59 int op_len; 60 int nr_sub_op; 61 const struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 176 177 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 178 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 179 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 180 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 181 182 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 183 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 184 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 185 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 186 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 187 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 188 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 189 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 190 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 191 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 193 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 194 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 195 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 196 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 197 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 198 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 199 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 200 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 201 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 202 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 203 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 204 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 205 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 206 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 207 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 208 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 209 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 212 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 224 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 225 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 226 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 227 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 248 249 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 250 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 251 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 252 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 253 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 254 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 255 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 256 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 257 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 258 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 259 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 260 261 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 263 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 264 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 267 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 268 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 269 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 271 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 272 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 274 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 275 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 281 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 282 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 284 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 286 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 287 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 288 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 289 290 /* VCCP Command Parser */ 291 292 /* 293 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 294 * git://anongit.freedesktop.org/vaapi/intel-driver 295 * src/i965_defines.h 296 * 297 */ 298 299 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 300 (3 << 13 | \ 301 (pipeline) << 11 | \ 302 (op) << 8 | \ 303 (sub_opa) << 5 | \ 304 (sub_opb)) 305 306 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 307 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 308 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 311 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 312 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 313 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 314 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 315 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 316 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 317 318 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 319 320 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 321 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 322 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 323 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 324 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 325 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 327 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 328 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 329 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 330 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 331 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 332 333 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 334 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 335 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 336 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 337 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 338 339 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 340 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 341 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 342 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 343 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 344 345 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 346 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 347 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 348 349 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 350 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 351 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 352 353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 354 (3 << 13 | \ 355 (pipeline) << 11 | \ 356 (op) << 8 | \ 357 (sub_opa) << 5 | \ 358 (sub_opb)) 359 360 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 361 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 362 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 363 364 struct parser_exec_state; 365 366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 367 368 #define GVT_CMD_HASH_BITS 7 369 370 /* which DWords need address fix */ 371 #define ADDR_FIX_1(x1) (1 << (x1)) 372 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 373 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 374 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 375 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 376 377 struct cmd_info { 378 const char *name; 379 u32 opcode; 380 381 #define F_LEN_MASK (1U<<0) 382 #define F_LEN_CONST 1U 383 #define F_LEN_VAR 0U 384 385 /* 386 * command has its own ip advance logic 387 * e.g. MI_BATCH_START, MI_BATCH_END 388 */ 389 #define F_IP_ADVANCE_CUSTOM (1<<1) 390 391 #define F_POST_HANDLE (1<<2) 392 u32 flag; 393 394 #define R_RCS BIT(RCS0) 395 #define R_VCS1 BIT(VCS0) 396 #define R_VCS2 BIT(VCS1) 397 #define R_VCS (R_VCS1 | R_VCS2) 398 #define R_BCS BIT(BCS0) 399 #define R_VECS BIT(VECS0) 400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 401 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 402 u16 rings; 403 404 /* devices that support this cmd: SNB/IVB/HSW/... */ 405 u16 devices; 406 407 /* which DWords are address that need fix up. 408 * bit 0 means a 32-bit non address operand in command 409 * bit 1 means address operand, which could be 32-bit 410 * or 64-bit depending on different architectures.( 411 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 412 * No matter the address length, each address only takes 413 * one bit in the bitmap. 414 */ 415 u16 addr_bitmap; 416 417 /* flag == F_LEN_CONST : command length 418 * flag == F_LEN_VAR : length bias bits 419 * Note: length is in DWord 420 */ 421 u8 len; 422 423 parser_cmd_handler handler; 424 }; 425 426 struct cmd_entry { 427 struct hlist_node hlist; 428 const struct cmd_info *info; 429 }; 430 431 enum { 432 RING_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_INSTRUCTION, 434 BATCH_BUFFER_2ND_LEVEL, 435 }; 436 437 enum { 438 GTT_BUFFER, 439 PPGTT_BUFFER 440 }; 441 442 struct parser_exec_state { 443 struct intel_vgpu *vgpu; 444 int ring_id; 445 446 int buf_type; 447 448 /* batch buffer address type */ 449 int buf_addr_type; 450 451 /* graphics memory address of ring buffer start */ 452 unsigned long ring_start; 453 unsigned long ring_size; 454 unsigned long ring_head; 455 unsigned long ring_tail; 456 457 /* instruction graphics memory address */ 458 unsigned long ip_gma; 459 460 /* mapped va of the instr_gma */ 461 void *ip_va; 462 void *rb_va; 463 464 void *ret_bb_va; 465 /* next instruction when return from batch buffer to ring buffer */ 466 unsigned long ret_ip_gma_ring; 467 468 /* next instruction when return from 2nd batch buffer to batch buffer */ 469 unsigned long ret_ip_gma_bb; 470 471 /* batch buffer address type (GTT or PPGTT) 472 * used when ret from 2nd level batch buffer 473 */ 474 int saved_buf_addr_type; 475 bool is_ctx_wa; 476 477 const struct cmd_info *info; 478 479 struct intel_vgpu_workload *workload; 480 }; 481 482 #define gmadr_dw_number(s) \ 483 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 484 485 static unsigned long bypass_scan_mask = 0; 486 487 /* ring ALL, type = 0 */ 488 static const struct sub_op_bits sub_op_mi[] = { 489 {31, 29}, 490 {28, 23}, 491 }; 492 493 static const struct decode_info decode_info_mi = { 494 "MI", 495 OP_LEN_MI, 496 ARRAY_SIZE(sub_op_mi), 497 sub_op_mi, 498 }; 499 500 /* ring RCS, command type 2 */ 501 static const struct sub_op_bits sub_op_2d[] = { 502 {31, 29}, 503 {28, 22}, 504 }; 505 506 static const struct decode_info decode_info_2d = { 507 "2D", 508 OP_LEN_2D, 509 ARRAY_SIZE(sub_op_2d), 510 sub_op_2d, 511 }; 512 513 /* ring RCS, command type 3 */ 514 static const struct sub_op_bits sub_op_3d_media[] = { 515 {31, 29}, 516 {28, 27}, 517 {26, 24}, 518 {23, 16}, 519 }; 520 521 static const struct decode_info decode_info_3d_media = { 522 "3D_Media", 523 OP_LEN_3D_MEDIA, 524 ARRAY_SIZE(sub_op_3d_media), 525 sub_op_3d_media, 526 }; 527 528 /* ring VCS, command type 3 */ 529 static const struct sub_op_bits sub_op_mfx_vc[] = { 530 {31, 29}, 531 {28, 27}, 532 {26, 24}, 533 {23, 21}, 534 {20, 16}, 535 }; 536 537 static const struct decode_info decode_info_mfx_vc = { 538 "MFX_VC", 539 OP_LEN_MFX_VC, 540 ARRAY_SIZE(sub_op_mfx_vc), 541 sub_op_mfx_vc, 542 }; 543 544 /* ring VECS, command type 3 */ 545 static const struct sub_op_bits sub_op_vebox[] = { 546 {31, 29}, 547 {28, 27}, 548 {26, 24}, 549 {23, 21}, 550 {20, 16}, 551 }; 552 553 static const struct decode_info decode_info_vebox = { 554 "VEBOX", 555 OP_LEN_VEBOX, 556 ARRAY_SIZE(sub_op_vebox), 557 sub_op_vebox, 558 }; 559 560 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 561 [RCS0] = { 562 &decode_info_mi, 563 NULL, 564 NULL, 565 &decode_info_3d_media, 566 NULL, 567 NULL, 568 NULL, 569 NULL, 570 }, 571 572 [VCS0] = { 573 &decode_info_mi, 574 NULL, 575 NULL, 576 &decode_info_mfx_vc, 577 NULL, 578 NULL, 579 NULL, 580 NULL, 581 }, 582 583 [BCS0] = { 584 &decode_info_mi, 585 NULL, 586 &decode_info_2d, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 NULL, 592 }, 593 594 [VECS0] = { 595 &decode_info_mi, 596 NULL, 597 NULL, 598 &decode_info_vebox, 599 NULL, 600 NULL, 601 NULL, 602 NULL, 603 }, 604 605 [VCS1] = { 606 &decode_info_mi, 607 NULL, 608 NULL, 609 &decode_info_mfx_vc, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 }, 615 }; 616 617 static inline u32 get_opcode(u32 cmd, int ring_id) 618 { 619 const struct decode_info *d_info; 620 621 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 622 if (d_info == NULL) 623 return INVALID_OP; 624 625 return cmd >> (32 - d_info->op_len); 626 } 627 628 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 629 unsigned int opcode, int ring_id) 630 { 631 struct cmd_entry *e; 632 633 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 634 if (opcode == e->info->opcode && e->info->rings & BIT(ring_id)) 635 return e->info; 636 } 637 return NULL; 638 } 639 640 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 641 u32 cmd, int ring_id) 642 { 643 u32 opcode; 644 645 opcode = get_opcode(cmd, ring_id); 646 if (opcode == INVALID_OP) 647 return NULL; 648 649 return find_cmd_entry(gvt, opcode, ring_id); 650 } 651 652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 653 { 654 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 655 } 656 657 static inline void print_opcode(u32 cmd, int ring_id) 658 { 659 const struct decode_info *d_info; 660 int i; 661 662 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 663 if (d_info == NULL) 664 return; 665 666 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 667 cmd >> (32 - d_info->op_len), d_info->name); 668 669 for (i = 0; i < d_info->nr_sub_op; i++) 670 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 671 d_info->sub_op[i].low)); 672 673 pr_err("\n"); 674 } 675 676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 677 { 678 return s->ip_va + (index << 2); 679 } 680 681 static inline u32 cmd_val(struct parser_exec_state *s, int index) 682 { 683 return *cmd_ptr(s, index); 684 } 685 686 static void parser_exec_state_dump(struct parser_exec_state *s) 687 { 688 int cnt = 0; 689 int i; 690 691 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 692 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 693 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 694 s->ring_head, s->ring_tail); 695 696 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 697 s->buf_type == RING_BUFFER_INSTRUCTION ? 698 "RING_BUFFER" : "BATCH_BUFFER", 699 s->buf_addr_type == GTT_BUFFER ? 700 "GTT" : "PPGTT", s->ip_gma); 701 702 if (s->ip_va == NULL) { 703 gvt_dbg_cmd(" ip_va(NULL)"); 704 return; 705 } 706 707 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 708 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 709 cmd_val(s, 2), cmd_val(s, 3)); 710 711 print_opcode(cmd_val(s, 0), s->ring_id); 712 713 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 714 715 while (cnt < 1024) { 716 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 717 for (i = 0; i < 8; i++) 718 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 719 gvt_dbg_cmd("\n"); 720 721 s->ip_va += 8 * sizeof(u32); 722 cnt += 8; 723 } 724 } 725 726 static inline void update_ip_va(struct parser_exec_state *s) 727 { 728 unsigned long len = 0; 729 730 if (WARN_ON(s->ring_head == s->ring_tail)) 731 return; 732 733 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 734 unsigned long ring_top = s->ring_start + s->ring_size; 735 736 if (s->ring_head > s->ring_tail) { 737 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 738 len = (s->ip_gma - s->ring_head); 739 else if (s->ip_gma >= s->ring_start && 740 s->ip_gma <= s->ring_tail) 741 len = (ring_top - s->ring_head) + 742 (s->ip_gma - s->ring_start); 743 } else 744 len = (s->ip_gma - s->ring_head); 745 746 s->ip_va = s->rb_va + len; 747 } else {/* shadow batch buffer */ 748 s->ip_va = s->ret_bb_va; 749 } 750 } 751 752 static inline int ip_gma_set(struct parser_exec_state *s, 753 unsigned long ip_gma) 754 { 755 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 756 757 s->ip_gma = ip_gma; 758 update_ip_va(s); 759 return 0; 760 } 761 762 static inline int ip_gma_advance(struct parser_exec_state *s, 763 unsigned int dw_len) 764 { 765 s->ip_gma += (dw_len << 2); 766 767 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 768 if (s->ip_gma >= s->ring_start + s->ring_size) 769 s->ip_gma -= s->ring_size; 770 update_ip_va(s); 771 } else { 772 s->ip_va += (dw_len << 2); 773 } 774 775 return 0; 776 } 777 778 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 779 { 780 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 781 return info->len; 782 else 783 return (cmd & ((1U << info->len) - 1)) + 2; 784 return 0; 785 } 786 787 static inline int cmd_length(struct parser_exec_state *s) 788 { 789 return get_cmd_length(s->info, cmd_val(s, 0)); 790 } 791 792 /* do not remove this, some platform may need clflush here */ 793 #define patch_value(s, addr, val) do { \ 794 *addr = val; \ 795 } while (0) 796 797 static bool is_shadowed_mmio(unsigned int offset) 798 { 799 bool ret = false; 800 801 if ((offset == 0x2168) || /*BB current head register UDW */ 802 (offset == 0x2140) || /*BB current header register */ 803 (offset == 0x211c) || /*second BB header register UDW */ 804 (offset == 0x2114)) { /*second BB header register UDW */ 805 ret = true; 806 } 807 return ret; 808 } 809 810 static inline bool is_force_nonpriv_mmio(unsigned int offset) 811 { 812 return (offset >= 0x24d0 && offset < 0x2500); 813 } 814 815 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 816 unsigned int offset, unsigned int index, char *cmd) 817 { 818 struct intel_gvt *gvt = s->vgpu->gvt; 819 unsigned int data; 820 u32 ring_base; 821 u32 nopid; 822 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 823 824 if (!strcmp(cmd, "lri")) 825 data = cmd_val(s, index + 1); 826 else { 827 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 828 offset, cmd); 829 return -EINVAL; 830 } 831 832 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 833 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 834 835 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 836 data != nopid) { 837 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 838 offset, data); 839 patch_value(s, cmd_ptr(s, index), nopid); 840 return 0; 841 } 842 return 0; 843 } 844 845 static inline bool is_mocs_mmio(unsigned int offset) 846 { 847 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 848 ((offset >= 0xb020) && (offset <= 0xb0a0)); 849 } 850 851 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 852 unsigned int offset, unsigned int index) 853 { 854 if (!is_mocs_mmio(offset)) 855 return -EINVAL; 856 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 857 return 0; 858 } 859 860 static int cmd_reg_handler(struct parser_exec_state *s, 861 unsigned int offset, unsigned int index, char *cmd) 862 { 863 struct intel_vgpu *vgpu = s->vgpu; 864 struct intel_gvt *gvt = vgpu->gvt; 865 u32 ctx_sr_ctl; 866 867 if (offset + 4 > gvt->device_info.mmio_size) { 868 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 869 cmd, offset); 870 return -EFAULT; 871 } 872 873 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 874 gvt_vgpu_err("%s access to non-render register (%x)\n", 875 cmd, offset); 876 return -EBADRQC; 877 } 878 879 if (is_shadowed_mmio(offset)) { 880 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 881 return 0; 882 } 883 884 if (is_mocs_mmio(offset) && 885 mocs_cmd_reg_handler(s, offset, index)) 886 return -EINVAL; 887 888 if (is_force_nonpriv_mmio(offset) && 889 force_nonpriv_reg_handler(s, offset, index, cmd)) 890 return -EPERM; 891 892 if (offset == i915_mmio_reg_offset(DERRMR) || 893 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 894 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 895 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 896 } 897 898 /* TODO 899 * In order to let workload with inhibit context to generate 900 * correct image data into memory, vregs values will be loaded to 901 * hw via LRIs in the workload with inhibit context. But as 902 * indirect context is loaded prior to LRIs in workload, we don't 903 * want reg values specified in indirect context overwritten by 904 * LRIs in workloads. So, when scanning an indirect context, we 905 * update reg values in it into vregs, so LRIs in workload with 906 * inhibit context will restore with correct values 907 */ 908 if (IS_GEN(gvt->dev_priv, 9) && 909 intel_gvt_mmio_is_in_ctx(gvt, offset) && 910 !strncmp(cmd, "lri", 3)) { 911 intel_gvt_hypervisor_read_gpa(s->vgpu, 912 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 913 /* check inhibit context */ 914 if (ctx_sr_ctl & 1) { 915 u32 data = cmd_val(s, index + 1); 916 917 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 918 intel_vgpu_mask_mmio_write(vgpu, 919 offset, &data, 4); 920 else 921 vgpu_vreg(vgpu, offset) = data; 922 } 923 } 924 925 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 926 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 927 return 0; 928 } 929 930 #define cmd_reg(s, i) \ 931 (cmd_val(s, i) & GENMASK(22, 2)) 932 933 #define cmd_reg_inhibit(s, i) \ 934 (cmd_val(s, i) & GENMASK(22, 18)) 935 936 #define cmd_gma(s, i) \ 937 (cmd_val(s, i) & GENMASK(31, 2)) 938 939 #define cmd_gma_hi(s, i) \ 940 (cmd_val(s, i) & GENMASK(15, 0)) 941 942 static int cmd_handler_lri(struct parser_exec_state *s) 943 { 944 int i, ret = 0; 945 int cmd_len = cmd_length(s); 946 struct intel_gvt *gvt = s->vgpu->gvt; 947 948 for (i = 1; i < cmd_len; i += 2) { 949 if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) { 950 if (s->ring_id == BCS0 && 951 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 952 ret |= 0; 953 else 954 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 955 } 956 if (ret) 957 break; 958 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 959 if (ret) 960 break; 961 } 962 return ret; 963 } 964 965 static int cmd_handler_lrr(struct parser_exec_state *s) 966 { 967 int i, ret = 0; 968 int cmd_len = cmd_length(s); 969 970 for (i = 1; i < cmd_len; i += 2) { 971 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 972 ret |= ((cmd_reg_inhibit(s, i) || 973 (cmd_reg_inhibit(s, i + 1)))) ? 974 -EBADRQC : 0; 975 if (ret) 976 break; 977 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 978 if (ret) 979 break; 980 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 981 if (ret) 982 break; 983 } 984 return ret; 985 } 986 987 static inline int cmd_address_audit(struct parser_exec_state *s, 988 unsigned long guest_gma, int op_size, bool index_mode); 989 990 static int cmd_handler_lrm(struct parser_exec_state *s) 991 { 992 struct intel_gvt *gvt = s->vgpu->gvt; 993 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 994 unsigned long gma; 995 int i, ret = 0; 996 int cmd_len = cmd_length(s); 997 998 for (i = 1; i < cmd_len;) { 999 if (IS_BROADWELL(gvt->dev_priv)) 1000 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1001 if (ret) 1002 break; 1003 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1004 if (ret) 1005 break; 1006 if (cmd_val(s, 0) & (1 << 22)) { 1007 gma = cmd_gma(s, i + 1); 1008 if (gmadr_bytes == 8) 1009 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1010 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1011 if (ret) 1012 break; 1013 } 1014 i += gmadr_dw_number(s) + 1; 1015 } 1016 return ret; 1017 } 1018 1019 static int cmd_handler_srm(struct parser_exec_state *s) 1020 { 1021 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1022 unsigned long gma; 1023 int i, ret = 0; 1024 int cmd_len = cmd_length(s); 1025 1026 for (i = 1; i < cmd_len;) { 1027 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1028 if (ret) 1029 break; 1030 if (cmd_val(s, 0) & (1 << 22)) { 1031 gma = cmd_gma(s, i + 1); 1032 if (gmadr_bytes == 8) 1033 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1034 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1035 if (ret) 1036 break; 1037 } 1038 i += gmadr_dw_number(s) + 1; 1039 } 1040 return ret; 1041 } 1042 1043 struct cmd_interrupt_event { 1044 int pipe_control_notify; 1045 int mi_flush_dw; 1046 int mi_user_interrupt; 1047 }; 1048 1049 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1050 [RCS0] = { 1051 .pipe_control_notify = RCS_PIPE_CONTROL, 1052 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1053 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1054 }, 1055 [BCS0] = { 1056 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1057 .mi_flush_dw = BCS_MI_FLUSH_DW, 1058 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1059 }, 1060 [VCS0] = { 1061 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1062 .mi_flush_dw = VCS_MI_FLUSH_DW, 1063 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1064 }, 1065 [VCS1] = { 1066 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1067 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1068 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1069 }, 1070 [VECS0] = { 1071 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1072 .mi_flush_dw = VECS_MI_FLUSH_DW, 1073 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1074 }, 1075 }; 1076 1077 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1078 { 1079 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1080 unsigned long gma; 1081 bool index_mode = false; 1082 unsigned int post_sync; 1083 int ret = 0; 1084 u32 hws_pga, val; 1085 1086 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1087 1088 /* LRI post sync */ 1089 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1090 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1091 /* post sync */ 1092 else if (post_sync) { 1093 if (post_sync == 2) 1094 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1095 else if (post_sync == 3) 1096 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1097 else if (post_sync == 1) { 1098 /* check ggtt*/ 1099 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1100 gma = cmd_val(s, 2) & GENMASK(31, 3); 1101 if (gmadr_bytes == 8) 1102 gma |= (cmd_gma_hi(s, 3)) << 32; 1103 /* Store Data Index */ 1104 if (cmd_val(s, 1) & (1 << 21)) 1105 index_mode = true; 1106 ret |= cmd_address_audit(s, gma, sizeof(u64), 1107 index_mode); 1108 if (ret) 1109 return ret; 1110 if (index_mode) { 1111 hws_pga = s->vgpu->hws_pga[s->ring_id]; 1112 gma = hws_pga + gma; 1113 patch_value(s, cmd_ptr(s, 2), gma); 1114 val = cmd_val(s, 1) & (~(1 << 21)); 1115 patch_value(s, cmd_ptr(s, 1), val); 1116 } 1117 } 1118 } 1119 } 1120 1121 if (ret) 1122 return ret; 1123 1124 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1125 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1126 s->workload->pending_events); 1127 return 0; 1128 } 1129 1130 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1131 { 1132 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1133 s->workload->pending_events); 1134 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1135 return 0; 1136 } 1137 1138 static int cmd_advance_default(struct parser_exec_state *s) 1139 { 1140 return ip_gma_advance(s, cmd_length(s)); 1141 } 1142 1143 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1144 { 1145 int ret; 1146 1147 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1148 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1149 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1150 s->buf_addr_type = s->saved_buf_addr_type; 1151 } else { 1152 s->buf_type = RING_BUFFER_INSTRUCTION; 1153 s->buf_addr_type = GTT_BUFFER; 1154 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1155 s->ret_ip_gma_ring -= s->ring_size; 1156 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1157 } 1158 return ret; 1159 } 1160 1161 struct mi_display_flip_command_info { 1162 int pipe; 1163 int plane; 1164 int event; 1165 i915_reg_t stride_reg; 1166 i915_reg_t ctrl_reg; 1167 i915_reg_t surf_reg; 1168 u64 stride_val; 1169 u64 tile_val; 1170 u64 surf_val; 1171 bool async_flip; 1172 }; 1173 1174 struct plane_code_mapping { 1175 int pipe; 1176 int plane; 1177 int event; 1178 }; 1179 1180 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1181 struct mi_display_flip_command_info *info) 1182 { 1183 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1184 struct plane_code_mapping gen8_plane_code[] = { 1185 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1186 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1187 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1188 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1189 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1190 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1191 }; 1192 u32 dword0, dword1, dword2; 1193 u32 v; 1194 1195 dword0 = cmd_val(s, 0); 1196 dword1 = cmd_val(s, 1); 1197 dword2 = cmd_val(s, 2); 1198 1199 v = (dword0 & GENMASK(21, 19)) >> 19; 1200 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1201 return -EBADRQC; 1202 1203 info->pipe = gen8_plane_code[v].pipe; 1204 info->plane = gen8_plane_code[v].plane; 1205 info->event = gen8_plane_code[v].event; 1206 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1207 info->tile_val = (dword1 & 0x1); 1208 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1209 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1210 1211 if (info->plane == PLANE_A) { 1212 info->ctrl_reg = DSPCNTR(info->pipe); 1213 info->stride_reg = DSPSTRIDE(info->pipe); 1214 info->surf_reg = DSPSURF(info->pipe); 1215 } else if (info->plane == PLANE_B) { 1216 info->ctrl_reg = SPRCTL(info->pipe); 1217 info->stride_reg = SPRSTRIDE(info->pipe); 1218 info->surf_reg = SPRSURF(info->pipe); 1219 } else { 1220 WARN_ON(1); 1221 return -EBADRQC; 1222 } 1223 return 0; 1224 } 1225 1226 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1227 struct mi_display_flip_command_info *info) 1228 { 1229 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1230 struct intel_vgpu *vgpu = s->vgpu; 1231 u32 dword0 = cmd_val(s, 0); 1232 u32 dword1 = cmd_val(s, 1); 1233 u32 dword2 = cmd_val(s, 2); 1234 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1235 1236 info->plane = PRIMARY_PLANE; 1237 1238 switch (plane) { 1239 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1240 info->pipe = PIPE_A; 1241 info->event = PRIMARY_A_FLIP_DONE; 1242 break; 1243 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1244 info->pipe = PIPE_B; 1245 info->event = PRIMARY_B_FLIP_DONE; 1246 break; 1247 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1248 info->pipe = PIPE_C; 1249 info->event = PRIMARY_C_FLIP_DONE; 1250 break; 1251 1252 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1253 info->pipe = PIPE_A; 1254 info->event = SPRITE_A_FLIP_DONE; 1255 info->plane = SPRITE_PLANE; 1256 break; 1257 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1258 info->pipe = PIPE_B; 1259 info->event = SPRITE_B_FLIP_DONE; 1260 info->plane = SPRITE_PLANE; 1261 break; 1262 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1263 info->pipe = PIPE_C; 1264 info->event = SPRITE_C_FLIP_DONE; 1265 info->plane = SPRITE_PLANE; 1266 break; 1267 1268 default: 1269 gvt_vgpu_err("unknown plane code %d\n", plane); 1270 return -EBADRQC; 1271 } 1272 1273 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1274 info->tile_val = (dword1 & GENMASK(2, 0)); 1275 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1276 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1277 1278 info->ctrl_reg = DSPCNTR(info->pipe); 1279 info->stride_reg = DSPSTRIDE(info->pipe); 1280 info->surf_reg = DSPSURF(info->pipe); 1281 1282 return 0; 1283 } 1284 1285 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1286 struct mi_display_flip_command_info *info) 1287 { 1288 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1289 u32 stride, tile; 1290 1291 if (!info->async_flip) 1292 return 0; 1293 1294 if (INTEL_GEN(dev_priv) >= 9) { 1295 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1296 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1297 GENMASK(12, 10)) >> 10; 1298 } else { 1299 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1300 GENMASK(15, 6)) >> 6; 1301 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1302 } 1303 1304 if (stride != info->stride_val) 1305 gvt_dbg_cmd("cannot change stride during async flip\n"); 1306 1307 if (tile != info->tile_val) 1308 gvt_dbg_cmd("cannot change tile during async flip\n"); 1309 1310 return 0; 1311 } 1312 1313 static int gen8_update_plane_mmio_from_mi_display_flip( 1314 struct parser_exec_state *s, 1315 struct mi_display_flip_command_info *info) 1316 { 1317 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1318 struct intel_vgpu *vgpu = s->vgpu; 1319 1320 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1321 info->surf_val << 12); 1322 if (INTEL_GEN(dev_priv) >= 9) { 1323 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1324 info->stride_val); 1325 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1326 info->tile_val << 10); 1327 } else { 1328 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1329 info->stride_val << 6); 1330 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1331 info->tile_val << 10); 1332 } 1333 1334 if (info->plane == PLANE_PRIMARY) 1335 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1336 1337 if (info->async_flip) 1338 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1339 else 1340 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1341 1342 return 0; 1343 } 1344 1345 static int decode_mi_display_flip(struct parser_exec_state *s, 1346 struct mi_display_flip_command_info *info) 1347 { 1348 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1349 1350 if (IS_BROADWELL(dev_priv)) 1351 return gen8_decode_mi_display_flip(s, info); 1352 if (INTEL_GEN(dev_priv) >= 9) 1353 return skl_decode_mi_display_flip(s, info); 1354 1355 return -ENODEV; 1356 } 1357 1358 static int check_mi_display_flip(struct parser_exec_state *s, 1359 struct mi_display_flip_command_info *info) 1360 { 1361 return gen8_check_mi_display_flip(s, info); 1362 } 1363 1364 static int update_plane_mmio_from_mi_display_flip( 1365 struct parser_exec_state *s, 1366 struct mi_display_flip_command_info *info) 1367 { 1368 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1369 } 1370 1371 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1372 { 1373 struct mi_display_flip_command_info info; 1374 struct intel_vgpu *vgpu = s->vgpu; 1375 int ret; 1376 int i; 1377 int len = cmd_length(s); 1378 1379 ret = decode_mi_display_flip(s, &info); 1380 if (ret) { 1381 gvt_vgpu_err("fail to decode MI display flip command\n"); 1382 return ret; 1383 } 1384 1385 ret = check_mi_display_flip(s, &info); 1386 if (ret) { 1387 gvt_vgpu_err("invalid MI display flip command\n"); 1388 return ret; 1389 } 1390 1391 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1392 if (ret) { 1393 gvt_vgpu_err("fail to update plane mmio\n"); 1394 return ret; 1395 } 1396 1397 for (i = 0; i < len; i++) 1398 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1399 return 0; 1400 } 1401 1402 static bool is_wait_for_flip_pending(u32 cmd) 1403 { 1404 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1405 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1406 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1407 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1408 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1409 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1410 } 1411 1412 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1413 { 1414 u32 cmd = cmd_val(s, 0); 1415 1416 if (!is_wait_for_flip_pending(cmd)) 1417 return 0; 1418 1419 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1420 return 0; 1421 } 1422 1423 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1424 { 1425 unsigned long addr; 1426 unsigned long gma_high, gma_low; 1427 struct intel_vgpu *vgpu = s->vgpu; 1428 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1429 1430 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1431 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1432 return INTEL_GVT_INVALID_ADDR; 1433 } 1434 1435 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1436 if (gmadr_bytes == 4) { 1437 addr = gma_low; 1438 } else { 1439 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1440 addr = (((unsigned long)gma_high) << 32) | gma_low; 1441 } 1442 return addr; 1443 } 1444 1445 static inline int cmd_address_audit(struct parser_exec_state *s, 1446 unsigned long guest_gma, int op_size, bool index_mode) 1447 { 1448 struct intel_vgpu *vgpu = s->vgpu; 1449 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1450 int i; 1451 int ret; 1452 1453 if (op_size > max_surface_size) { 1454 gvt_vgpu_err("command address audit fail name %s\n", 1455 s->info->name); 1456 return -EFAULT; 1457 } 1458 1459 if (index_mode) { 1460 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1461 ret = -EFAULT; 1462 goto err; 1463 } 1464 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1465 ret = -EFAULT; 1466 goto err; 1467 } 1468 1469 return 0; 1470 1471 err: 1472 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1473 s->info->name, guest_gma, op_size); 1474 1475 pr_err("cmd dump: "); 1476 for (i = 0; i < cmd_length(s); i++) { 1477 if (!(i % 4)) 1478 pr_err("\n%08x ", cmd_val(s, i)); 1479 else 1480 pr_err("%08x ", cmd_val(s, i)); 1481 } 1482 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1483 vgpu->id, 1484 vgpu_aperture_gmadr_base(vgpu), 1485 vgpu_aperture_gmadr_end(vgpu), 1486 vgpu_hidden_gmadr_base(vgpu), 1487 vgpu_hidden_gmadr_end(vgpu)); 1488 return ret; 1489 } 1490 1491 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1492 { 1493 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1494 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1495 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1496 unsigned long gma, gma_low, gma_high; 1497 int ret = 0; 1498 1499 /* check ppggt */ 1500 if (!(cmd_val(s, 0) & (1 << 22))) 1501 return 0; 1502 1503 gma = cmd_val(s, 2) & GENMASK(31, 2); 1504 1505 if (gmadr_bytes == 8) { 1506 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1507 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1508 gma = (gma_high << 32) | gma_low; 1509 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1510 } 1511 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1512 return ret; 1513 } 1514 1515 static inline int unexpected_cmd(struct parser_exec_state *s) 1516 { 1517 struct intel_vgpu *vgpu = s->vgpu; 1518 1519 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1520 1521 return -EBADRQC; 1522 } 1523 1524 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1525 { 1526 return unexpected_cmd(s); 1527 } 1528 1529 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1530 { 1531 return unexpected_cmd(s); 1532 } 1533 1534 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1535 { 1536 return unexpected_cmd(s); 1537 } 1538 1539 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1540 { 1541 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1542 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1543 sizeof(u32); 1544 unsigned long gma, gma_high; 1545 int ret = 0; 1546 1547 if (!(cmd_val(s, 0) & (1 << 22))) 1548 return ret; 1549 1550 gma = cmd_val(s, 1) & GENMASK(31, 2); 1551 if (gmadr_bytes == 8) { 1552 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1553 gma = (gma_high << 32) | gma; 1554 } 1555 ret = cmd_address_audit(s, gma, op_size, false); 1556 return ret; 1557 } 1558 1559 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1560 { 1561 return unexpected_cmd(s); 1562 } 1563 1564 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1565 { 1566 return unexpected_cmd(s); 1567 } 1568 1569 static int cmd_handler_mi_conditional_batch_buffer_end( 1570 struct parser_exec_state *s) 1571 { 1572 return unexpected_cmd(s); 1573 } 1574 1575 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1576 { 1577 return unexpected_cmd(s); 1578 } 1579 1580 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1581 { 1582 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1583 unsigned long gma; 1584 bool index_mode = false; 1585 int ret = 0; 1586 u32 hws_pga, val; 1587 1588 /* Check post-sync and ppgtt bit */ 1589 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1590 gma = cmd_val(s, 1) & GENMASK(31, 3); 1591 if (gmadr_bytes == 8) 1592 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1593 /* Store Data Index */ 1594 if (cmd_val(s, 0) & (1 << 21)) 1595 index_mode = true; 1596 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1597 if (ret) 1598 return ret; 1599 if (index_mode) { 1600 hws_pga = s->vgpu->hws_pga[s->ring_id]; 1601 gma = hws_pga + gma; 1602 patch_value(s, cmd_ptr(s, 1), gma); 1603 val = cmd_val(s, 0) & (~(1 << 21)); 1604 patch_value(s, cmd_ptr(s, 0), val); 1605 } 1606 } 1607 /* Check notify bit */ 1608 if ((cmd_val(s, 0) & (1 << 8))) 1609 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1610 s->workload->pending_events); 1611 return ret; 1612 } 1613 1614 static void addr_type_update_snb(struct parser_exec_state *s) 1615 { 1616 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1617 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1618 s->buf_addr_type = PPGTT_BUFFER; 1619 } 1620 } 1621 1622 1623 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1624 unsigned long gma, unsigned long end_gma, void *va) 1625 { 1626 unsigned long copy_len, offset; 1627 unsigned long len = 0; 1628 unsigned long gpa; 1629 1630 while (gma != end_gma) { 1631 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1632 if (gpa == INTEL_GVT_INVALID_ADDR) { 1633 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1634 return -EFAULT; 1635 } 1636 1637 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1638 1639 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1640 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1641 1642 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1643 1644 len += copy_len; 1645 gma += copy_len; 1646 } 1647 return len; 1648 } 1649 1650 1651 /* 1652 * Check whether a batch buffer needs to be scanned. Currently 1653 * the only criteria is based on privilege. 1654 */ 1655 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1656 { 1657 /* Decide privilege based on address space */ 1658 if (cmd_val(s, 0) & (1 << 8) && 1659 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1660 return 0; 1661 return 1; 1662 } 1663 1664 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1665 { 1666 unsigned long gma = 0; 1667 const struct cmd_info *info; 1668 u32 cmd_len = 0; 1669 bool bb_end = false; 1670 struct intel_vgpu *vgpu = s->vgpu; 1671 u32 cmd; 1672 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1673 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1674 1675 *bb_size = 0; 1676 1677 /* get the start gm address of the batch buffer */ 1678 gma = get_gma_bb_from_cmd(s, 1); 1679 if (gma == INTEL_GVT_INVALID_ADDR) 1680 return -EFAULT; 1681 1682 cmd = cmd_val(s, 0); 1683 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1684 if (info == NULL) { 1685 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1686 cmd, get_opcode(cmd, s->ring_id), 1687 (s->buf_addr_type == PPGTT_BUFFER) ? 1688 "ppgtt" : "ggtt", s->ring_id, s->workload); 1689 return -EBADRQC; 1690 } 1691 do { 1692 if (copy_gma_to_hva(s->vgpu, mm, 1693 gma, gma + 4, &cmd) < 0) 1694 return -EFAULT; 1695 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1696 if (info == NULL) { 1697 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1698 cmd, get_opcode(cmd, s->ring_id), 1699 (s->buf_addr_type == PPGTT_BUFFER) ? 1700 "ppgtt" : "ggtt", s->ring_id, s->workload); 1701 return -EBADRQC; 1702 } 1703 1704 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1705 bb_end = true; 1706 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1707 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1708 /* chained batch buffer */ 1709 bb_end = true; 1710 } 1711 cmd_len = get_cmd_length(info, cmd) << 2; 1712 *bb_size += cmd_len; 1713 gma += cmd_len; 1714 } while (!bb_end); 1715 1716 return 0; 1717 } 1718 1719 static int perform_bb_shadow(struct parser_exec_state *s) 1720 { 1721 struct intel_vgpu *vgpu = s->vgpu; 1722 struct intel_vgpu_shadow_bb *bb; 1723 unsigned long gma = 0; 1724 unsigned long bb_size; 1725 int ret = 0; 1726 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1727 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1728 unsigned long start_offset = 0; 1729 1730 /* get the start gm address of the batch buffer */ 1731 gma = get_gma_bb_from_cmd(s, 1); 1732 if (gma == INTEL_GVT_INVALID_ADDR) 1733 return -EFAULT; 1734 1735 ret = find_bb_size(s, &bb_size); 1736 if (ret) 1737 return ret; 1738 1739 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1740 if (!bb) 1741 return -ENOMEM; 1742 1743 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1744 1745 /* the start_offset stores the batch buffer's start gma's 1746 * offset relative to page boundary. so for non-privileged batch 1747 * buffer, the shadowed gem object holds exactly the same page 1748 * layout as original gem object. This is for the convience of 1749 * replacing the whole non-privilged batch buffer page to this 1750 * shadowed one in PPGTT at the same gma address. (this replacing 1751 * action is not implemented yet now, but may be necessary in 1752 * future). 1753 * for prileged batch buffer, we just change start gma address to 1754 * that of shadowed page. 1755 */ 1756 if (bb->ppgtt) 1757 start_offset = gma & ~I915_GTT_PAGE_MASK; 1758 1759 bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv, 1760 round_up(bb_size + start_offset, 1761 PAGE_SIZE)); 1762 if (IS_ERR(bb->obj)) { 1763 ret = PTR_ERR(bb->obj); 1764 goto err_free_bb; 1765 } 1766 1767 ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush); 1768 if (ret) 1769 goto err_free_obj; 1770 1771 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1772 if (IS_ERR(bb->va)) { 1773 ret = PTR_ERR(bb->va); 1774 goto err_finish_shmem_access; 1775 } 1776 1777 if (bb->clflush & CLFLUSH_BEFORE) { 1778 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1779 bb->clflush &= ~CLFLUSH_BEFORE; 1780 } 1781 1782 ret = copy_gma_to_hva(s->vgpu, mm, 1783 gma, gma + bb_size, 1784 bb->va + start_offset); 1785 if (ret < 0) { 1786 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1787 ret = -EFAULT; 1788 goto err_unmap; 1789 } 1790 1791 INIT_LIST_HEAD(&bb->list); 1792 list_add(&bb->list, &s->workload->shadow_bb); 1793 1794 bb->accessing = true; 1795 bb->bb_start_cmd_va = s->ip_va; 1796 1797 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1798 bb->bb_offset = s->ip_va - s->rb_va; 1799 else 1800 bb->bb_offset = 0; 1801 1802 /* 1803 * ip_va saves the virtual address of the shadow batch buffer, while 1804 * ip_gma saves the graphics address of the original batch buffer. 1805 * As the shadow batch buffer is just a copy from the originial one, 1806 * it should be right to use shadow batch buffer'va and original batch 1807 * buffer's gma in pair. After all, we don't want to pin the shadow 1808 * buffer here (too early). 1809 */ 1810 s->ip_va = bb->va + start_offset; 1811 s->ip_gma = gma; 1812 return 0; 1813 err_unmap: 1814 i915_gem_object_unpin_map(bb->obj); 1815 err_finish_shmem_access: 1816 i915_gem_object_finish_access(bb->obj); 1817 err_free_obj: 1818 i915_gem_object_put(bb->obj); 1819 err_free_bb: 1820 kfree(bb); 1821 return ret; 1822 } 1823 1824 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1825 { 1826 bool second_level; 1827 int ret = 0; 1828 struct intel_vgpu *vgpu = s->vgpu; 1829 1830 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1831 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1832 return -EFAULT; 1833 } 1834 1835 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1836 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1837 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1838 return -EFAULT; 1839 } 1840 1841 s->saved_buf_addr_type = s->buf_addr_type; 1842 addr_type_update_snb(s); 1843 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1844 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1845 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1846 } else if (second_level) { 1847 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1848 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1849 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1850 } 1851 1852 if (batch_buffer_needs_scan(s)) { 1853 ret = perform_bb_shadow(s); 1854 if (ret < 0) 1855 gvt_vgpu_err("invalid shadow batch buffer\n"); 1856 } else { 1857 /* emulate a batch buffer end to do return right */ 1858 ret = cmd_handler_mi_batch_buffer_end(s); 1859 if (ret < 0) 1860 return ret; 1861 } 1862 return ret; 1863 } 1864 1865 static int mi_noop_index; 1866 1867 static const struct cmd_info cmd_info[] = { 1868 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1869 1870 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1871 0, 1, NULL}, 1872 1873 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1874 0, 1, cmd_handler_mi_user_interrupt}, 1875 1876 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1877 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1878 1879 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1880 1881 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1882 NULL}, 1883 1884 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1885 NULL}, 1886 1887 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1888 NULL}, 1889 1890 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1891 NULL}, 1892 1893 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1894 D_ALL, 0, 1, NULL}, 1895 1896 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1897 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1898 cmd_handler_mi_batch_buffer_end}, 1899 1900 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1901 0, 1, NULL}, 1902 1903 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1904 NULL}, 1905 1906 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1907 D_ALL, 0, 1, NULL}, 1908 1909 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1910 NULL}, 1911 1912 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1913 NULL}, 1914 1915 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1916 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1917 1918 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1919 0, 8, NULL}, 1920 1921 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1922 1923 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1924 1925 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1926 D_BDW_PLUS, 0, 8, NULL}, 1927 1928 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, 1929 D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1930 1931 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1932 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1933 1934 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1935 0, 8, cmd_handler_mi_store_data_index}, 1936 1937 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1938 D_ALL, 0, 8, cmd_handler_lri}, 1939 1940 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1941 cmd_handler_mi_update_gtt}, 1942 1943 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1944 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1945 1946 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1947 cmd_handler_mi_flush_dw}, 1948 1949 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1950 10, cmd_handler_mi_clflush}, 1951 1952 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1953 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1954 1955 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1956 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1957 1958 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1959 D_ALL, 0, 8, cmd_handler_lrr}, 1960 1961 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1962 D_ALL, 0, 8, NULL}, 1963 1964 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1965 ADDR_FIX_1(2), 8, NULL}, 1966 1967 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1968 ADDR_FIX_1(2), 8, NULL}, 1969 1970 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1971 8, cmd_handler_mi_op_2e}, 1972 1973 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1974 8, cmd_handler_mi_op_2f}, 1975 1976 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1977 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1978 cmd_handler_mi_batch_buffer_start}, 1979 1980 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1981 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1982 cmd_handler_mi_conditional_batch_buffer_end}, 1983 1984 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1985 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1986 1987 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1988 ADDR_FIX_2(4, 7), 8, NULL}, 1989 1990 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1991 0, 8, NULL}, 1992 1993 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1994 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1995 1996 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1997 1998 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1999 0, 8, NULL}, 2000 2001 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2002 ADDR_FIX_1(3), 8, NULL}, 2003 2004 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2005 D_ALL, 0, 8, NULL}, 2006 2007 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2008 ADDR_FIX_1(4), 8, NULL}, 2009 2010 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2011 ADDR_FIX_2(4, 5), 8, NULL}, 2012 2013 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2014 ADDR_FIX_1(4), 8, NULL}, 2015 2016 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2017 ADDR_FIX_2(4, 7), 8, NULL}, 2018 2019 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2020 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2021 2022 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2023 2024 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2025 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2026 2027 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2028 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2029 2030 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2031 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2032 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2033 2034 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2035 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2036 2037 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2038 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2039 2040 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2041 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2042 2043 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2044 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2045 2046 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2047 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2048 2049 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2050 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2051 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2052 2053 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2054 ADDR_FIX_2(4, 5), 8, NULL}, 2055 2056 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2057 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2058 2059 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2060 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2061 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2062 2063 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2064 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2065 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2066 2067 {"3DSTATE_BLEND_STATE_POINTERS", 2068 OP_3DSTATE_BLEND_STATE_POINTERS, 2069 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2070 2071 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2072 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2073 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2074 2075 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2076 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2077 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2078 2079 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2080 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2081 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2082 2083 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2084 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2085 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2086 2087 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2088 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2089 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2090 2091 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2092 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2093 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2094 2095 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2096 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2097 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2098 2099 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2100 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2101 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2102 2103 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2104 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2105 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2106 2107 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2108 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2109 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2110 2111 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2112 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2113 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2114 2115 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2116 0, 8, NULL}, 2117 2118 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2119 0, 8, NULL}, 2120 2121 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2122 0, 8, NULL}, 2123 2124 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2125 0, 8, NULL}, 2126 2127 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2128 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2129 2130 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2131 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2132 2133 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2134 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2135 2136 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2137 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2138 2139 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2140 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2141 2142 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2143 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2144 2145 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2146 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2147 2148 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2149 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2150 2151 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2152 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2153 2154 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2155 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2156 2157 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2158 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2159 2160 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2161 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2162 2163 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2164 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2165 2166 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2167 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2168 2169 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2170 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2171 2172 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2173 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2174 2175 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2176 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2177 2178 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2179 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2180 2181 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2182 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2183 2184 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2185 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2186 2187 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2188 D_BDW_PLUS, 0, 8, NULL}, 2189 2190 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2191 NULL}, 2192 2193 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2194 D_BDW_PLUS, 0, 8, NULL}, 2195 2196 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2197 D_BDW_PLUS, 0, 8, NULL}, 2198 2199 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2200 8, NULL}, 2201 2202 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2203 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2204 2205 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2206 8, NULL}, 2207 2208 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2209 NULL}, 2210 2211 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2212 NULL}, 2213 2214 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2215 NULL}, 2216 2217 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2218 D_BDW_PLUS, 0, 8, NULL}, 2219 2220 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2221 R_RCS, D_ALL, 0, 8, NULL}, 2222 2223 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2224 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2225 2226 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2227 R_RCS, D_ALL, 0, 1, NULL}, 2228 2229 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2230 2231 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2232 R_RCS, D_ALL, 0, 8, NULL}, 2233 2234 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2235 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2236 2237 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2238 2239 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2240 2241 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2244 D_BDW_PLUS, 0, 8, NULL}, 2245 2246 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2247 D_BDW_PLUS, 0, 8, NULL}, 2248 2249 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2250 D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2253 D_BDW_PLUS, 0, 8, NULL}, 2254 2255 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2256 D_BDW_PLUS, 0, 8, NULL}, 2257 2258 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2259 2260 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2261 2262 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2265 D_ALL, 0, 8, NULL}, 2266 2267 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2268 2269 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2270 2271 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2272 R_RCS, D_ALL, 0, 8, NULL}, 2273 2274 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2276 2277 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2278 0, 8, NULL}, 2279 2280 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2281 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2282 2283 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2284 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2285 2286 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2287 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2288 2289 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2290 D_ALL, 0, 8, NULL}, 2291 2292 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2293 D_ALL, 0, 8, NULL}, 2294 2295 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2296 D_ALL, 0, 8, NULL}, 2297 2298 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2299 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2300 2301 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2302 D_BDW_PLUS, 0, 8, NULL}, 2303 2304 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2305 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2306 2307 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2308 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2309 2310 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2311 R_RCS, D_ALL, 0, 8, NULL}, 2312 2313 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2314 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2315 2316 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2317 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2318 2319 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2320 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2321 2322 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2323 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2324 2325 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2326 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2327 2328 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2329 R_RCS, D_ALL, 0, 8, NULL}, 2330 2331 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2332 D_ALL, 0, 9, NULL}, 2333 2334 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2335 ADDR_FIX_2(2, 4), 8, NULL}, 2336 2337 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2338 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2339 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2340 2341 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2342 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2343 2344 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2345 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2346 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2347 2348 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2349 D_BDW_PLUS, 0, 8, NULL}, 2350 2351 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2352 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2353 2354 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2355 2356 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2357 1, NULL}, 2358 2359 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2360 ADDR_FIX_1(1), 8, NULL}, 2361 2362 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2363 2364 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2365 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2366 2367 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2368 ADDR_FIX_1(1), 8, NULL}, 2369 2370 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2371 2372 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2373 2374 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2375 0, 8, NULL}, 2376 2377 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2378 D_SKL_PLUS, 0, 8, NULL}, 2379 2380 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2381 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2382 2383 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2384 0, 16, NULL}, 2385 2386 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2387 0, 16, NULL}, 2388 2389 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2390 0, 16, NULL}, 2391 2392 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2393 2394 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2395 0, 16, NULL}, 2396 2397 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2398 0, 16, NULL}, 2399 2400 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2401 0, 16, NULL}, 2402 2403 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2404 0, 8, NULL}, 2405 2406 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2407 NULL}, 2408 2409 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2410 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2411 2412 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2413 R_VCS, D_ALL, 0, 12, NULL}, 2414 2415 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2416 R_VCS, D_ALL, 0, 12, NULL}, 2417 2418 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2419 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2420 2421 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2422 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2423 2424 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2425 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2426 2427 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2428 2429 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2430 R_VCS, D_ALL, 0, 12, NULL}, 2431 2432 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2433 R_VCS, D_ALL, 0, 12, NULL}, 2434 2435 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2436 R_VCS, D_ALL, 0, 12, NULL}, 2437 2438 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2439 R_VCS, D_ALL, 0, 12, NULL}, 2440 2441 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2442 R_VCS, D_ALL, 0, 12, NULL}, 2443 2444 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2445 R_VCS, D_ALL, 0, 12, NULL}, 2446 2447 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2448 R_VCS, D_ALL, 0, 6, NULL}, 2449 2450 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2451 R_VCS, D_ALL, 0, 12, NULL}, 2452 2453 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2454 R_VCS, D_ALL, 0, 12, NULL}, 2455 2456 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2457 R_VCS, D_ALL, 0, 12, NULL}, 2458 2459 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2460 R_VCS, D_ALL, 0, 12, NULL}, 2461 2462 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2463 R_VCS, D_ALL, 0, 12, NULL}, 2464 2465 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2466 R_VCS, D_ALL, 0, 12, NULL}, 2467 2468 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2469 R_VCS, D_ALL, 0, 12, NULL}, 2470 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2471 R_VCS, D_ALL, 0, 12, NULL}, 2472 2473 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2474 R_VCS, D_ALL, 0, 12, NULL}, 2475 2476 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2477 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2478 2479 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2480 R_VCS, D_ALL, 0, 12, NULL}, 2481 2482 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2483 R_VCS, D_ALL, 0, 12, NULL}, 2484 2485 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2486 R_VCS, D_ALL, 0, 12, NULL}, 2487 2488 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2489 R_VCS, D_ALL, 0, 12, NULL}, 2490 2491 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2492 R_VCS, D_ALL, 0, 12, NULL}, 2493 2494 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2495 R_VCS, D_ALL, 0, 12, NULL}, 2496 2497 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2498 R_VCS, D_ALL, 0, 12, NULL}, 2499 2500 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2501 R_VCS, D_ALL, 0, 12, NULL}, 2502 2503 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2504 R_VCS, D_ALL, 0, 12, NULL}, 2505 2506 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2507 R_VCS, D_ALL, 0, 12, NULL}, 2508 2509 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2510 R_VCS, D_ALL, 0, 12, NULL}, 2511 2512 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2513 0, 16, NULL}, 2514 2515 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2516 2517 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2518 2519 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2520 R_VCS, D_ALL, 0, 12, NULL}, 2521 2522 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2523 R_VCS, D_ALL, 0, 12, NULL}, 2524 2525 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2526 R_VCS, D_ALL, 0, 12, NULL}, 2527 2528 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2529 2530 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2531 0, 12, NULL}, 2532 2533 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2534 0, 12, NULL}, 2535 }; 2536 2537 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2538 { 2539 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2540 } 2541 2542 /* call the cmd handler, and advance ip */ 2543 static int cmd_parser_exec(struct parser_exec_state *s) 2544 { 2545 struct intel_vgpu *vgpu = s->vgpu; 2546 const struct cmd_info *info; 2547 u32 cmd; 2548 int ret = 0; 2549 2550 cmd = cmd_val(s, 0); 2551 2552 /* fastpath for MI_NOOP */ 2553 if (cmd == MI_NOOP) 2554 info = &cmd_info[mi_noop_index]; 2555 else 2556 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2557 2558 if (info == NULL) { 2559 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2560 cmd, get_opcode(cmd, s->ring_id), 2561 (s->buf_addr_type == PPGTT_BUFFER) ? 2562 "ppgtt" : "ggtt", s->ring_id, s->workload); 2563 return -EBADRQC; 2564 } 2565 2566 s->info = info; 2567 2568 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2569 cmd_length(s), s->buf_type, s->buf_addr_type, 2570 s->workload, info->name); 2571 2572 if (info->handler) { 2573 ret = info->handler(s); 2574 if (ret < 0) { 2575 gvt_vgpu_err("%s handler error\n", info->name); 2576 return ret; 2577 } 2578 } 2579 2580 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2581 ret = cmd_advance_default(s); 2582 if (ret) { 2583 gvt_vgpu_err("%s IP advance error\n", info->name); 2584 return ret; 2585 } 2586 } 2587 return 0; 2588 } 2589 2590 static inline bool gma_out_of_range(unsigned long gma, 2591 unsigned long gma_head, unsigned int gma_tail) 2592 { 2593 if (gma_tail >= gma_head) 2594 return (gma < gma_head) || (gma > gma_tail); 2595 else 2596 return (gma > gma_tail) && (gma < gma_head); 2597 } 2598 2599 /* Keep the consistent return type, e.g EBADRQC for unknown 2600 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2601 * works as the input of VM healthy status. 2602 */ 2603 static int command_scan(struct parser_exec_state *s, 2604 unsigned long rb_head, unsigned long rb_tail, 2605 unsigned long rb_start, unsigned long rb_len) 2606 { 2607 2608 unsigned long gma_head, gma_tail, gma_bottom; 2609 int ret = 0; 2610 struct intel_vgpu *vgpu = s->vgpu; 2611 2612 gma_head = rb_start + rb_head; 2613 gma_tail = rb_start + rb_tail; 2614 gma_bottom = rb_start + rb_len; 2615 2616 while (s->ip_gma != gma_tail) { 2617 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2618 if (!(s->ip_gma >= rb_start) || 2619 !(s->ip_gma < gma_bottom)) { 2620 gvt_vgpu_err("ip_gma %lx out of ring scope." 2621 "(base:0x%lx, bottom: 0x%lx)\n", 2622 s->ip_gma, rb_start, 2623 gma_bottom); 2624 parser_exec_state_dump(s); 2625 return -EFAULT; 2626 } 2627 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2628 gvt_vgpu_err("ip_gma %lx out of range." 2629 "base 0x%lx head 0x%lx tail 0x%lx\n", 2630 s->ip_gma, rb_start, 2631 rb_head, rb_tail); 2632 parser_exec_state_dump(s); 2633 break; 2634 } 2635 } 2636 ret = cmd_parser_exec(s); 2637 if (ret) { 2638 gvt_vgpu_err("cmd parser error\n"); 2639 parser_exec_state_dump(s); 2640 break; 2641 } 2642 } 2643 2644 return ret; 2645 } 2646 2647 static int scan_workload(struct intel_vgpu_workload *workload) 2648 { 2649 unsigned long gma_head, gma_tail, gma_bottom; 2650 struct parser_exec_state s; 2651 int ret = 0; 2652 2653 /* ring base is page aligned */ 2654 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2655 return -EINVAL; 2656 2657 gma_head = workload->rb_start + workload->rb_head; 2658 gma_tail = workload->rb_start + workload->rb_tail; 2659 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2660 2661 s.buf_type = RING_BUFFER_INSTRUCTION; 2662 s.buf_addr_type = GTT_BUFFER; 2663 s.vgpu = workload->vgpu; 2664 s.ring_id = workload->ring_id; 2665 s.ring_start = workload->rb_start; 2666 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2667 s.ring_head = gma_head; 2668 s.ring_tail = gma_tail; 2669 s.rb_va = workload->shadow_ring_buffer_va; 2670 s.workload = workload; 2671 s.is_ctx_wa = false; 2672 2673 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2674 gma_head == gma_tail) 2675 return 0; 2676 2677 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2678 ret = -EINVAL; 2679 goto out; 2680 } 2681 2682 ret = ip_gma_set(&s, gma_head); 2683 if (ret) 2684 goto out; 2685 2686 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2687 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2688 2689 out: 2690 return ret; 2691 } 2692 2693 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2694 { 2695 2696 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2697 struct parser_exec_state s; 2698 int ret = 0; 2699 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2700 struct intel_vgpu_workload, 2701 wa_ctx); 2702 2703 /* ring base is page aligned */ 2704 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2705 I915_GTT_PAGE_SIZE))) 2706 return -EINVAL; 2707 2708 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2709 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2710 PAGE_SIZE); 2711 gma_head = wa_ctx->indirect_ctx.guest_gma; 2712 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2713 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2714 2715 s.buf_type = RING_BUFFER_INSTRUCTION; 2716 s.buf_addr_type = GTT_BUFFER; 2717 s.vgpu = workload->vgpu; 2718 s.ring_id = workload->ring_id; 2719 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2720 s.ring_size = ring_size; 2721 s.ring_head = gma_head; 2722 s.ring_tail = gma_tail; 2723 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2724 s.workload = workload; 2725 s.is_ctx_wa = true; 2726 2727 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2728 ret = -EINVAL; 2729 goto out; 2730 } 2731 2732 ret = ip_gma_set(&s, gma_head); 2733 if (ret) 2734 goto out; 2735 2736 ret = command_scan(&s, 0, ring_tail, 2737 wa_ctx->indirect_ctx.guest_gma, ring_size); 2738 out: 2739 return ret; 2740 } 2741 2742 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2743 { 2744 struct intel_vgpu *vgpu = workload->vgpu; 2745 struct intel_vgpu_submission *s = &vgpu->submission; 2746 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2747 void *shadow_ring_buffer_va; 2748 int ring_id = workload->ring_id; 2749 int ret; 2750 2751 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2752 2753 /* calculate workload ring buffer size */ 2754 workload->rb_len = (workload->rb_tail + guest_rb_size - 2755 workload->rb_head) % guest_rb_size; 2756 2757 gma_head = workload->rb_start + workload->rb_head; 2758 gma_tail = workload->rb_start + workload->rb_tail; 2759 gma_top = workload->rb_start + guest_rb_size; 2760 2761 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2762 void *p; 2763 2764 /* realloc the new ring buffer if needed */ 2765 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2766 GFP_KERNEL); 2767 if (!p) { 2768 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2769 return -ENOMEM; 2770 } 2771 s->ring_scan_buffer[ring_id] = p; 2772 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2773 } 2774 2775 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2776 2777 /* get shadow ring buffer va */ 2778 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2779 2780 /* head > tail --> copy head <-> top */ 2781 if (gma_head > gma_tail) { 2782 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2783 gma_head, gma_top, shadow_ring_buffer_va); 2784 if (ret < 0) { 2785 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2786 return ret; 2787 } 2788 shadow_ring_buffer_va += ret; 2789 gma_head = workload->rb_start; 2790 } 2791 2792 /* copy head or start <-> tail */ 2793 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2794 shadow_ring_buffer_va); 2795 if (ret < 0) { 2796 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2797 return ret; 2798 } 2799 return 0; 2800 } 2801 2802 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2803 { 2804 int ret; 2805 struct intel_vgpu *vgpu = workload->vgpu; 2806 2807 ret = shadow_workload_ring_buffer(workload); 2808 if (ret) { 2809 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2810 return ret; 2811 } 2812 2813 ret = scan_workload(workload); 2814 if (ret) { 2815 gvt_vgpu_err("scan workload error\n"); 2816 return ret; 2817 } 2818 return 0; 2819 } 2820 2821 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2822 { 2823 int ctx_size = wa_ctx->indirect_ctx.size; 2824 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2825 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2826 struct intel_vgpu_workload, 2827 wa_ctx); 2828 struct intel_vgpu *vgpu = workload->vgpu; 2829 struct drm_i915_gem_object *obj; 2830 int ret = 0; 2831 void *map; 2832 2833 obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv, 2834 roundup(ctx_size + CACHELINE_BYTES, 2835 PAGE_SIZE)); 2836 if (IS_ERR(obj)) 2837 return PTR_ERR(obj); 2838 2839 /* get the va of the shadow batch buffer */ 2840 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2841 if (IS_ERR(map)) { 2842 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2843 ret = PTR_ERR(map); 2844 goto put_obj; 2845 } 2846 2847 i915_gem_object_lock(obj); 2848 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2849 i915_gem_object_unlock(obj); 2850 if (ret) { 2851 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2852 goto unmap_src; 2853 } 2854 2855 ret = copy_gma_to_hva(workload->vgpu, 2856 workload->vgpu->gtt.ggtt_mm, 2857 guest_gma, guest_gma + ctx_size, 2858 map); 2859 if (ret < 0) { 2860 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2861 goto unmap_src; 2862 } 2863 2864 wa_ctx->indirect_ctx.obj = obj; 2865 wa_ctx->indirect_ctx.shadow_va = map; 2866 return 0; 2867 2868 unmap_src: 2869 i915_gem_object_unpin_map(obj); 2870 put_obj: 2871 i915_gem_object_put(obj); 2872 return ret; 2873 } 2874 2875 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2876 { 2877 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 2878 unsigned char *bb_start_sva; 2879 2880 if (!wa_ctx->per_ctx.valid) 2881 return 0; 2882 2883 per_ctx_start[0] = 0x18800001; 2884 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2885 2886 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2887 wa_ctx->indirect_ctx.size; 2888 2889 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2890 2891 return 0; 2892 } 2893 2894 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2895 { 2896 int ret; 2897 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2898 struct intel_vgpu_workload, 2899 wa_ctx); 2900 struct intel_vgpu *vgpu = workload->vgpu; 2901 2902 if (wa_ctx->indirect_ctx.size == 0) 2903 return 0; 2904 2905 ret = shadow_indirect_ctx(wa_ctx); 2906 if (ret) { 2907 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2908 return ret; 2909 } 2910 2911 combine_wa_ctx(wa_ctx); 2912 2913 ret = scan_wa_ctx(wa_ctx); 2914 if (ret) { 2915 gvt_vgpu_err("scan wa ctx error\n"); 2916 return ret; 2917 } 2918 2919 return 0; 2920 } 2921 2922 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2923 unsigned int opcode, unsigned long rings) 2924 { 2925 const struct cmd_info *info = NULL; 2926 unsigned int ring; 2927 2928 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2929 info = find_cmd_entry(gvt, opcode, ring); 2930 if (info) 2931 break; 2932 } 2933 return info; 2934 } 2935 2936 static int init_cmd_table(struct intel_gvt *gvt) 2937 { 2938 int i; 2939 struct cmd_entry *e; 2940 const struct cmd_info *info; 2941 unsigned int gen_type; 2942 2943 gen_type = intel_gvt_get_device_type(gvt); 2944 2945 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2946 if (!(cmd_info[i].devices & gen_type)) 2947 continue; 2948 2949 e = kzalloc(sizeof(*e), GFP_KERNEL); 2950 if (!e) 2951 return -ENOMEM; 2952 2953 e->info = &cmd_info[i]; 2954 info = find_cmd_entry_any_ring(gvt, 2955 e->info->opcode, e->info->rings); 2956 if (info) { 2957 gvt_err("%s %s duplicated\n", e->info->name, 2958 info->name); 2959 kfree(e); 2960 return -EEXIST; 2961 } 2962 if (cmd_info[i].opcode == OP_MI_NOOP) 2963 mi_noop_index = i; 2964 2965 INIT_HLIST_NODE(&e->hlist); 2966 add_cmd_entry(gvt, e); 2967 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2968 e->info->name, e->info->opcode, e->info->flag, 2969 e->info->devices, e->info->rings); 2970 } 2971 return 0; 2972 } 2973 2974 static void clean_cmd_table(struct intel_gvt *gvt) 2975 { 2976 struct hlist_node *tmp; 2977 struct cmd_entry *e; 2978 int i; 2979 2980 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2981 kfree(e); 2982 2983 hash_init(gvt->cmd_table); 2984 } 2985 2986 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2987 { 2988 clean_cmd_table(gvt); 2989 } 2990 2991 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2992 { 2993 int ret; 2994 2995 ret = init_cmd_table(gvt); 2996 if (ret) { 2997 intel_gvt_clean_cmd_parser(gvt); 2998 return ret; 2999 } 3000 return 0; 3001 } 3002