xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 232b0b08)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 
176 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
180 
181 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247 
248 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259 
260 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
288 
289 /* VCCP Command Parser */
290 
291 /*
292  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293  * git://anongit.freedesktop.org/vaapi/intel-driver
294  * src/i965_defines.h
295  *
296  */
297 
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
299 	(3 << 13 | \
300 	 (pipeline) << 11 | \
301 	 (op) << 8 | \
302 	 (sub_opa) << 5 | \
303 	 (sub_opb))
304 
305 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
306 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
310 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
311 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
312 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
313 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
316 
317 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
318 
319 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
331 
332 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
337 
338 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
343 
344 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
347 
348 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
351 
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353 	(3 << 13 | \
354 	 (pipeline) << 11 | \
355 	 (op) << 8 | \
356 	 (sub_opa) << 5 | \
357 	 (sub_opb))
358 
359 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
362 
363 struct parser_exec_state;
364 
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366 
367 #define GVT_CMD_HASH_BITS   7
368 
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1)			(1 << (x1))
371 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375 
376 struct cmd_info {
377 	char *name;
378 	u32 opcode;
379 
380 #define F_LEN_MASK	(1U<<0)
381 #define F_LEN_CONST  1U
382 #define F_LEN_VAR    0U
383 
384 /*
385  * command has its own ip advance logic
386  * e.g. MI_BATCH_START, MI_BATCH_END
387  */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389 
390 #define F_POST_HANDLE	(1<<2)
391 	u32 flag;
392 
393 #define R_RCS	(1 << RCS)
394 #define R_VCS1  (1 << VCS)
395 #define R_VCS2  (1 << VCS2)
396 #define R_VCS	(R_VCS1 | R_VCS2)
397 #define R_BCS	(1 << BCS)
398 #define R_VECS	(1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
401 	uint16_t rings;
402 
403 	/* devices that support this cmd: SNB/IVB/HSW/... */
404 	uint16_t devices;
405 
406 	/* which DWords are address that need fix up.
407 	 * bit 0 means a 32-bit non address operand in command
408 	 * bit 1 means address operand, which could be 32-bit
409 	 * or 64-bit depending on different architectures.(
410 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411 	 * No matter the address length, each address only takes
412 	 * one bit in the bitmap.
413 	 */
414 	uint16_t addr_bitmap;
415 
416 	/* flag == F_LEN_CONST : command length
417 	 * flag == F_LEN_VAR : length bias bits
418 	 * Note: length is in DWord
419 	 */
420 	uint8_t	len;
421 
422 	parser_cmd_handler handler;
423 };
424 
425 struct cmd_entry {
426 	struct hlist_node hlist;
427 	struct cmd_info *info;
428 };
429 
430 enum {
431 	RING_BUFFER_INSTRUCTION,
432 	BATCH_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_2ND_LEVEL,
434 };
435 
436 enum {
437 	GTT_BUFFER,
438 	PPGTT_BUFFER
439 };
440 
441 struct parser_exec_state {
442 	struct intel_vgpu *vgpu;
443 	int ring_id;
444 
445 	int buf_type;
446 
447 	/* batch buffer address type */
448 	int buf_addr_type;
449 
450 	/* graphics memory address of ring buffer start */
451 	unsigned long ring_start;
452 	unsigned long ring_size;
453 	unsigned long ring_head;
454 	unsigned long ring_tail;
455 
456 	/* instruction graphics memory address */
457 	unsigned long ip_gma;
458 
459 	/* mapped va of the instr_gma */
460 	void *ip_va;
461 	void *rb_va;
462 
463 	void *ret_bb_va;
464 	/* next instruction when return from  batch buffer to ring buffer */
465 	unsigned long ret_ip_gma_ring;
466 
467 	/* next instruction when return from 2nd batch buffer to batch buffer */
468 	unsigned long ret_ip_gma_bb;
469 
470 	/* batch buffer address type (GTT or PPGTT)
471 	 * used when ret from 2nd level batch buffer
472 	 */
473 	int saved_buf_addr_type;
474 
475 	struct cmd_info *info;
476 
477 	struct intel_vgpu_workload *workload;
478 };
479 
480 #define gmadr_dw_number(s)	\
481 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
482 
483 static unsigned long bypass_scan_mask = 0;
484 
485 /* ring ALL, type = 0 */
486 static struct sub_op_bits sub_op_mi[] = {
487 	{31, 29},
488 	{28, 23},
489 };
490 
491 static struct decode_info decode_info_mi = {
492 	"MI",
493 	OP_LEN_MI,
494 	ARRAY_SIZE(sub_op_mi),
495 	sub_op_mi,
496 };
497 
498 /* ring RCS, command type 2 */
499 static struct sub_op_bits sub_op_2d[] = {
500 	{31, 29},
501 	{28, 22},
502 };
503 
504 static struct decode_info decode_info_2d = {
505 	"2D",
506 	OP_LEN_2D,
507 	ARRAY_SIZE(sub_op_2d),
508 	sub_op_2d,
509 };
510 
511 /* ring RCS, command type 3 */
512 static struct sub_op_bits sub_op_3d_media[] = {
513 	{31, 29},
514 	{28, 27},
515 	{26, 24},
516 	{23, 16},
517 };
518 
519 static struct decode_info decode_info_3d_media = {
520 	"3D_Media",
521 	OP_LEN_3D_MEDIA,
522 	ARRAY_SIZE(sub_op_3d_media),
523 	sub_op_3d_media,
524 };
525 
526 /* ring VCS, command type 3 */
527 static struct sub_op_bits sub_op_mfx_vc[] = {
528 	{31, 29},
529 	{28, 27},
530 	{26, 24},
531 	{23, 21},
532 	{20, 16},
533 };
534 
535 static struct decode_info decode_info_mfx_vc = {
536 	"MFX_VC",
537 	OP_LEN_MFX_VC,
538 	ARRAY_SIZE(sub_op_mfx_vc),
539 	sub_op_mfx_vc,
540 };
541 
542 /* ring VECS, command type 3 */
543 static struct sub_op_bits sub_op_vebox[] = {
544 	{31, 29},
545 	{28, 27},
546 	{26, 24},
547 	{23, 21},
548 	{20, 16},
549 };
550 
551 static struct decode_info decode_info_vebox = {
552 	"VEBOX",
553 	OP_LEN_VEBOX,
554 	ARRAY_SIZE(sub_op_vebox),
555 	sub_op_vebox,
556 };
557 
558 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
559 	[RCS] = {
560 		&decode_info_mi,
561 		NULL,
562 		NULL,
563 		&decode_info_3d_media,
564 		NULL,
565 		NULL,
566 		NULL,
567 		NULL,
568 	},
569 
570 	[VCS] = {
571 		&decode_info_mi,
572 		NULL,
573 		NULL,
574 		&decode_info_mfx_vc,
575 		NULL,
576 		NULL,
577 		NULL,
578 		NULL,
579 	},
580 
581 	[BCS] = {
582 		&decode_info_mi,
583 		NULL,
584 		&decode_info_2d,
585 		NULL,
586 		NULL,
587 		NULL,
588 		NULL,
589 		NULL,
590 	},
591 
592 	[VECS] = {
593 		&decode_info_mi,
594 		NULL,
595 		NULL,
596 		&decode_info_vebox,
597 		NULL,
598 		NULL,
599 		NULL,
600 		NULL,
601 	},
602 
603 	[VCS2] = {
604 		&decode_info_mi,
605 		NULL,
606 		NULL,
607 		&decode_info_mfx_vc,
608 		NULL,
609 		NULL,
610 		NULL,
611 		NULL,
612 	},
613 };
614 
615 static inline u32 get_opcode(u32 cmd, int ring_id)
616 {
617 	struct decode_info *d_info;
618 
619 	if (ring_id >= I915_NUM_ENGINES)
620 		return INVALID_OP;
621 
622 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
623 	if (d_info == NULL)
624 		return INVALID_OP;
625 
626 	return cmd >> (32 - d_info->op_len);
627 }
628 
629 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
630 		unsigned int opcode, int ring_id)
631 {
632 	struct cmd_entry *e;
633 
634 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
635 		if ((opcode == e->info->opcode) &&
636 				(e->info->rings & (1 << ring_id)))
637 			return e->info;
638 	}
639 	return NULL;
640 }
641 
642 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
643 		u32 cmd, int ring_id)
644 {
645 	u32 opcode;
646 
647 	opcode = get_opcode(cmd, ring_id);
648 	if (opcode == INVALID_OP)
649 		return NULL;
650 
651 	return find_cmd_entry(gvt, opcode, ring_id);
652 }
653 
654 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
655 {
656 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
657 }
658 
659 static inline void print_opcode(u32 cmd, int ring_id)
660 {
661 	struct decode_info *d_info;
662 	int i;
663 
664 	if (ring_id >= I915_NUM_ENGINES)
665 		return;
666 
667 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
668 	if (d_info == NULL)
669 		return;
670 
671 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
672 			cmd >> (32 - d_info->op_len), d_info->name);
673 
674 	for (i = 0; i < d_info->nr_sub_op; i++)
675 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
676 					d_info->sub_op[i].low));
677 
678 	pr_err("\n");
679 }
680 
681 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
682 {
683 	return s->ip_va + (index << 2);
684 }
685 
686 static inline u32 cmd_val(struct parser_exec_state *s, int index)
687 {
688 	return *cmd_ptr(s, index);
689 }
690 
691 static void parser_exec_state_dump(struct parser_exec_state *s)
692 {
693 	int cnt = 0;
694 	int i;
695 
696 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
697 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
698 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
699 			s->ring_head, s->ring_tail);
700 
701 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
702 			s->buf_type == RING_BUFFER_INSTRUCTION ?
703 			"RING_BUFFER" : "BATCH_BUFFER",
704 			s->buf_addr_type == GTT_BUFFER ?
705 			"GTT" : "PPGTT", s->ip_gma);
706 
707 	if (s->ip_va == NULL) {
708 		gvt_dbg_cmd(" ip_va(NULL)");
709 		return;
710 	}
711 
712 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
713 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
714 			cmd_val(s, 2), cmd_val(s, 3));
715 
716 	print_opcode(cmd_val(s, 0), s->ring_id);
717 
718 	/* print the whole page to trace */
719 	pr_err("    ip_va=%p: %08x %08x %08x %08x\n",
720 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
721 			cmd_val(s, 2), cmd_val(s, 3));
722 
723 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
724 
725 	while (cnt < 1024) {
726 		pr_err("ip_va=%p: ", s->ip_va);
727 		for (i = 0; i < 8; i++)
728 			pr_err("%08x ", cmd_val(s, i));
729 		pr_err("\n");
730 
731 		s->ip_va += 8 * sizeof(u32);
732 		cnt += 8;
733 	}
734 }
735 
736 static inline void update_ip_va(struct parser_exec_state *s)
737 {
738 	unsigned long len = 0;
739 
740 	if (WARN_ON(s->ring_head == s->ring_tail))
741 		return;
742 
743 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
744 		unsigned long ring_top = s->ring_start + s->ring_size;
745 
746 		if (s->ring_head > s->ring_tail) {
747 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
748 				len = (s->ip_gma - s->ring_head);
749 			else if (s->ip_gma >= s->ring_start &&
750 					s->ip_gma <= s->ring_tail)
751 				len = (ring_top - s->ring_head) +
752 					(s->ip_gma - s->ring_start);
753 		} else
754 			len = (s->ip_gma - s->ring_head);
755 
756 		s->ip_va = s->rb_va + len;
757 	} else {/* shadow batch buffer */
758 		s->ip_va = s->ret_bb_va;
759 	}
760 }
761 
762 static inline int ip_gma_set(struct parser_exec_state *s,
763 		unsigned long ip_gma)
764 {
765 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
766 
767 	s->ip_gma = ip_gma;
768 	update_ip_va(s);
769 	return 0;
770 }
771 
772 static inline int ip_gma_advance(struct parser_exec_state *s,
773 		unsigned int dw_len)
774 {
775 	s->ip_gma += (dw_len << 2);
776 
777 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
778 		if (s->ip_gma >= s->ring_start + s->ring_size)
779 			s->ip_gma -= s->ring_size;
780 		update_ip_va(s);
781 	} else {
782 		s->ip_va += (dw_len << 2);
783 	}
784 
785 	return 0;
786 }
787 
788 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
789 {
790 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
791 		return info->len;
792 	else
793 		return (cmd & ((1U << info->len) - 1)) + 2;
794 	return 0;
795 }
796 
797 static inline int cmd_length(struct parser_exec_state *s)
798 {
799 	return get_cmd_length(s->info, cmd_val(s, 0));
800 }
801 
802 /* do not remove this, some platform may need clflush here */
803 #define patch_value(s, addr, val) do { \
804 	*addr = val; \
805 } while (0)
806 
807 static bool is_shadowed_mmio(unsigned int offset)
808 {
809 	bool ret = false;
810 
811 	if ((offset == 0x2168) || /*BB current head register UDW */
812 	    (offset == 0x2140) || /*BB current header register */
813 	    (offset == 0x211c) || /*second BB header register UDW */
814 	    (offset == 0x2114)) { /*second BB header register UDW */
815 		ret = true;
816 	}
817 	return ret;
818 }
819 
820 static inline bool is_force_nonpriv_mmio(unsigned int offset)
821 {
822 	return (offset >= 0x24d0 && offset < 0x2500);
823 }
824 
825 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
826 				     unsigned int offset, unsigned int index)
827 {
828 	struct intel_gvt *gvt = s->vgpu->gvt;
829 	unsigned int data = cmd_val(s, index + 1);
830 
831 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data)) {
832 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
833 			offset, data);
834 		return -EINVAL;
835 	}
836 	return 0;
837 }
838 
839 static int cmd_reg_handler(struct parser_exec_state *s,
840 	unsigned int offset, unsigned int index, char *cmd)
841 {
842 	struct intel_vgpu *vgpu = s->vgpu;
843 	struct intel_gvt *gvt = vgpu->gvt;
844 
845 	if (offset + 4 > gvt->device_info.mmio_size) {
846 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
847 				cmd, offset);
848 		return -EINVAL;
849 	}
850 
851 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
852 		gvt_vgpu_err("%s access to non-render register (%x)\n",
853 				cmd, offset);
854 		return 0;
855 	}
856 
857 	if (is_shadowed_mmio(offset)) {
858 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
859 		return 0;
860 	}
861 
862 	if (is_force_nonpriv_mmio(offset) &&
863 	    force_nonpriv_reg_handler(s, offset, index))
864 		return -EINVAL;
865 
866 	if (offset == i915_mmio_reg_offset(DERRMR) ||
867 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
868 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
869 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
870 	}
871 
872 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
873 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
874 	return 0;
875 }
876 
877 #define cmd_reg(s, i) \
878 	(cmd_val(s, i) & GENMASK(22, 2))
879 
880 #define cmd_reg_inhibit(s, i) \
881 	(cmd_val(s, i) & GENMASK(22, 18))
882 
883 #define cmd_gma(s, i) \
884 	(cmd_val(s, i) & GENMASK(31, 2))
885 
886 #define cmd_gma_hi(s, i) \
887 	(cmd_val(s, i) & GENMASK(15, 0))
888 
889 static int cmd_handler_lri(struct parser_exec_state *s)
890 {
891 	int i, ret = 0;
892 	int cmd_len = cmd_length(s);
893 	struct intel_gvt *gvt = s->vgpu->gvt;
894 
895 	for (i = 1; i < cmd_len; i += 2) {
896 		if (IS_BROADWELL(gvt->dev_priv) &&
897 				(s->ring_id != RCS)) {
898 			if (s->ring_id == BCS &&
899 					cmd_reg(s, i) ==
900 					i915_mmio_reg_offset(DERRMR))
901 				ret |= 0;
902 			else
903 				ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
904 		}
905 		if (ret)
906 			break;
907 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
908 	}
909 	return ret;
910 }
911 
912 static int cmd_handler_lrr(struct parser_exec_state *s)
913 {
914 	int i, ret = 0;
915 	int cmd_len = cmd_length(s);
916 
917 	for (i = 1; i < cmd_len; i += 2) {
918 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
919 			ret |= ((cmd_reg_inhibit(s, i) ||
920 					(cmd_reg_inhibit(s, i + 1)))) ?
921 				-EINVAL : 0;
922 		if (ret)
923 			break;
924 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
925 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
926 	}
927 	return ret;
928 }
929 
930 static inline int cmd_address_audit(struct parser_exec_state *s,
931 		unsigned long guest_gma, int op_size, bool index_mode);
932 
933 static int cmd_handler_lrm(struct parser_exec_state *s)
934 {
935 	struct intel_gvt *gvt = s->vgpu->gvt;
936 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
937 	unsigned long gma;
938 	int i, ret = 0;
939 	int cmd_len = cmd_length(s);
940 
941 	for (i = 1; i < cmd_len;) {
942 		if (IS_BROADWELL(gvt->dev_priv))
943 			ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
944 		if (ret)
945 			break;
946 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
947 		if (cmd_val(s, 0) & (1 << 22)) {
948 			gma = cmd_gma(s, i + 1);
949 			if (gmadr_bytes == 8)
950 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
951 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
952 		}
953 		i += gmadr_dw_number(s) + 1;
954 	}
955 	return ret;
956 }
957 
958 static int cmd_handler_srm(struct parser_exec_state *s)
959 {
960 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
961 	unsigned long gma;
962 	int i, ret = 0;
963 	int cmd_len = cmd_length(s);
964 
965 	for (i = 1; i < cmd_len;) {
966 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
967 		if (cmd_val(s, 0) & (1 << 22)) {
968 			gma = cmd_gma(s, i + 1);
969 			if (gmadr_bytes == 8)
970 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
971 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
972 		}
973 		i += gmadr_dw_number(s) + 1;
974 	}
975 	return ret;
976 }
977 
978 struct cmd_interrupt_event {
979 	int pipe_control_notify;
980 	int mi_flush_dw;
981 	int mi_user_interrupt;
982 };
983 
984 static struct cmd_interrupt_event cmd_interrupt_events[] = {
985 	[RCS] = {
986 		.pipe_control_notify = RCS_PIPE_CONTROL,
987 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
988 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
989 	},
990 	[BCS] = {
991 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
992 		.mi_flush_dw = BCS_MI_FLUSH_DW,
993 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
994 	},
995 	[VCS] = {
996 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
997 		.mi_flush_dw = VCS_MI_FLUSH_DW,
998 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
999 	},
1000 	[VCS2] = {
1001 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1002 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1003 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1004 	},
1005 	[VECS] = {
1006 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1007 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1008 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1009 	},
1010 };
1011 
1012 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1013 {
1014 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1015 	unsigned long gma;
1016 	bool index_mode = false;
1017 	unsigned int post_sync;
1018 	int ret = 0;
1019 
1020 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1021 
1022 	/* LRI post sync */
1023 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1024 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1025 	/* post sync */
1026 	else if (post_sync) {
1027 		if (post_sync == 2)
1028 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1029 		else if (post_sync == 3)
1030 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1031 		else if (post_sync == 1) {
1032 			/* check ggtt*/
1033 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1034 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1035 				if (gmadr_bytes == 8)
1036 					gma |= (cmd_gma_hi(s, 3)) << 32;
1037 				/* Store Data Index */
1038 				if (cmd_val(s, 1) & (1 << 21))
1039 					index_mode = true;
1040 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1041 						index_mode);
1042 			}
1043 		}
1044 	}
1045 
1046 	if (ret)
1047 		return ret;
1048 
1049 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1050 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1051 				s->workload->pending_events);
1052 	return 0;
1053 }
1054 
1055 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1056 {
1057 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1058 			s->workload->pending_events);
1059 	return 0;
1060 }
1061 
1062 static int cmd_advance_default(struct parser_exec_state *s)
1063 {
1064 	return ip_gma_advance(s, cmd_length(s));
1065 }
1066 
1067 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1068 {
1069 	int ret;
1070 
1071 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1072 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1073 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1074 		s->buf_addr_type = s->saved_buf_addr_type;
1075 	} else {
1076 		s->buf_type = RING_BUFFER_INSTRUCTION;
1077 		s->buf_addr_type = GTT_BUFFER;
1078 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1079 			s->ret_ip_gma_ring -= s->ring_size;
1080 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1081 	}
1082 	return ret;
1083 }
1084 
1085 struct mi_display_flip_command_info {
1086 	int pipe;
1087 	int plane;
1088 	int event;
1089 	i915_reg_t stride_reg;
1090 	i915_reg_t ctrl_reg;
1091 	i915_reg_t surf_reg;
1092 	u64 stride_val;
1093 	u64 tile_val;
1094 	u64 surf_val;
1095 	bool async_flip;
1096 };
1097 
1098 struct plane_code_mapping {
1099 	int pipe;
1100 	int plane;
1101 	int event;
1102 };
1103 
1104 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1105 		struct mi_display_flip_command_info *info)
1106 {
1107 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1108 	struct plane_code_mapping gen8_plane_code[] = {
1109 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1110 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1111 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1112 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1113 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1114 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1115 	};
1116 	u32 dword0, dword1, dword2;
1117 	u32 v;
1118 
1119 	dword0 = cmd_val(s, 0);
1120 	dword1 = cmd_val(s, 1);
1121 	dword2 = cmd_val(s, 2);
1122 
1123 	v = (dword0 & GENMASK(21, 19)) >> 19;
1124 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1125 		return -EINVAL;
1126 
1127 	info->pipe = gen8_plane_code[v].pipe;
1128 	info->plane = gen8_plane_code[v].plane;
1129 	info->event = gen8_plane_code[v].event;
1130 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1131 	info->tile_val = (dword1 & 0x1);
1132 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1133 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1134 
1135 	if (info->plane == PLANE_A) {
1136 		info->ctrl_reg = DSPCNTR(info->pipe);
1137 		info->stride_reg = DSPSTRIDE(info->pipe);
1138 		info->surf_reg = DSPSURF(info->pipe);
1139 	} else if (info->plane == PLANE_B) {
1140 		info->ctrl_reg = SPRCTL(info->pipe);
1141 		info->stride_reg = SPRSTRIDE(info->pipe);
1142 		info->surf_reg = SPRSURF(info->pipe);
1143 	} else {
1144 		WARN_ON(1);
1145 		return -EINVAL;
1146 	}
1147 	return 0;
1148 }
1149 
1150 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1151 		struct mi_display_flip_command_info *info)
1152 {
1153 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1154 	struct intel_vgpu *vgpu = s->vgpu;
1155 	u32 dword0 = cmd_val(s, 0);
1156 	u32 dword1 = cmd_val(s, 1);
1157 	u32 dword2 = cmd_val(s, 2);
1158 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1159 
1160 	info->plane = PRIMARY_PLANE;
1161 
1162 	switch (plane) {
1163 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1164 		info->pipe = PIPE_A;
1165 		info->event = PRIMARY_A_FLIP_DONE;
1166 		break;
1167 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1168 		info->pipe = PIPE_B;
1169 		info->event = PRIMARY_B_FLIP_DONE;
1170 		break;
1171 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1172 		info->pipe = PIPE_C;
1173 		info->event = PRIMARY_C_FLIP_DONE;
1174 		break;
1175 
1176 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1177 		info->pipe = PIPE_A;
1178 		info->event = SPRITE_A_FLIP_DONE;
1179 		info->plane = SPRITE_PLANE;
1180 		break;
1181 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1182 		info->pipe = PIPE_B;
1183 		info->event = SPRITE_B_FLIP_DONE;
1184 		info->plane = SPRITE_PLANE;
1185 		break;
1186 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1187 		info->pipe = PIPE_C;
1188 		info->event = SPRITE_C_FLIP_DONE;
1189 		info->plane = SPRITE_PLANE;
1190 		break;
1191 
1192 	default:
1193 		gvt_vgpu_err("unknown plane code %d\n", plane);
1194 		return -EINVAL;
1195 	}
1196 
1197 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1198 	info->tile_val = (dword1 & GENMASK(2, 0));
1199 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1200 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1201 
1202 	info->ctrl_reg = DSPCNTR(info->pipe);
1203 	info->stride_reg = DSPSTRIDE(info->pipe);
1204 	info->surf_reg = DSPSURF(info->pipe);
1205 
1206 	return 0;
1207 }
1208 
1209 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1210 		struct mi_display_flip_command_info *info)
1211 {
1212 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1213 	u32 stride, tile;
1214 
1215 	if (!info->async_flip)
1216 		return 0;
1217 
1218 	if (IS_SKYLAKE(dev_priv)) {
1219 		stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1220 		tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) &
1221 				GENMASK(12, 10)) >> 10;
1222 	} else {
1223 		stride = (vgpu_vreg(s->vgpu, info->stride_reg) &
1224 				GENMASK(15, 6)) >> 6;
1225 		tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1226 	}
1227 
1228 	if (stride != info->stride_val)
1229 		gvt_dbg_cmd("cannot change stride during async flip\n");
1230 
1231 	if (tile != info->tile_val)
1232 		gvt_dbg_cmd("cannot change tile during async flip\n");
1233 
1234 	return 0;
1235 }
1236 
1237 static int gen8_update_plane_mmio_from_mi_display_flip(
1238 		struct parser_exec_state *s,
1239 		struct mi_display_flip_command_info *info)
1240 {
1241 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1242 	struct intel_vgpu *vgpu = s->vgpu;
1243 
1244 	set_mask_bits(&vgpu_vreg(vgpu, info->surf_reg), GENMASK(31, 12),
1245 		      info->surf_val << 12);
1246 	if (IS_SKYLAKE(dev_priv)) {
1247 		set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(9, 0),
1248 			      info->stride_val);
1249 		set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(12, 10),
1250 			      info->tile_val << 10);
1251 	} else {
1252 		set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(15, 6),
1253 			      info->stride_val << 6);
1254 		set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(10, 10),
1255 			      info->tile_val << 10);
1256 	}
1257 
1258 	vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1259 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1260 	return 0;
1261 }
1262 
1263 static int decode_mi_display_flip(struct parser_exec_state *s,
1264 		struct mi_display_flip_command_info *info)
1265 {
1266 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1267 
1268 	if (IS_BROADWELL(dev_priv))
1269 		return gen8_decode_mi_display_flip(s, info);
1270 	if (IS_SKYLAKE(dev_priv))
1271 		return skl_decode_mi_display_flip(s, info);
1272 
1273 	return -ENODEV;
1274 }
1275 
1276 static int check_mi_display_flip(struct parser_exec_state *s,
1277 		struct mi_display_flip_command_info *info)
1278 {
1279 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1280 
1281 	if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1282 		return gen8_check_mi_display_flip(s, info);
1283 	return -ENODEV;
1284 }
1285 
1286 static int update_plane_mmio_from_mi_display_flip(
1287 		struct parser_exec_state *s,
1288 		struct mi_display_flip_command_info *info)
1289 {
1290 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1291 
1292 	if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1293 		return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1294 	return -ENODEV;
1295 }
1296 
1297 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1298 {
1299 	struct mi_display_flip_command_info info;
1300 	struct intel_vgpu *vgpu = s->vgpu;
1301 	int ret;
1302 	int i;
1303 	int len = cmd_length(s);
1304 
1305 	ret = decode_mi_display_flip(s, &info);
1306 	if (ret) {
1307 		gvt_vgpu_err("fail to decode MI display flip command\n");
1308 		return ret;
1309 	}
1310 
1311 	ret = check_mi_display_flip(s, &info);
1312 	if (ret) {
1313 		gvt_vgpu_err("invalid MI display flip command\n");
1314 		return ret;
1315 	}
1316 
1317 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1318 	if (ret) {
1319 		gvt_vgpu_err("fail to update plane mmio\n");
1320 		return ret;
1321 	}
1322 
1323 	for (i = 0; i < len; i++)
1324 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1325 	return 0;
1326 }
1327 
1328 static bool is_wait_for_flip_pending(u32 cmd)
1329 {
1330 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1331 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1332 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1333 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1334 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1335 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1336 }
1337 
1338 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1339 {
1340 	u32 cmd = cmd_val(s, 0);
1341 
1342 	if (!is_wait_for_flip_pending(cmd))
1343 		return 0;
1344 
1345 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1346 	return 0;
1347 }
1348 
1349 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1350 {
1351 	unsigned long addr;
1352 	unsigned long gma_high, gma_low;
1353 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1354 
1355 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
1356 		return INTEL_GVT_INVALID_ADDR;
1357 
1358 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1359 	if (gmadr_bytes == 4) {
1360 		addr = gma_low;
1361 	} else {
1362 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1363 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1364 	}
1365 	return addr;
1366 }
1367 
1368 static inline int cmd_address_audit(struct parser_exec_state *s,
1369 		unsigned long guest_gma, int op_size, bool index_mode)
1370 {
1371 	struct intel_vgpu *vgpu = s->vgpu;
1372 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1373 	int i;
1374 	int ret;
1375 
1376 	if (op_size > max_surface_size) {
1377 		gvt_vgpu_err("command address audit fail name %s\n",
1378 			s->info->name);
1379 		return -EINVAL;
1380 	}
1381 
1382 	if (index_mode)	{
1383 		if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) {
1384 			ret = -EINVAL;
1385 			goto err;
1386 		}
1387 	} else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) ||
1388 			(!vgpu_gmadr_is_valid(s->vgpu,
1389 					      guest_gma + op_size - 1))) {
1390 		ret = -EINVAL;
1391 		goto err;
1392 	}
1393 	return 0;
1394 err:
1395 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1396 			s->info->name, guest_gma, op_size);
1397 
1398 	pr_err("cmd dump: ");
1399 	for (i = 0; i < cmd_length(s); i++) {
1400 		if (!(i % 4))
1401 			pr_err("\n%08x ", cmd_val(s, i));
1402 		else
1403 			pr_err("%08x ", cmd_val(s, i));
1404 	}
1405 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1406 			vgpu->id,
1407 			vgpu_aperture_gmadr_base(vgpu),
1408 			vgpu_aperture_gmadr_end(vgpu),
1409 			vgpu_hidden_gmadr_base(vgpu),
1410 			vgpu_hidden_gmadr_end(vgpu));
1411 	return ret;
1412 }
1413 
1414 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1415 {
1416 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1417 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1418 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1419 	unsigned long gma, gma_low, gma_high;
1420 	int ret = 0;
1421 
1422 	/* check ppggt */
1423 	if (!(cmd_val(s, 0) & (1 << 22)))
1424 		return 0;
1425 
1426 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1427 
1428 	if (gmadr_bytes == 8) {
1429 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1430 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1431 		gma = (gma_high << 32) | gma_low;
1432 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1433 	}
1434 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1435 	return ret;
1436 }
1437 
1438 static inline int unexpected_cmd(struct parser_exec_state *s)
1439 {
1440 	struct intel_vgpu *vgpu = s->vgpu;
1441 
1442 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1443 
1444 	return -EINVAL;
1445 }
1446 
1447 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1448 {
1449 	return unexpected_cmd(s);
1450 }
1451 
1452 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1453 {
1454 	return unexpected_cmd(s);
1455 }
1456 
1457 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1458 {
1459 	return unexpected_cmd(s);
1460 }
1461 
1462 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1463 {
1464 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1465 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1466 			sizeof(u32);
1467 	unsigned long gma, gma_high;
1468 	int ret = 0;
1469 
1470 	if (!(cmd_val(s, 0) & (1 << 22)))
1471 		return ret;
1472 
1473 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1474 	if (gmadr_bytes == 8) {
1475 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1476 		gma = (gma_high << 32) | gma;
1477 	}
1478 	ret = cmd_address_audit(s, gma, op_size, false);
1479 	return ret;
1480 }
1481 
1482 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1483 {
1484 	return unexpected_cmd(s);
1485 }
1486 
1487 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1488 {
1489 	return unexpected_cmd(s);
1490 }
1491 
1492 static int cmd_handler_mi_conditional_batch_buffer_end(
1493 		struct parser_exec_state *s)
1494 {
1495 	return unexpected_cmd(s);
1496 }
1497 
1498 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1499 {
1500 	return unexpected_cmd(s);
1501 }
1502 
1503 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1504 {
1505 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1506 	unsigned long gma;
1507 	bool index_mode = false;
1508 	int ret = 0;
1509 
1510 	/* Check post-sync and ppgtt bit */
1511 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1512 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1513 		if (gmadr_bytes == 8)
1514 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1515 		/* Store Data Index */
1516 		if (cmd_val(s, 0) & (1 << 21))
1517 			index_mode = true;
1518 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1519 	}
1520 	/* Check notify bit */
1521 	if ((cmd_val(s, 0) & (1 << 8)))
1522 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1523 				s->workload->pending_events);
1524 	return ret;
1525 }
1526 
1527 static void addr_type_update_snb(struct parser_exec_state *s)
1528 {
1529 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1530 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1531 		s->buf_addr_type = PPGTT_BUFFER;
1532 	}
1533 }
1534 
1535 
1536 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1537 		unsigned long gma, unsigned long end_gma, void *va)
1538 {
1539 	unsigned long copy_len, offset;
1540 	unsigned long len = 0;
1541 	unsigned long gpa;
1542 
1543 	while (gma != end_gma) {
1544 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1545 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1546 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1547 			return -EFAULT;
1548 		}
1549 
1550 		offset = gma & (GTT_PAGE_SIZE - 1);
1551 
1552 		copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ?
1553 			GTT_PAGE_SIZE - offset : end_gma - gma;
1554 
1555 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1556 
1557 		len += copy_len;
1558 		gma += copy_len;
1559 	}
1560 	return 0;
1561 }
1562 
1563 
1564 /*
1565  * Check whether a batch buffer needs to be scanned. Currently
1566  * the only criteria is based on privilege.
1567  */
1568 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1569 {
1570 	struct intel_gvt *gvt = s->vgpu->gvt;
1571 
1572 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
1573 		/* BDW decides privilege based on address space */
1574 		if (cmd_val(s, 0) & (1 << 8))
1575 			return 0;
1576 	}
1577 	return 1;
1578 }
1579 
1580 static uint32_t find_bb_size(struct parser_exec_state *s)
1581 {
1582 	unsigned long gma = 0;
1583 	struct cmd_info *info;
1584 	uint32_t bb_size = 0;
1585 	uint32_t cmd_len = 0;
1586 	bool met_bb_end = false;
1587 	struct intel_vgpu *vgpu = s->vgpu;
1588 	u32 cmd;
1589 
1590 	/* get the start gm address of the batch buffer */
1591 	gma = get_gma_bb_from_cmd(s, 1);
1592 	cmd = cmd_val(s, 0);
1593 
1594 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1595 	if (info == NULL) {
1596 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
1597 				cmd, get_opcode(cmd, s->ring_id));
1598 		return -EINVAL;
1599 	}
1600 	do {
1601 		copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1602 				gma, gma + 4, &cmd);
1603 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1604 		if (info == NULL) {
1605 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
1606 				cmd, get_opcode(cmd, s->ring_id));
1607 			return -EINVAL;
1608 		}
1609 
1610 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1611 			met_bb_end = true;
1612 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1613 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) {
1614 				/* chained batch buffer */
1615 				met_bb_end = true;
1616 			}
1617 		}
1618 		cmd_len = get_cmd_length(info, cmd) << 2;
1619 		bb_size += cmd_len;
1620 		gma += cmd_len;
1621 
1622 	} while (!met_bb_end);
1623 
1624 	return bb_size;
1625 }
1626 
1627 static int perform_bb_shadow(struct parser_exec_state *s)
1628 {
1629 	struct intel_shadow_bb_entry *entry_obj;
1630 	struct intel_vgpu *vgpu = s->vgpu;
1631 	unsigned long gma = 0;
1632 	uint32_t bb_size;
1633 	void *dst = NULL;
1634 	int ret = 0;
1635 
1636 	/* get the start gm address of the batch buffer */
1637 	gma = get_gma_bb_from_cmd(s, 1);
1638 
1639 	/* get the size of the batch buffer */
1640 	bb_size = find_bb_size(s);
1641 
1642 	/* allocate shadow batch buffer */
1643 	entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL);
1644 	if (entry_obj == NULL)
1645 		return -ENOMEM;
1646 
1647 	entry_obj->obj =
1648 		i915_gem_object_create(s->vgpu->gvt->dev_priv,
1649 				       roundup(bb_size, PAGE_SIZE));
1650 	if (IS_ERR(entry_obj->obj)) {
1651 		ret = PTR_ERR(entry_obj->obj);
1652 		goto free_entry;
1653 	}
1654 	entry_obj->len = bb_size;
1655 	INIT_LIST_HEAD(&entry_obj->list);
1656 
1657 	dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB);
1658 	if (IS_ERR(dst)) {
1659 		ret = PTR_ERR(dst);
1660 		goto put_obj;
1661 	}
1662 
1663 	ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false);
1664 	if (ret) {
1665 		gvt_vgpu_err("failed to set shadow batch to CPU\n");
1666 		goto unmap_src;
1667 	}
1668 
1669 	entry_obj->va = dst;
1670 	entry_obj->bb_start_cmd_va = s->ip_va;
1671 
1672 	/* copy batch buffer to shadow batch buffer*/
1673 	ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1674 			      gma, gma + bb_size,
1675 			      dst);
1676 	if (ret) {
1677 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1678 		goto unmap_src;
1679 	}
1680 
1681 	list_add(&entry_obj->list, &s->workload->shadow_bb);
1682 	/*
1683 	 * ip_va saves the virtual address of the shadow batch buffer, while
1684 	 * ip_gma saves the graphics address of the original batch buffer.
1685 	 * As the shadow batch buffer is just a copy from the originial one,
1686 	 * it should be right to use shadow batch buffer'va and original batch
1687 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1688 	 * buffer here (too early).
1689 	 */
1690 	s->ip_va = dst;
1691 	s->ip_gma = gma;
1692 
1693 	return 0;
1694 
1695 unmap_src:
1696 	i915_gem_object_unpin_map(entry_obj->obj);
1697 put_obj:
1698 	i915_gem_object_put(entry_obj->obj);
1699 free_entry:
1700 	kfree(entry_obj);
1701 	return ret;
1702 }
1703 
1704 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1705 {
1706 	bool second_level;
1707 	int ret = 0;
1708 	struct intel_vgpu *vgpu = s->vgpu;
1709 
1710 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1711 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1712 		return -EINVAL;
1713 	}
1714 
1715 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1716 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1717 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1718 		return -EINVAL;
1719 	}
1720 
1721 	s->saved_buf_addr_type = s->buf_addr_type;
1722 	addr_type_update_snb(s);
1723 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1724 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1725 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1726 	} else if (second_level) {
1727 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1728 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1729 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1730 	}
1731 
1732 	if (batch_buffer_needs_scan(s)) {
1733 		ret = perform_bb_shadow(s);
1734 		if (ret < 0)
1735 			gvt_vgpu_err("invalid shadow batch buffer\n");
1736 	} else {
1737 		/* emulate a batch buffer end to do return right */
1738 		ret = cmd_handler_mi_batch_buffer_end(s);
1739 		if (ret < 0)
1740 			return ret;
1741 	}
1742 
1743 	return ret;
1744 }
1745 
1746 static struct cmd_info cmd_info[] = {
1747 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1748 
1749 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1750 		0, 1, NULL},
1751 
1752 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1753 		0, 1, cmd_handler_mi_user_interrupt},
1754 
1755 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1756 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1757 
1758 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1759 
1760 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1761 		NULL},
1762 
1763 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1764 		NULL},
1765 
1766 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1767 		NULL},
1768 
1769 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1770 		NULL},
1771 
1772 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1773 		D_ALL, 0, 1, NULL},
1774 
1775 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1776 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1777 		cmd_handler_mi_batch_buffer_end},
1778 
1779 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1780 		0, 1, NULL},
1781 
1782 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1783 		NULL},
1784 
1785 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1786 		D_ALL, 0, 1, NULL},
1787 
1788 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1789 		NULL},
1790 
1791 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1792 		NULL},
1793 
1794 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1795 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1796 
1797 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1798 		0, 8, NULL},
1799 
1800 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1801 
1802 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1803 
1804 	{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1805 		D_BDW_PLUS, 0, 8, NULL},
1806 
1807 	{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1808 		ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1809 
1810 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1811 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1812 
1813 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1814 		0, 8, cmd_handler_mi_store_data_index},
1815 
1816 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1817 		D_ALL, 0, 8, cmd_handler_lri},
1818 
1819 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1820 		cmd_handler_mi_update_gtt},
1821 
1822 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1823 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1824 
1825 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1826 		cmd_handler_mi_flush_dw},
1827 
1828 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1829 		10, cmd_handler_mi_clflush},
1830 
1831 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1832 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1833 
1834 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1835 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1836 
1837 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1838 		D_ALL, 0, 8, cmd_handler_lrr},
1839 
1840 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1841 		D_ALL, 0, 8, NULL},
1842 
1843 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1844 		ADDR_FIX_1(2), 8, NULL},
1845 
1846 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1847 		ADDR_FIX_1(2), 8, NULL},
1848 
1849 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1850 		8, cmd_handler_mi_op_2e},
1851 
1852 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1853 		8, cmd_handler_mi_op_2f},
1854 
1855 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1856 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1857 		cmd_handler_mi_batch_buffer_start},
1858 
1859 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1860 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1861 		cmd_handler_mi_conditional_batch_buffer_end},
1862 
1863 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1864 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1865 
1866 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1867 		ADDR_FIX_2(4, 7), 8, NULL},
1868 
1869 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1870 		0, 8, NULL},
1871 
1872 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1873 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1874 
1875 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1876 
1877 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1878 		0, 8, NULL},
1879 
1880 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1881 		ADDR_FIX_1(3), 8, NULL},
1882 
1883 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1884 		D_ALL, 0, 8, NULL},
1885 
1886 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1887 		ADDR_FIX_1(4), 8, NULL},
1888 
1889 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1890 		ADDR_FIX_2(4, 5), 8, NULL},
1891 
1892 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1893 		ADDR_FIX_1(4), 8, NULL},
1894 
1895 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1896 		ADDR_FIX_2(4, 7), 8, NULL},
1897 
1898 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1899 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1900 
1901 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1902 
1903 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1904 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1905 
1906 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1907 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1908 
1909 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1910 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1911 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1912 
1913 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1914 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1915 
1916 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
1917 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1918 
1919 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
1920 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1921 
1922 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
1923 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1924 
1925 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
1926 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1927 
1928 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
1929 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
1930 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1931 
1932 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
1933 		ADDR_FIX_2(4, 5), 8, NULL},
1934 
1935 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
1936 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1937 
1938 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
1939 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
1940 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1941 
1942 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
1943 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
1944 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1945 
1946 	{"3DSTATE_BLEND_STATE_POINTERS",
1947 		OP_3DSTATE_BLEND_STATE_POINTERS,
1948 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1949 
1950 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
1951 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
1952 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1953 
1954 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
1955 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
1956 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1957 
1958 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
1959 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
1960 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1961 
1962 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
1963 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
1964 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1965 
1966 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
1967 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
1968 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1969 
1970 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
1971 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
1972 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1973 
1974 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
1975 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
1976 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1977 
1978 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
1979 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
1980 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1981 
1982 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
1983 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
1984 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1985 
1986 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
1987 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
1988 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1989 
1990 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
1991 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
1992 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1993 
1994 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
1995 		0, 8, NULL},
1996 
1997 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
1998 		0, 8, NULL},
1999 
2000 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2001 		0, 8, NULL},
2002 
2003 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2004 		0, 8, NULL},
2005 
2006 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2007 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2008 
2009 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2010 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2011 
2012 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2013 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2014 
2015 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2016 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2017 
2018 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2019 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2020 
2021 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2022 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2023 
2024 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2025 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2026 
2027 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2028 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2029 
2030 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2031 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2032 
2033 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2034 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2035 
2036 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2037 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2038 
2039 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2040 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2041 
2042 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2043 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2044 
2045 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2046 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2047 
2048 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2049 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2050 
2051 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2052 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2053 
2054 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2055 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2056 
2057 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2058 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2059 
2060 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2061 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2062 
2063 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2064 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2065 
2066 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2067 		D_BDW_PLUS, 0, 8, NULL},
2068 
2069 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2070 		NULL},
2071 
2072 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2073 		D_BDW_PLUS, 0, 8, NULL},
2074 
2075 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2076 		D_BDW_PLUS, 0, 8, NULL},
2077 
2078 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2079 		8, NULL},
2080 
2081 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2082 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2083 
2084 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2085 		8, NULL},
2086 
2087 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2088 		NULL},
2089 
2090 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2091 		NULL},
2092 
2093 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2094 		NULL},
2095 
2096 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2097 		D_BDW_PLUS, 0, 8, NULL},
2098 
2099 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2100 		R_RCS, D_ALL, 0, 8, NULL},
2101 
2102 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2103 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2104 
2105 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2106 		R_RCS, D_ALL, 0, 1, NULL},
2107 
2108 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2109 
2110 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2111 		R_RCS, D_ALL, 0, 8, NULL},
2112 
2113 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2114 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2115 
2116 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2117 
2118 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2119 
2120 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2121 
2122 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2123 		D_BDW_PLUS, 0, 8, NULL},
2124 
2125 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2126 		D_BDW_PLUS, 0, 8, NULL},
2127 
2128 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2129 		D_ALL, 0, 8, NULL},
2130 
2131 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2132 		D_BDW_PLUS, 0, 8, NULL},
2133 
2134 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2135 		D_BDW_PLUS, 0, 8, NULL},
2136 
2137 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2138 
2139 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2140 
2141 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2142 
2143 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2144 		D_ALL, 0, 8, NULL},
2145 
2146 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2147 
2148 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2149 
2150 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2151 		R_RCS, D_ALL, 0, 8, NULL},
2152 
2153 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2154 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2155 
2156 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2157 		0, 8, NULL},
2158 
2159 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2160 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2161 
2162 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2163 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2164 
2165 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2166 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2167 
2168 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2169 		D_ALL, 0, 8, NULL},
2170 
2171 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2172 		D_ALL, 0, 8, NULL},
2173 
2174 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2175 		D_ALL, 0, 8, NULL},
2176 
2177 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2178 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2179 
2180 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2181 		D_BDW_PLUS, 0, 8, NULL},
2182 
2183 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2184 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2185 
2186 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2187 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2188 
2189 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2190 		R_RCS, D_ALL, 0, 8, NULL},
2191 
2192 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2193 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2194 
2195 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2196 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2197 
2198 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2199 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2200 
2201 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2202 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203 
2204 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2205 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2206 
2207 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2208 		R_RCS, D_ALL, 0, 8, NULL},
2209 
2210 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2211 		D_ALL, 0, 9, NULL},
2212 
2213 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2214 		ADDR_FIX_2(2, 4), 8, NULL},
2215 
2216 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2217 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2218 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2219 
2220 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2221 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2222 
2223 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2224 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2225 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2226 
2227 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2228 		D_BDW_PLUS, 0, 8, NULL},
2229 
2230 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2231 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2232 
2233 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234 
2235 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2236 		1, NULL},
2237 
2238 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2239 		ADDR_FIX_1(1), 8, NULL},
2240 
2241 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242 
2243 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2244 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2245 
2246 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2247 		ADDR_FIX_1(1), 8, NULL},
2248 
2249 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252 
2253 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2254 		0, 8, NULL},
2255 
2256 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2257 		D_SKL_PLUS, 0, 8, NULL},
2258 
2259 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2260 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2261 
2262 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2263 		0, 16, NULL},
2264 
2265 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2266 		0, 16, NULL},
2267 
2268 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2269 
2270 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2271 		0, 16, NULL},
2272 
2273 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2274 		0, 16, NULL},
2275 
2276 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2277 		0, 16, NULL},
2278 
2279 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2280 		0, 8, NULL},
2281 
2282 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2283 		NULL},
2284 
2285 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2286 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2287 
2288 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2289 		R_VCS, D_ALL, 0, 12, NULL},
2290 
2291 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2292 		R_VCS, D_ALL, 0, 12, NULL},
2293 
2294 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2295 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2296 
2297 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2298 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2299 
2300 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2301 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2302 
2303 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2304 
2305 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2306 		R_VCS, D_ALL, 0, 12, NULL},
2307 
2308 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2309 		R_VCS, D_ALL, 0, 12, NULL},
2310 
2311 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2312 		R_VCS, D_ALL, 0, 12, NULL},
2313 
2314 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2315 		R_VCS, D_ALL, 0, 12, NULL},
2316 
2317 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2318 		R_VCS, D_ALL, 0, 12, NULL},
2319 
2320 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2321 		R_VCS, D_ALL, 0, 12, NULL},
2322 
2323 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2324 		R_VCS, D_ALL, 0, 6, NULL},
2325 
2326 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2327 		R_VCS, D_ALL, 0, 12, NULL},
2328 
2329 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2330 		R_VCS, D_ALL, 0, 12, NULL},
2331 
2332 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2333 		R_VCS, D_ALL, 0, 12, NULL},
2334 
2335 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2336 		R_VCS, D_ALL, 0, 12, NULL},
2337 
2338 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2339 		R_VCS, D_ALL, 0, 12, NULL},
2340 
2341 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2342 		R_VCS, D_ALL, 0, 12, NULL},
2343 
2344 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2345 		R_VCS, D_ALL, 0, 12, NULL},
2346 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2347 		R_VCS, D_ALL, 0, 12, NULL},
2348 
2349 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2350 		R_VCS, D_ALL, 0, 12, NULL},
2351 
2352 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2353 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2354 
2355 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2356 		R_VCS, D_ALL, 0, 12, NULL},
2357 
2358 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2359 		R_VCS, D_ALL, 0, 12, NULL},
2360 
2361 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2362 		R_VCS, D_ALL, 0, 12, NULL},
2363 
2364 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2365 		R_VCS, D_ALL, 0, 12, NULL},
2366 
2367 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2368 		R_VCS, D_ALL, 0, 12, NULL},
2369 
2370 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2371 		R_VCS, D_ALL, 0, 12, NULL},
2372 
2373 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2374 		R_VCS, D_ALL, 0, 12, NULL},
2375 
2376 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2377 		R_VCS, D_ALL, 0, 12, NULL},
2378 
2379 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2380 		R_VCS, D_ALL, 0, 12, NULL},
2381 
2382 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2383 		R_VCS, D_ALL, 0, 12, NULL},
2384 
2385 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2386 		R_VCS, D_ALL, 0, 12, NULL},
2387 
2388 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2389 		0, 16, NULL},
2390 
2391 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2392 
2393 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2394 
2395 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2396 		R_VCS, D_ALL, 0, 12, NULL},
2397 
2398 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2399 		R_VCS, D_ALL, 0, 12, NULL},
2400 
2401 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2402 		R_VCS, D_ALL, 0, 12, NULL},
2403 
2404 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2405 
2406 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2407 		0, 12, NULL},
2408 
2409 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2410 		0, 20, NULL},
2411 };
2412 
2413 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2414 {
2415 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2416 }
2417 
2418 #define GVT_MAX_CMD_LENGTH     20  /* In Dword */
2419 
2420 static void trace_cs_command(struct parser_exec_state *s,
2421 		cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler)
2422 {
2423 	/* This buffer is used by ftrace to store all commands copied from
2424 	 * guest gma space. Sometimes commands can cross pages, this should
2425 	 * not be handled in ftrace logic. So this is just used as a
2426 	 * 'bounce buffer'
2427 	 */
2428 	u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH];
2429 	int i;
2430 	u32 cmd_len = cmd_length(s);
2431 	/* The chosen value of GVT_MAX_CMD_LENGTH are just based on
2432 	 * following two considerations:
2433 	 * 1) From observation, most common ring commands is not that long.
2434 	 *    But there are execeptions. So it indeed makes sence to observe
2435 	 *    longer commands.
2436 	 * 2) From the performance and debugging point of view, dumping all
2437 	 *    contents of very commands is not necessary.
2438 	 * We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in
2439 	 * future for performance considerations.
2440 	 */
2441 	if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) {
2442 		gvt_dbg_cmd("cmd length exceed tracing limitation!\n");
2443 		cmd_len = GVT_MAX_CMD_LENGTH;
2444 	}
2445 
2446 	for (i = 0; i < cmd_len; i++)
2447 		cmd_trace_buf[i] = cmd_val(s, i);
2448 
2449 	trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf,
2450 			cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION,
2451 			cost_pre_cmd_handler, cost_cmd_handler);
2452 }
2453 
2454 /* call the cmd handler, and advance ip */
2455 static int cmd_parser_exec(struct parser_exec_state *s)
2456 {
2457 	struct cmd_info *info;
2458 	u32 cmd;
2459 	int ret = 0;
2460 	cycles_t t0, t1, t2;
2461 	struct parser_exec_state s_before_advance_custom;
2462 	struct intel_vgpu *vgpu = s->vgpu;
2463 
2464 	t0 = get_cycles();
2465 
2466 	cmd = cmd_val(s, 0);
2467 
2468 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2469 	if (info == NULL) {
2470 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
2471 				cmd, get_opcode(cmd, s->ring_id));
2472 		return -EINVAL;
2473 	}
2474 
2475 	gvt_dbg_cmd("%s\n", info->name);
2476 
2477 	s->info = info;
2478 
2479 	t1 = get_cycles();
2480 
2481 	memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state));
2482 
2483 	if (info->handler) {
2484 		ret = info->handler(s);
2485 		if (ret < 0) {
2486 			gvt_vgpu_err("%s handler error\n", info->name);
2487 			return ret;
2488 		}
2489 	}
2490 	t2 = get_cycles();
2491 
2492 	trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1);
2493 
2494 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2495 		ret = cmd_advance_default(s);
2496 		if (ret) {
2497 			gvt_vgpu_err("%s IP advance error\n", info->name);
2498 			return ret;
2499 		}
2500 	}
2501 	return 0;
2502 }
2503 
2504 static inline bool gma_out_of_range(unsigned long gma,
2505 		unsigned long gma_head, unsigned int gma_tail)
2506 {
2507 	if (gma_tail >= gma_head)
2508 		return (gma < gma_head) || (gma > gma_tail);
2509 	else
2510 		return (gma > gma_tail) && (gma < gma_head);
2511 }
2512 
2513 static int command_scan(struct parser_exec_state *s,
2514 		unsigned long rb_head, unsigned long rb_tail,
2515 		unsigned long rb_start, unsigned long rb_len)
2516 {
2517 
2518 	unsigned long gma_head, gma_tail, gma_bottom;
2519 	int ret = 0;
2520 	struct intel_vgpu *vgpu = s->vgpu;
2521 
2522 	gma_head = rb_start + rb_head;
2523 	gma_tail = rb_start + rb_tail;
2524 	gma_bottom = rb_start +  rb_len;
2525 
2526 	gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail);
2527 
2528 	while (s->ip_gma != gma_tail) {
2529 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2530 			if (!(s->ip_gma >= rb_start) ||
2531 				!(s->ip_gma < gma_bottom)) {
2532 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2533 					"(base:0x%lx, bottom: 0x%lx)\n",
2534 					s->ip_gma, rb_start,
2535 					gma_bottom);
2536 				parser_exec_state_dump(s);
2537 				return -EINVAL;
2538 			}
2539 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2540 				gvt_vgpu_err("ip_gma %lx out of range."
2541 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2542 					s->ip_gma, rb_start,
2543 					rb_head, rb_tail);
2544 				parser_exec_state_dump(s);
2545 				break;
2546 			}
2547 		}
2548 		ret = cmd_parser_exec(s);
2549 		if (ret) {
2550 			gvt_vgpu_err("cmd parser error\n");
2551 			parser_exec_state_dump(s);
2552 			break;
2553 		}
2554 	}
2555 
2556 	gvt_dbg_cmd("scan_end\n");
2557 
2558 	return ret;
2559 }
2560 
2561 static int scan_workload(struct intel_vgpu_workload *workload)
2562 {
2563 	unsigned long gma_head, gma_tail, gma_bottom;
2564 	struct parser_exec_state s;
2565 	int ret = 0;
2566 
2567 	/* ring base is page aligned */
2568 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE)))
2569 		return -EINVAL;
2570 
2571 	gma_head = workload->rb_start + workload->rb_head;
2572 	gma_tail = workload->rb_start + workload->rb_tail;
2573 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2574 
2575 	s.buf_type = RING_BUFFER_INSTRUCTION;
2576 	s.buf_addr_type = GTT_BUFFER;
2577 	s.vgpu = workload->vgpu;
2578 	s.ring_id = workload->ring_id;
2579 	s.ring_start = workload->rb_start;
2580 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2581 	s.ring_head = gma_head;
2582 	s.ring_tail = gma_tail;
2583 	s.rb_va = workload->shadow_ring_buffer_va;
2584 	s.workload = workload;
2585 
2586 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2587 		gma_head == gma_tail)
2588 		return 0;
2589 
2590 	ret = ip_gma_set(&s, gma_head);
2591 	if (ret)
2592 		goto out;
2593 
2594 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2595 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2596 
2597 out:
2598 	return ret;
2599 }
2600 
2601 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2602 {
2603 
2604 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2605 	struct parser_exec_state s;
2606 	int ret = 0;
2607 
2608 	/* ring base is page aligned */
2609 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE)))
2610 		return -EINVAL;
2611 
2612 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2613 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2614 			PAGE_SIZE);
2615 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2616 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2617 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2618 
2619 	s.buf_type = RING_BUFFER_INSTRUCTION;
2620 	s.buf_addr_type = GTT_BUFFER;
2621 	s.vgpu = wa_ctx->workload->vgpu;
2622 	s.ring_id = wa_ctx->workload->ring_id;
2623 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2624 	s.ring_size = ring_size;
2625 	s.ring_head = gma_head;
2626 	s.ring_tail = gma_tail;
2627 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2628 	s.workload = wa_ctx->workload;
2629 
2630 	ret = ip_gma_set(&s, gma_head);
2631 	if (ret)
2632 		goto out;
2633 
2634 	ret = command_scan(&s, 0, ring_tail,
2635 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2636 out:
2637 	return ret;
2638 }
2639 
2640 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2641 {
2642 	struct intel_vgpu *vgpu = workload->vgpu;
2643 	int ring_id = workload->ring_id;
2644 	struct i915_gem_context *shadow_ctx = vgpu->shadow_ctx;
2645 	struct intel_ring *ring = shadow_ctx->engine[ring_id].ring;
2646 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2647 	unsigned int copy_len = 0;
2648 	int ret;
2649 
2650 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2651 
2652 	/* calculate workload ring buffer size */
2653 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2654 			workload->rb_head) % guest_rb_size;
2655 
2656 	gma_head = workload->rb_start + workload->rb_head;
2657 	gma_tail = workload->rb_start + workload->rb_tail;
2658 	gma_top = workload->rb_start + guest_rb_size;
2659 
2660 	/* allocate shadow ring buffer */
2661 	ret = intel_ring_begin(workload->req, workload->rb_len / 4);
2662 	if (ret)
2663 		return ret;
2664 
2665 	/* get shadow ring buffer va */
2666 	workload->shadow_ring_buffer_va = ring->vaddr + ring->tail;
2667 
2668 	/* head > tail --> copy head <-> top */
2669 	if (gma_head > gma_tail) {
2670 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2671 				gma_head, gma_top,
2672 				workload->shadow_ring_buffer_va);
2673 		if (ret) {
2674 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2675 			return ret;
2676 		}
2677 		copy_len = gma_top - gma_head;
2678 		gma_head = workload->rb_start;
2679 	}
2680 
2681 	/* copy head or start <-> tail */
2682 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2683 			gma_head, gma_tail,
2684 			workload->shadow_ring_buffer_va + copy_len);
2685 	if (ret) {
2686 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2687 		return ret;
2688 	}
2689 	ring->tail += workload->rb_len;
2690 	intel_ring_advance(ring);
2691 	return 0;
2692 }
2693 
2694 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
2695 {
2696 	int ret;
2697 	struct intel_vgpu *vgpu = workload->vgpu;
2698 
2699 	ret = shadow_workload_ring_buffer(workload);
2700 	if (ret) {
2701 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2702 		return ret;
2703 	}
2704 
2705 	ret = scan_workload(workload);
2706 	if (ret) {
2707 		gvt_vgpu_err("scan workload error\n");
2708 		return ret;
2709 	}
2710 	return 0;
2711 }
2712 
2713 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2714 {
2715 	int ctx_size = wa_ctx->indirect_ctx.size;
2716 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2717 	struct intel_vgpu *vgpu = wa_ctx->workload->vgpu;
2718 	struct drm_i915_gem_object *obj;
2719 	int ret = 0;
2720 	void *map;
2721 
2722 	obj = i915_gem_object_create(wa_ctx->workload->vgpu->gvt->dev_priv,
2723 				     roundup(ctx_size + CACHELINE_BYTES,
2724 					     PAGE_SIZE));
2725 	if (IS_ERR(obj))
2726 		return PTR_ERR(obj);
2727 
2728 	/* get the va of the shadow batch buffer */
2729 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2730 	if (IS_ERR(map)) {
2731 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2732 		ret = PTR_ERR(map);
2733 		goto put_obj;
2734 	}
2735 
2736 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2737 	if (ret) {
2738 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2739 		goto unmap_src;
2740 	}
2741 
2742 	ret = copy_gma_to_hva(wa_ctx->workload->vgpu,
2743 				wa_ctx->workload->vgpu->gtt.ggtt_mm,
2744 				guest_gma, guest_gma + ctx_size,
2745 				map);
2746 	if (ret) {
2747 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2748 		goto unmap_src;
2749 	}
2750 
2751 	wa_ctx->indirect_ctx.obj = obj;
2752 	wa_ctx->indirect_ctx.shadow_va = map;
2753 	return 0;
2754 
2755 unmap_src:
2756 	i915_gem_object_unpin_map(obj);
2757 put_obj:
2758 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
2759 	return ret;
2760 }
2761 
2762 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2763 {
2764 	uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2765 	unsigned char *bb_start_sva;
2766 
2767 	per_ctx_start[0] = 0x18800001;
2768 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2769 
2770 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2771 				wa_ctx->indirect_ctx.size;
2772 
2773 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2774 
2775 	return 0;
2776 }
2777 
2778 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2779 {
2780 	int ret;
2781 	struct intel_vgpu *vgpu = wa_ctx->workload->vgpu;
2782 
2783 	if (wa_ctx->indirect_ctx.size == 0)
2784 		return 0;
2785 
2786 	ret = shadow_indirect_ctx(wa_ctx);
2787 	if (ret) {
2788 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2789 		return ret;
2790 	}
2791 
2792 	combine_wa_ctx(wa_ctx);
2793 
2794 	ret = scan_wa_ctx(wa_ctx);
2795 	if (ret) {
2796 		gvt_vgpu_err("scan wa ctx error\n");
2797 		return ret;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2804 		unsigned int opcode, int rings)
2805 {
2806 	struct cmd_info *info = NULL;
2807 	unsigned int ring;
2808 
2809 	for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) {
2810 		info = find_cmd_entry(gvt, opcode, ring);
2811 		if (info)
2812 			break;
2813 	}
2814 	return info;
2815 }
2816 
2817 static int init_cmd_table(struct intel_gvt *gvt)
2818 {
2819 	int i;
2820 	struct cmd_entry *e;
2821 	struct cmd_info	*info;
2822 	unsigned int gen_type;
2823 
2824 	gen_type = intel_gvt_get_device_type(gvt);
2825 
2826 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2827 		if (!(cmd_info[i].devices & gen_type))
2828 			continue;
2829 
2830 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2831 		if (!e)
2832 			return -ENOMEM;
2833 
2834 		e->info = &cmd_info[i];
2835 		info = find_cmd_entry_any_ring(gvt,
2836 				e->info->opcode, e->info->rings);
2837 		if (info) {
2838 			gvt_err("%s %s duplicated\n", e->info->name,
2839 					info->name);
2840 			return -EEXIST;
2841 		}
2842 
2843 		INIT_HLIST_NODE(&e->hlist);
2844 		add_cmd_entry(gvt, e);
2845 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2846 				e->info->name, e->info->opcode, e->info->flag,
2847 				e->info->devices, e->info->rings);
2848 	}
2849 	return 0;
2850 }
2851 
2852 static void clean_cmd_table(struct intel_gvt *gvt)
2853 {
2854 	struct hlist_node *tmp;
2855 	struct cmd_entry *e;
2856 	int i;
2857 
2858 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2859 		kfree(e);
2860 
2861 	hash_init(gvt->cmd_table);
2862 }
2863 
2864 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2865 {
2866 	clean_cmd_table(gvt);
2867 }
2868 
2869 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2870 {
2871 	int ret;
2872 
2873 	ret = init_cmd_table(gvt);
2874 	if (ret) {
2875 		intel_gvt_clean_cmd_parser(gvt);
2876 		return ret;
2877 	}
2878 	return 0;
2879 }
2880