1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 const char *name; 59 int op_len; 60 int nr_sub_op; 61 const struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 176 177 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 178 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 179 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 180 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 181 182 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 183 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 184 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 185 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 186 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 187 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 188 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 189 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 190 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 191 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 193 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 194 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 195 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 196 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 197 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 198 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 199 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 200 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 201 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 202 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 203 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 204 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 205 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 206 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 207 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 208 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 209 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 212 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 224 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 225 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 226 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 227 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 248 249 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 250 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 251 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 252 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 253 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 254 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 255 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 256 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 257 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 258 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 259 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 260 261 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 263 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 264 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 267 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 268 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 269 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 271 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 272 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 274 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 275 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 281 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 282 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 284 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 286 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 287 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 288 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 289 290 /* VCCP Command Parser */ 291 292 /* 293 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 294 * git://anongit.freedesktop.org/vaapi/intel-driver 295 * src/i965_defines.h 296 * 297 */ 298 299 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 300 (3 << 13 | \ 301 (pipeline) << 11 | \ 302 (op) << 8 | \ 303 (sub_opa) << 5 | \ 304 (sub_opb)) 305 306 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 307 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 308 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 311 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 312 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 313 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 314 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 315 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 316 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 317 318 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 319 320 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 321 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 322 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 323 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 324 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 325 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 327 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 328 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 329 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 330 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 331 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 332 333 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 334 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 335 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 336 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 337 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 338 339 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 340 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 341 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 342 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 343 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 344 345 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 346 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 347 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 348 349 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 350 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 351 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 352 353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 354 (3 << 13 | \ 355 (pipeline) << 11 | \ 356 (op) << 8 | \ 357 (sub_opa) << 5 | \ 358 (sub_opb)) 359 360 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 361 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 362 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 363 364 struct parser_exec_state; 365 366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 367 368 #define GVT_CMD_HASH_BITS 7 369 370 /* which DWords need address fix */ 371 #define ADDR_FIX_1(x1) (1 << (x1)) 372 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 373 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 374 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 375 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 376 377 #define DWORD_FIELD(dword, end, start) \ 378 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 379 380 #define OP_LENGTH_BIAS 2 381 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 382 383 static int gvt_check_valid_cmd_length(int len, int valid_len) 384 { 385 if (valid_len != len) { 386 gvt_err("len is not valid: len=%u valid_len=%u\n", 387 len, valid_len); 388 return -EFAULT; 389 } 390 return 0; 391 } 392 393 struct cmd_info { 394 const char *name; 395 u32 opcode; 396 397 #define F_LEN_MASK 3U 398 #define F_LEN_CONST 1U 399 #define F_LEN_VAR 0U 400 /* value is const although LEN maybe variable */ 401 #define F_LEN_VAR_FIXED (1<<1) 402 403 /* 404 * command has its own ip advance logic 405 * e.g. MI_BATCH_START, MI_BATCH_END 406 */ 407 #define F_IP_ADVANCE_CUSTOM (1<<2) 408 u32 flag; 409 410 #define R_RCS BIT(RCS0) 411 #define R_VCS1 BIT(VCS0) 412 #define R_VCS2 BIT(VCS1) 413 #define R_VCS (R_VCS1 | R_VCS2) 414 #define R_BCS BIT(BCS0) 415 #define R_VECS BIT(VECS0) 416 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 417 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 418 u16 rings; 419 420 /* devices that support this cmd: SNB/IVB/HSW/... */ 421 u16 devices; 422 423 /* which DWords are address that need fix up. 424 * bit 0 means a 32-bit non address operand in command 425 * bit 1 means address operand, which could be 32-bit 426 * or 64-bit depending on different architectures.( 427 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 428 * No matter the address length, each address only takes 429 * one bit in the bitmap. 430 */ 431 u16 addr_bitmap; 432 433 /* flag == F_LEN_CONST : command length 434 * flag == F_LEN_VAR : length bias bits 435 * Note: length is in DWord 436 */ 437 u32 len; 438 439 parser_cmd_handler handler; 440 441 /* valid length in DWord */ 442 u32 valid_len; 443 }; 444 445 struct cmd_entry { 446 struct hlist_node hlist; 447 const struct cmd_info *info; 448 }; 449 450 enum { 451 RING_BUFFER_INSTRUCTION, 452 BATCH_BUFFER_INSTRUCTION, 453 BATCH_BUFFER_2ND_LEVEL, 454 }; 455 456 enum { 457 GTT_BUFFER, 458 PPGTT_BUFFER 459 }; 460 461 struct parser_exec_state { 462 struct intel_vgpu *vgpu; 463 int ring_id; 464 465 int buf_type; 466 467 /* batch buffer address type */ 468 int buf_addr_type; 469 470 /* graphics memory address of ring buffer start */ 471 unsigned long ring_start; 472 unsigned long ring_size; 473 unsigned long ring_head; 474 unsigned long ring_tail; 475 476 /* instruction graphics memory address */ 477 unsigned long ip_gma; 478 479 /* mapped va of the instr_gma */ 480 void *ip_va; 481 void *rb_va; 482 483 void *ret_bb_va; 484 /* next instruction when return from batch buffer to ring buffer */ 485 unsigned long ret_ip_gma_ring; 486 487 /* next instruction when return from 2nd batch buffer to batch buffer */ 488 unsigned long ret_ip_gma_bb; 489 490 /* batch buffer address type (GTT or PPGTT) 491 * used when ret from 2nd level batch buffer 492 */ 493 int saved_buf_addr_type; 494 bool is_ctx_wa; 495 496 const struct cmd_info *info; 497 498 struct intel_vgpu_workload *workload; 499 }; 500 501 #define gmadr_dw_number(s) \ 502 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 503 504 static unsigned long bypass_scan_mask = 0; 505 506 /* ring ALL, type = 0 */ 507 static const struct sub_op_bits sub_op_mi[] = { 508 {31, 29}, 509 {28, 23}, 510 }; 511 512 static const struct decode_info decode_info_mi = { 513 "MI", 514 OP_LEN_MI, 515 ARRAY_SIZE(sub_op_mi), 516 sub_op_mi, 517 }; 518 519 /* ring RCS, command type 2 */ 520 static const struct sub_op_bits sub_op_2d[] = { 521 {31, 29}, 522 {28, 22}, 523 }; 524 525 static const struct decode_info decode_info_2d = { 526 "2D", 527 OP_LEN_2D, 528 ARRAY_SIZE(sub_op_2d), 529 sub_op_2d, 530 }; 531 532 /* ring RCS, command type 3 */ 533 static const struct sub_op_bits sub_op_3d_media[] = { 534 {31, 29}, 535 {28, 27}, 536 {26, 24}, 537 {23, 16}, 538 }; 539 540 static const struct decode_info decode_info_3d_media = { 541 "3D_Media", 542 OP_LEN_3D_MEDIA, 543 ARRAY_SIZE(sub_op_3d_media), 544 sub_op_3d_media, 545 }; 546 547 /* ring VCS, command type 3 */ 548 static const struct sub_op_bits sub_op_mfx_vc[] = { 549 {31, 29}, 550 {28, 27}, 551 {26, 24}, 552 {23, 21}, 553 {20, 16}, 554 }; 555 556 static const struct decode_info decode_info_mfx_vc = { 557 "MFX_VC", 558 OP_LEN_MFX_VC, 559 ARRAY_SIZE(sub_op_mfx_vc), 560 sub_op_mfx_vc, 561 }; 562 563 /* ring VECS, command type 3 */ 564 static const struct sub_op_bits sub_op_vebox[] = { 565 {31, 29}, 566 {28, 27}, 567 {26, 24}, 568 {23, 21}, 569 {20, 16}, 570 }; 571 572 static const struct decode_info decode_info_vebox = { 573 "VEBOX", 574 OP_LEN_VEBOX, 575 ARRAY_SIZE(sub_op_vebox), 576 sub_op_vebox, 577 }; 578 579 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 580 [RCS0] = { 581 &decode_info_mi, 582 NULL, 583 NULL, 584 &decode_info_3d_media, 585 NULL, 586 NULL, 587 NULL, 588 NULL, 589 }, 590 591 [VCS0] = { 592 &decode_info_mi, 593 NULL, 594 NULL, 595 &decode_info_mfx_vc, 596 NULL, 597 NULL, 598 NULL, 599 NULL, 600 }, 601 602 [BCS0] = { 603 &decode_info_mi, 604 NULL, 605 &decode_info_2d, 606 NULL, 607 NULL, 608 NULL, 609 NULL, 610 NULL, 611 }, 612 613 [VECS0] = { 614 &decode_info_mi, 615 NULL, 616 NULL, 617 &decode_info_vebox, 618 NULL, 619 NULL, 620 NULL, 621 NULL, 622 }, 623 624 [VCS1] = { 625 &decode_info_mi, 626 NULL, 627 NULL, 628 &decode_info_mfx_vc, 629 NULL, 630 NULL, 631 NULL, 632 NULL, 633 }, 634 }; 635 636 static inline u32 get_opcode(u32 cmd, int ring_id) 637 { 638 const struct decode_info *d_info; 639 640 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 641 if (d_info == NULL) 642 return INVALID_OP; 643 644 return cmd >> (32 - d_info->op_len); 645 } 646 647 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 648 unsigned int opcode, int ring_id) 649 { 650 struct cmd_entry *e; 651 652 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 653 if (opcode == e->info->opcode && e->info->rings & BIT(ring_id)) 654 return e->info; 655 } 656 return NULL; 657 } 658 659 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 660 u32 cmd, int ring_id) 661 { 662 u32 opcode; 663 664 opcode = get_opcode(cmd, ring_id); 665 if (opcode == INVALID_OP) 666 return NULL; 667 668 return find_cmd_entry(gvt, opcode, ring_id); 669 } 670 671 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 672 { 673 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 674 } 675 676 static inline void print_opcode(u32 cmd, int ring_id) 677 { 678 const struct decode_info *d_info; 679 int i; 680 681 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 682 if (d_info == NULL) 683 return; 684 685 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 686 cmd >> (32 - d_info->op_len), d_info->name); 687 688 for (i = 0; i < d_info->nr_sub_op; i++) 689 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 690 d_info->sub_op[i].low)); 691 692 pr_err("\n"); 693 } 694 695 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 696 { 697 return s->ip_va + (index << 2); 698 } 699 700 static inline u32 cmd_val(struct parser_exec_state *s, int index) 701 { 702 return *cmd_ptr(s, index); 703 } 704 705 static void parser_exec_state_dump(struct parser_exec_state *s) 706 { 707 int cnt = 0; 708 int i; 709 710 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 711 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 712 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 713 s->ring_head, s->ring_tail); 714 715 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 716 s->buf_type == RING_BUFFER_INSTRUCTION ? 717 "RING_BUFFER" : "BATCH_BUFFER", 718 s->buf_addr_type == GTT_BUFFER ? 719 "GTT" : "PPGTT", s->ip_gma); 720 721 if (s->ip_va == NULL) { 722 gvt_dbg_cmd(" ip_va(NULL)"); 723 return; 724 } 725 726 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 727 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 728 cmd_val(s, 2), cmd_val(s, 3)); 729 730 print_opcode(cmd_val(s, 0), s->ring_id); 731 732 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 733 734 while (cnt < 1024) { 735 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 736 for (i = 0; i < 8; i++) 737 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 738 gvt_dbg_cmd("\n"); 739 740 s->ip_va += 8 * sizeof(u32); 741 cnt += 8; 742 } 743 } 744 745 static inline void update_ip_va(struct parser_exec_state *s) 746 { 747 unsigned long len = 0; 748 749 if (WARN_ON(s->ring_head == s->ring_tail)) 750 return; 751 752 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 753 unsigned long ring_top = s->ring_start + s->ring_size; 754 755 if (s->ring_head > s->ring_tail) { 756 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 757 len = (s->ip_gma - s->ring_head); 758 else if (s->ip_gma >= s->ring_start && 759 s->ip_gma <= s->ring_tail) 760 len = (ring_top - s->ring_head) + 761 (s->ip_gma - s->ring_start); 762 } else 763 len = (s->ip_gma - s->ring_head); 764 765 s->ip_va = s->rb_va + len; 766 } else {/* shadow batch buffer */ 767 s->ip_va = s->ret_bb_va; 768 } 769 } 770 771 static inline int ip_gma_set(struct parser_exec_state *s, 772 unsigned long ip_gma) 773 { 774 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 775 776 s->ip_gma = ip_gma; 777 update_ip_va(s); 778 return 0; 779 } 780 781 static inline int ip_gma_advance(struct parser_exec_state *s, 782 unsigned int dw_len) 783 { 784 s->ip_gma += (dw_len << 2); 785 786 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 787 if (s->ip_gma >= s->ring_start + s->ring_size) 788 s->ip_gma -= s->ring_size; 789 update_ip_va(s); 790 } else { 791 s->ip_va += (dw_len << 2); 792 } 793 794 return 0; 795 } 796 797 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 798 { 799 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 800 return info->len; 801 else 802 return (cmd & ((1U << info->len) - 1)) + 2; 803 return 0; 804 } 805 806 static inline int cmd_length(struct parser_exec_state *s) 807 { 808 return get_cmd_length(s->info, cmd_val(s, 0)); 809 } 810 811 /* do not remove this, some platform may need clflush here */ 812 #define patch_value(s, addr, val) do { \ 813 *addr = val; \ 814 } while (0) 815 816 static bool is_shadowed_mmio(unsigned int offset) 817 { 818 bool ret = false; 819 820 if ((offset == 0x2168) || /*BB current head register UDW */ 821 (offset == 0x2140) || /*BB current header register */ 822 (offset == 0x211c) || /*second BB header register UDW */ 823 (offset == 0x2114)) { /*second BB header register UDW */ 824 ret = true; 825 } 826 return ret; 827 } 828 829 static inline bool is_force_nonpriv_mmio(unsigned int offset) 830 { 831 return (offset >= 0x24d0 && offset < 0x2500); 832 } 833 834 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 835 unsigned int offset, unsigned int index, char *cmd) 836 { 837 struct intel_gvt *gvt = s->vgpu->gvt; 838 unsigned int data; 839 u32 ring_base; 840 u32 nopid; 841 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 842 843 if (!strcmp(cmd, "lri")) 844 data = cmd_val(s, index + 1); 845 else { 846 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 847 offset, cmd); 848 return -EINVAL; 849 } 850 851 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 852 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 853 854 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 855 data != nopid) { 856 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 857 offset, data); 858 patch_value(s, cmd_ptr(s, index), nopid); 859 return 0; 860 } 861 return 0; 862 } 863 864 static inline bool is_mocs_mmio(unsigned int offset) 865 { 866 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 867 ((offset >= 0xb020) && (offset <= 0xb0a0)); 868 } 869 870 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 871 unsigned int offset, unsigned int index) 872 { 873 if (!is_mocs_mmio(offset)) 874 return -EINVAL; 875 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 876 return 0; 877 } 878 879 static int cmd_reg_handler(struct parser_exec_state *s, 880 unsigned int offset, unsigned int index, char *cmd) 881 { 882 struct intel_vgpu *vgpu = s->vgpu; 883 struct intel_gvt *gvt = vgpu->gvt; 884 u32 ctx_sr_ctl; 885 886 if (offset + 4 > gvt->device_info.mmio_size) { 887 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 888 cmd, offset); 889 return -EFAULT; 890 } 891 892 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 893 gvt_vgpu_err("%s access to non-render register (%x)\n", 894 cmd, offset); 895 return -EBADRQC; 896 } 897 898 if (is_shadowed_mmio(offset)) { 899 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 900 return 0; 901 } 902 903 if (is_mocs_mmio(offset) && 904 mocs_cmd_reg_handler(s, offset, index)) 905 return -EINVAL; 906 907 if (is_force_nonpriv_mmio(offset) && 908 force_nonpriv_reg_handler(s, offset, index, cmd)) 909 return -EPERM; 910 911 if (offset == i915_mmio_reg_offset(DERRMR) || 912 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 913 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 914 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 915 } 916 917 /* TODO 918 * In order to let workload with inhibit context to generate 919 * correct image data into memory, vregs values will be loaded to 920 * hw via LRIs in the workload with inhibit context. But as 921 * indirect context is loaded prior to LRIs in workload, we don't 922 * want reg values specified in indirect context overwritten by 923 * LRIs in workloads. So, when scanning an indirect context, we 924 * update reg values in it into vregs, so LRIs in workload with 925 * inhibit context will restore with correct values 926 */ 927 if (IS_GEN(gvt->dev_priv, 9) && 928 intel_gvt_mmio_is_in_ctx(gvt, offset) && 929 !strncmp(cmd, "lri", 3)) { 930 intel_gvt_hypervisor_read_gpa(s->vgpu, 931 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 932 /* check inhibit context */ 933 if (ctx_sr_ctl & 1) { 934 u32 data = cmd_val(s, index + 1); 935 936 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 937 intel_vgpu_mask_mmio_write(vgpu, 938 offset, &data, 4); 939 else 940 vgpu_vreg(vgpu, offset) = data; 941 } 942 } 943 944 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 945 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 946 return 0; 947 } 948 949 #define cmd_reg(s, i) \ 950 (cmd_val(s, i) & GENMASK(22, 2)) 951 952 #define cmd_reg_inhibit(s, i) \ 953 (cmd_val(s, i) & GENMASK(22, 18)) 954 955 #define cmd_gma(s, i) \ 956 (cmd_val(s, i) & GENMASK(31, 2)) 957 958 #define cmd_gma_hi(s, i) \ 959 (cmd_val(s, i) & GENMASK(15, 0)) 960 961 static int cmd_handler_lri(struct parser_exec_state *s) 962 { 963 int i, ret = 0; 964 int cmd_len = cmd_length(s); 965 struct intel_gvt *gvt = s->vgpu->gvt; 966 u32 valid_len = CMD_LEN(1); 967 968 /* 969 * Official intel docs are somewhat sloppy , check the definition of 970 * MI_LOAD_REGISTER_IMM. 971 */ 972 #define MAX_VALID_LEN 127 973 if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) { 974 gvt_err("len is not valid: len=%u valid_len=%u\n", 975 cmd_len, valid_len); 976 return -EFAULT; 977 } 978 979 for (i = 1; i < cmd_len; i += 2) { 980 if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) { 981 if (s->ring_id == BCS0 && 982 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 983 ret |= 0; 984 else 985 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 986 } 987 if (ret) 988 break; 989 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 990 if (ret) 991 break; 992 } 993 return ret; 994 } 995 996 static int cmd_handler_lrr(struct parser_exec_state *s) 997 { 998 int i, ret = 0; 999 int cmd_len = cmd_length(s); 1000 1001 for (i = 1; i < cmd_len; i += 2) { 1002 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 1003 ret |= ((cmd_reg_inhibit(s, i) || 1004 (cmd_reg_inhibit(s, i + 1)))) ? 1005 -EBADRQC : 0; 1006 if (ret) 1007 break; 1008 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1009 if (ret) 1010 break; 1011 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1012 if (ret) 1013 break; 1014 } 1015 return ret; 1016 } 1017 1018 static inline int cmd_address_audit(struct parser_exec_state *s, 1019 unsigned long guest_gma, int op_size, bool index_mode); 1020 1021 static int cmd_handler_lrm(struct parser_exec_state *s) 1022 { 1023 struct intel_gvt *gvt = s->vgpu->gvt; 1024 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1025 unsigned long gma; 1026 int i, ret = 0; 1027 int cmd_len = cmd_length(s); 1028 1029 for (i = 1; i < cmd_len;) { 1030 if (IS_BROADWELL(gvt->dev_priv)) 1031 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1032 if (ret) 1033 break; 1034 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1035 if (ret) 1036 break; 1037 if (cmd_val(s, 0) & (1 << 22)) { 1038 gma = cmd_gma(s, i + 1); 1039 if (gmadr_bytes == 8) 1040 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1041 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1042 if (ret) 1043 break; 1044 } 1045 i += gmadr_dw_number(s) + 1; 1046 } 1047 return ret; 1048 } 1049 1050 static int cmd_handler_srm(struct parser_exec_state *s) 1051 { 1052 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1053 unsigned long gma; 1054 int i, ret = 0; 1055 int cmd_len = cmd_length(s); 1056 1057 for (i = 1; i < cmd_len;) { 1058 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1059 if (ret) 1060 break; 1061 if (cmd_val(s, 0) & (1 << 22)) { 1062 gma = cmd_gma(s, i + 1); 1063 if (gmadr_bytes == 8) 1064 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1065 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1066 if (ret) 1067 break; 1068 } 1069 i += gmadr_dw_number(s) + 1; 1070 } 1071 return ret; 1072 } 1073 1074 struct cmd_interrupt_event { 1075 int pipe_control_notify; 1076 int mi_flush_dw; 1077 int mi_user_interrupt; 1078 }; 1079 1080 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1081 [RCS0] = { 1082 .pipe_control_notify = RCS_PIPE_CONTROL, 1083 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1084 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1085 }, 1086 [BCS0] = { 1087 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1088 .mi_flush_dw = BCS_MI_FLUSH_DW, 1089 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1090 }, 1091 [VCS0] = { 1092 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1093 .mi_flush_dw = VCS_MI_FLUSH_DW, 1094 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1095 }, 1096 [VCS1] = { 1097 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1098 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1099 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1100 }, 1101 [VECS0] = { 1102 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1103 .mi_flush_dw = VECS_MI_FLUSH_DW, 1104 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1105 }, 1106 }; 1107 1108 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1109 { 1110 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1111 unsigned long gma; 1112 bool index_mode = false; 1113 unsigned int post_sync; 1114 int ret = 0; 1115 u32 hws_pga, val; 1116 1117 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1118 1119 /* LRI post sync */ 1120 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1121 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1122 /* post sync */ 1123 else if (post_sync) { 1124 if (post_sync == 2) 1125 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1126 else if (post_sync == 3) 1127 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1128 else if (post_sync == 1) { 1129 /* check ggtt*/ 1130 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1131 gma = cmd_val(s, 2) & GENMASK(31, 3); 1132 if (gmadr_bytes == 8) 1133 gma |= (cmd_gma_hi(s, 3)) << 32; 1134 /* Store Data Index */ 1135 if (cmd_val(s, 1) & (1 << 21)) 1136 index_mode = true; 1137 ret |= cmd_address_audit(s, gma, sizeof(u64), 1138 index_mode); 1139 if (ret) 1140 return ret; 1141 if (index_mode) { 1142 hws_pga = s->vgpu->hws_pga[s->ring_id]; 1143 gma = hws_pga + gma; 1144 patch_value(s, cmd_ptr(s, 2), gma); 1145 val = cmd_val(s, 1) & (~(1 << 21)); 1146 patch_value(s, cmd_ptr(s, 1), val); 1147 } 1148 } 1149 } 1150 } 1151 1152 if (ret) 1153 return ret; 1154 1155 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1156 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1157 s->workload->pending_events); 1158 return 0; 1159 } 1160 1161 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1162 { 1163 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1164 s->workload->pending_events); 1165 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1166 return 0; 1167 } 1168 1169 static int cmd_advance_default(struct parser_exec_state *s) 1170 { 1171 return ip_gma_advance(s, cmd_length(s)); 1172 } 1173 1174 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1175 { 1176 int ret; 1177 1178 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1179 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1180 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1181 s->buf_addr_type = s->saved_buf_addr_type; 1182 } else { 1183 s->buf_type = RING_BUFFER_INSTRUCTION; 1184 s->buf_addr_type = GTT_BUFFER; 1185 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1186 s->ret_ip_gma_ring -= s->ring_size; 1187 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1188 } 1189 return ret; 1190 } 1191 1192 struct mi_display_flip_command_info { 1193 int pipe; 1194 int plane; 1195 int event; 1196 i915_reg_t stride_reg; 1197 i915_reg_t ctrl_reg; 1198 i915_reg_t surf_reg; 1199 u64 stride_val; 1200 u64 tile_val; 1201 u64 surf_val; 1202 bool async_flip; 1203 }; 1204 1205 struct plane_code_mapping { 1206 int pipe; 1207 int plane; 1208 int event; 1209 }; 1210 1211 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1212 struct mi_display_flip_command_info *info) 1213 { 1214 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1215 struct plane_code_mapping gen8_plane_code[] = { 1216 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1217 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1218 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1219 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1220 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1221 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1222 }; 1223 u32 dword0, dword1, dword2; 1224 u32 v; 1225 1226 dword0 = cmd_val(s, 0); 1227 dword1 = cmd_val(s, 1); 1228 dword2 = cmd_val(s, 2); 1229 1230 v = (dword0 & GENMASK(21, 19)) >> 19; 1231 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1232 return -EBADRQC; 1233 1234 info->pipe = gen8_plane_code[v].pipe; 1235 info->plane = gen8_plane_code[v].plane; 1236 info->event = gen8_plane_code[v].event; 1237 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1238 info->tile_val = (dword1 & 0x1); 1239 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1240 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1241 1242 if (info->plane == PLANE_A) { 1243 info->ctrl_reg = DSPCNTR(info->pipe); 1244 info->stride_reg = DSPSTRIDE(info->pipe); 1245 info->surf_reg = DSPSURF(info->pipe); 1246 } else if (info->plane == PLANE_B) { 1247 info->ctrl_reg = SPRCTL(info->pipe); 1248 info->stride_reg = SPRSTRIDE(info->pipe); 1249 info->surf_reg = SPRSURF(info->pipe); 1250 } else { 1251 WARN_ON(1); 1252 return -EBADRQC; 1253 } 1254 return 0; 1255 } 1256 1257 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1258 struct mi_display_flip_command_info *info) 1259 { 1260 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1261 struct intel_vgpu *vgpu = s->vgpu; 1262 u32 dword0 = cmd_val(s, 0); 1263 u32 dword1 = cmd_val(s, 1); 1264 u32 dword2 = cmd_val(s, 2); 1265 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1266 1267 info->plane = PRIMARY_PLANE; 1268 1269 switch (plane) { 1270 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1271 info->pipe = PIPE_A; 1272 info->event = PRIMARY_A_FLIP_DONE; 1273 break; 1274 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1275 info->pipe = PIPE_B; 1276 info->event = PRIMARY_B_FLIP_DONE; 1277 break; 1278 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1279 info->pipe = PIPE_C; 1280 info->event = PRIMARY_C_FLIP_DONE; 1281 break; 1282 1283 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1284 info->pipe = PIPE_A; 1285 info->event = SPRITE_A_FLIP_DONE; 1286 info->plane = SPRITE_PLANE; 1287 break; 1288 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1289 info->pipe = PIPE_B; 1290 info->event = SPRITE_B_FLIP_DONE; 1291 info->plane = SPRITE_PLANE; 1292 break; 1293 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1294 info->pipe = PIPE_C; 1295 info->event = SPRITE_C_FLIP_DONE; 1296 info->plane = SPRITE_PLANE; 1297 break; 1298 1299 default: 1300 gvt_vgpu_err("unknown plane code %d\n", plane); 1301 return -EBADRQC; 1302 } 1303 1304 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1305 info->tile_val = (dword1 & GENMASK(2, 0)); 1306 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1307 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1308 1309 info->ctrl_reg = DSPCNTR(info->pipe); 1310 info->stride_reg = DSPSTRIDE(info->pipe); 1311 info->surf_reg = DSPSURF(info->pipe); 1312 1313 return 0; 1314 } 1315 1316 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1317 struct mi_display_flip_command_info *info) 1318 { 1319 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1320 u32 stride, tile; 1321 1322 if (!info->async_flip) 1323 return 0; 1324 1325 if (INTEL_GEN(dev_priv) >= 9) { 1326 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1327 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1328 GENMASK(12, 10)) >> 10; 1329 } else { 1330 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1331 GENMASK(15, 6)) >> 6; 1332 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1333 } 1334 1335 if (stride != info->stride_val) 1336 gvt_dbg_cmd("cannot change stride during async flip\n"); 1337 1338 if (tile != info->tile_val) 1339 gvt_dbg_cmd("cannot change tile during async flip\n"); 1340 1341 return 0; 1342 } 1343 1344 static int gen8_update_plane_mmio_from_mi_display_flip( 1345 struct parser_exec_state *s, 1346 struct mi_display_flip_command_info *info) 1347 { 1348 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1349 struct intel_vgpu *vgpu = s->vgpu; 1350 1351 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1352 info->surf_val << 12); 1353 if (INTEL_GEN(dev_priv) >= 9) { 1354 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1355 info->stride_val); 1356 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1357 info->tile_val << 10); 1358 } else { 1359 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1360 info->stride_val << 6); 1361 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1362 info->tile_val << 10); 1363 } 1364 1365 if (info->plane == PLANE_PRIMARY) 1366 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1367 1368 if (info->async_flip) 1369 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1370 else 1371 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1372 1373 return 0; 1374 } 1375 1376 static int decode_mi_display_flip(struct parser_exec_state *s, 1377 struct mi_display_flip_command_info *info) 1378 { 1379 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1380 1381 if (IS_BROADWELL(dev_priv)) 1382 return gen8_decode_mi_display_flip(s, info); 1383 if (INTEL_GEN(dev_priv) >= 9) 1384 return skl_decode_mi_display_flip(s, info); 1385 1386 return -ENODEV; 1387 } 1388 1389 static int check_mi_display_flip(struct parser_exec_state *s, 1390 struct mi_display_flip_command_info *info) 1391 { 1392 return gen8_check_mi_display_flip(s, info); 1393 } 1394 1395 static int update_plane_mmio_from_mi_display_flip( 1396 struct parser_exec_state *s, 1397 struct mi_display_flip_command_info *info) 1398 { 1399 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1400 } 1401 1402 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1403 { 1404 struct mi_display_flip_command_info info; 1405 struct intel_vgpu *vgpu = s->vgpu; 1406 int ret; 1407 int i; 1408 int len = cmd_length(s); 1409 u32 valid_len = CMD_LEN(1); 1410 1411 /* Flip Type == Stereo 3D Flip */ 1412 if (DWORD_FIELD(2, 1, 0) == 2) 1413 valid_len++; 1414 ret = gvt_check_valid_cmd_length(cmd_length(s), 1415 valid_len); 1416 if (ret) 1417 return ret; 1418 1419 ret = decode_mi_display_flip(s, &info); 1420 if (ret) { 1421 gvt_vgpu_err("fail to decode MI display flip command\n"); 1422 return ret; 1423 } 1424 1425 ret = check_mi_display_flip(s, &info); 1426 if (ret) { 1427 gvt_vgpu_err("invalid MI display flip command\n"); 1428 return ret; 1429 } 1430 1431 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1432 if (ret) { 1433 gvt_vgpu_err("fail to update plane mmio\n"); 1434 return ret; 1435 } 1436 1437 for (i = 0; i < len; i++) 1438 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1439 return 0; 1440 } 1441 1442 static bool is_wait_for_flip_pending(u32 cmd) 1443 { 1444 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1445 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1446 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1447 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1448 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1449 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1450 } 1451 1452 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1453 { 1454 u32 cmd = cmd_val(s, 0); 1455 1456 if (!is_wait_for_flip_pending(cmd)) 1457 return 0; 1458 1459 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1460 return 0; 1461 } 1462 1463 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1464 { 1465 unsigned long addr; 1466 unsigned long gma_high, gma_low; 1467 struct intel_vgpu *vgpu = s->vgpu; 1468 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1469 1470 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1471 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1472 return INTEL_GVT_INVALID_ADDR; 1473 } 1474 1475 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1476 if (gmadr_bytes == 4) { 1477 addr = gma_low; 1478 } else { 1479 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1480 addr = (((unsigned long)gma_high) << 32) | gma_low; 1481 } 1482 return addr; 1483 } 1484 1485 static inline int cmd_address_audit(struct parser_exec_state *s, 1486 unsigned long guest_gma, int op_size, bool index_mode) 1487 { 1488 struct intel_vgpu *vgpu = s->vgpu; 1489 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1490 int i; 1491 int ret; 1492 1493 if (op_size > max_surface_size) { 1494 gvt_vgpu_err("command address audit fail name %s\n", 1495 s->info->name); 1496 return -EFAULT; 1497 } 1498 1499 if (index_mode) { 1500 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1501 ret = -EFAULT; 1502 goto err; 1503 } 1504 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1505 ret = -EFAULT; 1506 goto err; 1507 } 1508 1509 return 0; 1510 1511 err: 1512 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1513 s->info->name, guest_gma, op_size); 1514 1515 pr_err("cmd dump: "); 1516 for (i = 0; i < cmd_length(s); i++) { 1517 if (!(i % 4)) 1518 pr_err("\n%08x ", cmd_val(s, i)); 1519 else 1520 pr_err("%08x ", cmd_val(s, i)); 1521 } 1522 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1523 vgpu->id, 1524 vgpu_aperture_gmadr_base(vgpu), 1525 vgpu_aperture_gmadr_end(vgpu), 1526 vgpu_hidden_gmadr_base(vgpu), 1527 vgpu_hidden_gmadr_end(vgpu)); 1528 return ret; 1529 } 1530 1531 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1532 { 1533 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1534 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1535 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1536 unsigned long gma, gma_low, gma_high; 1537 u32 valid_len = CMD_LEN(2); 1538 int ret = 0; 1539 1540 /* check ppggt */ 1541 if (!(cmd_val(s, 0) & (1 << 22))) 1542 return 0; 1543 1544 /* check if QWORD */ 1545 if (DWORD_FIELD(0, 21, 21)) 1546 valid_len++; 1547 ret = gvt_check_valid_cmd_length(cmd_length(s), 1548 valid_len); 1549 if (ret) 1550 return ret; 1551 1552 gma = cmd_val(s, 2) & GENMASK(31, 2); 1553 1554 if (gmadr_bytes == 8) { 1555 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1556 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1557 gma = (gma_high << 32) | gma_low; 1558 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1559 } 1560 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1561 return ret; 1562 } 1563 1564 static inline int unexpected_cmd(struct parser_exec_state *s) 1565 { 1566 struct intel_vgpu *vgpu = s->vgpu; 1567 1568 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1569 1570 return -EBADRQC; 1571 } 1572 1573 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1574 { 1575 return unexpected_cmd(s); 1576 } 1577 1578 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1579 { 1580 return unexpected_cmd(s); 1581 } 1582 1583 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1584 { 1585 return unexpected_cmd(s); 1586 } 1587 1588 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1589 { 1590 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1591 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1592 sizeof(u32); 1593 unsigned long gma, gma_high; 1594 u32 valid_len = CMD_LEN(1); 1595 int ret = 0; 1596 1597 if (!(cmd_val(s, 0) & (1 << 22))) 1598 return ret; 1599 1600 /* check if QWORD */ 1601 if (DWORD_FIELD(0, 20, 19) == 1) 1602 valid_len += 8; 1603 ret = gvt_check_valid_cmd_length(cmd_length(s), 1604 valid_len); 1605 if (ret) 1606 return ret; 1607 1608 gma = cmd_val(s, 1) & GENMASK(31, 2); 1609 if (gmadr_bytes == 8) { 1610 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1611 gma = (gma_high << 32) | gma; 1612 } 1613 ret = cmd_address_audit(s, gma, op_size, false); 1614 return ret; 1615 } 1616 1617 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1618 { 1619 return unexpected_cmd(s); 1620 } 1621 1622 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1623 { 1624 return unexpected_cmd(s); 1625 } 1626 1627 static int cmd_handler_mi_conditional_batch_buffer_end( 1628 struct parser_exec_state *s) 1629 { 1630 return unexpected_cmd(s); 1631 } 1632 1633 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1634 { 1635 return unexpected_cmd(s); 1636 } 1637 1638 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1639 { 1640 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1641 unsigned long gma; 1642 bool index_mode = false; 1643 int ret = 0; 1644 u32 hws_pga, val; 1645 u32 valid_len = CMD_LEN(2); 1646 1647 ret = gvt_check_valid_cmd_length(cmd_length(s), 1648 valid_len); 1649 if (ret) { 1650 /* Check again for Qword */ 1651 ret = gvt_check_valid_cmd_length(cmd_length(s), 1652 ++valid_len); 1653 return ret; 1654 } 1655 1656 /* Check post-sync and ppgtt bit */ 1657 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1658 gma = cmd_val(s, 1) & GENMASK(31, 3); 1659 if (gmadr_bytes == 8) 1660 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1661 /* Store Data Index */ 1662 if (cmd_val(s, 0) & (1 << 21)) 1663 index_mode = true; 1664 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1665 if (ret) 1666 return ret; 1667 if (index_mode) { 1668 hws_pga = s->vgpu->hws_pga[s->ring_id]; 1669 gma = hws_pga + gma; 1670 patch_value(s, cmd_ptr(s, 1), gma); 1671 val = cmd_val(s, 0) & (~(1 << 21)); 1672 patch_value(s, cmd_ptr(s, 0), val); 1673 } 1674 } 1675 /* Check notify bit */ 1676 if ((cmd_val(s, 0) & (1 << 8))) 1677 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1678 s->workload->pending_events); 1679 return ret; 1680 } 1681 1682 static void addr_type_update_snb(struct parser_exec_state *s) 1683 { 1684 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1685 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1686 s->buf_addr_type = PPGTT_BUFFER; 1687 } 1688 } 1689 1690 1691 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1692 unsigned long gma, unsigned long end_gma, void *va) 1693 { 1694 unsigned long copy_len, offset; 1695 unsigned long len = 0; 1696 unsigned long gpa; 1697 1698 while (gma != end_gma) { 1699 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1700 if (gpa == INTEL_GVT_INVALID_ADDR) { 1701 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1702 return -EFAULT; 1703 } 1704 1705 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1706 1707 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1708 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1709 1710 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1711 1712 len += copy_len; 1713 gma += copy_len; 1714 } 1715 return len; 1716 } 1717 1718 1719 /* 1720 * Check whether a batch buffer needs to be scanned. Currently 1721 * the only criteria is based on privilege. 1722 */ 1723 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1724 { 1725 /* Decide privilege based on address space */ 1726 if (cmd_val(s, 0) & (1 << 8) && 1727 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1728 return 0; 1729 return 1; 1730 } 1731 1732 static int find_bb_size(struct parser_exec_state *s, 1733 unsigned long *bb_size, 1734 unsigned long *bb_end_cmd_offset) 1735 { 1736 unsigned long gma = 0; 1737 const struct cmd_info *info; 1738 u32 cmd_len = 0; 1739 bool bb_end = false; 1740 struct intel_vgpu *vgpu = s->vgpu; 1741 u32 cmd; 1742 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1743 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1744 1745 *bb_size = 0; 1746 *bb_end_cmd_offset = 0; 1747 1748 /* get the start gm address of the batch buffer */ 1749 gma = get_gma_bb_from_cmd(s, 1); 1750 if (gma == INTEL_GVT_INVALID_ADDR) 1751 return -EFAULT; 1752 1753 cmd = cmd_val(s, 0); 1754 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1755 if (info == NULL) { 1756 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1757 cmd, get_opcode(cmd, s->ring_id), 1758 (s->buf_addr_type == PPGTT_BUFFER) ? 1759 "ppgtt" : "ggtt", s->ring_id, s->workload); 1760 return -EBADRQC; 1761 } 1762 do { 1763 if (copy_gma_to_hva(s->vgpu, mm, 1764 gma, gma + 4, &cmd) < 0) 1765 return -EFAULT; 1766 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1767 if (info == NULL) { 1768 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1769 cmd, get_opcode(cmd, s->ring_id), 1770 (s->buf_addr_type == PPGTT_BUFFER) ? 1771 "ppgtt" : "ggtt", s->ring_id, s->workload); 1772 return -EBADRQC; 1773 } 1774 1775 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1776 bb_end = true; 1777 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1778 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1779 /* chained batch buffer */ 1780 bb_end = true; 1781 } 1782 1783 if (bb_end) 1784 *bb_end_cmd_offset = *bb_size; 1785 1786 cmd_len = get_cmd_length(info, cmd) << 2; 1787 *bb_size += cmd_len; 1788 gma += cmd_len; 1789 } while (!bb_end); 1790 1791 return 0; 1792 } 1793 1794 static int audit_bb_end(struct parser_exec_state *s, void *va) 1795 { 1796 struct intel_vgpu *vgpu = s->vgpu; 1797 u32 cmd = *(u32 *)va; 1798 const struct cmd_info *info; 1799 1800 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1801 if (info == NULL) { 1802 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1803 cmd, get_opcode(cmd, s->ring_id), 1804 (s->buf_addr_type == PPGTT_BUFFER) ? 1805 "ppgtt" : "ggtt", s->ring_id, s->workload); 1806 return -EBADRQC; 1807 } 1808 1809 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1810 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1811 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1812 return 0; 1813 1814 return -EBADRQC; 1815 } 1816 1817 static int perform_bb_shadow(struct parser_exec_state *s) 1818 { 1819 struct intel_vgpu *vgpu = s->vgpu; 1820 struct intel_vgpu_shadow_bb *bb; 1821 unsigned long gma = 0; 1822 unsigned long bb_size; 1823 unsigned long bb_end_cmd_offset; 1824 int ret = 0; 1825 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1826 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1827 unsigned long start_offset = 0; 1828 1829 /* get the start gm address of the batch buffer */ 1830 gma = get_gma_bb_from_cmd(s, 1); 1831 if (gma == INTEL_GVT_INVALID_ADDR) 1832 return -EFAULT; 1833 1834 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1835 if (ret) 1836 return ret; 1837 1838 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1839 if (!bb) 1840 return -ENOMEM; 1841 1842 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1843 1844 /* the start_offset stores the batch buffer's start gma's 1845 * offset relative to page boundary. so for non-privileged batch 1846 * buffer, the shadowed gem object holds exactly the same page 1847 * layout as original gem object. This is for the convience of 1848 * replacing the whole non-privilged batch buffer page to this 1849 * shadowed one in PPGTT at the same gma address. (this replacing 1850 * action is not implemented yet now, but may be necessary in 1851 * future). 1852 * for prileged batch buffer, we just change start gma address to 1853 * that of shadowed page. 1854 */ 1855 if (bb->ppgtt) 1856 start_offset = gma & ~I915_GTT_PAGE_MASK; 1857 1858 bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv, 1859 round_up(bb_size + start_offset, 1860 PAGE_SIZE)); 1861 if (IS_ERR(bb->obj)) { 1862 ret = PTR_ERR(bb->obj); 1863 goto err_free_bb; 1864 } 1865 1866 ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush); 1867 if (ret) 1868 goto err_free_obj; 1869 1870 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1871 if (IS_ERR(bb->va)) { 1872 ret = PTR_ERR(bb->va); 1873 goto err_finish_shmem_access; 1874 } 1875 1876 if (bb->clflush & CLFLUSH_BEFORE) { 1877 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1878 bb->clflush &= ~CLFLUSH_BEFORE; 1879 } 1880 1881 ret = copy_gma_to_hva(s->vgpu, mm, 1882 gma, gma + bb_size, 1883 bb->va + start_offset); 1884 if (ret < 0) { 1885 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1886 ret = -EFAULT; 1887 goto err_unmap; 1888 } 1889 1890 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1891 if (ret) 1892 goto err_unmap; 1893 1894 INIT_LIST_HEAD(&bb->list); 1895 list_add(&bb->list, &s->workload->shadow_bb); 1896 1897 bb->accessing = true; 1898 bb->bb_start_cmd_va = s->ip_va; 1899 1900 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1901 bb->bb_offset = s->ip_va - s->rb_va; 1902 else 1903 bb->bb_offset = 0; 1904 1905 /* 1906 * ip_va saves the virtual address of the shadow batch buffer, while 1907 * ip_gma saves the graphics address of the original batch buffer. 1908 * As the shadow batch buffer is just a copy from the originial one, 1909 * it should be right to use shadow batch buffer'va and original batch 1910 * buffer's gma in pair. After all, we don't want to pin the shadow 1911 * buffer here (too early). 1912 */ 1913 s->ip_va = bb->va + start_offset; 1914 s->ip_gma = gma; 1915 return 0; 1916 err_unmap: 1917 i915_gem_object_unpin_map(bb->obj); 1918 err_finish_shmem_access: 1919 i915_gem_object_finish_access(bb->obj); 1920 err_free_obj: 1921 i915_gem_object_put(bb->obj); 1922 err_free_bb: 1923 kfree(bb); 1924 return ret; 1925 } 1926 1927 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1928 { 1929 bool second_level; 1930 int ret = 0; 1931 struct intel_vgpu *vgpu = s->vgpu; 1932 1933 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1934 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1935 return -EFAULT; 1936 } 1937 1938 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1939 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1940 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1941 return -EFAULT; 1942 } 1943 1944 s->saved_buf_addr_type = s->buf_addr_type; 1945 addr_type_update_snb(s); 1946 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1947 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1948 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1949 } else if (second_level) { 1950 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1951 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1952 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1953 } 1954 1955 if (batch_buffer_needs_scan(s)) { 1956 ret = perform_bb_shadow(s); 1957 if (ret < 0) 1958 gvt_vgpu_err("invalid shadow batch buffer\n"); 1959 } else { 1960 /* emulate a batch buffer end to do return right */ 1961 ret = cmd_handler_mi_batch_buffer_end(s); 1962 if (ret < 0) 1963 return ret; 1964 } 1965 return ret; 1966 } 1967 1968 static int mi_noop_index; 1969 1970 static const struct cmd_info cmd_info[] = { 1971 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1972 1973 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1974 0, 1, NULL}, 1975 1976 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1977 0, 1, cmd_handler_mi_user_interrupt}, 1978 1979 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1980 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1981 1982 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1983 1984 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1985 NULL}, 1986 1987 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1988 NULL}, 1989 1990 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1991 NULL}, 1992 1993 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1994 NULL}, 1995 1996 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1997 D_ALL, 0, 1, NULL}, 1998 1999 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2000 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2001 cmd_handler_mi_batch_buffer_end}, 2002 2003 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2004 0, 1, NULL}, 2005 2006 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2007 NULL}, 2008 2009 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2010 D_ALL, 0, 1, NULL}, 2011 2012 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2013 NULL}, 2014 2015 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2016 NULL}, 2017 2018 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2019 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2020 2021 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2022 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2023 2024 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2025 2026 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2027 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2028 2029 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2030 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2031 NULL, CMD_LEN(0)}, 2032 2033 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2034 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2035 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2036 2037 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2038 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2039 2040 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2041 0, 8, cmd_handler_mi_store_data_index}, 2042 2043 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2044 D_ALL, 0, 8, cmd_handler_lri}, 2045 2046 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2047 cmd_handler_mi_update_gtt}, 2048 2049 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2050 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2051 cmd_handler_srm, CMD_LEN(2)}, 2052 2053 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2054 cmd_handler_mi_flush_dw}, 2055 2056 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2057 10, cmd_handler_mi_clflush}, 2058 2059 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2060 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2061 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2062 2063 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2064 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2065 cmd_handler_lrm, CMD_LEN(2)}, 2066 2067 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2068 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2069 cmd_handler_lrr, CMD_LEN(1)}, 2070 2071 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2072 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2073 8, NULL, CMD_LEN(2)}, 2074 2075 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2076 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2077 2078 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2079 ADDR_FIX_1(2), 8, NULL}, 2080 2081 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2082 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2083 2084 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2085 8, cmd_handler_mi_op_2f}, 2086 2087 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2088 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2089 cmd_handler_mi_batch_buffer_start}, 2090 2091 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2092 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2093 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2094 2095 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2096 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2097 2098 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2099 ADDR_FIX_2(4, 7), 8, NULL}, 2100 2101 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2102 0, 8, NULL}, 2103 2104 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2105 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2106 2107 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2108 2109 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2110 0, 8, NULL}, 2111 2112 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2113 ADDR_FIX_1(3), 8, NULL}, 2114 2115 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2116 D_ALL, 0, 8, NULL}, 2117 2118 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2119 ADDR_FIX_1(4), 8, NULL}, 2120 2121 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2122 ADDR_FIX_2(4, 5), 8, NULL}, 2123 2124 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2125 ADDR_FIX_1(4), 8, NULL}, 2126 2127 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2128 ADDR_FIX_2(4, 7), 8, NULL}, 2129 2130 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2131 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2132 2133 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2134 2135 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2136 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2137 2138 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2139 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2140 2141 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2142 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2143 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2144 2145 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2146 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2147 2148 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2149 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2150 2151 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2152 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2153 2154 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2155 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2156 2157 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2158 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2159 2160 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2161 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2162 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2163 2164 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2165 ADDR_FIX_2(4, 5), 8, NULL}, 2166 2167 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2168 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2169 2170 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2171 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2172 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2173 2174 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2175 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2176 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2177 2178 {"3DSTATE_BLEND_STATE_POINTERS", 2179 OP_3DSTATE_BLEND_STATE_POINTERS, 2180 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2181 2182 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2183 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2184 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2185 2186 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2187 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2188 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2189 2190 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2191 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2192 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2193 2194 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2195 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2196 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2197 2198 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2199 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2200 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2201 2202 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2203 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2204 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2205 2206 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2207 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2208 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2209 2210 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2211 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2212 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2213 2214 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2215 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2216 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2217 2218 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2219 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2220 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2221 2222 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2223 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2224 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2225 2226 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2227 0, 8, NULL}, 2228 2229 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2230 0, 8, NULL}, 2231 2232 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2233 0, 8, NULL}, 2234 2235 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2236 0, 8, NULL}, 2237 2238 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2239 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2240 2241 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2242 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2243 2244 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2246 2247 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2248 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2249 2250 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2251 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2252 2253 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2254 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2255 2256 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2257 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2258 2259 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2260 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2261 2262 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2263 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2264 2265 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2266 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2267 2268 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2269 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2270 2271 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2272 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2273 2274 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2276 2277 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2278 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2279 2280 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2281 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2282 2283 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2284 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2285 2286 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2287 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2288 2289 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2290 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2291 2292 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2293 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2294 2295 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2296 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2297 2298 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2299 D_BDW_PLUS, 0, 8, NULL}, 2300 2301 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2302 NULL}, 2303 2304 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2305 D_BDW_PLUS, 0, 8, NULL}, 2306 2307 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2308 D_BDW_PLUS, 0, 8, NULL}, 2309 2310 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2311 8, NULL}, 2312 2313 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2314 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2315 2316 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2317 8, NULL}, 2318 2319 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2320 NULL}, 2321 2322 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2323 NULL}, 2324 2325 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2326 NULL}, 2327 2328 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2329 D_BDW_PLUS, 0, 8, NULL}, 2330 2331 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2332 R_RCS, D_ALL, 0, 8, NULL}, 2333 2334 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2335 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2336 2337 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2338 R_RCS, D_ALL, 0, 1, NULL}, 2339 2340 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2341 2342 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2343 R_RCS, D_ALL, 0, 8, NULL}, 2344 2345 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2346 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2347 2348 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2349 2350 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2351 2352 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2353 2354 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2355 D_BDW_PLUS, 0, 8, NULL}, 2356 2357 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2358 D_BDW_PLUS, 0, 8, NULL}, 2359 2360 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2361 D_ALL, 0, 8, NULL}, 2362 2363 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2364 D_BDW_PLUS, 0, 8, NULL}, 2365 2366 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2367 D_BDW_PLUS, 0, 8, NULL}, 2368 2369 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2370 2371 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2372 2373 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2374 2375 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2376 D_ALL, 0, 8, NULL}, 2377 2378 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2379 2380 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2381 2382 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2383 R_RCS, D_ALL, 0, 8, NULL}, 2384 2385 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2386 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2387 2388 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2389 0, 8, NULL}, 2390 2391 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2392 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2393 2394 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2395 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2396 2397 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2398 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2399 2400 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2401 D_ALL, 0, 8, NULL}, 2402 2403 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2404 D_ALL, 0, 8, NULL}, 2405 2406 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2407 D_ALL, 0, 8, NULL}, 2408 2409 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2410 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2411 2412 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2413 D_BDW_PLUS, 0, 8, NULL}, 2414 2415 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2416 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2417 2418 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2419 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2420 2421 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2422 R_RCS, D_ALL, 0, 8, NULL}, 2423 2424 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2425 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2426 2427 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2428 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2429 2430 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2431 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2432 2433 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2434 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2435 2436 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2437 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2438 2439 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2440 R_RCS, D_ALL, 0, 8, NULL}, 2441 2442 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2443 D_ALL, 0, 9, NULL}, 2444 2445 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2446 ADDR_FIX_2(2, 4), 8, NULL}, 2447 2448 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2449 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2450 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2451 2452 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2453 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2454 2455 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2456 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2457 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2458 2459 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2460 D_BDW_PLUS, 0, 8, NULL}, 2461 2462 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2463 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2464 2465 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2466 2467 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2468 1, NULL}, 2469 2470 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2471 ADDR_FIX_1(1), 8, NULL}, 2472 2473 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2474 2475 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2476 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2477 2478 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2479 ADDR_FIX_1(1), 8, NULL}, 2480 2481 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2482 2483 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2484 2485 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2486 0, 8, NULL}, 2487 2488 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2489 D_SKL_PLUS, 0, 8, NULL}, 2490 2491 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2492 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2493 2494 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2495 0, 16, NULL}, 2496 2497 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2498 0, 16, NULL}, 2499 2500 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2501 0, 16, NULL}, 2502 2503 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2504 2505 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2506 0, 16, NULL}, 2507 2508 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2509 0, 16, NULL}, 2510 2511 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2512 0, 16, NULL}, 2513 2514 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2515 0, 8, NULL}, 2516 2517 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2518 NULL}, 2519 2520 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2521 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2522 2523 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2524 R_VCS, D_ALL, 0, 12, NULL}, 2525 2526 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2527 R_VCS, D_ALL, 0, 12, NULL}, 2528 2529 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2530 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2531 2532 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2533 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2534 2535 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2536 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2537 2538 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2539 2540 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2541 R_VCS, D_ALL, 0, 12, NULL}, 2542 2543 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2544 R_VCS, D_ALL, 0, 12, NULL}, 2545 2546 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2547 R_VCS, D_ALL, 0, 12, NULL}, 2548 2549 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2550 R_VCS, D_ALL, 0, 12, NULL}, 2551 2552 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2553 R_VCS, D_ALL, 0, 12, NULL}, 2554 2555 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2556 R_VCS, D_ALL, 0, 12, NULL}, 2557 2558 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2559 R_VCS, D_ALL, 0, 6, NULL}, 2560 2561 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2562 R_VCS, D_ALL, 0, 12, NULL}, 2563 2564 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2565 R_VCS, D_ALL, 0, 12, NULL}, 2566 2567 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2568 R_VCS, D_ALL, 0, 12, NULL}, 2569 2570 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2571 R_VCS, D_ALL, 0, 12, NULL}, 2572 2573 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2574 R_VCS, D_ALL, 0, 12, NULL}, 2575 2576 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2577 R_VCS, D_ALL, 0, 12, NULL}, 2578 2579 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2580 R_VCS, D_ALL, 0, 12, NULL}, 2581 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2582 R_VCS, D_ALL, 0, 12, NULL}, 2583 2584 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2585 R_VCS, D_ALL, 0, 12, NULL}, 2586 2587 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2588 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2589 2590 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2591 R_VCS, D_ALL, 0, 12, NULL}, 2592 2593 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2594 R_VCS, D_ALL, 0, 12, NULL}, 2595 2596 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2597 R_VCS, D_ALL, 0, 12, NULL}, 2598 2599 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2600 R_VCS, D_ALL, 0, 12, NULL}, 2601 2602 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2603 R_VCS, D_ALL, 0, 12, NULL}, 2604 2605 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2606 R_VCS, D_ALL, 0, 12, NULL}, 2607 2608 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2609 R_VCS, D_ALL, 0, 12, NULL}, 2610 2611 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2612 R_VCS, D_ALL, 0, 12, NULL}, 2613 2614 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2615 R_VCS, D_ALL, 0, 12, NULL}, 2616 2617 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2618 R_VCS, D_ALL, 0, 12, NULL}, 2619 2620 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2621 R_VCS, D_ALL, 0, 12, NULL}, 2622 2623 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2624 0, 16, NULL}, 2625 2626 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2627 2628 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2629 2630 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2631 R_VCS, D_ALL, 0, 12, NULL}, 2632 2633 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2634 R_VCS, D_ALL, 0, 12, NULL}, 2635 2636 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2637 R_VCS, D_ALL, 0, 12, NULL}, 2638 2639 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2640 2641 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2642 0, 12, NULL}, 2643 2644 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2645 0, 12, NULL}, 2646 }; 2647 2648 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2649 { 2650 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2651 } 2652 2653 /* call the cmd handler, and advance ip */ 2654 static int cmd_parser_exec(struct parser_exec_state *s) 2655 { 2656 struct intel_vgpu *vgpu = s->vgpu; 2657 const struct cmd_info *info; 2658 u32 cmd; 2659 int ret = 0; 2660 2661 cmd = cmd_val(s, 0); 2662 2663 /* fastpath for MI_NOOP */ 2664 if (cmd == MI_NOOP) 2665 info = &cmd_info[mi_noop_index]; 2666 else 2667 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2668 2669 if (info == NULL) { 2670 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2671 cmd, get_opcode(cmd, s->ring_id), 2672 (s->buf_addr_type == PPGTT_BUFFER) ? 2673 "ppgtt" : "ggtt", s->ring_id, s->workload); 2674 return -EBADRQC; 2675 } 2676 2677 s->info = info; 2678 2679 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2680 cmd_length(s), s->buf_type, s->buf_addr_type, 2681 s->workload, info->name); 2682 2683 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2684 ret = gvt_check_valid_cmd_length(cmd_length(s), 2685 info->valid_len); 2686 if (ret) 2687 return ret; 2688 } 2689 2690 if (info->handler) { 2691 ret = info->handler(s); 2692 if (ret < 0) { 2693 gvt_vgpu_err("%s handler error\n", info->name); 2694 return ret; 2695 } 2696 } 2697 2698 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2699 ret = cmd_advance_default(s); 2700 if (ret) { 2701 gvt_vgpu_err("%s IP advance error\n", info->name); 2702 return ret; 2703 } 2704 } 2705 return 0; 2706 } 2707 2708 static inline bool gma_out_of_range(unsigned long gma, 2709 unsigned long gma_head, unsigned int gma_tail) 2710 { 2711 if (gma_tail >= gma_head) 2712 return (gma < gma_head) || (gma > gma_tail); 2713 else 2714 return (gma > gma_tail) && (gma < gma_head); 2715 } 2716 2717 /* Keep the consistent return type, e.g EBADRQC for unknown 2718 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2719 * works as the input of VM healthy status. 2720 */ 2721 static int command_scan(struct parser_exec_state *s, 2722 unsigned long rb_head, unsigned long rb_tail, 2723 unsigned long rb_start, unsigned long rb_len) 2724 { 2725 2726 unsigned long gma_head, gma_tail, gma_bottom; 2727 int ret = 0; 2728 struct intel_vgpu *vgpu = s->vgpu; 2729 2730 gma_head = rb_start + rb_head; 2731 gma_tail = rb_start + rb_tail; 2732 gma_bottom = rb_start + rb_len; 2733 2734 while (s->ip_gma != gma_tail) { 2735 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2736 if (!(s->ip_gma >= rb_start) || 2737 !(s->ip_gma < gma_bottom)) { 2738 gvt_vgpu_err("ip_gma %lx out of ring scope." 2739 "(base:0x%lx, bottom: 0x%lx)\n", 2740 s->ip_gma, rb_start, 2741 gma_bottom); 2742 parser_exec_state_dump(s); 2743 return -EFAULT; 2744 } 2745 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2746 gvt_vgpu_err("ip_gma %lx out of range." 2747 "base 0x%lx head 0x%lx tail 0x%lx\n", 2748 s->ip_gma, rb_start, 2749 rb_head, rb_tail); 2750 parser_exec_state_dump(s); 2751 break; 2752 } 2753 } 2754 ret = cmd_parser_exec(s); 2755 if (ret) { 2756 gvt_vgpu_err("cmd parser error\n"); 2757 parser_exec_state_dump(s); 2758 break; 2759 } 2760 } 2761 2762 return ret; 2763 } 2764 2765 static int scan_workload(struct intel_vgpu_workload *workload) 2766 { 2767 unsigned long gma_head, gma_tail, gma_bottom; 2768 struct parser_exec_state s; 2769 int ret = 0; 2770 2771 /* ring base is page aligned */ 2772 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2773 return -EINVAL; 2774 2775 gma_head = workload->rb_start + workload->rb_head; 2776 gma_tail = workload->rb_start + workload->rb_tail; 2777 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2778 2779 s.buf_type = RING_BUFFER_INSTRUCTION; 2780 s.buf_addr_type = GTT_BUFFER; 2781 s.vgpu = workload->vgpu; 2782 s.ring_id = workload->ring_id; 2783 s.ring_start = workload->rb_start; 2784 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2785 s.ring_head = gma_head; 2786 s.ring_tail = gma_tail; 2787 s.rb_va = workload->shadow_ring_buffer_va; 2788 s.workload = workload; 2789 s.is_ctx_wa = false; 2790 2791 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2792 gma_head == gma_tail) 2793 return 0; 2794 2795 ret = ip_gma_set(&s, gma_head); 2796 if (ret) 2797 goto out; 2798 2799 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2800 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2801 2802 out: 2803 return ret; 2804 } 2805 2806 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2807 { 2808 2809 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2810 struct parser_exec_state s; 2811 int ret = 0; 2812 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2813 struct intel_vgpu_workload, 2814 wa_ctx); 2815 2816 /* ring base is page aligned */ 2817 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2818 I915_GTT_PAGE_SIZE))) 2819 return -EINVAL; 2820 2821 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2822 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2823 PAGE_SIZE); 2824 gma_head = wa_ctx->indirect_ctx.guest_gma; 2825 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2826 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2827 2828 s.buf_type = RING_BUFFER_INSTRUCTION; 2829 s.buf_addr_type = GTT_BUFFER; 2830 s.vgpu = workload->vgpu; 2831 s.ring_id = workload->ring_id; 2832 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2833 s.ring_size = ring_size; 2834 s.ring_head = gma_head; 2835 s.ring_tail = gma_tail; 2836 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2837 s.workload = workload; 2838 s.is_ctx_wa = true; 2839 2840 ret = ip_gma_set(&s, gma_head); 2841 if (ret) 2842 goto out; 2843 2844 ret = command_scan(&s, 0, ring_tail, 2845 wa_ctx->indirect_ctx.guest_gma, ring_size); 2846 out: 2847 return ret; 2848 } 2849 2850 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2851 { 2852 struct intel_vgpu *vgpu = workload->vgpu; 2853 struct intel_vgpu_submission *s = &vgpu->submission; 2854 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2855 void *shadow_ring_buffer_va; 2856 int ring_id = workload->ring_id; 2857 int ret; 2858 2859 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2860 2861 /* calculate workload ring buffer size */ 2862 workload->rb_len = (workload->rb_tail + guest_rb_size - 2863 workload->rb_head) % guest_rb_size; 2864 2865 gma_head = workload->rb_start + workload->rb_head; 2866 gma_tail = workload->rb_start + workload->rb_tail; 2867 gma_top = workload->rb_start + guest_rb_size; 2868 2869 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2870 void *p; 2871 2872 /* realloc the new ring buffer if needed */ 2873 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2874 GFP_KERNEL); 2875 if (!p) { 2876 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2877 return -ENOMEM; 2878 } 2879 s->ring_scan_buffer[ring_id] = p; 2880 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2881 } 2882 2883 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2884 2885 /* get shadow ring buffer va */ 2886 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2887 2888 /* head > tail --> copy head <-> top */ 2889 if (gma_head > gma_tail) { 2890 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2891 gma_head, gma_top, shadow_ring_buffer_va); 2892 if (ret < 0) { 2893 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2894 return ret; 2895 } 2896 shadow_ring_buffer_va += ret; 2897 gma_head = workload->rb_start; 2898 } 2899 2900 /* copy head or start <-> tail */ 2901 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2902 shadow_ring_buffer_va); 2903 if (ret < 0) { 2904 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2905 return ret; 2906 } 2907 return 0; 2908 } 2909 2910 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2911 { 2912 int ret; 2913 struct intel_vgpu *vgpu = workload->vgpu; 2914 2915 ret = shadow_workload_ring_buffer(workload); 2916 if (ret) { 2917 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2918 return ret; 2919 } 2920 2921 ret = scan_workload(workload); 2922 if (ret) { 2923 gvt_vgpu_err("scan workload error\n"); 2924 return ret; 2925 } 2926 return 0; 2927 } 2928 2929 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2930 { 2931 int ctx_size = wa_ctx->indirect_ctx.size; 2932 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2933 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2934 struct intel_vgpu_workload, 2935 wa_ctx); 2936 struct intel_vgpu *vgpu = workload->vgpu; 2937 struct drm_i915_gem_object *obj; 2938 int ret = 0; 2939 void *map; 2940 2941 obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv, 2942 roundup(ctx_size + CACHELINE_BYTES, 2943 PAGE_SIZE)); 2944 if (IS_ERR(obj)) 2945 return PTR_ERR(obj); 2946 2947 /* get the va of the shadow batch buffer */ 2948 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2949 if (IS_ERR(map)) { 2950 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2951 ret = PTR_ERR(map); 2952 goto put_obj; 2953 } 2954 2955 i915_gem_object_lock(obj); 2956 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2957 i915_gem_object_unlock(obj); 2958 if (ret) { 2959 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2960 goto unmap_src; 2961 } 2962 2963 ret = copy_gma_to_hva(workload->vgpu, 2964 workload->vgpu->gtt.ggtt_mm, 2965 guest_gma, guest_gma + ctx_size, 2966 map); 2967 if (ret < 0) { 2968 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2969 goto unmap_src; 2970 } 2971 2972 wa_ctx->indirect_ctx.obj = obj; 2973 wa_ctx->indirect_ctx.shadow_va = map; 2974 return 0; 2975 2976 unmap_src: 2977 i915_gem_object_unpin_map(obj); 2978 put_obj: 2979 i915_gem_object_put(obj); 2980 return ret; 2981 } 2982 2983 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2984 { 2985 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 2986 unsigned char *bb_start_sva; 2987 2988 if (!wa_ctx->per_ctx.valid) 2989 return 0; 2990 2991 per_ctx_start[0] = 0x18800001; 2992 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2993 2994 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2995 wa_ctx->indirect_ctx.size; 2996 2997 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2998 2999 return 0; 3000 } 3001 3002 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3003 { 3004 int ret; 3005 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3006 struct intel_vgpu_workload, 3007 wa_ctx); 3008 struct intel_vgpu *vgpu = workload->vgpu; 3009 3010 if (wa_ctx->indirect_ctx.size == 0) 3011 return 0; 3012 3013 ret = shadow_indirect_ctx(wa_ctx); 3014 if (ret) { 3015 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3016 return ret; 3017 } 3018 3019 combine_wa_ctx(wa_ctx); 3020 3021 ret = scan_wa_ctx(wa_ctx); 3022 if (ret) { 3023 gvt_vgpu_err("scan wa ctx error\n"); 3024 return ret; 3025 } 3026 3027 return 0; 3028 } 3029 3030 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 3031 unsigned int opcode, unsigned long rings) 3032 { 3033 const struct cmd_info *info = NULL; 3034 unsigned int ring; 3035 3036 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 3037 info = find_cmd_entry(gvt, opcode, ring); 3038 if (info) 3039 break; 3040 } 3041 return info; 3042 } 3043 3044 static int init_cmd_table(struct intel_gvt *gvt) 3045 { 3046 int i; 3047 struct cmd_entry *e; 3048 const struct cmd_info *info; 3049 unsigned int gen_type; 3050 3051 gen_type = intel_gvt_get_device_type(gvt); 3052 3053 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3054 if (!(cmd_info[i].devices & gen_type)) 3055 continue; 3056 3057 e = kzalloc(sizeof(*e), GFP_KERNEL); 3058 if (!e) 3059 return -ENOMEM; 3060 3061 e->info = &cmd_info[i]; 3062 info = find_cmd_entry_any_ring(gvt, 3063 e->info->opcode, e->info->rings); 3064 if (info) { 3065 gvt_err("%s %s duplicated\n", e->info->name, 3066 info->name); 3067 kfree(e); 3068 return -EEXIST; 3069 } 3070 if (cmd_info[i].opcode == OP_MI_NOOP) 3071 mi_noop_index = i; 3072 3073 INIT_HLIST_NODE(&e->hlist); 3074 add_cmd_entry(gvt, e); 3075 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3076 e->info->name, e->info->opcode, e->info->flag, 3077 e->info->devices, e->info->rings); 3078 } 3079 return 0; 3080 } 3081 3082 static void clean_cmd_table(struct intel_gvt *gvt) 3083 { 3084 struct hlist_node *tmp; 3085 struct cmd_entry *e; 3086 int i; 3087 3088 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3089 kfree(e); 3090 3091 hash_init(gvt->cmd_table); 3092 } 3093 3094 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3095 { 3096 clean_cmd_table(gvt); 3097 } 3098 3099 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3100 { 3101 int ret; 3102 3103 ret = init_cmd_table(gvt); 3104 if (ret) { 3105 intel_gvt_clean_cmd_parser(gvt); 3106 return ret; 3107 } 3108 return 0; 3109 } 3110