xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 023e4163)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	const char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	const struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176 
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181 
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248 
249 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260 
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289 
290 /* VCCP Command Parser */
291 
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298 
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300 	(3 << 13 | \
301 	 (pipeline) << 11 | \
302 	 (op) << 8 | \
303 	 (sub_opa) << 5 | \
304 	 (sub_opb))
305 
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317 
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319 
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332 
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338 
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344 
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348 
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352 
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354 	(3 << 13 | \
355 	 (pipeline) << 11 | \
356 	 (op) << 8 | \
357 	 (sub_opa) << 5 | \
358 	 (sub_opb))
359 
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363 
364 struct parser_exec_state;
365 
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367 
368 #define GVT_CMD_HASH_BITS   7
369 
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)			(1 << (x1))
372 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376 
377 struct cmd_info {
378 	const char *name;
379 	u32 opcode;
380 
381 #define F_LEN_MASK	(1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384 
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390 
391 #define F_POST_HANDLE	(1<<2)
392 	u32 flag;
393 
394 #define R_RCS	(1 << RCS)
395 #define R_VCS1  (1 << VCS)
396 #define R_VCS2  (1 << VCS2)
397 #define R_VCS	(R_VCS1 | R_VCS2)
398 #define R_BCS	(1 << BCS)
399 #define R_VECS	(1 << VECS)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
402 	u16 rings;
403 
404 	/* devices that support this cmd: SNB/IVB/HSW/... */
405 	u16 devices;
406 
407 	/* which DWords are address that need fix up.
408 	 * bit 0 means a 32-bit non address operand in command
409 	 * bit 1 means address operand, which could be 32-bit
410 	 * or 64-bit depending on different architectures.(
411 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412 	 * No matter the address length, each address only takes
413 	 * one bit in the bitmap.
414 	 */
415 	u16 addr_bitmap;
416 
417 	/* flag == F_LEN_CONST : command length
418 	 * flag == F_LEN_VAR : length bias bits
419 	 * Note: length is in DWord
420 	 */
421 	u8 len;
422 
423 	parser_cmd_handler handler;
424 };
425 
426 struct cmd_entry {
427 	struct hlist_node hlist;
428 	const struct cmd_info *info;
429 };
430 
431 enum {
432 	RING_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_INSTRUCTION,
434 	BATCH_BUFFER_2ND_LEVEL,
435 };
436 
437 enum {
438 	GTT_BUFFER,
439 	PPGTT_BUFFER
440 };
441 
442 struct parser_exec_state {
443 	struct intel_vgpu *vgpu;
444 	int ring_id;
445 
446 	int buf_type;
447 
448 	/* batch buffer address type */
449 	int buf_addr_type;
450 
451 	/* graphics memory address of ring buffer start */
452 	unsigned long ring_start;
453 	unsigned long ring_size;
454 	unsigned long ring_head;
455 	unsigned long ring_tail;
456 
457 	/* instruction graphics memory address */
458 	unsigned long ip_gma;
459 
460 	/* mapped va of the instr_gma */
461 	void *ip_va;
462 	void *rb_va;
463 
464 	void *ret_bb_va;
465 	/* next instruction when return from  batch buffer to ring buffer */
466 	unsigned long ret_ip_gma_ring;
467 
468 	/* next instruction when return from 2nd batch buffer to batch buffer */
469 	unsigned long ret_ip_gma_bb;
470 
471 	/* batch buffer address type (GTT or PPGTT)
472 	 * used when ret from 2nd level batch buffer
473 	 */
474 	int saved_buf_addr_type;
475 	bool is_ctx_wa;
476 
477 	const struct cmd_info *info;
478 
479 	struct intel_vgpu_workload *workload;
480 };
481 
482 #define gmadr_dw_number(s)	\
483 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484 
485 static unsigned long bypass_scan_mask = 0;
486 
487 /* ring ALL, type = 0 */
488 static const struct sub_op_bits sub_op_mi[] = {
489 	{31, 29},
490 	{28, 23},
491 };
492 
493 static const struct decode_info decode_info_mi = {
494 	"MI",
495 	OP_LEN_MI,
496 	ARRAY_SIZE(sub_op_mi),
497 	sub_op_mi,
498 };
499 
500 /* ring RCS, command type 2 */
501 static const struct sub_op_bits sub_op_2d[] = {
502 	{31, 29},
503 	{28, 22},
504 };
505 
506 static const struct decode_info decode_info_2d = {
507 	"2D",
508 	OP_LEN_2D,
509 	ARRAY_SIZE(sub_op_2d),
510 	sub_op_2d,
511 };
512 
513 /* ring RCS, command type 3 */
514 static const struct sub_op_bits sub_op_3d_media[] = {
515 	{31, 29},
516 	{28, 27},
517 	{26, 24},
518 	{23, 16},
519 };
520 
521 static const struct decode_info decode_info_3d_media = {
522 	"3D_Media",
523 	OP_LEN_3D_MEDIA,
524 	ARRAY_SIZE(sub_op_3d_media),
525 	sub_op_3d_media,
526 };
527 
528 /* ring VCS, command type 3 */
529 static const struct sub_op_bits sub_op_mfx_vc[] = {
530 	{31, 29},
531 	{28, 27},
532 	{26, 24},
533 	{23, 21},
534 	{20, 16},
535 };
536 
537 static const struct decode_info decode_info_mfx_vc = {
538 	"MFX_VC",
539 	OP_LEN_MFX_VC,
540 	ARRAY_SIZE(sub_op_mfx_vc),
541 	sub_op_mfx_vc,
542 };
543 
544 /* ring VECS, command type 3 */
545 static const struct sub_op_bits sub_op_vebox[] = {
546 	{31, 29},
547 	{28, 27},
548 	{26, 24},
549 	{23, 21},
550 	{20, 16},
551 };
552 
553 static const struct decode_info decode_info_vebox = {
554 	"VEBOX",
555 	OP_LEN_VEBOX,
556 	ARRAY_SIZE(sub_op_vebox),
557 	sub_op_vebox,
558 };
559 
560 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561 	[RCS] = {
562 		&decode_info_mi,
563 		NULL,
564 		NULL,
565 		&decode_info_3d_media,
566 		NULL,
567 		NULL,
568 		NULL,
569 		NULL,
570 	},
571 
572 	[VCS] = {
573 		&decode_info_mi,
574 		NULL,
575 		NULL,
576 		&decode_info_mfx_vc,
577 		NULL,
578 		NULL,
579 		NULL,
580 		NULL,
581 	},
582 
583 	[BCS] = {
584 		&decode_info_mi,
585 		NULL,
586 		&decode_info_2d,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 		NULL,
592 	},
593 
594 	[VECS] = {
595 		&decode_info_mi,
596 		NULL,
597 		NULL,
598 		&decode_info_vebox,
599 		NULL,
600 		NULL,
601 		NULL,
602 		NULL,
603 	},
604 
605 	[VCS2] = {
606 		&decode_info_mi,
607 		NULL,
608 		NULL,
609 		&decode_info_mfx_vc,
610 		NULL,
611 		NULL,
612 		NULL,
613 		NULL,
614 	},
615 };
616 
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619 	const struct decode_info *d_info;
620 
621 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622 	if (d_info == NULL)
623 		return INVALID_OP;
624 
625 	return cmd >> (32 - d_info->op_len);
626 }
627 
628 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629 		unsigned int opcode, int ring_id)
630 {
631 	struct cmd_entry *e;
632 
633 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634 		if ((opcode == e->info->opcode) &&
635 				(e->info->rings & (1 << ring_id)))
636 			return e->info;
637 	}
638 	return NULL;
639 }
640 
641 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
642 		u32 cmd, int ring_id)
643 {
644 	u32 opcode;
645 
646 	opcode = get_opcode(cmd, ring_id);
647 	if (opcode == INVALID_OP)
648 		return NULL;
649 
650 	return find_cmd_entry(gvt, opcode, ring_id);
651 }
652 
653 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
654 {
655 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
656 }
657 
658 static inline void print_opcode(u32 cmd, int ring_id)
659 {
660 	const struct decode_info *d_info;
661 	int i;
662 
663 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
664 	if (d_info == NULL)
665 		return;
666 
667 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
668 			cmd >> (32 - d_info->op_len), d_info->name);
669 
670 	for (i = 0; i < d_info->nr_sub_op; i++)
671 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
672 					d_info->sub_op[i].low));
673 
674 	pr_err("\n");
675 }
676 
677 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
678 {
679 	return s->ip_va + (index << 2);
680 }
681 
682 static inline u32 cmd_val(struct parser_exec_state *s, int index)
683 {
684 	return *cmd_ptr(s, index);
685 }
686 
687 static void parser_exec_state_dump(struct parser_exec_state *s)
688 {
689 	int cnt = 0;
690 	int i;
691 
692 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
693 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
694 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
695 			s->ring_head, s->ring_tail);
696 
697 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
698 			s->buf_type == RING_BUFFER_INSTRUCTION ?
699 			"RING_BUFFER" : "BATCH_BUFFER",
700 			s->buf_addr_type == GTT_BUFFER ?
701 			"GTT" : "PPGTT", s->ip_gma);
702 
703 	if (s->ip_va == NULL) {
704 		gvt_dbg_cmd(" ip_va(NULL)");
705 		return;
706 	}
707 
708 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
709 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
710 			cmd_val(s, 2), cmd_val(s, 3));
711 
712 	print_opcode(cmd_val(s, 0), s->ring_id);
713 
714 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
715 
716 	while (cnt < 1024) {
717 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
718 		for (i = 0; i < 8; i++)
719 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
720 		gvt_dbg_cmd("\n");
721 
722 		s->ip_va += 8 * sizeof(u32);
723 		cnt += 8;
724 	}
725 }
726 
727 static inline void update_ip_va(struct parser_exec_state *s)
728 {
729 	unsigned long len = 0;
730 
731 	if (WARN_ON(s->ring_head == s->ring_tail))
732 		return;
733 
734 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
735 		unsigned long ring_top = s->ring_start + s->ring_size;
736 
737 		if (s->ring_head > s->ring_tail) {
738 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
739 				len = (s->ip_gma - s->ring_head);
740 			else if (s->ip_gma >= s->ring_start &&
741 					s->ip_gma <= s->ring_tail)
742 				len = (ring_top - s->ring_head) +
743 					(s->ip_gma - s->ring_start);
744 		} else
745 			len = (s->ip_gma - s->ring_head);
746 
747 		s->ip_va = s->rb_va + len;
748 	} else {/* shadow batch buffer */
749 		s->ip_va = s->ret_bb_va;
750 	}
751 }
752 
753 static inline int ip_gma_set(struct parser_exec_state *s,
754 		unsigned long ip_gma)
755 {
756 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
757 
758 	s->ip_gma = ip_gma;
759 	update_ip_va(s);
760 	return 0;
761 }
762 
763 static inline int ip_gma_advance(struct parser_exec_state *s,
764 		unsigned int dw_len)
765 {
766 	s->ip_gma += (dw_len << 2);
767 
768 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
769 		if (s->ip_gma >= s->ring_start + s->ring_size)
770 			s->ip_gma -= s->ring_size;
771 		update_ip_va(s);
772 	} else {
773 		s->ip_va += (dw_len << 2);
774 	}
775 
776 	return 0;
777 }
778 
779 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
780 {
781 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
782 		return info->len;
783 	else
784 		return (cmd & ((1U << info->len) - 1)) + 2;
785 	return 0;
786 }
787 
788 static inline int cmd_length(struct parser_exec_state *s)
789 {
790 	return get_cmd_length(s->info, cmd_val(s, 0));
791 }
792 
793 /* do not remove this, some platform may need clflush here */
794 #define patch_value(s, addr, val) do { \
795 	*addr = val; \
796 } while (0)
797 
798 static bool is_shadowed_mmio(unsigned int offset)
799 {
800 	bool ret = false;
801 
802 	if ((offset == 0x2168) || /*BB current head register UDW */
803 	    (offset == 0x2140) || /*BB current header register */
804 	    (offset == 0x211c) || /*second BB header register UDW */
805 	    (offset == 0x2114)) { /*second BB header register UDW */
806 		ret = true;
807 	}
808 	return ret;
809 }
810 
811 static inline bool is_force_nonpriv_mmio(unsigned int offset)
812 {
813 	return (offset >= 0x24d0 && offset < 0x2500);
814 }
815 
816 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
817 		unsigned int offset, unsigned int index, char *cmd)
818 {
819 	struct intel_gvt *gvt = s->vgpu->gvt;
820 	unsigned int data;
821 	u32 ring_base;
822 	u32 nopid;
823 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
824 
825 	if (!strcmp(cmd, "lri"))
826 		data = cmd_val(s, index + 1);
827 	else {
828 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
829 			offset, cmd);
830 		return -EINVAL;
831 	}
832 
833 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
834 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
835 
836 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
837 			data != nopid) {
838 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
839 			offset, data);
840 		patch_value(s, cmd_ptr(s, index), nopid);
841 		return 0;
842 	}
843 	return 0;
844 }
845 
846 static inline bool is_mocs_mmio(unsigned int offset)
847 {
848 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
849 		((offset >= 0xb020) && (offset <= 0xb0a0));
850 }
851 
852 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
853 				unsigned int offset, unsigned int index)
854 {
855 	if (!is_mocs_mmio(offset))
856 		return -EINVAL;
857 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
858 	return 0;
859 }
860 
861 static int cmd_reg_handler(struct parser_exec_state *s,
862 	unsigned int offset, unsigned int index, char *cmd)
863 {
864 	struct intel_vgpu *vgpu = s->vgpu;
865 	struct intel_gvt *gvt = vgpu->gvt;
866 	u32 ctx_sr_ctl;
867 
868 	if (offset + 4 > gvt->device_info.mmio_size) {
869 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
870 				cmd, offset);
871 		return -EFAULT;
872 	}
873 
874 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
875 		gvt_vgpu_err("%s access to non-render register (%x)\n",
876 				cmd, offset);
877 		return -EBADRQC;
878 	}
879 
880 	if (is_shadowed_mmio(offset)) {
881 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
882 		return 0;
883 	}
884 
885 	if (is_mocs_mmio(offset) &&
886 	    mocs_cmd_reg_handler(s, offset, index))
887 		return -EINVAL;
888 
889 	if (is_force_nonpriv_mmio(offset) &&
890 		force_nonpriv_reg_handler(s, offset, index, cmd))
891 		return -EPERM;
892 
893 	if (offset == i915_mmio_reg_offset(DERRMR) ||
894 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
895 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
896 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
897 	}
898 
899 	/* TODO
900 	 * Right now only scan LRI command on KBL and in inhibit context.
901 	 * It's good enough to support initializing mmio by lri command in
902 	 * vgpu inhibit context on KBL.
903 	 */
904 	if ((IS_KABYLAKE(s->vgpu->gvt->dev_priv)
905 		|| IS_COFFEELAKE(s->vgpu->gvt->dev_priv)) &&
906 			intel_gvt_mmio_is_in_ctx(gvt, offset) &&
907 			!strncmp(cmd, "lri", 3)) {
908 		intel_gvt_hypervisor_read_gpa(s->vgpu,
909 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
910 		/* check inhibit context */
911 		if (ctx_sr_ctl & 1) {
912 			u32 data = cmd_val(s, index + 1);
913 
914 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
915 				intel_vgpu_mask_mmio_write(vgpu,
916 							offset, &data, 4);
917 			else
918 				vgpu_vreg(vgpu, offset) = data;
919 		}
920 	}
921 
922 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
923 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
924 	return 0;
925 }
926 
927 #define cmd_reg(s, i) \
928 	(cmd_val(s, i) & GENMASK(22, 2))
929 
930 #define cmd_reg_inhibit(s, i) \
931 	(cmd_val(s, i) & GENMASK(22, 18))
932 
933 #define cmd_gma(s, i) \
934 	(cmd_val(s, i) & GENMASK(31, 2))
935 
936 #define cmd_gma_hi(s, i) \
937 	(cmd_val(s, i) & GENMASK(15, 0))
938 
939 static int cmd_handler_lri(struct parser_exec_state *s)
940 {
941 	int i, ret = 0;
942 	int cmd_len = cmd_length(s);
943 	struct intel_gvt *gvt = s->vgpu->gvt;
944 
945 	for (i = 1; i < cmd_len; i += 2) {
946 		if (IS_BROADWELL(gvt->dev_priv) &&
947 				(s->ring_id != RCS)) {
948 			if (s->ring_id == BCS &&
949 					cmd_reg(s, i) ==
950 					i915_mmio_reg_offset(DERRMR))
951 				ret |= 0;
952 			else
953 				ret |= (cmd_reg_inhibit(s, i)) ?
954 					-EBADRQC : 0;
955 		}
956 		if (ret)
957 			break;
958 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
959 		if (ret)
960 			break;
961 	}
962 	return ret;
963 }
964 
965 static int cmd_handler_lrr(struct parser_exec_state *s)
966 {
967 	int i, ret = 0;
968 	int cmd_len = cmd_length(s);
969 
970 	for (i = 1; i < cmd_len; i += 2) {
971 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
972 			ret |= ((cmd_reg_inhibit(s, i) ||
973 					(cmd_reg_inhibit(s, i + 1)))) ?
974 				-EBADRQC : 0;
975 		if (ret)
976 			break;
977 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
978 		if (ret)
979 			break;
980 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
981 		if (ret)
982 			break;
983 	}
984 	return ret;
985 }
986 
987 static inline int cmd_address_audit(struct parser_exec_state *s,
988 		unsigned long guest_gma, int op_size, bool index_mode);
989 
990 static int cmd_handler_lrm(struct parser_exec_state *s)
991 {
992 	struct intel_gvt *gvt = s->vgpu->gvt;
993 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
994 	unsigned long gma;
995 	int i, ret = 0;
996 	int cmd_len = cmd_length(s);
997 
998 	for (i = 1; i < cmd_len;) {
999 		if (IS_BROADWELL(gvt->dev_priv))
1000 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1001 		if (ret)
1002 			break;
1003 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1004 		if (ret)
1005 			break;
1006 		if (cmd_val(s, 0) & (1 << 22)) {
1007 			gma = cmd_gma(s, i + 1);
1008 			if (gmadr_bytes == 8)
1009 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1010 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1011 			if (ret)
1012 				break;
1013 		}
1014 		i += gmadr_dw_number(s) + 1;
1015 	}
1016 	return ret;
1017 }
1018 
1019 static int cmd_handler_srm(struct parser_exec_state *s)
1020 {
1021 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1022 	unsigned long gma;
1023 	int i, ret = 0;
1024 	int cmd_len = cmd_length(s);
1025 
1026 	for (i = 1; i < cmd_len;) {
1027 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1028 		if (ret)
1029 			break;
1030 		if (cmd_val(s, 0) & (1 << 22)) {
1031 			gma = cmd_gma(s, i + 1);
1032 			if (gmadr_bytes == 8)
1033 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1034 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1035 			if (ret)
1036 				break;
1037 		}
1038 		i += gmadr_dw_number(s) + 1;
1039 	}
1040 	return ret;
1041 }
1042 
1043 struct cmd_interrupt_event {
1044 	int pipe_control_notify;
1045 	int mi_flush_dw;
1046 	int mi_user_interrupt;
1047 };
1048 
1049 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1050 	[RCS] = {
1051 		.pipe_control_notify = RCS_PIPE_CONTROL,
1052 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1053 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1054 	},
1055 	[BCS] = {
1056 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1057 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1058 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1059 	},
1060 	[VCS] = {
1061 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1062 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1063 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1064 	},
1065 	[VCS2] = {
1066 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1067 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1068 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1069 	},
1070 	[VECS] = {
1071 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1072 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1073 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1074 	},
1075 };
1076 
1077 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1078 {
1079 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1080 	unsigned long gma;
1081 	bool index_mode = false;
1082 	unsigned int post_sync;
1083 	int ret = 0;
1084 
1085 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1086 
1087 	/* LRI post sync */
1088 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1089 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1090 	/* post sync */
1091 	else if (post_sync) {
1092 		if (post_sync == 2)
1093 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1094 		else if (post_sync == 3)
1095 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1096 		else if (post_sync == 1) {
1097 			/* check ggtt*/
1098 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1099 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1100 				if (gmadr_bytes == 8)
1101 					gma |= (cmd_gma_hi(s, 3)) << 32;
1102 				/* Store Data Index */
1103 				if (cmd_val(s, 1) & (1 << 21))
1104 					index_mode = true;
1105 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1106 						index_mode);
1107 			}
1108 		}
1109 	}
1110 
1111 	if (ret)
1112 		return ret;
1113 
1114 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1115 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1116 				s->workload->pending_events);
1117 	return 0;
1118 }
1119 
1120 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1121 {
1122 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1123 			s->workload->pending_events);
1124 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1125 	return 0;
1126 }
1127 
1128 static int cmd_advance_default(struct parser_exec_state *s)
1129 {
1130 	return ip_gma_advance(s, cmd_length(s));
1131 }
1132 
1133 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1134 {
1135 	int ret;
1136 
1137 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1138 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1139 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1140 		s->buf_addr_type = s->saved_buf_addr_type;
1141 	} else {
1142 		s->buf_type = RING_BUFFER_INSTRUCTION;
1143 		s->buf_addr_type = GTT_BUFFER;
1144 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1145 			s->ret_ip_gma_ring -= s->ring_size;
1146 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1147 	}
1148 	return ret;
1149 }
1150 
1151 struct mi_display_flip_command_info {
1152 	int pipe;
1153 	int plane;
1154 	int event;
1155 	i915_reg_t stride_reg;
1156 	i915_reg_t ctrl_reg;
1157 	i915_reg_t surf_reg;
1158 	u64 stride_val;
1159 	u64 tile_val;
1160 	u64 surf_val;
1161 	bool async_flip;
1162 };
1163 
1164 struct plane_code_mapping {
1165 	int pipe;
1166 	int plane;
1167 	int event;
1168 };
1169 
1170 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1171 		struct mi_display_flip_command_info *info)
1172 {
1173 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1174 	struct plane_code_mapping gen8_plane_code[] = {
1175 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1176 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1177 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1178 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1179 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1180 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1181 	};
1182 	u32 dword0, dword1, dword2;
1183 	u32 v;
1184 
1185 	dword0 = cmd_val(s, 0);
1186 	dword1 = cmd_val(s, 1);
1187 	dword2 = cmd_val(s, 2);
1188 
1189 	v = (dword0 & GENMASK(21, 19)) >> 19;
1190 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1191 		return -EBADRQC;
1192 
1193 	info->pipe = gen8_plane_code[v].pipe;
1194 	info->plane = gen8_plane_code[v].plane;
1195 	info->event = gen8_plane_code[v].event;
1196 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1197 	info->tile_val = (dword1 & 0x1);
1198 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1199 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1200 
1201 	if (info->plane == PLANE_A) {
1202 		info->ctrl_reg = DSPCNTR(info->pipe);
1203 		info->stride_reg = DSPSTRIDE(info->pipe);
1204 		info->surf_reg = DSPSURF(info->pipe);
1205 	} else if (info->plane == PLANE_B) {
1206 		info->ctrl_reg = SPRCTL(info->pipe);
1207 		info->stride_reg = SPRSTRIDE(info->pipe);
1208 		info->surf_reg = SPRSURF(info->pipe);
1209 	} else {
1210 		WARN_ON(1);
1211 		return -EBADRQC;
1212 	}
1213 	return 0;
1214 }
1215 
1216 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1217 		struct mi_display_flip_command_info *info)
1218 {
1219 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1220 	struct intel_vgpu *vgpu = s->vgpu;
1221 	u32 dword0 = cmd_val(s, 0);
1222 	u32 dword1 = cmd_val(s, 1);
1223 	u32 dword2 = cmd_val(s, 2);
1224 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1225 
1226 	info->plane = PRIMARY_PLANE;
1227 
1228 	switch (plane) {
1229 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1230 		info->pipe = PIPE_A;
1231 		info->event = PRIMARY_A_FLIP_DONE;
1232 		break;
1233 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1234 		info->pipe = PIPE_B;
1235 		info->event = PRIMARY_B_FLIP_DONE;
1236 		break;
1237 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1238 		info->pipe = PIPE_C;
1239 		info->event = PRIMARY_C_FLIP_DONE;
1240 		break;
1241 
1242 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1243 		info->pipe = PIPE_A;
1244 		info->event = SPRITE_A_FLIP_DONE;
1245 		info->plane = SPRITE_PLANE;
1246 		break;
1247 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1248 		info->pipe = PIPE_B;
1249 		info->event = SPRITE_B_FLIP_DONE;
1250 		info->plane = SPRITE_PLANE;
1251 		break;
1252 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1253 		info->pipe = PIPE_C;
1254 		info->event = SPRITE_C_FLIP_DONE;
1255 		info->plane = SPRITE_PLANE;
1256 		break;
1257 
1258 	default:
1259 		gvt_vgpu_err("unknown plane code %d\n", plane);
1260 		return -EBADRQC;
1261 	}
1262 
1263 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1264 	info->tile_val = (dword1 & GENMASK(2, 0));
1265 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1266 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1267 
1268 	info->ctrl_reg = DSPCNTR(info->pipe);
1269 	info->stride_reg = DSPSTRIDE(info->pipe);
1270 	info->surf_reg = DSPSURF(info->pipe);
1271 
1272 	return 0;
1273 }
1274 
1275 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1276 		struct mi_display_flip_command_info *info)
1277 {
1278 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1279 	u32 stride, tile;
1280 
1281 	if (!info->async_flip)
1282 		return 0;
1283 
1284 	if (INTEL_GEN(dev_priv) >= 9) {
1285 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1286 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1287 				GENMASK(12, 10)) >> 10;
1288 	} else {
1289 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1290 				GENMASK(15, 6)) >> 6;
1291 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1292 	}
1293 
1294 	if (stride != info->stride_val)
1295 		gvt_dbg_cmd("cannot change stride during async flip\n");
1296 
1297 	if (tile != info->tile_val)
1298 		gvt_dbg_cmd("cannot change tile during async flip\n");
1299 
1300 	return 0;
1301 }
1302 
1303 static int gen8_update_plane_mmio_from_mi_display_flip(
1304 		struct parser_exec_state *s,
1305 		struct mi_display_flip_command_info *info)
1306 {
1307 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1308 	struct intel_vgpu *vgpu = s->vgpu;
1309 
1310 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1311 		      info->surf_val << 12);
1312 	if (INTEL_GEN(dev_priv) >= 9) {
1313 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1314 			      info->stride_val);
1315 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1316 			      info->tile_val << 10);
1317 	} else {
1318 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1319 			      info->stride_val << 6);
1320 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1321 			      info->tile_val << 10);
1322 	}
1323 
1324 	vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1325 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1326 	return 0;
1327 }
1328 
1329 static int decode_mi_display_flip(struct parser_exec_state *s,
1330 		struct mi_display_flip_command_info *info)
1331 {
1332 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1333 
1334 	if (IS_BROADWELL(dev_priv))
1335 		return gen8_decode_mi_display_flip(s, info);
1336 	if (INTEL_GEN(dev_priv) >= 9)
1337 		return skl_decode_mi_display_flip(s, info);
1338 
1339 	return -ENODEV;
1340 }
1341 
1342 static int check_mi_display_flip(struct parser_exec_state *s,
1343 		struct mi_display_flip_command_info *info)
1344 {
1345 	return gen8_check_mi_display_flip(s, info);
1346 }
1347 
1348 static int update_plane_mmio_from_mi_display_flip(
1349 		struct parser_exec_state *s,
1350 		struct mi_display_flip_command_info *info)
1351 {
1352 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1353 }
1354 
1355 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1356 {
1357 	struct mi_display_flip_command_info info;
1358 	struct intel_vgpu *vgpu = s->vgpu;
1359 	int ret;
1360 	int i;
1361 	int len = cmd_length(s);
1362 
1363 	ret = decode_mi_display_flip(s, &info);
1364 	if (ret) {
1365 		gvt_vgpu_err("fail to decode MI display flip command\n");
1366 		return ret;
1367 	}
1368 
1369 	ret = check_mi_display_flip(s, &info);
1370 	if (ret) {
1371 		gvt_vgpu_err("invalid MI display flip command\n");
1372 		return ret;
1373 	}
1374 
1375 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1376 	if (ret) {
1377 		gvt_vgpu_err("fail to update plane mmio\n");
1378 		return ret;
1379 	}
1380 
1381 	for (i = 0; i < len; i++)
1382 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1383 	return 0;
1384 }
1385 
1386 static bool is_wait_for_flip_pending(u32 cmd)
1387 {
1388 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1389 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1390 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1391 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1392 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1393 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1394 }
1395 
1396 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1397 {
1398 	u32 cmd = cmd_val(s, 0);
1399 
1400 	if (!is_wait_for_flip_pending(cmd))
1401 		return 0;
1402 
1403 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1404 	return 0;
1405 }
1406 
1407 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1408 {
1409 	unsigned long addr;
1410 	unsigned long gma_high, gma_low;
1411 	struct intel_vgpu *vgpu = s->vgpu;
1412 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1413 
1414 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1415 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1416 		return INTEL_GVT_INVALID_ADDR;
1417 	}
1418 
1419 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1420 	if (gmadr_bytes == 4) {
1421 		addr = gma_low;
1422 	} else {
1423 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1424 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1425 	}
1426 	return addr;
1427 }
1428 
1429 static inline int cmd_address_audit(struct parser_exec_state *s,
1430 		unsigned long guest_gma, int op_size, bool index_mode)
1431 {
1432 	struct intel_vgpu *vgpu = s->vgpu;
1433 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1434 	int i;
1435 	int ret;
1436 
1437 	if (op_size > max_surface_size) {
1438 		gvt_vgpu_err("command address audit fail name %s\n",
1439 			s->info->name);
1440 		return -EFAULT;
1441 	}
1442 
1443 	if (index_mode)	{
1444 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1445 			ret = -EFAULT;
1446 			goto err;
1447 		}
1448 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1449 		ret = -EFAULT;
1450 		goto err;
1451 	}
1452 
1453 	return 0;
1454 
1455 err:
1456 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1457 			s->info->name, guest_gma, op_size);
1458 
1459 	pr_err("cmd dump: ");
1460 	for (i = 0; i < cmd_length(s); i++) {
1461 		if (!(i % 4))
1462 			pr_err("\n%08x ", cmd_val(s, i));
1463 		else
1464 			pr_err("%08x ", cmd_val(s, i));
1465 	}
1466 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1467 			vgpu->id,
1468 			vgpu_aperture_gmadr_base(vgpu),
1469 			vgpu_aperture_gmadr_end(vgpu),
1470 			vgpu_hidden_gmadr_base(vgpu),
1471 			vgpu_hidden_gmadr_end(vgpu));
1472 	return ret;
1473 }
1474 
1475 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1476 {
1477 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1478 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1479 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1480 	unsigned long gma, gma_low, gma_high;
1481 	int ret = 0;
1482 
1483 	/* check ppggt */
1484 	if (!(cmd_val(s, 0) & (1 << 22)))
1485 		return 0;
1486 
1487 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1488 
1489 	if (gmadr_bytes == 8) {
1490 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1491 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1492 		gma = (gma_high << 32) | gma_low;
1493 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1494 	}
1495 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1496 	return ret;
1497 }
1498 
1499 static inline int unexpected_cmd(struct parser_exec_state *s)
1500 {
1501 	struct intel_vgpu *vgpu = s->vgpu;
1502 
1503 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1504 
1505 	return -EBADRQC;
1506 }
1507 
1508 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1509 {
1510 	return unexpected_cmd(s);
1511 }
1512 
1513 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1514 {
1515 	return unexpected_cmd(s);
1516 }
1517 
1518 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1519 {
1520 	return unexpected_cmd(s);
1521 }
1522 
1523 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1524 {
1525 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1526 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1527 			sizeof(u32);
1528 	unsigned long gma, gma_high;
1529 	int ret = 0;
1530 
1531 	if (!(cmd_val(s, 0) & (1 << 22)))
1532 		return ret;
1533 
1534 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1535 	if (gmadr_bytes == 8) {
1536 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1537 		gma = (gma_high << 32) | gma;
1538 	}
1539 	ret = cmd_address_audit(s, gma, op_size, false);
1540 	return ret;
1541 }
1542 
1543 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1544 {
1545 	return unexpected_cmd(s);
1546 }
1547 
1548 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1549 {
1550 	return unexpected_cmd(s);
1551 }
1552 
1553 static int cmd_handler_mi_conditional_batch_buffer_end(
1554 		struct parser_exec_state *s)
1555 {
1556 	return unexpected_cmd(s);
1557 }
1558 
1559 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1560 {
1561 	return unexpected_cmd(s);
1562 }
1563 
1564 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1565 {
1566 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1567 	unsigned long gma;
1568 	bool index_mode = false;
1569 	int ret = 0;
1570 
1571 	/* Check post-sync and ppgtt bit */
1572 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1573 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1574 		if (gmadr_bytes == 8)
1575 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1576 		/* Store Data Index */
1577 		if (cmd_val(s, 0) & (1 << 21))
1578 			index_mode = true;
1579 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1580 	}
1581 	/* Check notify bit */
1582 	if ((cmd_val(s, 0) & (1 << 8)))
1583 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1584 				s->workload->pending_events);
1585 	return ret;
1586 }
1587 
1588 static void addr_type_update_snb(struct parser_exec_state *s)
1589 {
1590 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1591 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1592 		s->buf_addr_type = PPGTT_BUFFER;
1593 	}
1594 }
1595 
1596 
1597 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1598 		unsigned long gma, unsigned long end_gma, void *va)
1599 {
1600 	unsigned long copy_len, offset;
1601 	unsigned long len = 0;
1602 	unsigned long gpa;
1603 
1604 	while (gma != end_gma) {
1605 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1606 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1607 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1608 			return -EFAULT;
1609 		}
1610 
1611 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1612 
1613 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1614 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1615 
1616 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1617 
1618 		len += copy_len;
1619 		gma += copy_len;
1620 	}
1621 	return len;
1622 }
1623 
1624 
1625 /*
1626  * Check whether a batch buffer needs to be scanned. Currently
1627  * the only criteria is based on privilege.
1628  */
1629 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1630 {
1631 	/* Decide privilege based on address space */
1632 	if (cmd_val(s, 0) & (1 << 8) &&
1633 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1634 		return 0;
1635 	return 1;
1636 }
1637 
1638 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1639 {
1640 	unsigned long gma = 0;
1641 	const struct cmd_info *info;
1642 	u32 cmd_len = 0;
1643 	bool bb_end = false;
1644 	struct intel_vgpu *vgpu = s->vgpu;
1645 	u32 cmd;
1646 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1647 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1648 
1649 	*bb_size = 0;
1650 
1651 	/* get the start gm address of the batch buffer */
1652 	gma = get_gma_bb_from_cmd(s, 1);
1653 	if (gma == INTEL_GVT_INVALID_ADDR)
1654 		return -EFAULT;
1655 
1656 	cmd = cmd_val(s, 0);
1657 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1658 	if (info == NULL) {
1659 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1660 				cmd, get_opcode(cmd, s->ring_id),
1661 				(s->buf_addr_type == PPGTT_BUFFER) ?
1662 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1663 		return -EBADRQC;
1664 	}
1665 	do {
1666 		if (copy_gma_to_hva(s->vgpu, mm,
1667 				gma, gma + 4, &cmd) < 0)
1668 			return -EFAULT;
1669 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1670 		if (info == NULL) {
1671 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1672 				cmd, get_opcode(cmd, s->ring_id),
1673 				(s->buf_addr_type == PPGTT_BUFFER) ?
1674 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1675 			return -EBADRQC;
1676 		}
1677 
1678 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1679 			bb_end = true;
1680 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1681 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1682 				/* chained batch buffer */
1683 				bb_end = true;
1684 		}
1685 		cmd_len = get_cmd_length(info, cmd) << 2;
1686 		*bb_size += cmd_len;
1687 		gma += cmd_len;
1688 	} while (!bb_end);
1689 
1690 	return 0;
1691 }
1692 
1693 static int perform_bb_shadow(struct parser_exec_state *s)
1694 {
1695 	struct intel_vgpu *vgpu = s->vgpu;
1696 	struct intel_vgpu_shadow_bb *bb;
1697 	unsigned long gma = 0;
1698 	unsigned long bb_size;
1699 	int ret = 0;
1700 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1701 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1702 	unsigned long gma_start_offset = 0;
1703 
1704 	/* get the start gm address of the batch buffer */
1705 	gma = get_gma_bb_from_cmd(s, 1);
1706 	if (gma == INTEL_GVT_INVALID_ADDR)
1707 		return -EFAULT;
1708 
1709 	ret = find_bb_size(s, &bb_size);
1710 	if (ret)
1711 		return ret;
1712 
1713 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1714 	if (!bb)
1715 		return -ENOMEM;
1716 
1717 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1718 
1719 	/* the gma_start_offset stores the batch buffer's start gma's
1720 	 * offset relative to page boundary. so for non-privileged batch
1721 	 * buffer, the shadowed gem object holds exactly the same page
1722 	 * layout as original gem object. This is for the convience of
1723 	 * replacing the whole non-privilged batch buffer page to this
1724 	 * shadowed one in PPGTT at the same gma address. (this replacing
1725 	 * action is not implemented yet now, but may be necessary in
1726 	 * future).
1727 	 * for prileged batch buffer, we just change start gma address to
1728 	 * that of shadowed page.
1729 	 */
1730 	if (bb->ppgtt)
1731 		gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1732 
1733 	bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1734 			 roundup(bb_size + gma_start_offset, PAGE_SIZE));
1735 	if (IS_ERR(bb->obj)) {
1736 		ret = PTR_ERR(bb->obj);
1737 		goto err_free_bb;
1738 	}
1739 
1740 	ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1741 	if (ret)
1742 		goto err_free_obj;
1743 
1744 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1745 	if (IS_ERR(bb->va)) {
1746 		ret = PTR_ERR(bb->va);
1747 		goto err_finish_shmem_access;
1748 	}
1749 
1750 	if (bb->clflush & CLFLUSH_BEFORE) {
1751 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1752 		bb->clflush &= ~CLFLUSH_BEFORE;
1753 	}
1754 
1755 	ret = copy_gma_to_hva(s->vgpu, mm,
1756 			      gma, gma + bb_size,
1757 			      bb->va + gma_start_offset);
1758 	if (ret < 0) {
1759 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1760 		ret = -EFAULT;
1761 		goto err_unmap;
1762 	}
1763 
1764 	INIT_LIST_HEAD(&bb->list);
1765 	list_add(&bb->list, &s->workload->shadow_bb);
1766 
1767 	bb->accessing = true;
1768 	bb->bb_start_cmd_va = s->ip_va;
1769 
1770 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1771 		bb->bb_offset = s->ip_va - s->rb_va;
1772 	else
1773 		bb->bb_offset = 0;
1774 
1775 	/*
1776 	 * ip_va saves the virtual address of the shadow batch buffer, while
1777 	 * ip_gma saves the graphics address of the original batch buffer.
1778 	 * As the shadow batch buffer is just a copy from the originial one,
1779 	 * it should be right to use shadow batch buffer'va and original batch
1780 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1781 	 * buffer here (too early).
1782 	 */
1783 	s->ip_va = bb->va + gma_start_offset;
1784 	s->ip_gma = gma;
1785 	return 0;
1786 err_unmap:
1787 	i915_gem_object_unpin_map(bb->obj);
1788 err_finish_shmem_access:
1789 	i915_gem_obj_finish_shmem_access(bb->obj);
1790 err_free_obj:
1791 	i915_gem_object_put(bb->obj);
1792 err_free_bb:
1793 	kfree(bb);
1794 	return ret;
1795 }
1796 
1797 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1798 {
1799 	bool second_level;
1800 	int ret = 0;
1801 	struct intel_vgpu *vgpu = s->vgpu;
1802 
1803 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1804 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1805 		return -EFAULT;
1806 	}
1807 
1808 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1809 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1810 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1811 		return -EFAULT;
1812 	}
1813 
1814 	s->saved_buf_addr_type = s->buf_addr_type;
1815 	addr_type_update_snb(s);
1816 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1817 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1818 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1819 	} else if (second_level) {
1820 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1821 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1822 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1823 	}
1824 
1825 	if (batch_buffer_needs_scan(s)) {
1826 		ret = perform_bb_shadow(s);
1827 		if (ret < 0)
1828 			gvt_vgpu_err("invalid shadow batch buffer\n");
1829 	} else {
1830 		/* emulate a batch buffer end to do return right */
1831 		ret = cmd_handler_mi_batch_buffer_end(s);
1832 		if (ret < 0)
1833 			return ret;
1834 	}
1835 	return ret;
1836 }
1837 
1838 static int mi_noop_index;
1839 
1840 static const struct cmd_info cmd_info[] = {
1841 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1842 
1843 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1844 		0, 1, NULL},
1845 
1846 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1847 		0, 1, cmd_handler_mi_user_interrupt},
1848 
1849 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1850 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1851 
1852 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1853 
1854 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1855 		NULL},
1856 
1857 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1858 		NULL},
1859 
1860 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1861 		NULL},
1862 
1863 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1864 		NULL},
1865 
1866 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1867 		D_ALL, 0, 1, NULL},
1868 
1869 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1870 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1871 		cmd_handler_mi_batch_buffer_end},
1872 
1873 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1874 		0, 1, NULL},
1875 
1876 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1877 		NULL},
1878 
1879 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1880 		D_ALL, 0, 1, NULL},
1881 
1882 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1883 		NULL},
1884 
1885 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1886 		NULL},
1887 
1888 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1889 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1890 
1891 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1892 		0, 8, NULL},
1893 
1894 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1895 
1896 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1897 
1898 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1899 		D_BDW_PLUS, 0, 8, NULL},
1900 
1901 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL,
1902 		D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1903 
1904 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1905 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1906 
1907 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1908 		0, 8, cmd_handler_mi_store_data_index},
1909 
1910 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1911 		D_ALL, 0, 8, cmd_handler_lri},
1912 
1913 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1914 		cmd_handler_mi_update_gtt},
1915 
1916 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1917 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1918 
1919 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1920 		cmd_handler_mi_flush_dw},
1921 
1922 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1923 		10, cmd_handler_mi_clflush},
1924 
1925 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1926 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1927 
1928 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1929 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1930 
1931 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1932 		D_ALL, 0, 8, cmd_handler_lrr},
1933 
1934 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1935 		D_ALL, 0, 8, NULL},
1936 
1937 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1938 		ADDR_FIX_1(2), 8, NULL},
1939 
1940 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1941 		ADDR_FIX_1(2), 8, NULL},
1942 
1943 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1944 		8, cmd_handler_mi_op_2e},
1945 
1946 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1947 		8, cmd_handler_mi_op_2f},
1948 
1949 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1950 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1951 		cmd_handler_mi_batch_buffer_start},
1952 
1953 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1954 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1955 		cmd_handler_mi_conditional_batch_buffer_end},
1956 
1957 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1958 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1959 
1960 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1961 		ADDR_FIX_2(4, 7), 8, NULL},
1962 
1963 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1964 		0, 8, NULL},
1965 
1966 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1967 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1968 
1969 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1970 
1971 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1972 		0, 8, NULL},
1973 
1974 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1975 		ADDR_FIX_1(3), 8, NULL},
1976 
1977 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1978 		D_ALL, 0, 8, NULL},
1979 
1980 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1981 		ADDR_FIX_1(4), 8, NULL},
1982 
1983 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1984 		ADDR_FIX_2(4, 5), 8, NULL},
1985 
1986 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1987 		ADDR_FIX_1(4), 8, NULL},
1988 
1989 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1990 		ADDR_FIX_2(4, 7), 8, NULL},
1991 
1992 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1993 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1994 
1995 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1996 
1997 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1998 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1999 
2000 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2001 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2002 
2003 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2004 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2005 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2006 
2007 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2008 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2009 
2010 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2011 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2012 
2013 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2014 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2015 
2016 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2017 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2018 
2019 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2020 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2021 
2022 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2023 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2024 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2025 
2026 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2027 		ADDR_FIX_2(4, 5), 8, NULL},
2028 
2029 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2030 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2031 
2032 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2033 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2034 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2035 
2036 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2037 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2038 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2039 
2040 	{"3DSTATE_BLEND_STATE_POINTERS",
2041 		OP_3DSTATE_BLEND_STATE_POINTERS,
2042 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2043 
2044 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2045 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2046 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2047 
2048 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2049 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2050 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2051 
2052 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2053 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2054 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2055 
2056 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2057 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2058 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2059 
2060 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2061 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2062 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2063 
2064 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2065 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2066 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2067 
2068 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2069 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2070 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2071 
2072 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2073 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2074 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2075 
2076 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2077 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2078 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2079 
2080 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2081 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2082 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2083 
2084 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2085 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2086 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2087 
2088 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2089 		0, 8, NULL},
2090 
2091 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2092 		0, 8, NULL},
2093 
2094 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2095 		0, 8, NULL},
2096 
2097 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2098 		0, 8, NULL},
2099 
2100 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2101 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2102 
2103 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2104 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2105 
2106 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2107 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2108 
2109 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2110 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2111 
2112 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2113 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2114 
2115 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2116 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2117 
2118 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2119 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2120 
2121 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2122 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2123 
2124 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2125 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2126 
2127 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2128 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2129 
2130 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2131 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2132 
2133 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2134 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2135 
2136 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2137 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2138 
2139 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2140 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2141 
2142 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2143 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2144 
2145 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2146 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2147 
2148 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2149 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2150 
2151 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2152 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2153 
2154 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2155 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2156 
2157 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2158 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2159 
2160 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2161 		D_BDW_PLUS, 0, 8, NULL},
2162 
2163 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2164 		NULL},
2165 
2166 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2167 		D_BDW_PLUS, 0, 8, NULL},
2168 
2169 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2170 		D_BDW_PLUS, 0, 8, NULL},
2171 
2172 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2173 		8, NULL},
2174 
2175 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2176 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2177 
2178 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2179 		8, NULL},
2180 
2181 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2182 		NULL},
2183 
2184 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2185 		NULL},
2186 
2187 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2188 		NULL},
2189 
2190 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2191 		D_BDW_PLUS, 0, 8, NULL},
2192 
2193 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2194 		R_RCS, D_ALL, 0, 8, NULL},
2195 
2196 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2197 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2198 
2199 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2200 		R_RCS, D_ALL, 0, 1, NULL},
2201 
2202 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203 
2204 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2205 		R_RCS, D_ALL, 0, 8, NULL},
2206 
2207 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2208 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209 
2210 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2211 
2212 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2213 
2214 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2215 
2216 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2217 		D_BDW_PLUS, 0, 8, NULL},
2218 
2219 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2220 		D_BDW_PLUS, 0, 8, NULL},
2221 
2222 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2223 		D_ALL, 0, 8, NULL},
2224 
2225 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2226 		D_BDW_PLUS, 0, 8, NULL},
2227 
2228 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2229 		D_BDW_PLUS, 0, 8, NULL},
2230 
2231 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2232 
2233 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234 
2235 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236 
2237 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2238 		D_ALL, 0, 8, NULL},
2239 
2240 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 
2242 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2243 
2244 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2245 		R_RCS, D_ALL, 0, 8, NULL},
2246 
2247 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2248 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 
2250 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2251 		0, 8, NULL},
2252 
2253 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2254 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2255 
2256 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2257 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258 
2259 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2260 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261 
2262 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2263 		D_ALL, 0, 8, NULL},
2264 
2265 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2266 		D_ALL, 0, 8, NULL},
2267 
2268 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2269 		D_ALL, 0, 8, NULL},
2270 
2271 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2272 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273 
2274 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2275 		D_BDW_PLUS, 0, 8, NULL},
2276 
2277 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2278 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2279 
2280 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2281 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2282 
2283 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2284 		R_RCS, D_ALL, 0, 8, NULL},
2285 
2286 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2287 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2288 
2289 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2290 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2291 
2292 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2293 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2294 
2295 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2296 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2297 
2298 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2299 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2300 
2301 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2302 		R_RCS, D_ALL, 0, 8, NULL},
2303 
2304 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2305 		D_ALL, 0, 9, NULL},
2306 
2307 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2308 		ADDR_FIX_2(2, 4), 8, NULL},
2309 
2310 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2311 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2312 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2313 
2314 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2315 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2316 
2317 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2318 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2319 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2320 
2321 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2322 		D_BDW_PLUS, 0, 8, NULL},
2323 
2324 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2325 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2326 
2327 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328 
2329 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2330 		1, NULL},
2331 
2332 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2333 		ADDR_FIX_1(1), 8, NULL},
2334 
2335 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336 
2337 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2338 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2339 
2340 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2341 		ADDR_FIX_1(1), 8, NULL},
2342 
2343 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344 
2345 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2346 
2347 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2348 		0, 8, NULL},
2349 
2350 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2351 		D_SKL_PLUS, 0, 8, NULL},
2352 
2353 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2354 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2355 
2356 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2357 		0, 16, NULL},
2358 
2359 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2360 		0, 16, NULL},
2361 
2362 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2363 		0, 16, NULL},
2364 
2365 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2366 
2367 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2368 		0, 16, NULL},
2369 
2370 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2371 		0, 16, NULL},
2372 
2373 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2374 		0, 16, NULL},
2375 
2376 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2377 		0, 8, NULL},
2378 
2379 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2380 		NULL},
2381 
2382 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2383 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2384 
2385 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2386 		R_VCS, D_ALL, 0, 12, NULL},
2387 
2388 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2389 		R_VCS, D_ALL, 0, 12, NULL},
2390 
2391 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2392 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2393 
2394 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2395 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2396 
2397 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2398 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2399 
2400 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2401 
2402 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2403 		R_VCS, D_ALL, 0, 12, NULL},
2404 
2405 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2406 		R_VCS, D_ALL, 0, 12, NULL},
2407 
2408 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2409 		R_VCS, D_ALL, 0, 12, NULL},
2410 
2411 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2412 		R_VCS, D_ALL, 0, 12, NULL},
2413 
2414 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2415 		R_VCS, D_ALL, 0, 12, NULL},
2416 
2417 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2418 		R_VCS, D_ALL, 0, 12, NULL},
2419 
2420 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2421 		R_VCS, D_ALL, 0, 6, NULL},
2422 
2423 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2424 		R_VCS, D_ALL, 0, 12, NULL},
2425 
2426 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2427 		R_VCS, D_ALL, 0, 12, NULL},
2428 
2429 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2430 		R_VCS, D_ALL, 0, 12, NULL},
2431 
2432 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2433 		R_VCS, D_ALL, 0, 12, NULL},
2434 
2435 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2436 		R_VCS, D_ALL, 0, 12, NULL},
2437 
2438 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2439 		R_VCS, D_ALL, 0, 12, NULL},
2440 
2441 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2442 		R_VCS, D_ALL, 0, 12, NULL},
2443 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2444 		R_VCS, D_ALL, 0, 12, NULL},
2445 
2446 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2447 		R_VCS, D_ALL, 0, 12, NULL},
2448 
2449 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2450 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2451 
2452 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2453 		R_VCS, D_ALL, 0, 12, NULL},
2454 
2455 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2456 		R_VCS, D_ALL, 0, 12, NULL},
2457 
2458 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2459 		R_VCS, D_ALL, 0, 12, NULL},
2460 
2461 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2462 		R_VCS, D_ALL, 0, 12, NULL},
2463 
2464 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2465 		R_VCS, D_ALL, 0, 12, NULL},
2466 
2467 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2468 		R_VCS, D_ALL, 0, 12, NULL},
2469 
2470 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2471 		R_VCS, D_ALL, 0, 12, NULL},
2472 
2473 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2474 		R_VCS, D_ALL, 0, 12, NULL},
2475 
2476 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2477 		R_VCS, D_ALL, 0, 12, NULL},
2478 
2479 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2480 		R_VCS, D_ALL, 0, 12, NULL},
2481 
2482 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2483 		R_VCS, D_ALL, 0, 12, NULL},
2484 
2485 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2486 		0, 16, NULL},
2487 
2488 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2489 
2490 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2491 
2492 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2493 		R_VCS, D_ALL, 0, 12, NULL},
2494 
2495 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2496 		R_VCS, D_ALL, 0, 12, NULL},
2497 
2498 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2499 		R_VCS, D_ALL, 0, 12, NULL},
2500 
2501 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2502 
2503 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2504 		0, 12, NULL},
2505 
2506 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2507 		0, 20, NULL},
2508 };
2509 
2510 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2511 {
2512 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2513 }
2514 
2515 /* call the cmd handler, and advance ip */
2516 static int cmd_parser_exec(struct parser_exec_state *s)
2517 {
2518 	struct intel_vgpu *vgpu = s->vgpu;
2519 	const struct cmd_info *info;
2520 	u32 cmd;
2521 	int ret = 0;
2522 
2523 	cmd = cmd_val(s, 0);
2524 
2525 	/* fastpath for MI_NOOP */
2526 	if (cmd == MI_NOOP)
2527 		info = &cmd_info[mi_noop_index];
2528 	else
2529 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2530 
2531 	if (info == NULL) {
2532 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2533 				cmd, get_opcode(cmd, s->ring_id),
2534 				(s->buf_addr_type == PPGTT_BUFFER) ?
2535 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2536 		return -EBADRQC;
2537 	}
2538 
2539 	s->info = info;
2540 
2541 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2542 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2543 			  s->workload, info->name);
2544 
2545 	if (info->handler) {
2546 		ret = info->handler(s);
2547 		if (ret < 0) {
2548 			gvt_vgpu_err("%s handler error\n", info->name);
2549 			return ret;
2550 		}
2551 	}
2552 
2553 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2554 		ret = cmd_advance_default(s);
2555 		if (ret) {
2556 			gvt_vgpu_err("%s IP advance error\n", info->name);
2557 			return ret;
2558 		}
2559 	}
2560 	return 0;
2561 }
2562 
2563 static inline bool gma_out_of_range(unsigned long gma,
2564 		unsigned long gma_head, unsigned int gma_tail)
2565 {
2566 	if (gma_tail >= gma_head)
2567 		return (gma < gma_head) || (gma > gma_tail);
2568 	else
2569 		return (gma > gma_tail) && (gma < gma_head);
2570 }
2571 
2572 /* Keep the consistent return type, e.g EBADRQC for unknown
2573  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2574  * works as the input of VM healthy status.
2575  */
2576 static int command_scan(struct parser_exec_state *s,
2577 		unsigned long rb_head, unsigned long rb_tail,
2578 		unsigned long rb_start, unsigned long rb_len)
2579 {
2580 
2581 	unsigned long gma_head, gma_tail, gma_bottom;
2582 	int ret = 0;
2583 	struct intel_vgpu *vgpu = s->vgpu;
2584 
2585 	gma_head = rb_start + rb_head;
2586 	gma_tail = rb_start + rb_tail;
2587 	gma_bottom = rb_start +  rb_len;
2588 
2589 	while (s->ip_gma != gma_tail) {
2590 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2591 			if (!(s->ip_gma >= rb_start) ||
2592 				!(s->ip_gma < gma_bottom)) {
2593 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2594 					"(base:0x%lx, bottom: 0x%lx)\n",
2595 					s->ip_gma, rb_start,
2596 					gma_bottom);
2597 				parser_exec_state_dump(s);
2598 				return -EFAULT;
2599 			}
2600 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2601 				gvt_vgpu_err("ip_gma %lx out of range."
2602 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2603 					s->ip_gma, rb_start,
2604 					rb_head, rb_tail);
2605 				parser_exec_state_dump(s);
2606 				break;
2607 			}
2608 		}
2609 		ret = cmd_parser_exec(s);
2610 		if (ret) {
2611 			gvt_vgpu_err("cmd parser error\n");
2612 			parser_exec_state_dump(s);
2613 			break;
2614 		}
2615 	}
2616 
2617 	return ret;
2618 }
2619 
2620 static int scan_workload(struct intel_vgpu_workload *workload)
2621 {
2622 	unsigned long gma_head, gma_tail, gma_bottom;
2623 	struct parser_exec_state s;
2624 	int ret = 0;
2625 
2626 	/* ring base is page aligned */
2627 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2628 		return -EINVAL;
2629 
2630 	gma_head = workload->rb_start + workload->rb_head;
2631 	gma_tail = workload->rb_start + workload->rb_tail;
2632 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2633 
2634 	s.buf_type = RING_BUFFER_INSTRUCTION;
2635 	s.buf_addr_type = GTT_BUFFER;
2636 	s.vgpu = workload->vgpu;
2637 	s.ring_id = workload->ring_id;
2638 	s.ring_start = workload->rb_start;
2639 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2640 	s.ring_head = gma_head;
2641 	s.ring_tail = gma_tail;
2642 	s.rb_va = workload->shadow_ring_buffer_va;
2643 	s.workload = workload;
2644 	s.is_ctx_wa = false;
2645 
2646 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2647 		gma_head == gma_tail)
2648 		return 0;
2649 
2650 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2651 		ret = -EINVAL;
2652 		goto out;
2653 	}
2654 
2655 	ret = ip_gma_set(&s, gma_head);
2656 	if (ret)
2657 		goto out;
2658 
2659 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2660 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2661 
2662 out:
2663 	return ret;
2664 }
2665 
2666 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2667 {
2668 
2669 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2670 	struct parser_exec_state s;
2671 	int ret = 0;
2672 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2673 				struct intel_vgpu_workload,
2674 				wa_ctx);
2675 
2676 	/* ring base is page aligned */
2677 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2678 					I915_GTT_PAGE_SIZE)))
2679 		return -EINVAL;
2680 
2681 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2682 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2683 			PAGE_SIZE);
2684 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2685 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2686 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2687 
2688 	s.buf_type = RING_BUFFER_INSTRUCTION;
2689 	s.buf_addr_type = GTT_BUFFER;
2690 	s.vgpu = workload->vgpu;
2691 	s.ring_id = workload->ring_id;
2692 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2693 	s.ring_size = ring_size;
2694 	s.ring_head = gma_head;
2695 	s.ring_tail = gma_tail;
2696 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2697 	s.workload = workload;
2698 	s.is_ctx_wa = true;
2699 
2700 	if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2701 		ret = -EINVAL;
2702 		goto out;
2703 	}
2704 
2705 	ret = ip_gma_set(&s, gma_head);
2706 	if (ret)
2707 		goto out;
2708 
2709 	ret = command_scan(&s, 0, ring_tail,
2710 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2711 out:
2712 	return ret;
2713 }
2714 
2715 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2716 {
2717 	struct intel_vgpu *vgpu = workload->vgpu;
2718 	struct intel_vgpu_submission *s = &vgpu->submission;
2719 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2720 	void *shadow_ring_buffer_va;
2721 	int ring_id = workload->ring_id;
2722 	int ret;
2723 
2724 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2725 
2726 	/* calculate workload ring buffer size */
2727 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2728 			workload->rb_head) % guest_rb_size;
2729 
2730 	gma_head = workload->rb_start + workload->rb_head;
2731 	gma_tail = workload->rb_start + workload->rb_tail;
2732 	gma_top = workload->rb_start + guest_rb_size;
2733 
2734 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2735 		void *p;
2736 
2737 		/* realloc the new ring buffer if needed */
2738 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2739 				GFP_KERNEL);
2740 		if (!p) {
2741 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2742 			return -ENOMEM;
2743 		}
2744 		s->ring_scan_buffer[ring_id] = p;
2745 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2746 	}
2747 
2748 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2749 
2750 	/* get shadow ring buffer va */
2751 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2752 
2753 	/* head > tail --> copy head <-> top */
2754 	if (gma_head > gma_tail) {
2755 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2756 				      gma_head, gma_top, shadow_ring_buffer_va);
2757 		if (ret < 0) {
2758 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2759 			return ret;
2760 		}
2761 		shadow_ring_buffer_va += ret;
2762 		gma_head = workload->rb_start;
2763 	}
2764 
2765 	/* copy head or start <-> tail */
2766 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2767 				shadow_ring_buffer_va);
2768 	if (ret < 0) {
2769 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2770 		return ret;
2771 	}
2772 	return 0;
2773 }
2774 
2775 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2776 {
2777 	int ret;
2778 	struct intel_vgpu *vgpu = workload->vgpu;
2779 
2780 	ret = shadow_workload_ring_buffer(workload);
2781 	if (ret) {
2782 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2783 		return ret;
2784 	}
2785 
2786 	ret = scan_workload(workload);
2787 	if (ret) {
2788 		gvt_vgpu_err("scan workload error\n");
2789 		return ret;
2790 	}
2791 	return 0;
2792 }
2793 
2794 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2795 {
2796 	int ctx_size = wa_ctx->indirect_ctx.size;
2797 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2798 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2799 					struct intel_vgpu_workload,
2800 					wa_ctx);
2801 	struct intel_vgpu *vgpu = workload->vgpu;
2802 	struct drm_i915_gem_object *obj;
2803 	int ret = 0;
2804 	void *map;
2805 
2806 	obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2807 				     roundup(ctx_size + CACHELINE_BYTES,
2808 					     PAGE_SIZE));
2809 	if (IS_ERR(obj))
2810 		return PTR_ERR(obj);
2811 
2812 	/* get the va of the shadow batch buffer */
2813 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2814 	if (IS_ERR(map)) {
2815 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2816 		ret = PTR_ERR(map);
2817 		goto put_obj;
2818 	}
2819 
2820 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2821 	if (ret) {
2822 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2823 		goto unmap_src;
2824 	}
2825 
2826 	ret = copy_gma_to_hva(workload->vgpu,
2827 				workload->vgpu->gtt.ggtt_mm,
2828 				guest_gma, guest_gma + ctx_size,
2829 				map);
2830 	if (ret < 0) {
2831 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2832 		goto unmap_src;
2833 	}
2834 
2835 	wa_ctx->indirect_ctx.obj = obj;
2836 	wa_ctx->indirect_ctx.shadow_va = map;
2837 	return 0;
2838 
2839 unmap_src:
2840 	i915_gem_object_unpin_map(obj);
2841 put_obj:
2842 	i915_gem_object_put(obj);
2843 	return ret;
2844 }
2845 
2846 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2847 {
2848 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2849 	unsigned char *bb_start_sva;
2850 
2851 	if (!wa_ctx->per_ctx.valid)
2852 		return 0;
2853 
2854 	per_ctx_start[0] = 0x18800001;
2855 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2856 
2857 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2858 				wa_ctx->indirect_ctx.size;
2859 
2860 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2861 
2862 	return 0;
2863 }
2864 
2865 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2866 {
2867 	int ret;
2868 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2869 					struct intel_vgpu_workload,
2870 					wa_ctx);
2871 	struct intel_vgpu *vgpu = workload->vgpu;
2872 
2873 	if (wa_ctx->indirect_ctx.size == 0)
2874 		return 0;
2875 
2876 	ret = shadow_indirect_ctx(wa_ctx);
2877 	if (ret) {
2878 		gvt_vgpu_err("fail to shadow indirect ctx\n");
2879 		return ret;
2880 	}
2881 
2882 	combine_wa_ctx(wa_ctx);
2883 
2884 	ret = scan_wa_ctx(wa_ctx);
2885 	if (ret) {
2886 		gvt_vgpu_err("scan wa ctx error\n");
2887 		return ret;
2888 	}
2889 
2890 	return 0;
2891 }
2892 
2893 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2894 		unsigned int opcode, unsigned long rings)
2895 {
2896 	const struct cmd_info *info = NULL;
2897 	unsigned int ring;
2898 
2899 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2900 		info = find_cmd_entry(gvt, opcode, ring);
2901 		if (info)
2902 			break;
2903 	}
2904 	return info;
2905 }
2906 
2907 static int init_cmd_table(struct intel_gvt *gvt)
2908 {
2909 	int i;
2910 	struct cmd_entry *e;
2911 	const struct cmd_info *info;
2912 	unsigned int gen_type;
2913 
2914 	gen_type = intel_gvt_get_device_type(gvt);
2915 
2916 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2917 		if (!(cmd_info[i].devices & gen_type))
2918 			continue;
2919 
2920 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2921 		if (!e)
2922 			return -ENOMEM;
2923 
2924 		e->info = &cmd_info[i];
2925 		info = find_cmd_entry_any_ring(gvt,
2926 				e->info->opcode, e->info->rings);
2927 		if (info) {
2928 			gvt_err("%s %s duplicated\n", e->info->name,
2929 					info->name);
2930 			kfree(e);
2931 			return -EEXIST;
2932 		}
2933 		if (cmd_info[i].opcode == OP_MI_NOOP)
2934 			mi_noop_index = i;
2935 
2936 		INIT_HLIST_NODE(&e->hlist);
2937 		add_cmd_entry(gvt, e);
2938 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2939 				e->info->name, e->info->opcode, e->info->flag,
2940 				e->info->devices, e->info->rings);
2941 	}
2942 	return 0;
2943 }
2944 
2945 static void clean_cmd_table(struct intel_gvt *gvt)
2946 {
2947 	struct hlist_node *tmp;
2948 	struct cmd_entry *e;
2949 	int i;
2950 
2951 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2952 		kfree(e);
2953 
2954 	hash_init(gvt->cmd_table);
2955 }
2956 
2957 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2958 {
2959 	clean_cmd_table(gvt);
2960 }
2961 
2962 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2963 {
2964 	int ret;
2965 
2966 	ret = init_cmd_table(gvt);
2967 	if (ret) {
2968 		intel_gvt_clean_cmd_parser(gvt);
2969 		return ret;
2970 	}
2971 	return 0;
2972 }
2973