xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_huc.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/types.h>
7 
8 #include "gt/intel_gt.h"
9 #include "intel_guc_reg.h"
10 #include "intel_huc.h"
11 #include "intel_huc_print.h"
12 #include "i915_drv.h"
13 #include "i915_reg.h"
14 #include "pxp/intel_pxp_cmd_interface_43.h"
15 
16 #include <linux/device/bus.h>
17 #include <linux/mei_aux.h>
18 
19 /**
20  * DOC: HuC
21  *
22  * The HuC is a dedicated microcontroller for usage in media HEVC (High
23  * Efficiency Video Coding) operations. Userspace can directly use the firmware
24  * capabilities by adding HuC specific commands to batch buffers.
25  *
26  * The kernel driver is only responsible for loading the HuC firmware and
27  * triggering its security authentication. This is done differently depending
28  * on the platform:
29  *
30  * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
31  *   and the authentication via GuC
32  * - DG2: load and authentication are both performed via GSC.
33  * - MTL and newer platforms: the load is performed via DMA (same as with
34  *   not-DG2 older platforms), while the authentication is done in 2-steps,
35  *   a first auth for clear-media workloads via GuC and a second one for all
36  *   workloads via GSC.
37  *
38  * On platforms where the GuC does the authentication, to correctly do so the
39  * HuC binary must be loaded before the GuC one.
40  * Loading the HuC is optional; however, not using the HuC might negatively
41  * impact power usage and/or performance of media workloads, depending on the
42  * use-cases.
43  * HuC must be reloaded on events that cause the WOPCM to lose its contents
44  * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
45  * reset, while on newer ones it will survive that.
46  *
47  * See https://github.com/intel/media-driver for the latest details on HuC
48  * functionality.
49  */
50 
51 /**
52  * DOC: HuC Memory Management
53  *
54  * Similarly to the GuC, the HuC can't do any memory allocations on its own,
55  * with the difference being that the allocations for HuC usage are handled by
56  * the userspace driver instead of the kernel one. The HuC accesses the memory
57  * via the PPGTT belonging to the context loaded on the VCS executing the
58  * HuC-specific commands.
59  */
60 
61 /*
62  * MEI-GSC load is an async process. The probing of the exposed aux device
63  * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
64  * on when the kernel schedules it. Unless something goes terribly wrong, we're
65  * guaranteed for this to happen during boot, so the big timeout is a safety net
66  * that we never expect to need.
67  * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
68  * and/or reset, this can take longer. Note that the kernel might schedule
69  * other work between the i915 init/resume and the MEI one, which can add to
70  * the delay.
71  */
72 #define GSC_INIT_TIMEOUT_MS 10000
73 #define PXP_INIT_TIMEOUT_MS 5000
74 
75 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
76 				 enum i915_sw_fence_notify state)
77 {
78 	return NOTIFY_DONE;
79 }
80 
81 static void __delayed_huc_load_complete(struct intel_huc *huc)
82 {
83 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
84 		i915_sw_fence_complete(&huc->delayed_load.fence);
85 }
86 
87 static void delayed_huc_load_complete(struct intel_huc *huc)
88 {
89 	hrtimer_cancel(&huc->delayed_load.timer);
90 	__delayed_huc_load_complete(huc);
91 }
92 
93 static void __gsc_init_error(struct intel_huc *huc)
94 {
95 	huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
96 	__delayed_huc_load_complete(huc);
97 }
98 
99 static void gsc_init_error(struct intel_huc *huc)
100 {
101 	hrtimer_cancel(&huc->delayed_load.timer);
102 	__gsc_init_error(huc);
103 }
104 
105 static void gsc_init_done(struct intel_huc *huc)
106 {
107 	hrtimer_cancel(&huc->delayed_load.timer);
108 
109 	/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
110 	huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
111 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
112 		hrtimer_start(&huc->delayed_load.timer,
113 			      ms_to_ktime(PXP_INIT_TIMEOUT_MS),
114 			      HRTIMER_MODE_REL);
115 }
116 
117 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
118 {
119 	struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
120 
121 	if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
122 		if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
123 			huc_notice(huc, "timed out waiting for MEI GSC\n");
124 		else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
125 			huc_notice(huc, "timed out waiting for MEI PXP\n");
126 		else
127 			MISSING_CASE(huc->delayed_load.status);
128 
129 		__gsc_init_error(huc);
130 	}
131 
132 	return HRTIMER_NORESTART;
133 }
134 
135 static void huc_delayed_load_start(struct intel_huc *huc)
136 {
137 	ktime_t delay;
138 
139 	GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
140 
141 	/*
142 	 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
143 	 * do need to wait for MEI-PXP to reset & re-bind
144 	 */
145 	switch (huc->delayed_load.status) {
146 	case INTEL_HUC_WAITING_ON_GSC:
147 		delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
148 		break;
149 	case INTEL_HUC_WAITING_ON_PXP:
150 		delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
151 		break;
152 	default:
153 		gsc_init_error(huc);
154 		return;
155 	}
156 
157 	/*
158 	 * This fence is always complete unless we're waiting for the
159 	 * GSC device to come up to load the HuC. We arm the fence here
160 	 * and complete it when we confirm that the HuC is loaded from
161 	 * the PXP bind callback.
162 	 */
163 	GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
164 	i915_sw_fence_fini(&huc->delayed_load.fence);
165 	i915_sw_fence_reinit(&huc->delayed_load.fence);
166 	i915_sw_fence_await(&huc->delayed_load.fence);
167 	i915_sw_fence_commit(&huc->delayed_load.fence);
168 
169 	hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
170 }
171 
172 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
173 {
174 	struct device *dev = data;
175 	struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
176 	struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
177 
178 	if (!intf->adev || &intf->adev->aux_dev.dev != dev)
179 		return 0;
180 
181 	switch (action) {
182 	case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
183 		gsc_init_done(huc);
184 		break;
185 
186 	case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
187 	case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
188 		huc_info(huc, "MEI driver not bound, disabling load\n");
189 		gsc_init_error(huc);
190 		break;
191 	}
192 
193 	return 0;
194 }
195 
196 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
197 {
198 	int ret;
199 
200 	if (!intel_huc_is_loaded_by_gsc(huc))
201 		return;
202 
203 	huc->delayed_load.nb.notifier_call = gsc_notifier;
204 	ret = bus_register_notifier(bus, &huc->delayed_load.nb);
205 	if (ret) {
206 		huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
207 		huc->delayed_load.nb.notifier_call = NULL;
208 		gsc_init_error(huc);
209 	}
210 }
211 
212 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
213 {
214 	if (!huc->delayed_load.nb.notifier_call)
215 		return;
216 
217 	delayed_huc_load_complete(huc);
218 
219 	bus_unregister_notifier(bus, &huc->delayed_load.nb);
220 	huc->delayed_load.nb.notifier_call = NULL;
221 }
222 
223 static void delayed_huc_load_init(struct intel_huc *huc)
224 {
225 	/*
226 	 * Initialize fence to be complete as this is expected to be complete
227 	 * unless there is a delayed HuC load in progress.
228 	 */
229 	i915_sw_fence_init(&huc->delayed_load.fence,
230 			   sw_fence_dummy_notify);
231 	i915_sw_fence_commit(&huc->delayed_load.fence);
232 
233 	hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
234 	huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
235 }
236 
237 static void delayed_huc_load_fini(struct intel_huc *huc)
238 {
239 	/*
240 	 * the fence is initialized in init_early, so we need to clean it up
241 	 * even if HuC loading is off.
242 	 */
243 	delayed_huc_load_complete(huc);
244 	i915_sw_fence_fini(&huc->delayed_load.fence);
245 }
246 
247 int intel_huc_sanitize(struct intel_huc *huc)
248 {
249 	delayed_huc_load_complete(huc);
250 	intel_uc_fw_sanitize(&huc->fw);
251 	return 0;
252 }
253 
254 static bool vcs_supported(struct intel_gt *gt)
255 {
256 	intel_engine_mask_t mask = gt->info.engine_mask;
257 
258 	/*
259 	 * We reach here from i915_driver_early_probe for the primary GT before
260 	 * its engine mask is set, so we use the device info engine mask for it;
261 	 * this means we're not taking VCS fusing into account, but if the
262 	 * primary GT supports VCS engines we expect at least one of them to
263 	 * remain unfused so we're fine.
264 	 * For other GTs we expect the GT-specific mask to be set before we
265 	 * call this function.
266 	 */
267 	GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
268 
269 	if (gt_is_root(gt))
270 		mask = INTEL_INFO(gt->i915)->platform_engine_mask;
271 	else
272 		mask = gt->info.engine_mask;
273 
274 	return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
275 }
276 
277 void intel_huc_init_early(struct intel_huc *huc)
278 {
279 	struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
280 	struct intel_gt *gt = huc_to_gt(huc);
281 
282 	intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
283 
284 	/*
285 	 * we always init the fence as already completed, even if HuC is not
286 	 * supported. This way we don't have to distinguish between HuC not
287 	 * supported/disabled or already loaded, and can focus on if the load
288 	 * is currently in progress (fence not complete) or not, which is what
289 	 * we care about for stalling userspace submissions.
290 	 */
291 	delayed_huc_load_init(huc);
292 
293 	if (!vcs_supported(gt)) {
294 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
295 		return;
296 	}
297 
298 	if (GRAPHICS_VER(i915) >= 11) {
299 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
300 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
301 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
302 	} else {
303 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
304 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
305 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
306 	}
307 
308 	if (IS_DG2(i915)) {
309 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
310 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
311 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
312 	} else {
313 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
314 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
315 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
316 	}
317 }
318 
319 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
320 static int check_huc_loading_mode(struct intel_huc *huc)
321 {
322 	struct intel_gt *gt = huc_to_gt(huc);
323 	bool gsc_enabled = huc->fw.has_gsc_headers;
324 
325 	/*
326 	 * The fuse for HuC load via GSC is only valid on platforms that have
327 	 * GuC deprivilege.
328 	 */
329 	if (HAS_GUC_DEPRIVILEGE(gt->i915))
330 		huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
331 				      GSC_LOADS_HUC;
332 
333 	if (huc->loaded_via_gsc && !gsc_enabled) {
334 		huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
335 		return -ENOEXEC;
336 	}
337 
338 	/*
339 	 * On newer platforms we have GSC-enabled binaries but we load the HuC
340 	 * via DMA. To do so we need to find the location of the legacy-style
341 	 * binary inside the GSC-enabled one, which we do at fetch time. Make
342 	 * sure that we were able to do so if the fuse says we need to load via
343 	 * DMA and the binary is GSC-enabled.
344 	 */
345 	if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
346 		huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
347 		return -ENOEXEC;
348 	}
349 
350 	/*
351 	 * If the HuC is loaded via GSC, we need to be able to access the GSC.
352 	 * On DG2 this is done via the mei components, while on newer platforms
353 	 * it is done via the GSCCS,
354 	 */
355 	if (huc->loaded_via_gsc) {
356 		if (IS_DG2(gt->i915)) {
357 			if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
358 			    !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
359 				huc_info(huc, "can't load due to missing mei modules\n");
360 				return -EIO;
361 			}
362 		} else {
363 			if (!HAS_ENGINE(gt, GSC0)) {
364 				huc_info(huc, "can't load due to missing GSCCS\n");
365 				return -EIO;
366 			}
367 		}
368 	}
369 
370 	huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
371 
372 	return 0;
373 }
374 
375 int intel_huc_init(struct intel_huc *huc)
376 {
377 	struct intel_gt *gt = huc_to_gt(huc);
378 	int err;
379 
380 	err = check_huc_loading_mode(huc);
381 	if (err)
382 		goto out;
383 
384 	if (HAS_ENGINE(gt, GSC0)) {
385 		struct i915_vma *vma;
386 
387 		vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2);
388 		if (IS_ERR(vma)) {
389 			err = PTR_ERR(vma);
390 			huc_info(huc, "Failed to allocate heci pkt\n");
391 			goto out;
392 		}
393 
394 		huc->heci_pkt = vma;
395 	}
396 
397 	err = intel_uc_fw_init(&huc->fw);
398 	if (err)
399 		goto out_pkt;
400 
401 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
402 
403 	return 0;
404 
405 out_pkt:
406 	if (huc->heci_pkt)
407 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
408 out:
409 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
410 	huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
411 	return err;
412 }
413 
414 void intel_huc_fini(struct intel_huc *huc)
415 {
416 	/*
417 	 * the fence is initialized in init_early, so we need to clean it up
418 	 * even if HuC loading is off.
419 	 */
420 	delayed_huc_load_fini(huc);
421 
422 	if (huc->heci_pkt)
423 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
424 
425 	if (intel_uc_fw_is_loadable(&huc->fw))
426 		intel_uc_fw_fini(&huc->fw);
427 }
428 
429 void intel_huc_suspend(struct intel_huc *huc)
430 {
431 	if (!intel_uc_fw_is_loadable(&huc->fw))
432 		return;
433 
434 	/*
435 	 * in the unlikely case that we're suspending before the GSC has
436 	 * completed its loading sequence, just stop waiting. We'll restart
437 	 * on resume.
438 	 */
439 	delayed_huc_load_complete(huc);
440 }
441 
442 static const char *auth_mode_string(struct intel_huc *huc,
443 				    enum intel_huc_authentication_type type)
444 {
445 	bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
446 
447 	return partial ? "clear media" : "all workloads";
448 }
449 
450 int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
451 				     enum intel_huc_authentication_type type)
452 {
453 	struct intel_gt *gt = huc_to_gt(huc);
454 	int ret;
455 
456 	ret = __intel_wait_for_register(gt->uncore,
457 					huc->status[type].reg,
458 					huc->status[type].mask,
459 					huc->status[type].value,
460 					2, 50, NULL);
461 
462 	/* mark the load process as complete even if the wait failed */
463 	delayed_huc_load_complete(huc);
464 
465 	if (ret) {
466 		huc_err(huc, "firmware not verified for %s: %pe\n",
467 			auth_mode_string(huc, type), ERR_PTR(ret));
468 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
469 		return ret;
470 	}
471 
472 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
473 	huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
474 	return 0;
475 }
476 
477 /**
478  * intel_huc_auth() - Authenticate HuC uCode
479  * @huc: intel_huc structure
480  * @type: authentication type (via GuC or via GSC)
481  *
482  * Called after HuC and GuC firmware loading during intel_uc_init_hw().
483  *
484  * This function invokes the GuC action to authenticate the HuC firmware,
485  * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
486  * waits for up to 50ms for firmware verification ACK.
487  */
488 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
489 {
490 	struct intel_gt *gt = huc_to_gt(huc);
491 	struct intel_guc *guc = &gt->uc.guc;
492 	int ret;
493 
494 	if (!intel_uc_fw_is_loaded(&huc->fw))
495 		return -ENOEXEC;
496 
497 	/* GSC will do the auth with the load */
498 	if (intel_huc_is_loaded_by_gsc(huc))
499 		return -ENODEV;
500 
501 	if (intel_huc_is_authenticated(huc, type))
502 		return -EEXIST;
503 
504 	ret = i915_inject_probe_error(gt->i915, -ENXIO);
505 	if (ret)
506 		goto fail;
507 
508 	switch (type) {
509 	case INTEL_HUC_AUTH_BY_GUC:
510 		ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
511 		break;
512 	case INTEL_HUC_AUTH_BY_GSC:
513 		ret = intel_huc_fw_auth_via_gsccs(huc);
514 		break;
515 	default:
516 		MISSING_CASE(type);
517 		ret = -EINVAL;
518 	}
519 	if (ret)
520 		goto fail;
521 
522 	/* Check authentication status, it should be done by now */
523 	ret = intel_huc_wait_for_auth_complete(huc, type);
524 	if (ret)
525 		goto fail;
526 
527 	return 0;
528 
529 fail:
530 	huc_probe_error(huc, "%s authentication failed %pe\n",
531 			auth_mode_string(huc, type), ERR_PTR(ret));
532 	return ret;
533 }
534 
535 bool intel_huc_is_authenticated(struct intel_huc *huc,
536 				enum intel_huc_authentication_type type)
537 {
538 	struct intel_gt *gt = huc_to_gt(huc);
539 	intel_wakeref_t wakeref;
540 	u32 status = 0;
541 
542 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
543 		status = intel_uncore_read(gt->uncore, huc->status[type].reg);
544 
545 	return (status & huc->status[type].mask) == huc->status[type].value;
546 }
547 
548 static bool huc_is_fully_authenticated(struct intel_huc *huc)
549 {
550 	struct intel_uc_fw *huc_fw = &huc->fw;
551 
552 	if (!huc_fw->has_gsc_headers)
553 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
554 	else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
555 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
556 	else
557 		return false;
558 }
559 
560 /**
561  * intel_huc_check_status() - check HuC status
562  * @huc: intel_huc structure
563  *
564  * This function reads status register to verify if HuC
565  * firmware was successfully loaded.
566  *
567  * The return values match what is expected for the I915_PARAM_HUC_STATUS
568  * getparam.
569  */
570 int intel_huc_check_status(struct intel_huc *huc)
571 {
572 	struct intel_uc_fw *huc_fw = &huc->fw;
573 
574 	switch (__intel_uc_fw_status(huc_fw)) {
575 	case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
576 		return -ENODEV;
577 	case INTEL_UC_FIRMWARE_DISABLED:
578 		return -EOPNOTSUPP;
579 	case INTEL_UC_FIRMWARE_MISSING:
580 		return -ENOPKG;
581 	case INTEL_UC_FIRMWARE_ERROR:
582 		return -ENOEXEC;
583 	case INTEL_UC_FIRMWARE_INIT_FAIL:
584 		return -ENOMEM;
585 	case INTEL_UC_FIRMWARE_LOAD_FAIL:
586 		return -EIO;
587 	default:
588 		break;
589 	}
590 
591 	/*
592 	 * GSC-enabled binaries loaded via DMA are first partially
593 	 * authenticated by GuC and then fully authenticated by GSC
594 	 */
595 	if (huc_is_fully_authenticated(huc))
596 		return 1; /* full auth */
597 	else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
598 		 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
599 		return 2; /* clear media only */
600 	else
601 		return 0;
602 }
603 
604 static bool huc_has_delayed_load(struct intel_huc *huc)
605 {
606 	return intel_huc_is_loaded_by_gsc(huc) &&
607 	       (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
608 }
609 
610 void intel_huc_update_auth_status(struct intel_huc *huc)
611 {
612 	if (!intel_uc_fw_is_loadable(&huc->fw))
613 		return;
614 
615 	if (!huc->fw.has_gsc_headers)
616 		return;
617 
618 	if (huc_is_fully_authenticated(huc))
619 		intel_uc_fw_change_status(&huc->fw,
620 					  INTEL_UC_FIRMWARE_RUNNING);
621 	else if (huc_has_delayed_load(huc))
622 		huc_delayed_load_start(huc);
623 }
624 
625 /**
626  * intel_huc_load_status - dump information about HuC load status
627  * @huc: the HuC
628  * @p: the &drm_printer
629  *
630  * Pretty printer for HuC load status.
631  */
632 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
633 {
634 	struct intel_gt *gt = huc_to_gt(huc);
635 	intel_wakeref_t wakeref;
636 
637 	if (!intel_huc_is_supported(huc)) {
638 		drm_printf(p, "HuC not supported\n");
639 		return;
640 	}
641 
642 	if (!intel_huc_is_wanted(huc)) {
643 		drm_printf(p, "HuC disabled\n");
644 		return;
645 	}
646 
647 	intel_uc_fw_dump(&huc->fw, p);
648 
649 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
650 		drm_printf(p, "HuC status: 0x%08x\n",
651 			   intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
652 }
653