1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016-2019 Intel Corporation 4 */ 5 6 #include <linux/types.h> 7 8 #include "gt/intel_gt.h" 9 #include "gt/intel_gt_print.h" 10 #include "intel_guc_reg.h" 11 #include "intel_huc.h" 12 #include "i915_drv.h" 13 14 #include <linux/device/bus.h> 15 #include <linux/mei_aux.h> 16 17 #define huc_printk(_huc, _level, _fmt, ...) \ 18 gt_##_level(huc_to_gt(_huc), "HuC: " _fmt, ##__VA_ARGS__) 19 #define huc_err(_huc, _fmt, ...) huc_printk((_huc), err, _fmt, ##__VA_ARGS__) 20 #define huc_warn(_huc, _fmt, ...) huc_printk((_huc), warn, _fmt, ##__VA_ARGS__) 21 #define huc_notice(_huc, _fmt, ...) huc_printk((_huc), notice, _fmt, ##__VA_ARGS__) 22 #define huc_info(_huc, _fmt, ...) huc_printk((_huc), info, _fmt, ##__VA_ARGS__) 23 #define huc_dbg(_huc, _fmt, ...) huc_printk((_huc), dbg, _fmt, ##__VA_ARGS__) 24 #define huc_probe_error(_huc, _fmt, ...) huc_printk((_huc), probe_error, _fmt, ##__VA_ARGS__) 25 26 /** 27 * DOC: HuC 28 * 29 * The HuC is a dedicated microcontroller for usage in media HEVC (High 30 * Efficiency Video Coding) operations. Userspace can directly use the firmware 31 * capabilities by adding HuC specific commands to batch buffers. 32 * 33 * The kernel driver is only responsible for loading the HuC firmware and 34 * triggering its security authentication, which is performed by the GuC on 35 * older platforms and by the GSC on newer ones. For the GuC to correctly 36 * perform the authentication, the HuC binary must be loaded before the GuC one. 37 * Loading the HuC is optional; however, not using the HuC might negatively 38 * impact power usage and/or performance of media workloads, depending on the 39 * use-cases. 40 * HuC must be reloaded on events that cause the WOPCM to lose its contents 41 * (S3/S4, FLR); GuC-authenticated HuC must also be reloaded on GuC/GT reset, 42 * while GSC-managed HuC will survive that. 43 * 44 * See https://github.com/intel/media-driver for the latest details on HuC 45 * functionality. 46 */ 47 48 /** 49 * DOC: HuC Memory Management 50 * 51 * Similarly to the GuC, the HuC can't do any memory allocations on its own, 52 * with the difference being that the allocations for HuC usage are handled by 53 * the userspace driver instead of the kernel one. The HuC accesses the memory 54 * via the PPGTT belonging to the context loaded on the VCS executing the 55 * HuC-specific commands. 56 */ 57 58 /* 59 * MEI-GSC load is an async process. The probing of the exposed aux device 60 * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending 61 * on when the kernel schedules it. Unless something goes terribly wrong, we're 62 * guaranteed for this to happen during boot, so the big timeout is a safety net 63 * that we never expect to need. 64 * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed 65 * and/or reset, this can take longer. Note that the kernel might schedule 66 * other work between the i915 init/resume and the MEI one, which can add to 67 * the delay. 68 */ 69 #define GSC_INIT_TIMEOUT_MS 10000 70 #define PXP_INIT_TIMEOUT_MS 5000 71 72 static int sw_fence_dummy_notify(struct i915_sw_fence *sf, 73 enum i915_sw_fence_notify state) 74 { 75 return NOTIFY_DONE; 76 } 77 78 static void __delayed_huc_load_complete(struct intel_huc *huc) 79 { 80 if (!i915_sw_fence_done(&huc->delayed_load.fence)) 81 i915_sw_fence_complete(&huc->delayed_load.fence); 82 } 83 84 static void delayed_huc_load_complete(struct intel_huc *huc) 85 { 86 hrtimer_cancel(&huc->delayed_load.timer); 87 __delayed_huc_load_complete(huc); 88 } 89 90 static void __gsc_init_error(struct intel_huc *huc) 91 { 92 huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; 93 __delayed_huc_load_complete(huc); 94 } 95 96 static void gsc_init_error(struct intel_huc *huc) 97 { 98 hrtimer_cancel(&huc->delayed_load.timer); 99 __gsc_init_error(huc); 100 } 101 102 static void gsc_init_done(struct intel_huc *huc) 103 { 104 hrtimer_cancel(&huc->delayed_load.timer); 105 106 /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ 107 huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; 108 if (!i915_sw_fence_done(&huc->delayed_load.fence)) 109 hrtimer_start(&huc->delayed_load.timer, 110 ms_to_ktime(PXP_INIT_TIMEOUT_MS), 111 HRTIMER_MODE_REL); 112 } 113 114 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer) 115 { 116 struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer); 117 118 if (!intel_huc_is_authenticated(huc)) { 119 if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) 120 huc_notice(huc, "timed out waiting for MEI GSC\n"); 121 else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) 122 huc_notice(huc, "timed out waiting for MEI PXP\n"); 123 else 124 MISSING_CASE(huc->delayed_load.status); 125 126 __gsc_init_error(huc); 127 } 128 129 return HRTIMER_NORESTART; 130 } 131 132 static void huc_delayed_load_start(struct intel_huc *huc) 133 { 134 ktime_t delay; 135 136 GEM_BUG_ON(intel_huc_is_authenticated(huc)); 137 138 /* 139 * On resume we don't have to wait for MEI-GSC to be re-probed, but we 140 * do need to wait for MEI-PXP to reset & re-bind 141 */ 142 switch (huc->delayed_load.status) { 143 case INTEL_HUC_WAITING_ON_GSC: 144 delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); 145 break; 146 case INTEL_HUC_WAITING_ON_PXP: 147 delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); 148 break; 149 default: 150 gsc_init_error(huc); 151 return; 152 } 153 154 /* 155 * This fence is always complete unless we're waiting for the 156 * GSC device to come up to load the HuC. We arm the fence here 157 * and complete it when we confirm that the HuC is loaded from 158 * the PXP bind callback. 159 */ 160 GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); 161 i915_sw_fence_fini(&huc->delayed_load.fence); 162 i915_sw_fence_reinit(&huc->delayed_load.fence); 163 i915_sw_fence_await(&huc->delayed_load.fence); 164 i915_sw_fence_commit(&huc->delayed_load.fence); 165 166 hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL); 167 } 168 169 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) 170 { 171 struct device *dev = data; 172 struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); 173 struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; 174 175 if (!intf->adev || &intf->adev->aux_dev.dev != dev) 176 return 0; 177 178 switch (action) { 179 case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ 180 gsc_init_done(huc); 181 break; 182 183 case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ 184 case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ 185 huc_info(huc, "MEI driver not bound, disabling load\n"); 186 gsc_init_error(huc); 187 break; 188 } 189 190 return 0; 191 } 192 193 void intel_huc_register_gsc_notifier(struct intel_huc *huc, struct bus_type *bus) 194 { 195 int ret; 196 197 if (!intel_huc_is_loaded_by_gsc(huc)) 198 return; 199 200 huc->delayed_load.nb.notifier_call = gsc_notifier; 201 ret = bus_register_notifier(bus, &huc->delayed_load.nb); 202 if (ret) { 203 huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret)); 204 huc->delayed_load.nb.notifier_call = NULL; 205 gsc_init_error(huc); 206 } 207 } 208 209 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, struct bus_type *bus) 210 { 211 if (!huc->delayed_load.nb.notifier_call) 212 return; 213 214 delayed_huc_load_complete(huc); 215 216 bus_unregister_notifier(bus, &huc->delayed_load.nb); 217 huc->delayed_load.nb.notifier_call = NULL; 218 } 219 220 static void delayed_huc_load_init(struct intel_huc *huc) 221 { 222 /* 223 * Initialize fence to be complete as this is expected to be complete 224 * unless there is a delayed HuC load in progress. 225 */ 226 i915_sw_fence_init(&huc->delayed_load.fence, 227 sw_fence_dummy_notify); 228 i915_sw_fence_commit(&huc->delayed_load.fence); 229 230 hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 231 huc->delayed_load.timer.function = huc_delayed_load_timer_callback; 232 } 233 234 static void delayed_huc_load_fini(struct intel_huc *huc) 235 { 236 /* 237 * the fence is initialized in init_early, so we need to clean it up 238 * even if HuC loading is off. 239 */ 240 delayed_huc_load_complete(huc); 241 i915_sw_fence_fini(&huc->delayed_load.fence); 242 } 243 244 static bool vcs_supported(struct intel_gt *gt) 245 { 246 intel_engine_mask_t mask = gt->info.engine_mask; 247 248 /* 249 * We reach here from i915_driver_early_probe for the primary GT before 250 * its engine mask is set, so we use the device info engine mask for it; 251 * this means we're not taking VCS fusing into account, but if the 252 * primary GT supports VCS engines we expect at least one of them to 253 * remain unfused so we're fine. 254 * For other GTs we expect the GT-specific mask to be set before we 255 * call this function. 256 */ 257 GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); 258 259 if (gt_is_root(gt)) 260 mask = RUNTIME_INFO(gt->i915)->platform_engine_mask; 261 else 262 mask = gt->info.engine_mask; 263 264 return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); 265 } 266 267 void intel_huc_init_early(struct intel_huc *huc) 268 { 269 struct drm_i915_private *i915 = huc_to_gt(huc)->i915; 270 struct intel_gt *gt = huc_to_gt(huc); 271 272 intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC); 273 274 /* 275 * we always init the fence as already completed, even if HuC is not 276 * supported. This way we don't have to distinguish between HuC not 277 * supported/disabled or already loaded, and can focus on if the load 278 * is currently in progress (fence not complete) or not, which is what 279 * we care about for stalling userspace submissions. 280 */ 281 delayed_huc_load_init(huc); 282 283 if (!vcs_supported(gt)) { 284 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); 285 return; 286 } 287 288 if (GRAPHICS_VER(i915) >= 11) { 289 huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO; 290 huc->status.mask = HUC_LOAD_SUCCESSFUL; 291 huc->status.value = HUC_LOAD_SUCCESSFUL; 292 } else { 293 huc->status.reg = HUC_STATUS2; 294 huc->status.mask = HUC_FW_VERIFIED; 295 huc->status.value = HUC_FW_VERIFIED; 296 } 297 } 298 299 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") 300 static int check_huc_loading_mode(struct intel_huc *huc) 301 { 302 struct intel_gt *gt = huc_to_gt(huc); 303 bool fw_needs_gsc = intel_huc_is_loaded_by_gsc(huc); 304 bool hw_uses_gsc = false; 305 306 /* 307 * The fuse for HuC load via GSC is only valid on platforms that have 308 * GuC deprivilege. 309 */ 310 if (HAS_GUC_DEPRIVILEGE(gt->i915)) 311 hw_uses_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) & 312 GSC_LOADS_HUC; 313 314 if (fw_needs_gsc != hw_uses_gsc) { 315 huc_err(huc, "mismatch between FW (%s) and HW (%s) load modes\n", 316 HUC_LOAD_MODE_STRING(fw_needs_gsc), HUC_LOAD_MODE_STRING(hw_uses_gsc)); 317 return -ENOEXEC; 318 } 319 320 /* make sure we can access the GSC via the mei driver if we need it */ 321 if (!(IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC)) && 322 fw_needs_gsc) { 323 huc_info(huc, "can't load due to missing MEI modules\n"); 324 return -EIO; 325 } 326 327 huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(fw_needs_gsc)); 328 329 return 0; 330 } 331 332 int intel_huc_init(struct intel_huc *huc) 333 { 334 int err; 335 336 err = check_huc_loading_mode(huc); 337 if (err) 338 goto out; 339 340 err = intel_uc_fw_init(&huc->fw); 341 if (err) 342 goto out; 343 344 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); 345 346 return 0; 347 348 out: 349 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 350 huc_info(huc, "initialization failed %pe\n", ERR_PTR(err)); 351 return err; 352 } 353 354 void intel_huc_fini(struct intel_huc *huc) 355 { 356 /* 357 * the fence is initialized in init_early, so we need to clean it up 358 * even if HuC loading is off. 359 */ 360 delayed_huc_load_fini(huc); 361 362 if (intel_uc_fw_is_loadable(&huc->fw)) 363 intel_uc_fw_fini(&huc->fw); 364 } 365 366 void intel_huc_suspend(struct intel_huc *huc) 367 { 368 if (!intel_uc_fw_is_loadable(&huc->fw)) 369 return; 370 371 /* 372 * in the unlikely case that we're suspending before the GSC has 373 * completed its loading sequence, just stop waiting. We'll restart 374 * on resume. 375 */ 376 delayed_huc_load_complete(huc); 377 } 378 379 int intel_huc_wait_for_auth_complete(struct intel_huc *huc) 380 { 381 struct intel_gt *gt = huc_to_gt(huc); 382 int ret; 383 384 ret = __intel_wait_for_register(gt->uncore, 385 huc->status.reg, 386 huc->status.mask, 387 huc->status.value, 388 2, 50, NULL); 389 390 /* mark the load process as complete even if the wait failed */ 391 delayed_huc_load_complete(huc); 392 393 if (ret) { 394 huc_err(huc, "firmware not verified %pe\n", ERR_PTR(ret)); 395 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); 396 return ret; 397 } 398 399 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); 400 huc_info(huc, "authenticated!\n"); 401 return 0; 402 } 403 404 /** 405 * intel_huc_auth() - Authenticate HuC uCode 406 * @huc: intel_huc structure 407 * 408 * Called after HuC and GuC firmware loading during intel_uc_init_hw(). 409 * 410 * This function invokes the GuC action to authenticate the HuC firmware, 411 * passing the offset of the RSA signature to intel_guc_auth_huc(). It then 412 * waits for up to 50ms for firmware verification ACK. 413 */ 414 int intel_huc_auth(struct intel_huc *huc) 415 { 416 struct intel_gt *gt = huc_to_gt(huc); 417 struct intel_guc *guc = >->uc.guc; 418 int ret; 419 420 if (!intel_uc_fw_is_loaded(&huc->fw)) 421 return -ENOEXEC; 422 423 /* GSC will do the auth */ 424 if (intel_huc_is_loaded_by_gsc(huc)) 425 return -ENODEV; 426 427 ret = i915_inject_probe_error(gt->i915, -ENXIO); 428 if (ret) 429 goto fail; 430 431 GEM_BUG_ON(intel_uc_fw_is_running(&huc->fw)); 432 433 ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data)); 434 if (ret) { 435 huc_err(huc, "authentication by GuC failed %pe\n", ERR_PTR(ret)); 436 goto fail; 437 } 438 439 /* Check authentication status, it should be done by now */ 440 ret = intel_huc_wait_for_auth_complete(huc); 441 if (ret) 442 goto fail; 443 444 return 0; 445 446 fail: 447 huc_probe_error(huc, "authentication failed %pe\n", ERR_PTR(ret)); 448 return ret; 449 } 450 451 bool intel_huc_is_authenticated(struct intel_huc *huc) 452 { 453 struct intel_gt *gt = huc_to_gt(huc); 454 intel_wakeref_t wakeref; 455 u32 status = 0; 456 457 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 458 status = intel_uncore_read(gt->uncore, huc->status.reg); 459 460 return (status & huc->status.mask) == huc->status.value; 461 } 462 463 /** 464 * intel_huc_check_status() - check HuC status 465 * @huc: intel_huc structure 466 * 467 * This function reads status register to verify if HuC 468 * firmware was successfully loaded. 469 * 470 * The return values match what is expected for the I915_PARAM_HUC_STATUS 471 * getparam. 472 */ 473 int intel_huc_check_status(struct intel_huc *huc) 474 { 475 switch (__intel_uc_fw_status(&huc->fw)) { 476 case INTEL_UC_FIRMWARE_NOT_SUPPORTED: 477 return -ENODEV; 478 case INTEL_UC_FIRMWARE_DISABLED: 479 return -EOPNOTSUPP; 480 case INTEL_UC_FIRMWARE_MISSING: 481 return -ENOPKG; 482 case INTEL_UC_FIRMWARE_ERROR: 483 return -ENOEXEC; 484 case INTEL_UC_FIRMWARE_INIT_FAIL: 485 return -ENOMEM; 486 case INTEL_UC_FIRMWARE_LOAD_FAIL: 487 return -EIO; 488 default: 489 break; 490 } 491 492 return intel_huc_is_authenticated(huc); 493 } 494 495 static bool huc_has_delayed_load(struct intel_huc *huc) 496 { 497 return intel_huc_is_loaded_by_gsc(huc) && 498 (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); 499 } 500 501 void intel_huc_update_auth_status(struct intel_huc *huc) 502 { 503 if (!intel_uc_fw_is_loadable(&huc->fw)) 504 return; 505 506 if (intel_huc_is_authenticated(huc)) 507 intel_uc_fw_change_status(&huc->fw, 508 INTEL_UC_FIRMWARE_RUNNING); 509 else if (huc_has_delayed_load(huc)) 510 huc_delayed_load_start(huc); 511 } 512 513 /** 514 * intel_huc_load_status - dump information about HuC load status 515 * @huc: the HuC 516 * @p: the &drm_printer 517 * 518 * Pretty printer for HuC load status. 519 */ 520 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) 521 { 522 struct intel_gt *gt = huc_to_gt(huc); 523 intel_wakeref_t wakeref; 524 525 if (!intel_huc_is_supported(huc)) { 526 drm_printf(p, "HuC not supported\n"); 527 return; 528 } 529 530 if (!intel_huc_is_wanted(huc)) { 531 drm_printf(p, "HuC disabled\n"); 532 return; 533 } 534 535 intel_uc_fw_dump(&huc->fw, p); 536 537 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 538 drm_printf(p, "HuC status: 0x%08x\n", 539 intel_uncore_read(gt->uncore, huc->status.reg)); 540 } 541