1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gt/gen8_engine_cs.h" 10 #include "gt/intel_breadcrumbs.h" 11 #include "gt/intel_context.h" 12 #include "gt/intel_engine_heartbeat.h" 13 #include "gt/intel_engine_pm.h" 14 #include "gt/intel_engine_regs.h" 15 #include "gt/intel_gpu_commands.h" 16 #include "gt/intel_gt.h" 17 #include "gt/intel_gt_clock_utils.h" 18 #include "gt/intel_gt_irq.h" 19 #include "gt/intel_gt_pm.h" 20 #include "gt/intel_gt_regs.h" 21 #include "gt/intel_gt_requests.h" 22 #include "gt/intel_lrc.h" 23 #include "gt/intel_lrc_reg.h" 24 #include "gt/intel_mocs.h" 25 #include "gt/intel_ring.h" 26 27 #include "intel_guc_ads.h" 28 #include "intel_guc_capture.h" 29 #include "intel_guc_submission.h" 30 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 34 /** 35 * DOC: GuC-based command submission 36 * 37 * The Scratch registers: 38 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 39 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 40 * triggers an interrupt on the GuC via another register write (0xC4C8). 41 * Firmware writes a success/fail code back to the action register after 42 * processes the request. The kernel driver polls waiting for this update and 43 * then proceeds. 44 * 45 * Command Transport buffers (CTBs): 46 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 47 * - G2H) are a message interface between the i915 and GuC. 48 * 49 * Context registration: 50 * Before a context can be submitted it must be registered with the GuC via a 51 * H2G. A unique guc_id is associated with each context. The context is either 52 * registered at request creation time (normal operation) or at submission time 53 * (abnormal operation, e.g. after a reset). 54 * 55 * Context submission: 56 * The i915 updates the LRC tail value in memory. The i915 must enable the 57 * scheduling of the context within the GuC for the GuC to actually consider it. 58 * Therefore, the first time a disabled context is submitted we use a schedule 59 * enable H2G, while follow up submissions are done via the context submit H2G, 60 * which informs the GuC that a previously enabled context has new work 61 * available. 62 * 63 * Context unpin: 64 * To unpin a context a H2G is used to disable scheduling. When the 65 * corresponding G2H returns indicating the scheduling disable operation has 66 * completed it is safe to unpin the context. While a disable is in flight it 67 * isn't safe to resubmit the context so a fence is used to stall all future 68 * requests of that context until the G2H is returned. 69 * 70 * Context deregistration: 71 * Before a context can be destroyed or if we steal its guc_id we must 72 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 73 * safe to submit anything to this guc_id until the deregister completes so a 74 * fence is used to stall all requests associated with this guc_id until the 75 * corresponding G2H returns indicating the guc_id has been deregistered. 76 * 77 * submission_state.guc_ids: 78 * Unique number associated with private GuC context data passed in during 79 * context registration / submission / deregistration. 64k available. Simple ida 80 * is used for allocation. 81 * 82 * Stealing guc_ids: 83 * If no guc_ids are available they can be stolen from another context at 84 * request creation time if that context is unpinned. If a guc_id can't be found 85 * we punt this problem to the user as we believe this is near impossible to hit 86 * during normal use cases. 87 * 88 * Locking: 89 * In the GuC submission code we have 3 basic spin locks which protect 90 * everything. Details about each below. 91 * 92 * sched_engine->lock 93 * This is the submission lock for all contexts that share an i915 schedule 94 * engine (sched_engine), thus only one of the contexts which share a 95 * sched_engine can be submitting at a time. Currently only one sched_engine is 96 * used for all of GuC submission but that could change in the future. 97 * 98 * guc->submission_state.lock 99 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 100 * list. 101 * 102 * ce->guc_state.lock 103 * Protects everything under ce->guc_state. Ensures that a context is in the 104 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 105 * on a disabled context (bad idea), we don't issue a schedule enable when a 106 * schedule disable is in flight, etc... Also protects list of inflight requests 107 * on the context and the priority management state. Lock is individual to each 108 * context. 109 * 110 * Lock ordering rules: 111 * sched_engine->lock -> ce->guc_state.lock 112 * guc->submission_state.lock -> ce->guc_state.lock 113 * 114 * Reset races: 115 * When a full GT reset is triggered it is assumed that some G2H responses to 116 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 117 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 118 * contexts, release guc_ids, etc...). When this occurs we can scrub the 119 * context state and cleanup appropriately, however this is quite racey. 120 * To avoid races, the reset code must disable submission before scrubbing for 121 * the missing G2H, while the submission code must check for submission being 122 * disabled and skip sending H2Gs and updating context states when it is. Both 123 * sides must also make sure to hold the relevant locks. 124 */ 125 126 /* GuC Virtual Engine */ 127 struct guc_virtual_engine { 128 struct intel_engine_cs base; 129 struct intel_context context; 130 }; 131 132 static struct intel_context * 133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 134 unsigned long flags); 135 136 static struct intel_context * 137 guc_create_parallel(struct intel_engine_cs **engines, 138 unsigned int num_siblings, 139 unsigned int width); 140 141 #define GUC_REQUEST_SIZE 64 /* bytes */ 142 143 /* 144 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 145 * per the GuC submission interface. A different allocation algorithm is used 146 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 147 * partition the guc_id space. We believe the number of multi-lrc contexts in 148 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 149 * multi-lrc. 150 */ 151 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 152 ((guc)->submission_state.num_guc_ids / 16) 153 154 /* 155 * Below is a set of functions which control the GuC scheduling state which 156 * require a lock. 157 */ 158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 159 #define SCHED_STATE_DESTROYED BIT(1) 160 #define SCHED_STATE_PENDING_DISABLE BIT(2) 161 #define SCHED_STATE_BANNED BIT(3) 162 #define SCHED_STATE_ENABLED BIT(4) 163 #define SCHED_STATE_PENDING_ENABLE BIT(5) 164 #define SCHED_STATE_REGISTERED BIT(6) 165 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 166 #define SCHED_STATE_BLOCKED_SHIFT 8 167 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 168 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 169 170 static inline void init_sched_state(struct intel_context *ce) 171 { 172 lockdep_assert_held(&ce->guc_state.lock); 173 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 174 } 175 176 __maybe_unused 177 static bool sched_state_is_init(struct intel_context *ce) 178 { 179 /* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */ 180 return !(ce->guc_state.sched_state & 181 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED)); 182 } 183 184 static inline bool 185 context_wait_for_deregister_to_register(struct intel_context *ce) 186 { 187 return ce->guc_state.sched_state & 188 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 189 } 190 191 static inline void 192 set_context_wait_for_deregister_to_register(struct intel_context *ce) 193 { 194 lockdep_assert_held(&ce->guc_state.lock); 195 ce->guc_state.sched_state |= 196 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 197 } 198 199 static inline void 200 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 201 { 202 lockdep_assert_held(&ce->guc_state.lock); 203 ce->guc_state.sched_state &= 204 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 205 } 206 207 static inline bool 208 context_destroyed(struct intel_context *ce) 209 { 210 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 211 } 212 213 static inline void 214 set_context_destroyed(struct intel_context *ce) 215 { 216 lockdep_assert_held(&ce->guc_state.lock); 217 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 218 } 219 220 static inline bool context_pending_disable(struct intel_context *ce) 221 { 222 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 223 } 224 225 static inline void set_context_pending_disable(struct intel_context *ce) 226 { 227 lockdep_assert_held(&ce->guc_state.lock); 228 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 229 } 230 231 static inline void clr_context_pending_disable(struct intel_context *ce) 232 { 233 lockdep_assert_held(&ce->guc_state.lock); 234 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 235 } 236 237 static inline bool context_banned(struct intel_context *ce) 238 { 239 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 240 } 241 242 static inline void set_context_banned(struct intel_context *ce) 243 { 244 lockdep_assert_held(&ce->guc_state.lock); 245 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 246 } 247 248 static inline void clr_context_banned(struct intel_context *ce) 249 { 250 lockdep_assert_held(&ce->guc_state.lock); 251 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 252 } 253 254 static inline bool context_enabled(struct intel_context *ce) 255 { 256 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 257 } 258 259 static inline void set_context_enabled(struct intel_context *ce) 260 { 261 lockdep_assert_held(&ce->guc_state.lock); 262 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 263 } 264 265 static inline void clr_context_enabled(struct intel_context *ce) 266 { 267 lockdep_assert_held(&ce->guc_state.lock); 268 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 269 } 270 271 static inline bool context_pending_enable(struct intel_context *ce) 272 { 273 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 274 } 275 276 static inline void set_context_pending_enable(struct intel_context *ce) 277 { 278 lockdep_assert_held(&ce->guc_state.lock); 279 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 280 } 281 282 static inline void clr_context_pending_enable(struct intel_context *ce) 283 { 284 lockdep_assert_held(&ce->guc_state.lock); 285 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 286 } 287 288 static inline bool context_registered(struct intel_context *ce) 289 { 290 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 291 } 292 293 static inline void set_context_registered(struct intel_context *ce) 294 { 295 lockdep_assert_held(&ce->guc_state.lock); 296 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 297 } 298 299 static inline void clr_context_registered(struct intel_context *ce) 300 { 301 lockdep_assert_held(&ce->guc_state.lock); 302 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 303 } 304 305 static inline bool context_policy_required(struct intel_context *ce) 306 { 307 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 308 } 309 310 static inline void set_context_policy_required(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 314 } 315 316 static inline void clr_context_policy_required(struct intel_context *ce) 317 { 318 lockdep_assert_held(&ce->guc_state.lock); 319 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 320 } 321 322 static inline u32 context_blocked(struct intel_context *ce) 323 { 324 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 325 SCHED_STATE_BLOCKED_SHIFT; 326 } 327 328 static inline void incr_context_blocked(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 332 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 333 334 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 335 } 336 337 static inline void decr_context_blocked(struct intel_context *ce) 338 { 339 lockdep_assert_held(&ce->guc_state.lock); 340 341 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 342 343 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 344 } 345 346 static inline bool context_has_committed_requests(struct intel_context *ce) 347 { 348 return !!ce->guc_state.number_committed_requests; 349 } 350 351 static inline void incr_context_committed_requests(struct intel_context *ce) 352 { 353 lockdep_assert_held(&ce->guc_state.lock); 354 ++ce->guc_state.number_committed_requests; 355 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 356 } 357 358 static inline void decr_context_committed_requests(struct intel_context *ce) 359 { 360 lockdep_assert_held(&ce->guc_state.lock); 361 --ce->guc_state.number_committed_requests; 362 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 363 } 364 365 static struct intel_context * 366 request_to_scheduling_context(struct i915_request *rq) 367 { 368 return intel_context_to_parent(rq->context); 369 } 370 371 static inline bool context_guc_id_invalid(struct intel_context *ce) 372 { 373 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 374 } 375 376 static inline void set_context_guc_id_invalid(struct intel_context *ce) 377 { 378 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 379 } 380 381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 382 { 383 return &ce->engine->gt->uc.guc; 384 } 385 386 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 387 { 388 return rb_entry(rb, struct i915_priolist, node); 389 } 390 391 /* 392 * When using multi-lrc submission a scratch memory area is reserved in the 393 * parent's context state for the process descriptor, work queue, and handshake 394 * between the parent + children contexts to insert safe preemption points 395 * between each of the BBs. Currently the scratch area is sized to a page. 396 * 397 * The layout of this scratch area is below: 398 * 0 guc_process_desc 399 * + sizeof(struct guc_process_desc) child go 400 * + CACHELINE_BYTES child join[0] 401 * ... 402 * + CACHELINE_BYTES child join[n - 1] 403 * ... unused 404 * PARENT_SCRATCH_SIZE / 2 work queue start 405 * ... work queue 406 * PARENT_SCRATCH_SIZE - 1 work queue end 407 */ 408 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 409 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 410 411 struct sync_semaphore { 412 u32 semaphore; 413 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 414 }; 415 416 struct parent_scratch { 417 union guc_descs { 418 struct guc_sched_wq_desc wq_desc; 419 struct guc_process_desc_v69 pdesc; 420 } descs; 421 422 struct sync_semaphore go; 423 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 424 425 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 426 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 427 428 u32 wq[WQ_SIZE / sizeof(u32)]; 429 }; 430 431 static u32 __get_parent_scratch_offset(struct intel_context *ce) 432 { 433 GEM_BUG_ON(!ce->parallel.guc.parent_page); 434 435 return ce->parallel.guc.parent_page * PAGE_SIZE; 436 } 437 438 static u32 __get_wq_offset(struct intel_context *ce) 439 { 440 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 441 442 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 443 } 444 445 static struct parent_scratch * 446 __get_parent_scratch(struct intel_context *ce) 447 { 448 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 449 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 450 451 /* 452 * Need to subtract LRC_STATE_OFFSET here as the 453 * parallel.guc.parent_page is the offset into ce->state while 454 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 455 */ 456 return (struct parent_scratch *) 457 (ce->lrc_reg_state + 458 ((__get_parent_scratch_offset(ce) - 459 LRC_STATE_OFFSET) / sizeof(u32))); 460 } 461 462 static struct guc_process_desc_v69 * 463 __get_process_desc_v69(struct intel_context *ce) 464 { 465 struct parent_scratch *ps = __get_parent_scratch(ce); 466 467 return &ps->descs.pdesc; 468 } 469 470 static struct guc_sched_wq_desc * 471 __get_wq_desc_v70(struct intel_context *ce) 472 { 473 struct parent_scratch *ps = __get_parent_scratch(ce); 474 475 return &ps->descs.wq_desc; 476 } 477 478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 479 { 480 /* 481 * Check for space in work queue. Caching a value of head pointer in 482 * intel_context structure in order reduce the number accesses to shared 483 * GPU memory which may be across a PCIe bus. 484 */ 485 #define AVAILABLE_SPACE \ 486 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 487 if (wqi_size > AVAILABLE_SPACE) { 488 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 489 490 if (wqi_size > AVAILABLE_SPACE) 491 return NULL; 492 } 493 #undef AVAILABLE_SPACE 494 495 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 496 } 497 498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 499 { 500 struct intel_context *ce = xa_load(&guc->context_lookup, id); 501 502 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 503 504 return ce; 505 } 506 507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 508 { 509 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 510 511 if (!base) 512 return NULL; 513 514 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 515 516 return &base[index]; 517 } 518 519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 520 { 521 u32 size; 522 int ret; 523 524 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 525 GUC_MAX_CONTEXT_ID); 526 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 527 (void **)&guc->lrc_desc_pool_vaddr_v69); 528 if (ret) 529 return ret; 530 531 return 0; 532 } 533 534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 535 { 536 if (!guc->lrc_desc_pool_vaddr_v69) 537 return; 538 539 guc->lrc_desc_pool_vaddr_v69 = NULL; 540 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 541 } 542 543 static inline bool guc_submission_initialized(struct intel_guc *guc) 544 { 545 return guc->submission_initialized; 546 } 547 548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 549 { 550 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 551 552 if (desc) 553 memset(desc, 0, sizeof(*desc)); 554 } 555 556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 557 { 558 return __get_context(guc, id); 559 } 560 561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 562 struct intel_context *ce) 563 { 564 unsigned long flags; 565 566 /* 567 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 568 * lower level functions directly. 569 */ 570 xa_lock_irqsave(&guc->context_lookup, flags); 571 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 572 xa_unlock_irqrestore(&guc->context_lookup, flags); 573 } 574 575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 576 { 577 unsigned long flags; 578 579 if (unlikely(!guc_submission_initialized(guc))) 580 return; 581 582 _reset_lrc_desc_v69(guc, id); 583 584 /* 585 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 586 * the lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_erase(&guc->context_lookup, id); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 594 { 595 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 596 wake_up_all(&guc->ct.wq); 597 } 598 599 static int guc_submission_send_busy_loop(struct intel_guc *guc, 600 const u32 *action, 601 u32 len, 602 u32 g2h_len_dw, 603 bool loop) 604 { 605 /* 606 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 607 * so we don't handle the case where we don't get a reply because we 608 * aborted the send due to the channel being busy. 609 */ 610 GEM_BUG_ON(g2h_len_dw && !loop); 611 612 if (g2h_len_dw) 613 atomic_inc(&guc->outstanding_submission_g2h); 614 615 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 616 } 617 618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 619 atomic_t *wait_var, 620 bool interruptible, 621 long timeout) 622 { 623 const int state = interruptible ? 624 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 625 DEFINE_WAIT(wait); 626 627 might_sleep(); 628 GEM_BUG_ON(timeout < 0); 629 630 if (!atomic_read(wait_var)) 631 return 0; 632 633 if (!timeout) 634 return -ETIME; 635 636 for (;;) { 637 prepare_to_wait(&guc->ct.wq, &wait, state); 638 639 if (!atomic_read(wait_var)) 640 break; 641 642 if (signal_pending_state(state, current)) { 643 timeout = -EINTR; 644 break; 645 } 646 647 if (!timeout) { 648 timeout = -ETIME; 649 break; 650 } 651 652 timeout = io_schedule_timeout(timeout); 653 } 654 finish_wait(&guc->ct.wq, &wait); 655 656 return (timeout < 0) ? timeout : 0; 657 } 658 659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 660 { 661 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 662 return 0; 663 664 return intel_guc_wait_for_pending_msg(guc, 665 &guc->outstanding_submission_g2h, 666 true, timeout); 667 } 668 669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 670 static int try_context_registration(struct intel_context *ce, bool loop); 671 672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 673 { 674 int err = 0; 675 struct intel_context *ce = request_to_scheduling_context(rq); 676 u32 action[3]; 677 int len = 0; 678 u32 g2h_len_dw = 0; 679 bool enabled; 680 681 lockdep_assert_held(&rq->engine->sched_engine->lock); 682 683 /* 684 * Corner case where requests were sitting in the priority list or a 685 * request resubmitted after the context was banned. 686 */ 687 if (unlikely(intel_context_is_banned(ce))) { 688 i915_request_put(i915_request_mark_eio(rq)); 689 intel_engine_signal_breadcrumbs(ce->engine); 690 return 0; 691 } 692 693 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 694 GEM_BUG_ON(context_guc_id_invalid(ce)); 695 696 if (context_policy_required(ce)) { 697 err = guc_context_policy_init_v70(ce, false); 698 if (err) 699 return err; 700 } 701 702 spin_lock(&ce->guc_state.lock); 703 704 /* 705 * The request / context will be run on the hardware when scheduling 706 * gets enabled in the unblock. For multi-lrc we still submit the 707 * context to move the LRC tails. 708 */ 709 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 710 goto out; 711 712 enabled = context_enabled(ce) || context_blocked(ce); 713 714 if (!enabled) { 715 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 716 action[len++] = ce->guc_id.id; 717 action[len++] = GUC_CONTEXT_ENABLE; 718 set_context_pending_enable(ce); 719 intel_context_get(ce); 720 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 721 } else { 722 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 723 action[len++] = ce->guc_id.id; 724 } 725 726 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 727 if (!enabled && !err) { 728 trace_intel_context_sched_enable(ce); 729 atomic_inc(&guc->outstanding_submission_g2h); 730 set_context_enabled(ce); 731 732 /* 733 * Without multi-lrc KMD does the submission step (moving the 734 * lrc tail) so enabling scheduling is sufficient to submit the 735 * context. This isn't the case in multi-lrc submission as the 736 * GuC needs to move the tails, hence the need for another H2G 737 * to submit a multi-lrc context after enabling scheduling. 738 */ 739 if (intel_context_is_parent(ce)) { 740 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 741 err = intel_guc_send_nb(guc, action, len - 1, 0); 742 } 743 } else if (!enabled) { 744 clr_context_pending_enable(ce); 745 intel_context_put(ce); 746 } 747 if (likely(!err)) 748 trace_i915_request_guc_submit(rq); 749 750 out: 751 spin_unlock(&ce->guc_state.lock); 752 return err; 753 } 754 755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 756 { 757 int ret = __guc_add_request(guc, rq); 758 759 if (unlikely(ret == -EBUSY)) { 760 guc->stalled_request = rq; 761 guc->submission_stall_reason = STALL_ADD_REQUEST; 762 } 763 764 return ret; 765 } 766 767 static inline void guc_set_lrc_tail(struct i915_request *rq) 768 { 769 rq->context->lrc_reg_state[CTX_RING_TAIL] = 770 intel_ring_set_tail(rq->ring, rq->tail); 771 } 772 773 static inline int rq_prio(const struct i915_request *rq) 774 { 775 return rq->sched.attr.priority; 776 } 777 778 static bool is_multi_lrc_rq(struct i915_request *rq) 779 { 780 return intel_context_is_parallel(rq->context); 781 } 782 783 static bool can_merge_rq(struct i915_request *rq, 784 struct i915_request *last) 785 { 786 return request_to_scheduling_context(rq) == 787 request_to_scheduling_context(last); 788 } 789 790 static u32 wq_space_until_wrap(struct intel_context *ce) 791 { 792 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 793 } 794 795 static void write_wqi(struct intel_context *ce, u32 wqi_size) 796 { 797 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 798 799 /* 800 * Ensure WQI are visible before updating tail 801 */ 802 intel_guc_write_barrier(ce_to_guc(ce)); 803 804 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 805 (WQ_SIZE - 1); 806 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 807 } 808 809 static int guc_wq_noop_append(struct intel_context *ce) 810 { 811 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 812 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 813 814 if (!wqi) 815 return -EBUSY; 816 817 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 818 819 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 820 FIELD_PREP(WQ_LEN_MASK, len_dw); 821 ce->parallel.guc.wqi_tail = 0; 822 823 return 0; 824 } 825 826 static int __guc_wq_item_append(struct i915_request *rq) 827 { 828 struct intel_context *ce = request_to_scheduling_context(rq); 829 struct intel_context *child; 830 unsigned int wqi_size = (ce->parallel.number_children + 4) * 831 sizeof(u32); 832 u32 *wqi; 833 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 834 int ret; 835 836 /* Ensure context is in correct state updating work queue */ 837 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 838 GEM_BUG_ON(context_guc_id_invalid(ce)); 839 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 840 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 841 842 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 843 if (wqi_size > wq_space_until_wrap(ce)) { 844 ret = guc_wq_noop_append(ce); 845 if (ret) 846 return ret; 847 } 848 849 wqi = get_wq_pointer(ce, wqi_size); 850 if (!wqi) 851 return -EBUSY; 852 853 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 854 855 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 856 FIELD_PREP(WQ_LEN_MASK, len_dw); 857 *wqi++ = ce->lrc.lrca; 858 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 859 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 860 *wqi++ = 0; /* fence_id */ 861 for_each_child(ce, child) 862 *wqi++ = child->ring->tail / sizeof(u64); 863 864 write_wqi(ce, wqi_size); 865 866 return 0; 867 } 868 869 static int guc_wq_item_append(struct intel_guc *guc, 870 struct i915_request *rq) 871 { 872 struct intel_context *ce = request_to_scheduling_context(rq); 873 int ret = 0; 874 875 if (likely(!intel_context_is_banned(ce))) { 876 ret = __guc_wq_item_append(rq); 877 878 if (unlikely(ret == -EBUSY)) { 879 guc->stalled_request = rq; 880 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 881 } 882 } 883 884 return ret; 885 } 886 887 static bool multi_lrc_submit(struct i915_request *rq) 888 { 889 struct intel_context *ce = request_to_scheduling_context(rq); 890 891 intel_ring_set_tail(rq->ring, rq->tail); 892 893 /* 894 * We expect the front end (execbuf IOCTL) to set this flag on the last 895 * request generated from a multi-BB submission. This indicates to the 896 * backend (GuC interface) that we should submit this context thus 897 * submitting all the requests generated in parallel. 898 */ 899 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 900 intel_context_is_banned(ce); 901 } 902 903 static int guc_dequeue_one_context(struct intel_guc *guc) 904 { 905 struct i915_sched_engine * const sched_engine = guc->sched_engine; 906 struct i915_request *last = NULL; 907 bool submit = false; 908 struct rb_node *rb; 909 int ret; 910 911 lockdep_assert_held(&sched_engine->lock); 912 913 if (guc->stalled_request) { 914 submit = true; 915 last = guc->stalled_request; 916 917 switch (guc->submission_stall_reason) { 918 case STALL_REGISTER_CONTEXT: 919 goto register_context; 920 case STALL_MOVE_LRC_TAIL: 921 goto move_lrc_tail; 922 case STALL_ADD_REQUEST: 923 goto add_request; 924 default: 925 MISSING_CASE(guc->submission_stall_reason); 926 } 927 } 928 929 while ((rb = rb_first_cached(&sched_engine->queue))) { 930 struct i915_priolist *p = to_priolist(rb); 931 struct i915_request *rq, *rn; 932 933 priolist_for_each_request_consume(rq, rn, p) { 934 if (last && !can_merge_rq(rq, last)) 935 goto register_context; 936 937 list_del_init(&rq->sched.link); 938 939 __i915_request_submit(rq); 940 941 trace_i915_request_in(rq, 0); 942 last = rq; 943 944 if (is_multi_lrc_rq(rq)) { 945 /* 946 * We need to coalesce all multi-lrc requests in 947 * a relationship into a single H2G. We are 948 * guaranteed that all of these requests will be 949 * submitted sequentially. 950 */ 951 if (multi_lrc_submit(rq)) { 952 submit = true; 953 goto register_context; 954 } 955 } else { 956 submit = true; 957 } 958 } 959 960 rb_erase_cached(&p->node, &sched_engine->queue); 961 i915_priolist_free(p); 962 } 963 964 register_context: 965 if (submit) { 966 struct intel_context *ce = request_to_scheduling_context(last); 967 968 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 969 !intel_context_is_banned(ce))) { 970 ret = try_context_registration(ce, false); 971 if (unlikely(ret == -EPIPE)) { 972 goto deadlk; 973 } else if (ret == -EBUSY) { 974 guc->stalled_request = last; 975 guc->submission_stall_reason = 976 STALL_REGISTER_CONTEXT; 977 goto schedule_tasklet; 978 } else if (ret != 0) { 979 GEM_WARN_ON(ret); /* Unexpected */ 980 goto deadlk; 981 } 982 } 983 984 move_lrc_tail: 985 if (is_multi_lrc_rq(last)) { 986 ret = guc_wq_item_append(guc, last); 987 if (ret == -EBUSY) { 988 goto schedule_tasklet; 989 } else if (ret != 0) { 990 GEM_WARN_ON(ret); /* Unexpected */ 991 goto deadlk; 992 } 993 } else { 994 guc_set_lrc_tail(last); 995 } 996 997 add_request: 998 ret = guc_add_request(guc, last); 999 if (unlikely(ret == -EPIPE)) { 1000 goto deadlk; 1001 } else if (ret == -EBUSY) { 1002 goto schedule_tasklet; 1003 } else if (ret != 0) { 1004 GEM_WARN_ON(ret); /* Unexpected */ 1005 goto deadlk; 1006 } 1007 } 1008 1009 guc->stalled_request = NULL; 1010 guc->submission_stall_reason = STALL_NONE; 1011 return submit; 1012 1013 deadlk: 1014 sched_engine->tasklet.callback = NULL; 1015 tasklet_disable_nosync(&sched_engine->tasklet); 1016 return false; 1017 1018 schedule_tasklet: 1019 tasklet_schedule(&sched_engine->tasklet); 1020 return false; 1021 } 1022 1023 static void guc_submission_tasklet(struct tasklet_struct *t) 1024 { 1025 struct i915_sched_engine *sched_engine = 1026 from_tasklet(sched_engine, t, tasklet); 1027 unsigned long flags; 1028 bool loop; 1029 1030 spin_lock_irqsave(&sched_engine->lock, flags); 1031 1032 do { 1033 loop = guc_dequeue_one_context(sched_engine->private_data); 1034 } while (loop); 1035 1036 i915_sched_engine_reset_on_empty(sched_engine); 1037 1038 spin_unlock_irqrestore(&sched_engine->lock, flags); 1039 } 1040 1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1042 { 1043 if (iir & GT_RENDER_USER_INTERRUPT) 1044 intel_engine_signal_breadcrumbs(engine); 1045 } 1046 1047 static void __guc_context_destroy(struct intel_context *ce); 1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1049 static void guc_signal_context_fence(struct intel_context *ce); 1050 static void guc_cancel_context_requests(struct intel_context *ce); 1051 static void guc_blocked_fence_complete(struct intel_context *ce); 1052 1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1054 { 1055 struct intel_context *ce; 1056 unsigned long index, flags; 1057 bool pending_disable, pending_enable, deregister, destroyed, banned; 1058 1059 xa_lock_irqsave(&guc->context_lookup, flags); 1060 xa_for_each(&guc->context_lookup, index, ce) { 1061 /* 1062 * Corner case where the ref count on the object is zero but and 1063 * deregister G2H was lost. In this case we don't touch the ref 1064 * count and finish the destroy of the context. 1065 */ 1066 bool do_put = kref_get_unless_zero(&ce->ref); 1067 1068 xa_unlock(&guc->context_lookup); 1069 1070 spin_lock(&ce->guc_state.lock); 1071 1072 /* 1073 * Once we are at this point submission_disabled() is guaranteed 1074 * to be visible to all callers who set the below flags (see above 1075 * flush and flushes in reset_prepare). If submission_disabled() 1076 * is set, the caller shouldn't set these flags. 1077 */ 1078 1079 destroyed = context_destroyed(ce); 1080 pending_enable = context_pending_enable(ce); 1081 pending_disable = context_pending_disable(ce); 1082 deregister = context_wait_for_deregister_to_register(ce); 1083 banned = context_banned(ce); 1084 init_sched_state(ce); 1085 1086 spin_unlock(&ce->guc_state.lock); 1087 1088 if (pending_enable || destroyed || deregister) { 1089 decr_outstanding_submission_g2h(guc); 1090 if (deregister) 1091 guc_signal_context_fence(ce); 1092 if (destroyed) { 1093 intel_gt_pm_put_async(guc_to_gt(guc)); 1094 release_guc_id(guc, ce); 1095 __guc_context_destroy(ce); 1096 } 1097 if (pending_enable || deregister) 1098 intel_context_put(ce); 1099 } 1100 1101 /* Not mutualy exclusive with above if statement. */ 1102 if (pending_disable) { 1103 guc_signal_context_fence(ce); 1104 if (banned) { 1105 guc_cancel_context_requests(ce); 1106 intel_engine_signal_breadcrumbs(ce->engine); 1107 } 1108 intel_context_sched_disable_unpin(ce); 1109 decr_outstanding_submission_g2h(guc); 1110 1111 spin_lock(&ce->guc_state.lock); 1112 guc_blocked_fence_complete(ce); 1113 spin_unlock(&ce->guc_state.lock); 1114 1115 intel_context_put(ce); 1116 } 1117 1118 if (do_put) 1119 intel_context_put(ce); 1120 xa_lock(&guc->context_lookup); 1121 } 1122 xa_unlock_irqrestore(&guc->context_lookup, flags); 1123 } 1124 1125 /* 1126 * GuC stores busyness stats for each engine at context in/out boundaries. A 1127 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1128 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1129 * GuC. 1130 * 1131 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1132 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1133 * active. For an active engine total busyness = total + (now - start), where 1134 * 'now' is the time at which the busyness is sampled. For inactive engine, 1135 * total busyness = total. 1136 * 1137 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1138 * 1139 * The start and total values provided by GuC are 32 bits and wrap around in a 1140 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1141 * increasing ns values, there is a need for this implementation to account for 1142 * overflows and extend the GuC provided values to 64 bits before returning 1143 * busyness to the user. In order to do that, a worker runs periodically at 1144 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1145 * 27 seconds for a gt clock frequency of 19.2 MHz). 1146 */ 1147 1148 #define WRAP_TIME_CLKS U32_MAX 1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1150 1151 static void 1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1153 { 1154 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1155 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1156 1157 if (new_start == lower_32_bits(*prev_start)) 1158 return; 1159 1160 /* 1161 * When gt is unparked, we update the gt timestamp and start the ping 1162 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1163 * is unparked, all switched in contexts will have a start time that is 1164 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1165 * 1166 * If neither gt_stamp nor new_start has rolled over, then the 1167 * gt_stamp_hi does not need to be adjusted, however if one of them has 1168 * rolled over, we need to adjust gt_stamp_hi accordingly. 1169 * 1170 * The below conditions address the cases of new_start rollover and 1171 * gt_stamp_last rollover respectively. 1172 */ 1173 if (new_start < gt_stamp_last && 1174 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1175 gt_stamp_hi++; 1176 1177 if (new_start > gt_stamp_last && 1178 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1179 gt_stamp_hi--; 1180 1181 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1182 } 1183 1184 #define record_read(map_, field_) \ 1185 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1186 1187 /* 1188 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1189 * we run into a race where the value read is inconsistent. Sometimes the 1190 * inconsistency is in reading the upper MSB bytes of the last_in value when 1191 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1192 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1193 * determine validity of these values. Instead we read the values multiple times 1194 * until they are consistent. In test runs, 3 attempts results in consistent 1195 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1196 * any new occurences. 1197 */ 1198 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1199 u32 *last_in, u32 *id, u32 *total) 1200 { 1201 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1202 int i = 0; 1203 1204 do { 1205 *last_in = record_read(&rec_map, last_switch_in_stamp); 1206 *id = record_read(&rec_map, current_context_index); 1207 *total = record_read(&rec_map, total_runtime); 1208 1209 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1210 record_read(&rec_map, current_context_index) == *id && 1211 record_read(&rec_map, total_runtime) == *total) 1212 break; 1213 } while (++i < 6); 1214 } 1215 1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1217 { 1218 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1219 struct intel_guc *guc = &engine->gt->uc.guc; 1220 u32 last_switch, ctx_id, total; 1221 1222 lockdep_assert_held(&guc->timestamp.lock); 1223 1224 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1225 1226 stats->running = ctx_id != ~0U && last_switch; 1227 if (stats->running) 1228 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1229 1230 /* 1231 * Instead of adjusting the total for overflow, just add the 1232 * difference from previous sample stats->total_gt_clks 1233 */ 1234 if (total && total != ~0U) { 1235 stats->total_gt_clks += (u32)(total - stats->prev_total); 1236 stats->prev_total = total; 1237 } 1238 } 1239 1240 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1241 { 1242 intel_wakeref_t wakeref; 1243 u32 reg, shift; 1244 1245 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1246 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1247 1248 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1249 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1250 1251 return 3 - shift; 1252 } 1253 1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1255 { 1256 struct intel_gt *gt = guc_to_gt(guc); 1257 u32 gt_stamp_lo, gt_stamp_hi; 1258 u64 gpm_ts; 1259 1260 lockdep_assert_held(&guc->timestamp.lock); 1261 1262 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1263 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1264 MISC_STATUS1) >> guc->timestamp.shift; 1265 gt_stamp_lo = lower_32_bits(gpm_ts); 1266 *now = ktime_get(); 1267 1268 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1269 gt_stamp_hi++; 1270 1271 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1272 } 1273 1274 /* 1275 * Unlike the execlist mode of submission total and active times are in terms of 1276 * gt clocks. The *now parameter is retained to return the cpu time at which the 1277 * busyness was sampled. 1278 */ 1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1280 { 1281 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1282 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1283 struct intel_gt *gt = engine->gt; 1284 struct intel_guc *guc = >->uc.guc; 1285 u64 total, gt_stamp_saved; 1286 unsigned long flags; 1287 u32 reset_count; 1288 bool in_reset; 1289 1290 spin_lock_irqsave(&guc->timestamp.lock, flags); 1291 1292 /* 1293 * If a reset happened, we risk reading partially updated engine 1294 * busyness from GuC, so we just use the driver stored copy of busyness. 1295 * Synchronize with gt reset using reset_count and the 1296 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1297 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1298 * usable by checking the flag afterwards. 1299 */ 1300 reset_count = i915_reset_count(gpu_error); 1301 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1302 1303 *now = ktime_get(); 1304 1305 /* 1306 * The active busyness depends on start_gt_clk and gt_stamp. 1307 * gt_stamp is updated by i915 only when gt is awake and the 1308 * start_gt_clk is derived from GuC state. To get a consistent 1309 * view of activity, we query the GuC state only if gt is awake. 1310 */ 1311 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1312 stats_saved = *stats; 1313 gt_stamp_saved = guc->timestamp.gt_stamp; 1314 /* 1315 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1316 * start_gt_clk' calculation below for active engines. 1317 */ 1318 guc_update_engine_gt_clks(engine); 1319 guc_update_pm_timestamp(guc, now); 1320 intel_gt_pm_put_async(gt); 1321 if (i915_reset_count(gpu_error) != reset_count) { 1322 *stats = stats_saved; 1323 guc->timestamp.gt_stamp = gt_stamp_saved; 1324 } 1325 } 1326 1327 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1328 if (stats->running) { 1329 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1330 1331 total += intel_gt_clock_interval_to_ns(gt, clk); 1332 } 1333 1334 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1335 1336 return ns_to_ktime(total); 1337 } 1338 1339 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1340 { 1341 struct intel_gt *gt = guc_to_gt(guc); 1342 struct intel_engine_cs *engine; 1343 enum intel_engine_id id; 1344 unsigned long flags; 1345 ktime_t unused; 1346 1347 cancel_delayed_work_sync(&guc->timestamp.work); 1348 1349 spin_lock_irqsave(&guc->timestamp.lock, flags); 1350 1351 guc_update_pm_timestamp(guc, &unused); 1352 for_each_engine(engine, gt, id) { 1353 guc_update_engine_gt_clks(engine); 1354 engine->stats.guc.prev_total = 0; 1355 } 1356 1357 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1358 } 1359 1360 static void __update_guc_busyness_stats(struct intel_guc *guc) 1361 { 1362 struct intel_gt *gt = guc_to_gt(guc); 1363 struct intel_engine_cs *engine; 1364 enum intel_engine_id id; 1365 unsigned long flags; 1366 ktime_t unused; 1367 1368 spin_lock_irqsave(&guc->timestamp.lock, flags); 1369 1370 guc_update_pm_timestamp(guc, &unused); 1371 for_each_engine(engine, gt, id) 1372 guc_update_engine_gt_clks(engine); 1373 1374 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1375 } 1376 1377 static void guc_timestamp_ping(struct work_struct *wrk) 1378 { 1379 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1380 timestamp.work.work); 1381 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1382 struct intel_gt *gt = guc_to_gt(guc); 1383 intel_wakeref_t wakeref; 1384 int srcu, ret; 1385 1386 /* 1387 * Synchronize with gt reset to make sure the worker does not 1388 * corrupt the engine/guc stats. 1389 */ 1390 ret = intel_gt_reset_trylock(gt, &srcu); 1391 if (ret) 1392 return; 1393 1394 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1395 __update_guc_busyness_stats(guc); 1396 1397 intel_gt_reset_unlock(gt, srcu); 1398 1399 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1400 guc->timestamp.ping_delay); 1401 } 1402 1403 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1404 { 1405 u32 offset = intel_guc_engine_usage_offset(guc); 1406 u32 action[] = { 1407 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1408 offset, 1409 0, 1410 }; 1411 1412 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1413 } 1414 1415 static void guc_init_engine_stats(struct intel_guc *guc) 1416 { 1417 struct intel_gt *gt = guc_to_gt(guc); 1418 intel_wakeref_t wakeref; 1419 1420 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1421 guc->timestamp.ping_delay); 1422 1423 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1424 int ret = guc_action_enable_usage_stats(guc); 1425 1426 if (ret) 1427 drm_err(>->i915->drm, 1428 "Failed to enable usage stats: %d!\n", ret); 1429 } 1430 } 1431 1432 void intel_guc_busyness_park(struct intel_gt *gt) 1433 { 1434 struct intel_guc *guc = >->uc.guc; 1435 1436 if (!guc_submission_initialized(guc)) 1437 return; 1438 1439 cancel_delayed_work(&guc->timestamp.work); 1440 __update_guc_busyness_stats(guc); 1441 } 1442 1443 void intel_guc_busyness_unpark(struct intel_gt *gt) 1444 { 1445 struct intel_guc *guc = >->uc.guc; 1446 unsigned long flags; 1447 ktime_t unused; 1448 1449 if (!guc_submission_initialized(guc)) 1450 return; 1451 1452 spin_lock_irqsave(&guc->timestamp.lock, flags); 1453 guc_update_pm_timestamp(guc, &unused); 1454 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1455 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1456 guc->timestamp.ping_delay); 1457 } 1458 1459 static inline bool 1460 submission_disabled(struct intel_guc *guc) 1461 { 1462 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1463 1464 return unlikely(!sched_engine || 1465 !__tasklet_is_enabled(&sched_engine->tasklet) || 1466 intel_gt_is_wedged(guc_to_gt(guc))); 1467 } 1468 1469 static void disable_submission(struct intel_guc *guc) 1470 { 1471 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1472 1473 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1474 GEM_BUG_ON(!guc->ct.enabled); 1475 __tasklet_disable_sync_once(&sched_engine->tasklet); 1476 sched_engine->tasklet.callback = NULL; 1477 } 1478 } 1479 1480 static void enable_submission(struct intel_guc *guc) 1481 { 1482 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1486 sched_engine->tasklet.callback = guc_submission_tasklet; 1487 wmb(); /* Make sure callback visible */ 1488 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1489 __tasklet_enable(&sched_engine->tasklet)) { 1490 GEM_BUG_ON(!guc->ct.enabled); 1491 1492 /* And kick in case we missed a new request submission. */ 1493 tasklet_hi_schedule(&sched_engine->tasklet); 1494 } 1495 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1496 } 1497 1498 static void guc_flush_submissions(struct intel_guc *guc) 1499 { 1500 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&sched_engine->lock, flags); 1504 spin_unlock_irqrestore(&sched_engine->lock, flags); 1505 } 1506 1507 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1508 1509 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1510 { 1511 if (unlikely(!guc_submission_initialized(guc))) { 1512 /* Reset called during driver load? GuC not yet initialised! */ 1513 return; 1514 } 1515 1516 intel_gt_park_heartbeats(guc_to_gt(guc)); 1517 disable_submission(guc); 1518 guc->interrupts.disable(guc); 1519 __reset_guc_busyness_stats(guc); 1520 1521 /* Flush IRQ handler */ 1522 spin_lock_irq(&guc_to_gt(guc)->irq_lock); 1523 spin_unlock_irq(&guc_to_gt(guc)->irq_lock); 1524 1525 guc_flush_submissions(guc); 1526 guc_flush_destroyed_contexts(guc); 1527 flush_work(&guc->ct.requests.worker); 1528 1529 scrub_guc_desc_for_outstanding_g2h(guc); 1530 } 1531 1532 static struct intel_engine_cs * 1533 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1534 { 1535 struct intel_engine_cs *engine; 1536 intel_engine_mask_t tmp, mask = ve->mask; 1537 unsigned int num_siblings = 0; 1538 1539 for_each_engine_masked(engine, ve->gt, mask, tmp) 1540 if (num_siblings++ == sibling) 1541 return engine; 1542 1543 return NULL; 1544 } 1545 1546 static inline struct intel_engine_cs * 1547 __context_to_physical_engine(struct intel_context *ce) 1548 { 1549 struct intel_engine_cs *engine = ce->engine; 1550 1551 if (intel_engine_is_virtual(engine)) 1552 engine = guc_virtual_get_sibling(engine, 0); 1553 1554 return engine; 1555 } 1556 1557 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1558 { 1559 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1560 1561 if (intel_context_is_banned(ce)) 1562 return; 1563 1564 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1565 1566 /* 1567 * We want a simple context + ring to execute the breadcrumb update. 1568 * We cannot rely on the context being intact across the GPU hang, 1569 * so clear it and rebuild just what we need for the breadcrumb. 1570 * All pending requests for this context will be zapped, and any 1571 * future request will be after userspace has had the opportunity 1572 * to recreate its own state. 1573 */ 1574 if (scrub) 1575 lrc_init_regs(ce, engine, true); 1576 1577 /* Rerun the request; its payload has been neutered (if guilty). */ 1578 lrc_update_regs(ce, engine, head); 1579 } 1580 1581 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1582 { 1583 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1584 return; 1585 1586 intel_engine_stop_cs(engine); 1587 1588 /* 1589 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need 1590 * to wait for any pending mi force wakeups 1591 */ 1592 intel_engine_wait_for_pending_mi_fw(engine); 1593 } 1594 1595 static void guc_reset_nop(struct intel_engine_cs *engine) 1596 { 1597 } 1598 1599 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1600 { 1601 } 1602 1603 static void 1604 __unwind_incomplete_requests(struct intel_context *ce) 1605 { 1606 struct i915_request *rq, *rn; 1607 struct list_head *pl; 1608 int prio = I915_PRIORITY_INVALID; 1609 struct i915_sched_engine * const sched_engine = 1610 ce->engine->sched_engine; 1611 unsigned long flags; 1612 1613 spin_lock_irqsave(&sched_engine->lock, flags); 1614 spin_lock(&ce->guc_state.lock); 1615 list_for_each_entry_safe_reverse(rq, rn, 1616 &ce->guc_state.requests, 1617 sched.link) { 1618 if (i915_request_completed(rq)) 1619 continue; 1620 1621 list_del_init(&rq->sched.link); 1622 __i915_request_unsubmit(rq); 1623 1624 /* Push the request back into the queue for later resubmission. */ 1625 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1626 if (rq_prio(rq) != prio) { 1627 prio = rq_prio(rq); 1628 pl = i915_sched_lookup_priolist(sched_engine, prio); 1629 } 1630 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1631 1632 list_add(&rq->sched.link, pl); 1633 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1634 } 1635 spin_unlock(&ce->guc_state.lock); 1636 spin_unlock_irqrestore(&sched_engine->lock, flags); 1637 } 1638 1639 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1640 { 1641 bool guilty; 1642 struct i915_request *rq; 1643 unsigned long flags; 1644 u32 head; 1645 int i, number_children = ce->parallel.number_children; 1646 struct intel_context *parent = ce; 1647 1648 GEM_BUG_ON(intel_context_is_child(ce)); 1649 1650 intel_context_get(ce); 1651 1652 /* 1653 * GuC will implicitly mark the context as non-schedulable when it sends 1654 * the reset notification. Make sure our state reflects this change. The 1655 * context will be marked enabled on resubmission. 1656 */ 1657 spin_lock_irqsave(&ce->guc_state.lock, flags); 1658 clr_context_enabled(ce); 1659 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1660 1661 /* 1662 * For each context in the relationship find the hanging request 1663 * resetting each context / request as needed 1664 */ 1665 for (i = 0; i < number_children + 1; ++i) { 1666 if (!intel_context_is_pinned(ce)) 1667 goto next_context; 1668 1669 guilty = false; 1670 rq = intel_context_find_active_request(ce); 1671 if (!rq) { 1672 head = ce->ring->tail; 1673 goto out_replay; 1674 } 1675 1676 if (i915_request_started(rq)) 1677 guilty = stalled & ce->engine->mask; 1678 1679 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1680 head = intel_ring_wrap(ce->ring, rq->head); 1681 1682 __i915_request_reset(rq, guilty); 1683 out_replay: 1684 guc_reset_state(ce, head, guilty); 1685 next_context: 1686 if (i != number_children) 1687 ce = list_next_entry(ce, parallel.child_link); 1688 } 1689 1690 __unwind_incomplete_requests(parent); 1691 intel_context_put(parent); 1692 } 1693 1694 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1695 { 1696 struct intel_context *ce; 1697 unsigned long index; 1698 unsigned long flags; 1699 1700 if (unlikely(!guc_submission_initialized(guc))) { 1701 /* Reset called during driver load? GuC not yet initialised! */ 1702 return; 1703 } 1704 1705 xa_lock_irqsave(&guc->context_lookup, flags); 1706 xa_for_each(&guc->context_lookup, index, ce) { 1707 if (!kref_get_unless_zero(&ce->ref)) 1708 continue; 1709 1710 xa_unlock(&guc->context_lookup); 1711 1712 if (intel_context_is_pinned(ce) && 1713 !intel_context_is_child(ce)) 1714 __guc_reset_context(ce, stalled); 1715 1716 intel_context_put(ce); 1717 1718 xa_lock(&guc->context_lookup); 1719 } 1720 xa_unlock_irqrestore(&guc->context_lookup, flags); 1721 1722 /* GuC is blown away, drop all references to contexts */ 1723 xa_destroy(&guc->context_lookup); 1724 } 1725 1726 static void guc_cancel_context_requests(struct intel_context *ce) 1727 { 1728 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1729 struct i915_request *rq; 1730 unsigned long flags; 1731 1732 /* Mark all executing requests as skipped. */ 1733 spin_lock_irqsave(&sched_engine->lock, flags); 1734 spin_lock(&ce->guc_state.lock); 1735 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1736 i915_request_put(i915_request_mark_eio(rq)); 1737 spin_unlock(&ce->guc_state.lock); 1738 spin_unlock_irqrestore(&sched_engine->lock, flags); 1739 } 1740 1741 static void 1742 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1743 { 1744 struct i915_request *rq, *rn; 1745 struct rb_node *rb; 1746 unsigned long flags; 1747 1748 /* Can be called during boot if GuC fails to load */ 1749 if (!sched_engine) 1750 return; 1751 1752 /* 1753 * Before we call engine->cancel_requests(), we should have exclusive 1754 * access to the submission state. This is arranged for us by the 1755 * caller disabling the interrupt generation, the tasklet and other 1756 * threads that may then access the same state, giving us a free hand 1757 * to reset state. However, we still need to let lockdep be aware that 1758 * we know this state may be accessed in hardirq context, so we 1759 * disable the irq around this manipulation and we want to keep 1760 * the spinlock focused on its duties and not accidentally conflate 1761 * coverage to the submission's irq state. (Similarly, although we 1762 * shouldn't need to disable irq around the manipulation of the 1763 * submission's irq state, we also wish to remind ourselves that 1764 * it is irq state.) 1765 */ 1766 spin_lock_irqsave(&sched_engine->lock, flags); 1767 1768 /* Flush the queued requests to the timeline list (for retiring). */ 1769 while ((rb = rb_first_cached(&sched_engine->queue))) { 1770 struct i915_priolist *p = to_priolist(rb); 1771 1772 priolist_for_each_request_consume(rq, rn, p) { 1773 list_del_init(&rq->sched.link); 1774 1775 __i915_request_submit(rq); 1776 1777 i915_request_put(i915_request_mark_eio(rq)); 1778 } 1779 1780 rb_erase_cached(&p->node, &sched_engine->queue); 1781 i915_priolist_free(p); 1782 } 1783 1784 /* Remaining _unready_ requests will be nop'ed when submitted */ 1785 1786 sched_engine->queue_priority_hint = INT_MIN; 1787 sched_engine->queue = RB_ROOT_CACHED; 1788 1789 spin_unlock_irqrestore(&sched_engine->lock, flags); 1790 } 1791 1792 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1793 { 1794 struct intel_context *ce; 1795 unsigned long index; 1796 unsigned long flags; 1797 1798 xa_lock_irqsave(&guc->context_lookup, flags); 1799 xa_for_each(&guc->context_lookup, index, ce) { 1800 if (!kref_get_unless_zero(&ce->ref)) 1801 continue; 1802 1803 xa_unlock(&guc->context_lookup); 1804 1805 if (intel_context_is_pinned(ce) && 1806 !intel_context_is_child(ce)) 1807 guc_cancel_context_requests(ce); 1808 1809 intel_context_put(ce); 1810 1811 xa_lock(&guc->context_lookup); 1812 } 1813 xa_unlock_irqrestore(&guc->context_lookup, flags); 1814 1815 guc_cancel_sched_engine_requests(guc->sched_engine); 1816 1817 /* GuC is blown away, drop all references to contexts */ 1818 xa_destroy(&guc->context_lookup); 1819 } 1820 1821 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1822 { 1823 /* Reset called during driver load or during wedge? */ 1824 if (unlikely(!guc_submission_initialized(guc) || 1825 intel_gt_is_wedged(guc_to_gt(guc)))) { 1826 return; 1827 } 1828 1829 /* 1830 * Technically possible for either of these values to be non-zero here, 1831 * but very unlikely + harmless. Regardless let's add a warn so we can 1832 * see in CI if this happens frequently / a precursor to taking down the 1833 * machine. 1834 */ 1835 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1836 atomic_set(&guc->outstanding_submission_g2h, 0); 1837 1838 intel_guc_global_policies_update(guc); 1839 enable_submission(guc); 1840 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1841 } 1842 1843 static void destroyed_worker_func(struct work_struct *w); 1844 static void reset_fail_worker_func(struct work_struct *w); 1845 1846 /* 1847 * Set up the memory resources to be shared with the GuC (via the GGTT) 1848 * at firmware loading time. 1849 */ 1850 int intel_guc_submission_init(struct intel_guc *guc) 1851 { 1852 struct intel_gt *gt = guc_to_gt(guc); 1853 int ret; 1854 1855 if (guc->submission_initialized) 1856 return 0; 1857 1858 if (guc->fw.major_ver_found < 70) { 1859 ret = guc_lrc_desc_pool_create_v69(guc); 1860 if (ret) 1861 return ret; 1862 } 1863 1864 guc->submission_state.guc_ids_bitmap = 1865 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1866 if (!guc->submission_state.guc_ids_bitmap) { 1867 ret = -ENOMEM; 1868 goto destroy_pool; 1869 } 1870 1871 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1872 guc->timestamp.shift = gpm_timestamp_shift(gt); 1873 guc->submission_initialized = true; 1874 1875 return 0; 1876 1877 destroy_pool: 1878 guc_lrc_desc_pool_destroy_v69(guc); 1879 1880 return ret; 1881 } 1882 1883 void intel_guc_submission_fini(struct intel_guc *guc) 1884 { 1885 if (!guc->submission_initialized) 1886 return; 1887 1888 guc_flush_destroyed_contexts(guc); 1889 guc_lrc_desc_pool_destroy_v69(guc); 1890 i915_sched_engine_put(guc->sched_engine); 1891 bitmap_free(guc->submission_state.guc_ids_bitmap); 1892 guc->submission_initialized = false; 1893 } 1894 1895 static inline void queue_request(struct i915_sched_engine *sched_engine, 1896 struct i915_request *rq, 1897 int prio) 1898 { 1899 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1900 list_add_tail(&rq->sched.link, 1901 i915_sched_lookup_priolist(sched_engine, prio)); 1902 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1903 tasklet_hi_schedule(&sched_engine->tasklet); 1904 } 1905 1906 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1907 struct i915_request *rq) 1908 { 1909 int ret = 0; 1910 1911 __i915_request_submit(rq); 1912 1913 trace_i915_request_in(rq, 0); 1914 1915 if (is_multi_lrc_rq(rq)) { 1916 if (multi_lrc_submit(rq)) { 1917 ret = guc_wq_item_append(guc, rq); 1918 if (!ret) 1919 ret = guc_add_request(guc, rq); 1920 } 1921 } else { 1922 guc_set_lrc_tail(rq); 1923 ret = guc_add_request(guc, rq); 1924 } 1925 1926 if (unlikely(ret == -EPIPE)) 1927 disable_submission(guc); 1928 1929 return ret; 1930 } 1931 1932 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1933 { 1934 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1935 struct intel_context *ce = request_to_scheduling_context(rq); 1936 1937 return submission_disabled(guc) || guc->stalled_request || 1938 !i915_sched_engine_is_empty(sched_engine) || 1939 !ctx_id_mapped(guc, ce->guc_id.id); 1940 } 1941 1942 static void guc_submit_request(struct i915_request *rq) 1943 { 1944 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1945 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1946 unsigned long flags; 1947 1948 /* Will be called from irq-context when using foreign fences. */ 1949 spin_lock_irqsave(&sched_engine->lock, flags); 1950 1951 if (need_tasklet(guc, rq)) 1952 queue_request(sched_engine, rq, rq_prio(rq)); 1953 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1954 tasklet_hi_schedule(&sched_engine->tasklet); 1955 1956 spin_unlock_irqrestore(&sched_engine->lock, flags); 1957 } 1958 1959 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1960 { 1961 int ret; 1962 1963 GEM_BUG_ON(intel_context_is_child(ce)); 1964 1965 if (intel_context_is_parent(ce)) 1966 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 1967 NUMBER_MULTI_LRC_GUC_ID(guc), 1968 order_base_2(ce->parallel.number_children 1969 + 1)); 1970 else 1971 ret = ida_simple_get(&guc->submission_state.guc_ids, 1972 NUMBER_MULTI_LRC_GUC_ID(guc), 1973 guc->submission_state.num_guc_ids, 1974 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 1975 __GFP_NOWARN); 1976 if (unlikely(ret < 0)) 1977 return ret; 1978 1979 ce->guc_id.id = ret; 1980 return 0; 1981 } 1982 1983 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 1984 { 1985 GEM_BUG_ON(intel_context_is_child(ce)); 1986 1987 if (!context_guc_id_invalid(ce)) { 1988 if (intel_context_is_parent(ce)) 1989 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 1990 ce->guc_id.id, 1991 order_base_2(ce->parallel.number_children 1992 + 1)); 1993 else 1994 ida_simple_remove(&guc->submission_state.guc_ids, 1995 ce->guc_id.id); 1996 clr_ctx_id_mapping(guc, ce->guc_id.id); 1997 set_context_guc_id_invalid(ce); 1998 } 1999 if (!list_empty(&ce->guc_id.link)) 2000 list_del_init(&ce->guc_id.link); 2001 } 2002 2003 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2004 { 2005 unsigned long flags; 2006 2007 spin_lock_irqsave(&guc->submission_state.lock, flags); 2008 __release_guc_id(guc, ce); 2009 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2010 } 2011 2012 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2013 { 2014 struct intel_context *cn; 2015 2016 lockdep_assert_held(&guc->submission_state.lock); 2017 GEM_BUG_ON(intel_context_is_child(ce)); 2018 GEM_BUG_ON(intel_context_is_parent(ce)); 2019 2020 if (!list_empty(&guc->submission_state.guc_id_list)) { 2021 cn = list_first_entry(&guc->submission_state.guc_id_list, 2022 struct intel_context, 2023 guc_id.link); 2024 2025 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2026 GEM_BUG_ON(context_guc_id_invalid(cn)); 2027 GEM_BUG_ON(intel_context_is_child(cn)); 2028 GEM_BUG_ON(intel_context_is_parent(cn)); 2029 2030 list_del_init(&cn->guc_id.link); 2031 ce->guc_id.id = cn->guc_id.id; 2032 2033 spin_lock(&cn->guc_state.lock); 2034 clr_context_registered(cn); 2035 spin_unlock(&cn->guc_state.lock); 2036 2037 set_context_guc_id_invalid(cn); 2038 2039 #ifdef CONFIG_DRM_I915_SELFTEST 2040 guc->number_guc_id_stolen++; 2041 #endif 2042 2043 return 0; 2044 } else { 2045 return -EAGAIN; 2046 } 2047 } 2048 2049 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2050 { 2051 int ret; 2052 2053 lockdep_assert_held(&guc->submission_state.lock); 2054 GEM_BUG_ON(intel_context_is_child(ce)); 2055 2056 ret = new_guc_id(guc, ce); 2057 if (unlikely(ret < 0)) { 2058 if (intel_context_is_parent(ce)) 2059 return -ENOSPC; 2060 2061 ret = steal_guc_id(guc, ce); 2062 if (ret < 0) 2063 return ret; 2064 } 2065 2066 if (intel_context_is_parent(ce)) { 2067 struct intel_context *child; 2068 int i = 1; 2069 2070 for_each_child(ce, child) 2071 child->guc_id.id = ce->guc_id.id + i++; 2072 } 2073 2074 return 0; 2075 } 2076 2077 #define PIN_GUC_ID_TRIES 4 2078 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2079 { 2080 int ret = 0; 2081 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2082 2083 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2084 2085 try_again: 2086 spin_lock_irqsave(&guc->submission_state.lock, flags); 2087 2088 might_lock(&ce->guc_state.lock); 2089 2090 if (context_guc_id_invalid(ce)) { 2091 ret = assign_guc_id(guc, ce); 2092 if (ret) 2093 goto out_unlock; 2094 ret = 1; /* Indidcates newly assigned guc_id */ 2095 } 2096 if (!list_empty(&ce->guc_id.link)) 2097 list_del_init(&ce->guc_id.link); 2098 atomic_inc(&ce->guc_id.ref); 2099 2100 out_unlock: 2101 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2102 2103 /* 2104 * -EAGAIN indicates no guc_id are available, let's retire any 2105 * outstanding requests to see if that frees up a guc_id. If the first 2106 * retire didn't help, insert a sleep with the timeslice duration before 2107 * attempting to retire more requests. Double the sleep period each 2108 * subsequent pass before finally giving up. The sleep period has max of 2109 * 100ms and minimum of 1ms. 2110 */ 2111 if (ret == -EAGAIN && --tries) { 2112 if (PIN_GUC_ID_TRIES - tries > 1) { 2113 unsigned int timeslice_shifted = 2114 ce->engine->props.timeslice_duration_ms << 2115 (PIN_GUC_ID_TRIES - tries - 2); 2116 unsigned int max = min_t(unsigned int, 100, 2117 timeslice_shifted); 2118 2119 msleep(max_t(unsigned int, max, 1)); 2120 } 2121 intel_gt_retire_requests(guc_to_gt(guc)); 2122 goto try_again; 2123 } 2124 2125 return ret; 2126 } 2127 2128 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2129 { 2130 unsigned long flags; 2131 2132 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2133 GEM_BUG_ON(intel_context_is_child(ce)); 2134 2135 if (unlikely(context_guc_id_invalid(ce) || 2136 intel_context_is_parent(ce))) 2137 return; 2138 2139 spin_lock_irqsave(&guc->submission_state.lock, flags); 2140 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2141 !atomic_read(&ce->guc_id.ref)) 2142 list_add_tail(&ce->guc_id.link, 2143 &guc->submission_state.guc_id_list); 2144 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2145 } 2146 2147 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2148 struct intel_context *ce, 2149 u32 guc_id, 2150 u32 offset, 2151 bool loop) 2152 { 2153 struct intel_context *child; 2154 u32 action[4 + MAX_ENGINE_INSTANCE]; 2155 int len = 0; 2156 2157 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2158 2159 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2160 action[len++] = guc_id; 2161 action[len++] = ce->parallel.number_children + 1; 2162 action[len++] = offset; 2163 for_each_child(ce, child) { 2164 offset += sizeof(struct guc_lrc_desc_v69); 2165 action[len++] = offset; 2166 } 2167 2168 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2169 } 2170 2171 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2172 struct intel_context *ce, 2173 struct guc_ctxt_registration_info *info, 2174 bool loop) 2175 { 2176 struct intel_context *child; 2177 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2178 int len = 0; 2179 u32 next_id; 2180 2181 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2182 2183 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2184 action[len++] = info->flags; 2185 action[len++] = info->context_idx; 2186 action[len++] = info->engine_class; 2187 action[len++] = info->engine_submit_mask; 2188 action[len++] = info->wq_desc_lo; 2189 action[len++] = info->wq_desc_hi; 2190 action[len++] = info->wq_base_lo; 2191 action[len++] = info->wq_base_hi; 2192 action[len++] = info->wq_size; 2193 action[len++] = ce->parallel.number_children + 1; 2194 action[len++] = info->hwlrca_lo; 2195 action[len++] = info->hwlrca_hi; 2196 2197 next_id = info->context_idx + 1; 2198 for_each_child(ce, child) { 2199 GEM_BUG_ON(next_id++ != child->guc_id.id); 2200 2201 /* 2202 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2203 * only supports 32 bit currently. 2204 */ 2205 action[len++] = lower_32_bits(child->lrc.lrca); 2206 action[len++] = upper_32_bits(child->lrc.lrca); 2207 } 2208 2209 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2210 2211 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2212 } 2213 2214 static int __guc_action_register_context_v69(struct intel_guc *guc, 2215 u32 guc_id, 2216 u32 offset, 2217 bool loop) 2218 { 2219 u32 action[] = { 2220 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2221 guc_id, 2222 offset, 2223 }; 2224 2225 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2226 0, loop); 2227 } 2228 2229 static int __guc_action_register_context_v70(struct intel_guc *guc, 2230 struct guc_ctxt_registration_info *info, 2231 bool loop) 2232 { 2233 u32 action[] = { 2234 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2235 info->flags, 2236 info->context_idx, 2237 info->engine_class, 2238 info->engine_submit_mask, 2239 info->wq_desc_lo, 2240 info->wq_desc_hi, 2241 info->wq_base_lo, 2242 info->wq_base_hi, 2243 info->wq_size, 2244 info->hwlrca_lo, 2245 info->hwlrca_hi, 2246 }; 2247 2248 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2249 0, loop); 2250 } 2251 2252 static void prepare_context_registration_info_v69(struct intel_context *ce); 2253 static void prepare_context_registration_info_v70(struct intel_context *ce, 2254 struct guc_ctxt_registration_info *info); 2255 2256 static int 2257 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2258 { 2259 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2260 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2261 2262 prepare_context_registration_info_v69(ce); 2263 2264 if (intel_context_is_parent(ce)) 2265 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2266 offset, loop); 2267 else 2268 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2269 offset, loop); 2270 } 2271 2272 static int 2273 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2274 { 2275 struct guc_ctxt_registration_info info; 2276 2277 prepare_context_registration_info_v70(ce, &info); 2278 2279 if (intel_context_is_parent(ce)) 2280 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2281 else 2282 return __guc_action_register_context_v70(guc, &info, loop); 2283 } 2284 2285 static int register_context(struct intel_context *ce, bool loop) 2286 { 2287 struct intel_guc *guc = ce_to_guc(ce); 2288 int ret; 2289 2290 GEM_BUG_ON(intel_context_is_child(ce)); 2291 trace_intel_context_register(ce); 2292 2293 if (guc->fw.major_ver_found >= 70) 2294 ret = register_context_v70(guc, ce, loop); 2295 else 2296 ret = register_context_v69(guc, ce, loop); 2297 2298 if (likely(!ret)) { 2299 unsigned long flags; 2300 2301 spin_lock_irqsave(&ce->guc_state.lock, flags); 2302 set_context_registered(ce); 2303 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2304 2305 if (guc->fw.major_ver_found >= 70) 2306 guc_context_policy_init_v70(ce, loop); 2307 } 2308 2309 return ret; 2310 } 2311 2312 static int __guc_action_deregister_context(struct intel_guc *guc, 2313 u32 guc_id) 2314 { 2315 u32 action[] = { 2316 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2317 guc_id, 2318 }; 2319 2320 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2321 G2H_LEN_DW_DEREGISTER_CONTEXT, 2322 true); 2323 } 2324 2325 static int deregister_context(struct intel_context *ce, u32 guc_id) 2326 { 2327 struct intel_guc *guc = ce_to_guc(ce); 2328 2329 GEM_BUG_ON(intel_context_is_child(ce)); 2330 trace_intel_context_deregister(ce); 2331 2332 return __guc_action_deregister_context(guc, guc_id); 2333 } 2334 2335 static inline void clear_children_join_go_memory(struct intel_context *ce) 2336 { 2337 struct parent_scratch *ps = __get_parent_scratch(ce); 2338 int i; 2339 2340 ps->go.semaphore = 0; 2341 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2342 ps->join[i].semaphore = 0; 2343 } 2344 2345 static inline u32 get_children_go_value(struct intel_context *ce) 2346 { 2347 return __get_parent_scratch(ce)->go.semaphore; 2348 } 2349 2350 static inline u32 get_children_join_value(struct intel_context *ce, 2351 u8 child_index) 2352 { 2353 return __get_parent_scratch(ce)->join[child_index].semaphore; 2354 } 2355 2356 struct context_policy { 2357 u32 count; 2358 struct guc_update_context_policy h2g; 2359 }; 2360 2361 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2362 { 2363 size_t bytes = sizeof(policy->h2g.header) + 2364 (sizeof(policy->h2g.klv[0]) * policy->count); 2365 2366 return bytes / sizeof(u32); 2367 } 2368 2369 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2370 { 2371 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2372 policy->h2g.header.ctx_id = guc_id; 2373 policy->count = 0; 2374 } 2375 2376 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2377 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2378 { \ 2379 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2380 policy->h2g.klv[policy->count].kl = \ 2381 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2382 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2383 policy->h2g.klv[policy->count].value = data; \ 2384 policy->count++; \ 2385 } 2386 2387 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2388 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2389 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2390 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2391 2392 #undef MAKE_CONTEXT_POLICY_ADD 2393 2394 static int __guc_context_set_context_policies(struct intel_guc *guc, 2395 struct context_policy *policy, 2396 bool loop) 2397 { 2398 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2399 __guc_context_policy_action_size(policy), 2400 0, loop); 2401 } 2402 2403 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2404 { 2405 struct intel_engine_cs *engine = ce->engine; 2406 struct intel_guc *guc = &engine->gt->uc.guc; 2407 struct context_policy policy; 2408 u32 execution_quantum; 2409 u32 preemption_timeout; 2410 bool missing = false; 2411 unsigned long flags; 2412 int ret; 2413 2414 /* NB: For both of these, zero means disabled. */ 2415 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2416 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2417 2418 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2419 2420 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2421 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2422 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2423 2424 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2425 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2426 2427 ret = __guc_context_set_context_policies(guc, &policy, loop); 2428 missing = ret != 0; 2429 2430 if (!missing && intel_context_is_parent(ce)) { 2431 struct intel_context *child; 2432 2433 for_each_child(ce, child) { 2434 __guc_context_policy_start_klv(&policy, child->guc_id.id); 2435 2436 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2437 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2438 2439 child->guc_state.prio = ce->guc_state.prio; 2440 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2441 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2442 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2443 2444 ret = __guc_context_set_context_policies(guc, &policy, loop); 2445 if (ret) { 2446 missing = true; 2447 break; 2448 } 2449 } 2450 } 2451 2452 spin_lock_irqsave(&ce->guc_state.lock, flags); 2453 if (missing) 2454 set_context_policy_required(ce); 2455 else 2456 clr_context_policy_required(ce); 2457 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2458 2459 return ret; 2460 } 2461 2462 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2463 struct guc_lrc_desc_v69 *desc) 2464 { 2465 desc->policy_flags = 0; 2466 2467 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2468 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2469 2470 /* NB: For both of these, zero means disabled. */ 2471 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2472 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2473 } 2474 2475 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2476 { 2477 /* 2478 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2479 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2480 */ 2481 switch (prio) { 2482 default: 2483 MISSING_CASE(prio); 2484 fallthrough; 2485 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2486 return GEN12_CTX_PRIORITY_NORMAL; 2487 case GUC_CLIENT_PRIORITY_NORMAL: 2488 return GEN12_CTX_PRIORITY_LOW; 2489 case GUC_CLIENT_PRIORITY_HIGH: 2490 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2491 return GEN12_CTX_PRIORITY_HIGH; 2492 } 2493 } 2494 2495 static void prepare_context_registration_info_v69(struct intel_context *ce) 2496 { 2497 struct intel_engine_cs *engine = ce->engine; 2498 struct intel_guc *guc = &engine->gt->uc.guc; 2499 u32 ctx_id = ce->guc_id.id; 2500 struct guc_lrc_desc_v69 *desc; 2501 struct intel_context *child; 2502 2503 GEM_BUG_ON(!engine->mask); 2504 2505 /* 2506 * Ensure LRC + CT vmas are is same region as write barrier is done 2507 * based on CT vma region. 2508 */ 2509 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2510 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2511 2512 desc = __get_lrc_desc_v69(guc, ctx_id); 2513 desc->engine_class = engine_class_to_guc_class(engine->class); 2514 desc->engine_submit_mask = engine->logical_mask; 2515 desc->hw_context_desc = ce->lrc.lrca; 2516 desc->priority = ce->guc_state.prio; 2517 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2518 guc_context_policy_init_v69(engine, desc); 2519 2520 /* 2521 * If context is a parent, we need to register a process descriptor 2522 * describing a work queue and register all child contexts. 2523 */ 2524 if (intel_context_is_parent(ce)) { 2525 struct guc_process_desc_v69 *pdesc; 2526 2527 ce->parallel.guc.wqi_tail = 0; 2528 ce->parallel.guc.wqi_head = 0; 2529 2530 desc->process_desc = i915_ggtt_offset(ce->state) + 2531 __get_parent_scratch_offset(ce); 2532 desc->wq_addr = i915_ggtt_offset(ce->state) + 2533 __get_wq_offset(ce); 2534 desc->wq_size = WQ_SIZE; 2535 2536 pdesc = __get_process_desc_v69(ce); 2537 memset(pdesc, 0, sizeof(*(pdesc))); 2538 pdesc->stage_id = ce->guc_id.id; 2539 pdesc->wq_base_addr = desc->wq_addr; 2540 pdesc->wq_size_bytes = desc->wq_size; 2541 pdesc->wq_status = WQ_STATUS_ACTIVE; 2542 2543 ce->parallel.guc.wq_head = &pdesc->head; 2544 ce->parallel.guc.wq_tail = &pdesc->tail; 2545 ce->parallel.guc.wq_status = &pdesc->wq_status; 2546 2547 for_each_child(ce, child) { 2548 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2549 2550 desc->engine_class = 2551 engine_class_to_guc_class(engine->class); 2552 desc->hw_context_desc = child->lrc.lrca; 2553 desc->priority = ce->guc_state.prio; 2554 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2555 guc_context_policy_init_v69(engine, desc); 2556 } 2557 2558 clear_children_join_go_memory(ce); 2559 } 2560 } 2561 2562 static void prepare_context_registration_info_v70(struct intel_context *ce, 2563 struct guc_ctxt_registration_info *info) 2564 { 2565 struct intel_engine_cs *engine = ce->engine; 2566 struct intel_guc *guc = &engine->gt->uc.guc; 2567 u32 ctx_id = ce->guc_id.id; 2568 2569 GEM_BUG_ON(!engine->mask); 2570 2571 /* 2572 * Ensure LRC + CT vmas are is same region as write barrier is done 2573 * based on CT vma region. 2574 */ 2575 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2576 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2577 2578 memset(info, 0, sizeof(*info)); 2579 info->context_idx = ctx_id; 2580 info->engine_class = engine_class_to_guc_class(engine->class); 2581 info->engine_submit_mask = engine->logical_mask; 2582 /* 2583 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2584 * only supports 32 bit currently. 2585 */ 2586 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2587 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2588 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2589 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2590 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2591 2592 /* 2593 * If context is a parent, we need to register a process descriptor 2594 * describing a work queue and register all child contexts. 2595 */ 2596 if (intel_context_is_parent(ce)) { 2597 struct guc_sched_wq_desc *wq_desc; 2598 u64 wq_desc_offset, wq_base_offset; 2599 2600 ce->parallel.guc.wqi_tail = 0; 2601 ce->parallel.guc.wqi_head = 0; 2602 2603 wq_desc_offset = i915_ggtt_offset(ce->state) + 2604 __get_parent_scratch_offset(ce); 2605 wq_base_offset = i915_ggtt_offset(ce->state) + 2606 __get_wq_offset(ce); 2607 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2608 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2609 info->wq_base_lo = lower_32_bits(wq_base_offset); 2610 info->wq_base_hi = upper_32_bits(wq_base_offset); 2611 info->wq_size = WQ_SIZE; 2612 2613 wq_desc = __get_wq_desc_v70(ce); 2614 memset(wq_desc, 0, sizeof(*wq_desc)); 2615 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2616 2617 ce->parallel.guc.wq_head = &wq_desc->head; 2618 ce->parallel.guc.wq_tail = &wq_desc->tail; 2619 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2620 2621 clear_children_join_go_memory(ce); 2622 } 2623 } 2624 2625 static int try_context_registration(struct intel_context *ce, bool loop) 2626 { 2627 struct intel_engine_cs *engine = ce->engine; 2628 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2629 struct intel_guc *guc = &engine->gt->uc.guc; 2630 intel_wakeref_t wakeref; 2631 u32 ctx_id = ce->guc_id.id; 2632 bool context_registered; 2633 int ret = 0; 2634 2635 GEM_BUG_ON(!sched_state_is_init(ce)); 2636 2637 context_registered = ctx_id_mapped(guc, ctx_id); 2638 2639 clr_ctx_id_mapping(guc, ctx_id); 2640 set_ctx_id_mapping(guc, ctx_id, ce); 2641 2642 /* 2643 * The context_lookup xarray is used to determine if the hardware 2644 * context is currently registered. There are two cases in which it 2645 * could be registered either the guc_id has been stolen from another 2646 * context or the lrc descriptor address of this context has changed. In 2647 * either case the context needs to be deregistered with the GuC before 2648 * registering this context. 2649 */ 2650 if (context_registered) { 2651 bool disabled; 2652 unsigned long flags; 2653 2654 trace_intel_context_steal_guc_id(ce); 2655 GEM_BUG_ON(!loop); 2656 2657 /* Seal race with Reset */ 2658 spin_lock_irqsave(&ce->guc_state.lock, flags); 2659 disabled = submission_disabled(guc); 2660 if (likely(!disabled)) { 2661 set_context_wait_for_deregister_to_register(ce); 2662 intel_context_get(ce); 2663 } 2664 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2665 if (unlikely(disabled)) { 2666 clr_ctx_id_mapping(guc, ctx_id); 2667 return 0; /* Will get registered later */ 2668 } 2669 2670 /* 2671 * If stealing the guc_id, this ce has the same guc_id as the 2672 * context whose guc_id was stolen. 2673 */ 2674 with_intel_runtime_pm(runtime_pm, wakeref) 2675 ret = deregister_context(ce, ce->guc_id.id); 2676 if (unlikely(ret == -ENODEV)) 2677 ret = 0; /* Will get registered later */ 2678 } else { 2679 with_intel_runtime_pm(runtime_pm, wakeref) 2680 ret = register_context(ce, loop); 2681 if (unlikely(ret == -EBUSY)) { 2682 clr_ctx_id_mapping(guc, ctx_id); 2683 } else if (unlikely(ret == -ENODEV)) { 2684 clr_ctx_id_mapping(guc, ctx_id); 2685 ret = 0; /* Will get registered later */ 2686 } 2687 } 2688 2689 return ret; 2690 } 2691 2692 static int __guc_context_pre_pin(struct intel_context *ce, 2693 struct intel_engine_cs *engine, 2694 struct i915_gem_ww_ctx *ww, 2695 void **vaddr) 2696 { 2697 return lrc_pre_pin(ce, engine, ww, vaddr); 2698 } 2699 2700 static int __guc_context_pin(struct intel_context *ce, 2701 struct intel_engine_cs *engine, 2702 void *vaddr) 2703 { 2704 if (i915_ggtt_offset(ce->state) != 2705 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2706 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2707 2708 /* 2709 * GuC context gets pinned in guc_request_alloc. See that function for 2710 * explaination of why. 2711 */ 2712 2713 return lrc_pin(ce, engine, vaddr); 2714 } 2715 2716 static int guc_context_pre_pin(struct intel_context *ce, 2717 struct i915_gem_ww_ctx *ww, 2718 void **vaddr) 2719 { 2720 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2721 } 2722 2723 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2724 { 2725 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2726 2727 if (likely(!ret && !intel_context_is_barrier(ce))) 2728 intel_engine_pm_get(ce->engine); 2729 2730 return ret; 2731 } 2732 2733 static void guc_context_unpin(struct intel_context *ce) 2734 { 2735 struct intel_guc *guc = ce_to_guc(ce); 2736 2737 unpin_guc_id(guc, ce); 2738 lrc_unpin(ce); 2739 2740 if (likely(!intel_context_is_barrier(ce))) 2741 intel_engine_pm_put_async(ce->engine); 2742 } 2743 2744 static void guc_context_post_unpin(struct intel_context *ce) 2745 { 2746 lrc_post_unpin(ce); 2747 } 2748 2749 static void __guc_context_sched_enable(struct intel_guc *guc, 2750 struct intel_context *ce) 2751 { 2752 u32 action[] = { 2753 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2754 ce->guc_id.id, 2755 GUC_CONTEXT_ENABLE 2756 }; 2757 2758 trace_intel_context_sched_enable(ce); 2759 2760 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2761 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2762 } 2763 2764 static void __guc_context_sched_disable(struct intel_guc *guc, 2765 struct intel_context *ce, 2766 u16 guc_id) 2767 { 2768 u32 action[] = { 2769 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2770 guc_id, /* ce->guc_id.id not stable */ 2771 GUC_CONTEXT_DISABLE 2772 }; 2773 2774 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2775 2776 GEM_BUG_ON(intel_context_is_child(ce)); 2777 trace_intel_context_sched_disable(ce); 2778 2779 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2780 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2781 } 2782 2783 static void guc_blocked_fence_complete(struct intel_context *ce) 2784 { 2785 lockdep_assert_held(&ce->guc_state.lock); 2786 2787 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2788 i915_sw_fence_complete(&ce->guc_state.blocked); 2789 } 2790 2791 static void guc_blocked_fence_reinit(struct intel_context *ce) 2792 { 2793 lockdep_assert_held(&ce->guc_state.lock); 2794 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2795 2796 /* 2797 * This fence is always complete unless a pending schedule disable is 2798 * outstanding. We arm the fence here and complete it when we receive 2799 * the pending schedule disable complete message. 2800 */ 2801 i915_sw_fence_fini(&ce->guc_state.blocked); 2802 i915_sw_fence_reinit(&ce->guc_state.blocked); 2803 i915_sw_fence_await(&ce->guc_state.blocked); 2804 i915_sw_fence_commit(&ce->guc_state.blocked); 2805 } 2806 2807 static u16 prep_context_pending_disable(struct intel_context *ce) 2808 { 2809 lockdep_assert_held(&ce->guc_state.lock); 2810 2811 set_context_pending_disable(ce); 2812 clr_context_enabled(ce); 2813 guc_blocked_fence_reinit(ce); 2814 intel_context_get(ce); 2815 2816 return ce->guc_id.id; 2817 } 2818 2819 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2820 { 2821 struct intel_guc *guc = ce_to_guc(ce); 2822 unsigned long flags; 2823 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2824 intel_wakeref_t wakeref; 2825 u16 guc_id; 2826 bool enabled; 2827 2828 GEM_BUG_ON(intel_context_is_child(ce)); 2829 2830 spin_lock_irqsave(&ce->guc_state.lock, flags); 2831 2832 incr_context_blocked(ce); 2833 2834 enabled = context_enabled(ce); 2835 if (unlikely(!enabled || submission_disabled(guc))) { 2836 if (enabled) 2837 clr_context_enabled(ce); 2838 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2839 return &ce->guc_state.blocked; 2840 } 2841 2842 /* 2843 * We add +2 here as the schedule disable complete CTB handler calls 2844 * intel_context_sched_disable_unpin (-2 to pin_count). 2845 */ 2846 atomic_add(2, &ce->pin_count); 2847 2848 guc_id = prep_context_pending_disable(ce); 2849 2850 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2851 2852 with_intel_runtime_pm(runtime_pm, wakeref) 2853 __guc_context_sched_disable(guc, ce, guc_id); 2854 2855 return &ce->guc_state.blocked; 2856 } 2857 2858 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2859 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2860 #define SCHED_STATE_NO_UNBLOCK \ 2861 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2862 SCHED_STATE_PENDING_DISABLE | \ 2863 SCHED_STATE_BANNED) 2864 2865 static bool context_cant_unblock(struct intel_context *ce) 2866 { 2867 lockdep_assert_held(&ce->guc_state.lock); 2868 2869 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2870 context_guc_id_invalid(ce) || 2871 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2872 !intel_context_is_pinned(ce); 2873 } 2874 2875 static void guc_context_unblock(struct intel_context *ce) 2876 { 2877 struct intel_guc *guc = ce_to_guc(ce); 2878 unsigned long flags; 2879 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2880 intel_wakeref_t wakeref; 2881 bool enable; 2882 2883 GEM_BUG_ON(context_enabled(ce)); 2884 GEM_BUG_ON(intel_context_is_child(ce)); 2885 2886 spin_lock_irqsave(&ce->guc_state.lock, flags); 2887 2888 if (unlikely(submission_disabled(guc) || 2889 context_cant_unblock(ce))) { 2890 enable = false; 2891 } else { 2892 enable = true; 2893 set_context_pending_enable(ce); 2894 set_context_enabled(ce); 2895 intel_context_get(ce); 2896 } 2897 2898 decr_context_blocked(ce); 2899 2900 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2901 2902 if (enable) { 2903 with_intel_runtime_pm(runtime_pm, wakeref) 2904 __guc_context_sched_enable(guc, ce); 2905 } 2906 } 2907 2908 static void guc_context_cancel_request(struct intel_context *ce, 2909 struct i915_request *rq) 2910 { 2911 struct intel_context *block_context = 2912 request_to_scheduling_context(rq); 2913 2914 if (i915_sw_fence_signaled(&rq->submit)) { 2915 struct i915_sw_fence *fence; 2916 2917 intel_context_get(ce); 2918 fence = guc_context_block(block_context); 2919 i915_sw_fence_wait(fence); 2920 if (!i915_request_completed(rq)) { 2921 __i915_request_skip(rq); 2922 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2923 true); 2924 } 2925 2926 guc_context_unblock(block_context); 2927 intel_context_put(ce); 2928 } 2929 } 2930 2931 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2932 u16 guc_id, 2933 u32 preemption_timeout) 2934 { 2935 if (guc->fw.major_ver_found >= 70) { 2936 struct context_policy policy; 2937 2938 __guc_context_policy_start_klv(&policy, guc_id); 2939 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2940 __guc_context_set_context_policies(guc, &policy, true); 2941 } else { 2942 u32 action[] = { 2943 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2944 guc_id, 2945 preemption_timeout 2946 }; 2947 2948 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2949 } 2950 } 2951 2952 static void guc_context_ban(struct intel_context *ce, struct i915_request *rq) 2953 { 2954 struct intel_guc *guc = ce_to_guc(ce); 2955 struct intel_runtime_pm *runtime_pm = 2956 &ce->engine->gt->i915->runtime_pm; 2957 intel_wakeref_t wakeref; 2958 unsigned long flags; 2959 2960 GEM_BUG_ON(intel_context_is_child(ce)); 2961 2962 guc_flush_submissions(guc); 2963 2964 spin_lock_irqsave(&ce->guc_state.lock, flags); 2965 set_context_banned(ce); 2966 2967 if (submission_disabled(guc) || 2968 (!context_enabled(ce) && !context_pending_disable(ce))) { 2969 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2970 2971 guc_cancel_context_requests(ce); 2972 intel_engine_signal_breadcrumbs(ce->engine); 2973 } else if (!context_pending_disable(ce)) { 2974 u16 guc_id; 2975 2976 /* 2977 * We add +2 here as the schedule disable complete CTB handler 2978 * calls intel_context_sched_disable_unpin (-2 to pin_count). 2979 */ 2980 atomic_add(2, &ce->pin_count); 2981 2982 guc_id = prep_context_pending_disable(ce); 2983 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2984 2985 /* 2986 * In addition to disabling scheduling, set the preemption 2987 * timeout to the minimum value (1 us) so the banned context 2988 * gets kicked off the HW ASAP. 2989 */ 2990 with_intel_runtime_pm(runtime_pm, wakeref) { 2991 __guc_context_set_preemption_timeout(guc, guc_id, 1); 2992 __guc_context_sched_disable(guc, ce, guc_id); 2993 } 2994 } else { 2995 if (!context_guc_id_invalid(ce)) 2996 with_intel_runtime_pm(runtime_pm, wakeref) 2997 __guc_context_set_preemption_timeout(guc, 2998 ce->guc_id.id, 2999 1); 3000 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3001 } 3002 } 3003 3004 static void guc_context_sched_disable(struct intel_context *ce) 3005 { 3006 struct intel_guc *guc = ce_to_guc(ce); 3007 unsigned long flags; 3008 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3009 intel_wakeref_t wakeref; 3010 u16 guc_id; 3011 3012 GEM_BUG_ON(intel_context_is_child(ce)); 3013 3014 spin_lock_irqsave(&ce->guc_state.lock, flags); 3015 3016 /* 3017 * We have to check if the context has been disabled by another thread, 3018 * check if submssion has been disabled to seal a race with reset and 3019 * finally check if any more requests have been committed to the 3020 * context ensursing that a request doesn't slip through the 3021 * 'context_pending_disable' fence. 3022 */ 3023 if (unlikely(!context_enabled(ce) || submission_disabled(guc) || 3024 context_has_committed_requests(ce))) { 3025 clr_context_enabled(ce); 3026 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3027 goto unpin; 3028 } 3029 guc_id = prep_context_pending_disable(ce); 3030 3031 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3032 3033 with_intel_runtime_pm(runtime_pm, wakeref) 3034 __guc_context_sched_disable(guc, ce, guc_id); 3035 3036 return; 3037 unpin: 3038 intel_context_sched_disable_unpin(ce); 3039 } 3040 3041 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3042 { 3043 struct intel_guc *guc = ce_to_guc(ce); 3044 struct intel_gt *gt = guc_to_gt(guc); 3045 unsigned long flags; 3046 bool disabled; 3047 3048 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3049 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3050 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3051 GEM_BUG_ON(context_enabled(ce)); 3052 3053 /* Seal race with Reset */ 3054 spin_lock_irqsave(&ce->guc_state.lock, flags); 3055 disabled = submission_disabled(guc); 3056 if (likely(!disabled)) { 3057 __intel_gt_pm_get(gt); 3058 set_context_destroyed(ce); 3059 clr_context_registered(ce); 3060 } 3061 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3062 if (unlikely(disabled)) { 3063 release_guc_id(guc, ce); 3064 __guc_context_destroy(ce); 3065 return; 3066 } 3067 3068 deregister_context(ce, ce->guc_id.id); 3069 } 3070 3071 static void __guc_context_destroy(struct intel_context *ce) 3072 { 3073 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3074 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3075 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3076 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3077 GEM_BUG_ON(ce->guc_state.number_committed_requests); 3078 3079 lrc_fini(ce); 3080 intel_context_fini(ce); 3081 3082 if (intel_engine_is_virtual(ce->engine)) { 3083 struct guc_virtual_engine *ve = 3084 container_of(ce, typeof(*ve), context); 3085 3086 if (ve->base.breadcrumbs) 3087 intel_breadcrumbs_put(ve->base.breadcrumbs); 3088 3089 kfree(ve); 3090 } else { 3091 intel_context_free(ce); 3092 } 3093 } 3094 3095 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3096 { 3097 struct intel_context *ce; 3098 unsigned long flags; 3099 3100 GEM_BUG_ON(!submission_disabled(guc) && 3101 guc_submission_initialized(guc)); 3102 3103 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3104 spin_lock_irqsave(&guc->submission_state.lock, flags); 3105 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3106 struct intel_context, 3107 destroyed_link); 3108 if (ce) 3109 list_del_init(&ce->destroyed_link); 3110 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3111 3112 if (!ce) 3113 break; 3114 3115 release_guc_id(guc, ce); 3116 __guc_context_destroy(ce); 3117 } 3118 } 3119 3120 static void deregister_destroyed_contexts(struct intel_guc *guc) 3121 { 3122 struct intel_context *ce; 3123 unsigned long flags; 3124 3125 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3126 spin_lock_irqsave(&guc->submission_state.lock, flags); 3127 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3128 struct intel_context, 3129 destroyed_link); 3130 if (ce) 3131 list_del_init(&ce->destroyed_link); 3132 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3133 3134 if (!ce) 3135 break; 3136 3137 guc_lrc_desc_unpin(ce); 3138 } 3139 } 3140 3141 static void destroyed_worker_func(struct work_struct *w) 3142 { 3143 struct intel_guc *guc = container_of(w, struct intel_guc, 3144 submission_state.destroyed_worker); 3145 struct intel_gt *gt = guc_to_gt(guc); 3146 int tmp; 3147 3148 with_intel_gt_pm(gt, tmp) 3149 deregister_destroyed_contexts(guc); 3150 } 3151 3152 static void guc_context_destroy(struct kref *kref) 3153 { 3154 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3155 struct intel_guc *guc = ce_to_guc(ce); 3156 unsigned long flags; 3157 bool destroy; 3158 3159 /* 3160 * If the guc_id is invalid this context has been stolen and we can free 3161 * it immediately. Also can be freed immediately if the context is not 3162 * registered with the GuC or the GuC is in the middle of a reset. 3163 */ 3164 spin_lock_irqsave(&guc->submission_state.lock, flags); 3165 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3166 !ctx_id_mapped(guc, ce->guc_id.id); 3167 if (likely(!destroy)) { 3168 if (!list_empty(&ce->guc_id.link)) 3169 list_del_init(&ce->guc_id.link); 3170 list_add_tail(&ce->destroyed_link, 3171 &guc->submission_state.destroyed_contexts); 3172 } else { 3173 __release_guc_id(guc, ce); 3174 } 3175 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3176 if (unlikely(destroy)) { 3177 __guc_context_destroy(ce); 3178 return; 3179 } 3180 3181 /* 3182 * We use a worker to issue the H2G to deregister the context as we can 3183 * take the GT PM for the first time which isn't allowed from an atomic 3184 * context. 3185 */ 3186 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3187 } 3188 3189 static int guc_context_alloc(struct intel_context *ce) 3190 { 3191 return lrc_alloc(ce, ce->engine); 3192 } 3193 3194 static void __guc_context_set_prio(struct intel_guc *guc, 3195 struct intel_context *ce) 3196 { 3197 if (guc->fw.major_ver_found >= 70) { 3198 struct context_policy policy; 3199 3200 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3201 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3202 __guc_context_set_context_policies(guc, &policy, true); 3203 } else { 3204 u32 action[] = { 3205 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3206 ce->guc_id.id, 3207 ce->guc_state.prio, 3208 }; 3209 3210 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3211 } 3212 } 3213 3214 static void guc_context_set_prio(struct intel_guc *guc, 3215 struct intel_context *ce, 3216 u8 prio) 3217 { 3218 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3219 prio > GUC_CLIENT_PRIORITY_NORMAL); 3220 lockdep_assert_held(&ce->guc_state.lock); 3221 3222 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3223 !context_registered(ce)) { 3224 ce->guc_state.prio = prio; 3225 return; 3226 } 3227 3228 ce->guc_state.prio = prio; 3229 __guc_context_set_prio(guc, ce); 3230 3231 trace_intel_context_set_prio(ce); 3232 } 3233 3234 static inline u8 map_i915_prio_to_guc_prio(int prio) 3235 { 3236 if (prio == I915_PRIORITY_NORMAL) 3237 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3238 else if (prio < I915_PRIORITY_NORMAL) 3239 return GUC_CLIENT_PRIORITY_NORMAL; 3240 else if (prio < I915_PRIORITY_DISPLAY) 3241 return GUC_CLIENT_PRIORITY_HIGH; 3242 else 3243 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3244 } 3245 3246 static inline void add_context_inflight_prio(struct intel_context *ce, 3247 u8 guc_prio) 3248 { 3249 lockdep_assert_held(&ce->guc_state.lock); 3250 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3251 3252 ++ce->guc_state.prio_count[guc_prio]; 3253 3254 /* Overflow protection */ 3255 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3256 } 3257 3258 static inline void sub_context_inflight_prio(struct intel_context *ce, 3259 u8 guc_prio) 3260 { 3261 lockdep_assert_held(&ce->guc_state.lock); 3262 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3263 3264 /* Underflow protection */ 3265 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3266 3267 --ce->guc_state.prio_count[guc_prio]; 3268 } 3269 3270 static inline void update_context_prio(struct intel_context *ce) 3271 { 3272 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3273 int i; 3274 3275 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3276 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3277 3278 lockdep_assert_held(&ce->guc_state.lock); 3279 3280 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3281 if (ce->guc_state.prio_count[i]) { 3282 guc_context_set_prio(guc, ce, i); 3283 break; 3284 } 3285 } 3286 } 3287 3288 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3289 { 3290 /* Lower value is higher priority */ 3291 return new_guc_prio < old_guc_prio; 3292 } 3293 3294 static void add_to_context(struct i915_request *rq) 3295 { 3296 struct intel_context *ce = request_to_scheduling_context(rq); 3297 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3298 3299 GEM_BUG_ON(intel_context_is_child(ce)); 3300 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3301 3302 spin_lock(&ce->guc_state.lock); 3303 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3304 3305 if (rq->guc_prio == GUC_PRIO_INIT) { 3306 rq->guc_prio = new_guc_prio; 3307 add_context_inflight_prio(ce, rq->guc_prio); 3308 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3309 sub_context_inflight_prio(ce, rq->guc_prio); 3310 rq->guc_prio = new_guc_prio; 3311 add_context_inflight_prio(ce, rq->guc_prio); 3312 } 3313 update_context_prio(ce); 3314 3315 spin_unlock(&ce->guc_state.lock); 3316 } 3317 3318 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3319 { 3320 lockdep_assert_held(&ce->guc_state.lock); 3321 3322 if (rq->guc_prio != GUC_PRIO_INIT && 3323 rq->guc_prio != GUC_PRIO_FINI) { 3324 sub_context_inflight_prio(ce, rq->guc_prio); 3325 update_context_prio(ce); 3326 } 3327 rq->guc_prio = GUC_PRIO_FINI; 3328 } 3329 3330 static void remove_from_context(struct i915_request *rq) 3331 { 3332 struct intel_context *ce = request_to_scheduling_context(rq); 3333 3334 GEM_BUG_ON(intel_context_is_child(ce)); 3335 3336 spin_lock_irq(&ce->guc_state.lock); 3337 3338 list_del_init(&rq->sched.link); 3339 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3340 3341 /* Prevent further __await_execution() registering a cb, then flush */ 3342 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3343 3344 guc_prio_fini(rq, ce); 3345 3346 decr_context_committed_requests(ce); 3347 3348 spin_unlock_irq(&ce->guc_state.lock); 3349 3350 atomic_dec(&ce->guc_id.ref); 3351 i915_request_notify_execute_cb_imm(rq); 3352 } 3353 3354 static const struct intel_context_ops guc_context_ops = { 3355 .alloc = guc_context_alloc, 3356 3357 .pre_pin = guc_context_pre_pin, 3358 .pin = guc_context_pin, 3359 .unpin = guc_context_unpin, 3360 .post_unpin = guc_context_post_unpin, 3361 3362 .ban = guc_context_ban, 3363 3364 .cancel_request = guc_context_cancel_request, 3365 3366 .enter = intel_context_enter_engine, 3367 .exit = intel_context_exit_engine, 3368 3369 .sched_disable = guc_context_sched_disable, 3370 3371 .reset = lrc_reset, 3372 .destroy = guc_context_destroy, 3373 3374 .create_virtual = guc_create_virtual, 3375 .create_parallel = guc_create_parallel, 3376 }; 3377 3378 static void submit_work_cb(struct irq_work *wrk) 3379 { 3380 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3381 3382 might_lock(&rq->engine->sched_engine->lock); 3383 i915_sw_fence_complete(&rq->submit); 3384 } 3385 3386 static void __guc_signal_context_fence(struct intel_context *ce) 3387 { 3388 struct i915_request *rq, *rn; 3389 3390 lockdep_assert_held(&ce->guc_state.lock); 3391 3392 if (!list_empty(&ce->guc_state.fences)) 3393 trace_intel_context_fence_release(ce); 3394 3395 /* 3396 * Use an IRQ to ensure locking order of sched_engine->lock -> 3397 * ce->guc_state.lock is preserved. 3398 */ 3399 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3400 guc_fence_link) { 3401 list_del(&rq->guc_fence_link); 3402 irq_work_queue(&rq->submit_work); 3403 } 3404 3405 INIT_LIST_HEAD(&ce->guc_state.fences); 3406 } 3407 3408 static void guc_signal_context_fence(struct intel_context *ce) 3409 { 3410 unsigned long flags; 3411 3412 GEM_BUG_ON(intel_context_is_child(ce)); 3413 3414 spin_lock_irqsave(&ce->guc_state.lock, flags); 3415 clr_context_wait_for_deregister_to_register(ce); 3416 __guc_signal_context_fence(ce); 3417 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3418 } 3419 3420 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3421 { 3422 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3423 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3424 !submission_disabled(ce_to_guc(ce)); 3425 } 3426 3427 static void guc_context_init(struct intel_context *ce) 3428 { 3429 const struct i915_gem_context *ctx; 3430 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3431 3432 rcu_read_lock(); 3433 ctx = rcu_dereference(ce->gem_context); 3434 if (ctx) 3435 prio = ctx->sched.priority; 3436 rcu_read_unlock(); 3437 3438 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3439 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3440 } 3441 3442 static int guc_request_alloc(struct i915_request *rq) 3443 { 3444 struct intel_context *ce = request_to_scheduling_context(rq); 3445 struct intel_guc *guc = ce_to_guc(ce); 3446 unsigned long flags; 3447 int ret; 3448 3449 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3450 3451 /* 3452 * Flush enough space to reduce the likelihood of waiting after 3453 * we start building the request - in which case we will just 3454 * have to repeat work. 3455 */ 3456 rq->reserved_space += GUC_REQUEST_SIZE; 3457 3458 /* 3459 * Note that after this point, we have committed to using 3460 * this request as it is being used to both track the 3461 * state of engine initialisation and liveness of the 3462 * golden renderstate above. Think twice before you try 3463 * to cancel/unwind this request now. 3464 */ 3465 3466 /* Unconditionally invalidate GPU caches and TLBs. */ 3467 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3468 if (ret) 3469 return ret; 3470 3471 rq->reserved_space -= GUC_REQUEST_SIZE; 3472 3473 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3474 guc_context_init(ce); 3475 3476 /* 3477 * Call pin_guc_id here rather than in the pinning step as with 3478 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3479 * guc_id and creating horrible race conditions. This is especially bad 3480 * when guc_id are being stolen due to over subscription. By the time 3481 * this function is reached, it is guaranteed that the guc_id will be 3482 * persistent until the generated request is retired. Thus, sealing these 3483 * race conditions. It is still safe to fail here if guc_id are 3484 * exhausted and return -EAGAIN to the user indicating that they can try 3485 * again in the future. 3486 * 3487 * There is no need for a lock here as the timeline mutex ensures at 3488 * most one context can be executing this code path at once. The 3489 * guc_id_ref is incremented once for every request in flight and 3490 * decremented on each retire. When it is zero, a lock around the 3491 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3492 */ 3493 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3494 goto out; 3495 3496 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3497 if (unlikely(ret < 0)) 3498 return ret; 3499 if (context_needs_register(ce, !!ret)) { 3500 ret = try_context_registration(ce, true); 3501 if (unlikely(ret)) { /* unwind */ 3502 if (ret == -EPIPE) { 3503 disable_submission(guc); 3504 goto out; /* GPU will be reset */ 3505 } 3506 atomic_dec(&ce->guc_id.ref); 3507 unpin_guc_id(guc, ce); 3508 return ret; 3509 } 3510 } 3511 3512 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3513 3514 out: 3515 /* 3516 * We block all requests on this context if a G2H is pending for a 3517 * schedule disable or context deregistration as the GuC will fail a 3518 * schedule enable or context registration if either G2H is pending 3519 * respectfully. Once a G2H returns, the fence is released that is 3520 * blocking these requests (see guc_signal_context_fence). 3521 */ 3522 spin_lock_irqsave(&ce->guc_state.lock, flags); 3523 if (context_wait_for_deregister_to_register(ce) || 3524 context_pending_disable(ce)) { 3525 init_irq_work(&rq->submit_work, submit_work_cb); 3526 i915_sw_fence_await(&rq->submit); 3527 3528 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3529 } 3530 incr_context_committed_requests(ce); 3531 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3532 3533 return 0; 3534 } 3535 3536 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3537 struct i915_gem_ww_ctx *ww, 3538 void **vaddr) 3539 { 3540 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3541 3542 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3543 } 3544 3545 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3546 { 3547 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3548 int ret = __guc_context_pin(ce, engine, vaddr); 3549 intel_engine_mask_t tmp, mask = ce->engine->mask; 3550 3551 if (likely(!ret)) 3552 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3553 intel_engine_pm_get(engine); 3554 3555 return ret; 3556 } 3557 3558 static void guc_virtual_context_unpin(struct intel_context *ce) 3559 { 3560 intel_engine_mask_t tmp, mask = ce->engine->mask; 3561 struct intel_engine_cs *engine; 3562 struct intel_guc *guc = ce_to_guc(ce); 3563 3564 GEM_BUG_ON(context_enabled(ce)); 3565 GEM_BUG_ON(intel_context_is_barrier(ce)); 3566 3567 unpin_guc_id(guc, ce); 3568 lrc_unpin(ce); 3569 3570 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3571 intel_engine_pm_put_async(engine); 3572 } 3573 3574 static void guc_virtual_context_enter(struct intel_context *ce) 3575 { 3576 intel_engine_mask_t tmp, mask = ce->engine->mask; 3577 struct intel_engine_cs *engine; 3578 3579 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3580 intel_engine_pm_get(engine); 3581 3582 intel_timeline_enter(ce->timeline); 3583 } 3584 3585 static void guc_virtual_context_exit(struct intel_context *ce) 3586 { 3587 intel_engine_mask_t tmp, mask = ce->engine->mask; 3588 struct intel_engine_cs *engine; 3589 3590 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3591 intel_engine_pm_put(engine); 3592 3593 intel_timeline_exit(ce->timeline); 3594 } 3595 3596 static int guc_virtual_context_alloc(struct intel_context *ce) 3597 { 3598 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3599 3600 return lrc_alloc(ce, engine); 3601 } 3602 3603 static const struct intel_context_ops virtual_guc_context_ops = { 3604 .alloc = guc_virtual_context_alloc, 3605 3606 .pre_pin = guc_virtual_context_pre_pin, 3607 .pin = guc_virtual_context_pin, 3608 .unpin = guc_virtual_context_unpin, 3609 .post_unpin = guc_context_post_unpin, 3610 3611 .ban = guc_context_ban, 3612 3613 .cancel_request = guc_context_cancel_request, 3614 3615 .enter = guc_virtual_context_enter, 3616 .exit = guc_virtual_context_exit, 3617 3618 .sched_disable = guc_context_sched_disable, 3619 3620 .destroy = guc_context_destroy, 3621 3622 .get_sibling = guc_virtual_get_sibling, 3623 }; 3624 3625 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3626 { 3627 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3628 struct intel_guc *guc = ce_to_guc(ce); 3629 int ret; 3630 3631 GEM_BUG_ON(!intel_context_is_parent(ce)); 3632 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3633 3634 ret = pin_guc_id(guc, ce); 3635 if (unlikely(ret < 0)) 3636 return ret; 3637 3638 return __guc_context_pin(ce, engine, vaddr); 3639 } 3640 3641 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3642 { 3643 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3644 3645 GEM_BUG_ON(!intel_context_is_child(ce)); 3646 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3647 3648 __intel_context_pin(ce->parallel.parent); 3649 return __guc_context_pin(ce, engine, vaddr); 3650 } 3651 3652 static void guc_parent_context_unpin(struct intel_context *ce) 3653 { 3654 struct intel_guc *guc = ce_to_guc(ce); 3655 3656 GEM_BUG_ON(context_enabled(ce)); 3657 GEM_BUG_ON(intel_context_is_barrier(ce)); 3658 GEM_BUG_ON(!intel_context_is_parent(ce)); 3659 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3660 3661 unpin_guc_id(guc, ce); 3662 lrc_unpin(ce); 3663 } 3664 3665 static void guc_child_context_unpin(struct intel_context *ce) 3666 { 3667 GEM_BUG_ON(context_enabled(ce)); 3668 GEM_BUG_ON(intel_context_is_barrier(ce)); 3669 GEM_BUG_ON(!intel_context_is_child(ce)); 3670 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3671 3672 lrc_unpin(ce); 3673 } 3674 3675 static void guc_child_context_post_unpin(struct intel_context *ce) 3676 { 3677 GEM_BUG_ON(!intel_context_is_child(ce)); 3678 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3679 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3680 3681 lrc_post_unpin(ce); 3682 intel_context_unpin(ce->parallel.parent); 3683 } 3684 3685 static void guc_child_context_destroy(struct kref *kref) 3686 { 3687 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3688 3689 __guc_context_destroy(ce); 3690 } 3691 3692 static const struct intel_context_ops virtual_parent_context_ops = { 3693 .alloc = guc_virtual_context_alloc, 3694 3695 .pre_pin = guc_context_pre_pin, 3696 .pin = guc_parent_context_pin, 3697 .unpin = guc_parent_context_unpin, 3698 .post_unpin = guc_context_post_unpin, 3699 3700 .ban = guc_context_ban, 3701 3702 .cancel_request = guc_context_cancel_request, 3703 3704 .enter = guc_virtual_context_enter, 3705 .exit = guc_virtual_context_exit, 3706 3707 .sched_disable = guc_context_sched_disable, 3708 3709 .destroy = guc_context_destroy, 3710 3711 .get_sibling = guc_virtual_get_sibling, 3712 }; 3713 3714 static const struct intel_context_ops virtual_child_context_ops = { 3715 .alloc = guc_virtual_context_alloc, 3716 3717 .pre_pin = guc_context_pre_pin, 3718 .pin = guc_child_context_pin, 3719 .unpin = guc_child_context_unpin, 3720 .post_unpin = guc_child_context_post_unpin, 3721 3722 .cancel_request = guc_context_cancel_request, 3723 3724 .enter = guc_virtual_context_enter, 3725 .exit = guc_virtual_context_exit, 3726 3727 .destroy = guc_child_context_destroy, 3728 3729 .get_sibling = guc_virtual_get_sibling, 3730 }; 3731 3732 /* 3733 * The below override of the breadcrumbs is enabled when the user configures a 3734 * context for parallel submission (multi-lrc, parent-child). 3735 * 3736 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3737 * safely preempt all the hw contexts configured for parallel submission 3738 * between each BB. The contract between the i915 and GuC is if the parent 3739 * context can be preempted, all the children can be preempted, and the GuC will 3740 * always try to preempt the parent before the children. A handshake between the 3741 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3742 * creating a window to preempt between each set of BBs. 3743 */ 3744 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3745 u64 offset, u32 len, 3746 const unsigned int flags); 3747 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3748 u64 offset, u32 len, 3749 const unsigned int flags); 3750 static u32 * 3751 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3752 u32 *cs); 3753 static u32 * 3754 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3755 u32 *cs); 3756 3757 static struct intel_context * 3758 guc_create_parallel(struct intel_engine_cs **engines, 3759 unsigned int num_siblings, 3760 unsigned int width) 3761 { 3762 struct intel_engine_cs **siblings = NULL; 3763 struct intel_context *parent = NULL, *ce, *err; 3764 int i, j; 3765 3766 siblings = kmalloc_array(num_siblings, 3767 sizeof(*siblings), 3768 GFP_KERNEL); 3769 if (!siblings) 3770 return ERR_PTR(-ENOMEM); 3771 3772 for (i = 0; i < width; ++i) { 3773 for (j = 0; j < num_siblings; ++j) 3774 siblings[j] = engines[i * num_siblings + j]; 3775 3776 ce = intel_engine_create_virtual(siblings, num_siblings, 3777 FORCE_VIRTUAL); 3778 if (IS_ERR(ce)) { 3779 err = ERR_CAST(ce); 3780 goto unwind; 3781 } 3782 3783 if (i == 0) { 3784 parent = ce; 3785 parent->ops = &virtual_parent_context_ops; 3786 } else { 3787 ce->ops = &virtual_child_context_ops; 3788 intel_context_bind_parent_child(parent, ce); 3789 } 3790 } 3791 3792 parent->parallel.fence_context = dma_fence_context_alloc(1); 3793 3794 parent->engine->emit_bb_start = 3795 emit_bb_start_parent_no_preempt_mid_batch; 3796 parent->engine->emit_fini_breadcrumb = 3797 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3798 parent->engine->emit_fini_breadcrumb_dw = 3799 12 + 4 * parent->parallel.number_children; 3800 for_each_child(parent, ce) { 3801 ce->engine->emit_bb_start = 3802 emit_bb_start_child_no_preempt_mid_batch; 3803 ce->engine->emit_fini_breadcrumb = 3804 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3805 ce->engine->emit_fini_breadcrumb_dw = 16; 3806 } 3807 3808 kfree(siblings); 3809 return parent; 3810 3811 unwind: 3812 if (parent) 3813 intel_context_put(parent); 3814 kfree(siblings); 3815 return err; 3816 } 3817 3818 static bool 3819 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3820 { 3821 struct intel_engine_cs *sibling; 3822 intel_engine_mask_t tmp, mask = b->engine_mask; 3823 bool result = false; 3824 3825 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3826 result |= intel_engine_irq_enable(sibling); 3827 3828 return result; 3829 } 3830 3831 static void 3832 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3833 { 3834 struct intel_engine_cs *sibling; 3835 intel_engine_mask_t tmp, mask = b->engine_mask; 3836 3837 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3838 intel_engine_irq_disable(sibling); 3839 } 3840 3841 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3842 { 3843 int i; 3844 3845 /* 3846 * In GuC submission mode we do not know which physical engine a request 3847 * will be scheduled on, this creates a problem because the breadcrumb 3848 * interrupt is per physical engine. To work around this we attach 3849 * requests and direct all breadcrumb interrupts to the first instance 3850 * of an engine per class. In addition all breadcrumb interrupts are 3851 * enabled / disabled across an engine class in unison. 3852 */ 3853 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3854 struct intel_engine_cs *sibling = 3855 engine->gt->engine_class[engine->class][i]; 3856 3857 if (sibling) { 3858 if (engine->breadcrumbs != sibling->breadcrumbs) { 3859 intel_breadcrumbs_put(engine->breadcrumbs); 3860 engine->breadcrumbs = 3861 intel_breadcrumbs_get(sibling->breadcrumbs); 3862 } 3863 break; 3864 } 3865 } 3866 3867 if (engine->breadcrumbs) { 3868 engine->breadcrumbs->engine_mask |= engine->mask; 3869 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3870 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3871 } 3872 } 3873 3874 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3875 int prio) 3876 { 3877 struct intel_context *ce = request_to_scheduling_context(rq); 3878 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3879 3880 /* Short circuit function */ 3881 if (prio < I915_PRIORITY_NORMAL || 3882 rq->guc_prio == GUC_PRIO_FINI || 3883 (rq->guc_prio != GUC_PRIO_INIT && 3884 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 3885 return; 3886 3887 spin_lock(&ce->guc_state.lock); 3888 if (rq->guc_prio != GUC_PRIO_FINI) { 3889 if (rq->guc_prio != GUC_PRIO_INIT) 3890 sub_context_inflight_prio(ce, rq->guc_prio); 3891 rq->guc_prio = new_guc_prio; 3892 add_context_inflight_prio(ce, rq->guc_prio); 3893 update_context_prio(ce); 3894 } 3895 spin_unlock(&ce->guc_state.lock); 3896 } 3897 3898 static void guc_retire_inflight_request_prio(struct i915_request *rq) 3899 { 3900 struct intel_context *ce = request_to_scheduling_context(rq); 3901 3902 spin_lock(&ce->guc_state.lock); 3903 guc_prio_fini(rq, ce); 3904 spin_unlock(&ce->guc_state.lock); 3905 } 3906 3907 static void sanitize_hwsp(struct intel_engine_cs *engine) 3908 { 3909 struct intel_timeline *tl; 3910 3911 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 3912 intel_timeline_reset_seqno(tl); 3913 } 3914 3915 static void guc_sanitize(struct intel_engine_cs *engine) 3916 { 3917 /* 3918 * Poison residual state on resume, in case the suspend didn't! 3919 * 3920 * We have to assume that across suspend/resume (or other loss 3921 * of control) that the contents of our pinned buffers has been 3922 * lost, replaced by garbage. Since this doesn't always happen, 3923 * let's poison such state so that we more quickly spot when 3924 * we falsely assume it has been preserved. 3925 */ 3926 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3927 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 3928 3929 /* 3930 * The kernel_context HWSP is stored in the status_page. As above, 3931 * that may be lost on resume/initialisation, and so we need to 3932 * reset the value in the HWSP. 3933 */ 3934 sanitize_hwsp(engine); 3935 3936 /* And scrub the dirty cachelines for the HWSP */ 3937 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 3938 3939 intel_engine_reset_pinned_contexts(engine); 3940 } 3941 3942 static void setup_hwsp(struct intel_engine_cs *engine) 3943 { 3944 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3945 3946 ENGINE_WRITE_FW(engine, 3947 RING_HWS_PGA, 3948 i915_ggtt_offset(engine->status_page.vma)); 3949 } 3950 3951 static void start_engine(struct intel_engine_cs *engine) 3952 { 3953 ENGINE_WRITE_FW(engine, 3954 RING_MODE_GEN7, 3955 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 3956 3957 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3958 ENGINE_POSTING_READ(engine, RING_MI_MODE); 3959 } 3960 3961 static int guc_resume(struct intel_engine_cs *engine) 3962 { 3963 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3964 3965 intel_mocs_init_engine(engine); 3966 3967 intel_breadcrumbs_reset(engine->breadcrumbs); 3968 3969 setup_hwsp(engine); 3970 start_engine(engine); 3971 3972 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3973 xehp_enable_ccs_engines(engine); 3974 3975 return 0; 3976 } 3977 3978 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 3979 { 3980 return !sched_engine->tasklet.callback; 3981 } 3982 3983 static void guc_set_default_submission(struct intel_engine_cs *engine) 3984 { 3985 engine->submit_request = guc_submit_request; 3986 } 3987 3988 static inline void guc_kernel_context_pin(struct intel_guc *guc, 3989 struct intel_context *ce) 3990 { 3991 /* 3992 * Note: we purposefully do not check the returns below because 3993 * the registration can only fail if a reset is just starting. 3994 * This is called at the end of reset so presumably another reset 3995 * isn't happening and even it did this code would be run again. 3996 */ 3997 3998 if (context_guc_id_invalid(ce)) 3999 pin_guc_id(guc, ce); 4000 4001 try_context_registration(ce, true); 4002 } 4003 4004 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 4005 { 4006 struct intel_gt *gt = guc_to_gt(guc); 4007 struct intel_engine_cs *engine; 4008 enum intel_engine_id id; 4009 4010 /* make sure all descriptors are clean... */ 4011 xa_destroy(&guc->context_lookup); 4012 4013 /* 4014 * Some contexts might have been pinned before we enabled GuC 4015 * submission, so we need to add them to the GuC bookeeping. 4016 * Also, after a reset the of the GuC we want to make sure that the 4017 * information shared with GuC is properly reset. The kernel LRCs are 4018 * not attached to the gem_context, so they need to be added separately. 4019 */ 4020 for_each_engine(engine, gt, id) { 4021 struct intel_context *ce; 4022 4023 list_for_each_entry(ce, &engine->pinned_contexts_list, 4024 pinned_contexts_link) 4025 guc_kernel_context_pin(guc, ce); 4026 } 4027 } 4028 4029 static void guc_release(struct intel_engine_cs *engine) 4030 { 4031 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4032 4033 intel_engine_cleanup_common(engine); 4034 lrc_fini_wa_ctx(engine); 4035 } 4036 4037 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4038 { 4039 struct intel_engine_cs *e; 4040 intel_engine_mask_t tmp, mask = engine->mask; 4041 4042 for_each_engine_masked(e, engine->gt, mask, tmp) 4043 e->serial++; 4044 } 4045 4046 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4047 { 4048 /* Default vfuncs which can be overridden by each engine. */ 4049 4050 engine->resume = guc_resume; 4051 4052 engine->cops = &guc_context_ops; 4053 engine->request_alloc = guc_request_alloc; 4054 engine->add_active_request = add_to_context; 4055 engine->remove_active_request = remove_from_context; 4056 4057 engine->sched_engine->schedule = i915_schedule; 4058 4059 engine->reset.prepare = guc_engine_reset_prepare; 4060 engine->reset.rewind = guc_rewind_nop; 4061 engine->reset.cancel = guc_reset_nop; 4062 engine->reset.finish = guc_reset_nop; 4063 4064 engine->emit_flush = gen8_emit_flush_xcs; 4065 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4066 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4067 if (GRAPHICS_VER(engine->i915) >= 12) { 4068 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4069 engine->emit_flush = gen12_emit_flush_xcs; 4070 } 4071 engine->set_default_submission = guc_set_default_submission; 4072 engine->busyness = guc_engine_busyness; 4073 4074 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4075 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4076 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4077 4078 /* Wa_14014475959:dg2 */ 4079 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS) 4080 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4081 4082 /* 4083 * TODO: GuC supports timeslicing and semaphores as well, but they're 4084 * handled by the firmware so some minor tweaks are required before 4085 * enabling. 4086 * 4087 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4088 */ 4089 4090 engine->emit_bb_start = gen8_emit_bb_start; 4091 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4092 engine->emit_bb_start = gen125_emit_bb_start; 4093 } 4094 4095 static void rcs_submission_override(struct intel_engine_cs *engine) 4096 { 4097 switch (GRAPHICS_VER(engine->i915)) { 4098 case 12: 4099 engine->emit_flush = gen12_emit_flush_rcs; 4100 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4101 break; 4102 case 11: 4103 engine->emit_flush = gen11_emit_flush_rcs; 4104 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4105 break; 4106 default: 4107 engine->emit_flush = gen8_emit_flush_rcs; 4108 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4109 break; 4110 } 4111 } 4112 4113 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4114 { 4115 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4116 intel_engine_set_irq_handler(engine, cs_irq_handler); 4117 } 4118 4119 static void guc_sched_engine_destroy(struct kref *kref) 4120 { 4121 struct i915_sched_engine *sched_engine = 4122 container_of(kref, typeof(*sched_engine), ref); 4123 struct intel_guc *guc = sched_engine->private_data; 4124 4125 guc->sched_engine = NULL; 4126 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4127 kfree(sched_engine); 4128 } 4129 4130 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4131 { 4132 struct drm_i915_private *i915 = engine->i915; 4133 struct intel_guc *guc = &engine->gt->uc.guc; 4134 4135 /* 4136 * The setup relies on several assumptions (e.g. irqs always enabled) 4137 * that are only valid on gen11+ 4138 */ 4139 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4140 4141 if (!guc->sched_engine) { 4142 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4143 if (!guc->sched_engine) 4144 return -ENOMEM; 4145 4146 guc->sched_engine->schedule = i915_schedule; 4147 guc->sched_engine->disabled = guc_sched_engine_disabled; 4148 guc->sched_engine->private_data = guc; 4149 guc->sched_engine->destroy = guc_sched_engine_destroy; 4150 guc->sched_engine->bump_inflight_request_prio = 4151 guc_bump_inflight_request_prio; 4152 guc->sched_engine->retire_inflight_request_prio = 4153 guc_retire_inflight_request_prio; 4154 tasklet_setup(&guc->sched_engine->tasklet, 4155 guc_submission_tasklet); 4156 } 4157 i915_sched_engine_put(engine->sched_engine); 4158 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4159 4160 guc_default_vfuncs(engine); 4161 guc_default_irqs(engine); 4162 guc_init_breadcrumbs(engine); 4163 4164 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4165 rcs_submission_override(engine); 4166 4167 lrc_init_wa_ctx(engine); 4168 4169 /* Finally, take ownership and responsibility for cleanup! */ 4170 engine->sanitize = guc_sanitize; 4171 engine->release = guc_release; 4172 4173 return 0; 4174 } 4175 4176 void intel_guc_submission_enable(struct intel_guc *guc) 4177 { 4178 guc_init_lrc_mapping(guc); 4179 guc_init_engine_stats(guc); 4180 } 4181 4182 void intel_guc_submission_disable(struct intel_guc *guc) 4183 { 4184 /* Note: By the time we're here, GuC may have already been reset */ 4185 } 4186 4187 static bool __guc_submission_supported(struct intel_guc *guc) 4188 { 4189 /* GuC submission is unavailable for pre-Gen11 */ 4190 return intel_guc_is_supported(guc) && 4191 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4192 } 4193 4194 static bool __guc_submission_selected(struct intel_guc *guc) 4195 { 4196 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4197 4198 if (!intel_guc_submission_is_supported(guc)) 4199 return false; 4200 4201 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4202 } 4203 4204 void intel_guc_submission_init_early(struct intel_guc *guc) 4205 { 4206 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4207 4208 spin_lock_init(&guc->submission_state.lock); 4209 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4210 ida_init(&guc->submission_state.guc_ids); 4211 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4212 INIT_WORK(&guc->submission_state.destroyed_worker, 4213 destroyed_worker_func); 4214 INIT_WORK(&guc->submission_state.reset_fail_worker, 4215 reset_fail_worker_func); 4216 4217 spin_lock_init(&guc->timestamp.lock); 4218 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4219 4220 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4221 guc->submission_supported = __guc_submission_supported(guc); 4222 guc->submission_selected = __guc_submission_selected(guc); 4223 } 4224 4225 static inline struct intel_context * 4226 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4227 { 4228 struct intel_context *ce; 4229 4230 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4231 drm_err(&guc_to_gt(guc)->i915->drm, 4232 "Invalid ctx_id %u\n", ctx_id); 4233 return NULL; 4234 } 4235 4236 ce = __get_context(guc, ctx_id); 4237 if (unlikely(!ce)) { 4238 drm_err(&guc_to_gt(guc)->i915->drm, 4239 "Context is NULL, ctx_id %u\n", ctx_id); 4240 return NULL; 4241 } 4242 4243 if (unlikely(intel_context_is_child(ce))) { 4244 drm_err(&guc_to_gt(guc)->i915->drm, 4245 "Context is child, ctx_id %u\n", ctx_id); 4246 return NULL; 4247 } 4248 4249 return ce; 4250 } 4251 4252 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4253 const u32 *msg, 4254 u32 len) 4255 { 4256 struct intel_context *ce; 4257 u32 ctx_id; 4258 4259 if (unlikely(len < 1)) { 4260 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4261 return -EPROTO; 4262 } 4263 ctx_id = msg[0]; 4264 4265 ce = g2h_context_lookup(guc, ctx_id); 4266 if (unlikely(!ce)) 4267 return -EPROTO; 4268 4269 trace_intel_context_deregister_done(ce); 4270 4271 #ifdef CONFIG_DRM_I915_SELFTEST 4272 if (unlikely(ce->drop_deregister)) { 4273 ce->drop_deregister = false; 4274 return 0; 4275 } 4276 #endif 4277 4278 if (context_wait_for_deregister_to_register(ce)) { 4279 struct intel_runtime_pm *runtime_pm = 4280 &ce->engine->gt->i915->runtime_pm; 4281 intel_wakeref_t wakeref; 4282 4283 /* 4284 * Previous owner of this guc_id has been deregistered, now safe 4285 * register this context. 4286 */ 4287 with_intel_runtime_pm(runtime_pm, wakeref) 4288 register_context(ce, true); 4289 guc_signal_context_fence(ce); 4290 intel_context_put(ce); 4291 } else if (context_destroyed(ce)) { 4292 /* Context has been destroyed */ 4293 intel_gt_pm_put_async(guc_to_gt(guc)); 4294 release_guc_id(guc, ce); 4295 __guc_context_destroy(ce); 4296 } 4297 4298 decr_outstanding_submission_g2h(guc); 4299 4300 return 0; 4301 } 4302 4303 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4304 const u32 *msg, 4305 u32 len) 4306 { 4307 struct intel_context *ce; 4308 unsigned long flags; 4309 u32 ctx_id; 4310 4311 if (unlikely(len < 2)) { 4312 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4313 return -EPROTO; 4314 } 4315 ctx_id = msg[0]; 4316 4317 ce = g2h_context_lookup(guc, ctx_id); 4318 if (unlikely(!ce)) 4319 return -EPROTO; 4320 4321 if (unlikely(context_destroyed(ce) || 4322 (!context_pending_enable(ce) && 4323 !context_pending_disable(ce)))) { 4324 drm_err(&guc_to_gt(guc)->i915->drm, 4325 "Bad context sched_state 0x%x, ctx_id %u\n", 4326 ce->guc_state.sched_state, ctx_id); 4327 return -EPROTO; 4328 } 4329 4330 trace_intel_context_sched_done(ce); 4331 4332 if (context_pending_enable(ce)) { 4333 #ifdef CONFIG_DRM_I915_SELFTEST 4334 if (unlikely(ce->drop_schedule_enable)) { 4335 ce->drop_schedule_enable = false; 4336 return 0; 4337 } 4338 #endif 4339 4340 spin_lock_irqsave(&ce->guc_state.lock, flags); 4341 clr_context_pending_enable(ce); 4342 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4343 } else if (context_pending_disable(ce)) { 4344 bool banned; 4345 4346 #ifdef CONFIG_DRM_I915_SELFTEST 4347 if (unlikely(ce->drop_schedule_disable)) { 4348 ce->drop_schedule_disable = false; 4349 return 0; 4350 } 4351 #endif 4352 4353 /* 4354 * Unpin must be done before __guc_signal_context_fence, 4355 * otherwise a race exists between the requests getting 4356 * submitted + retired before this unpin completes resulting in 4357 * the pin_count going to zero and the context still being 4358 * enabled. 4359 */ 4360 intel_context_sched_disable_unpin(ce); 4361 4362 spin_lock_irqsave(&ce->guc_state.lock, flags); 4363 banned = context_banned(ce); 4364 clr_context_banned(ce); 4365 clr_context_pending_disable(ce); 4366 __guc_signal_context_fence(ce); 4367 guc_blocked_fence_complete(ce); 4368 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4369 4370 if (banned) { 4371 guc_cancel_context_requests(ce); 4372 intel_engine_signal_breadcrumbs(ce->engine); 4373 } 4374 } 4375 4376 decr_outstanding_submission_g2h(guc); 4377 intel_context_put(ce); 4378 4379 return 0; 4380 } 4381 4382 static void capture_error_state(struct intel_guc *guc, 4383 struct intel_context *ce) 4384 { 4385 struct intel_gt *gt = guc_to_gt(guc); 4386 struct drm_i915_private *i915 = gt->i915; 4387 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4388 intel_wakeref_t wakeref; 4389 4390 intel_engine_set_hung_context(engine, ce); 4391 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4392 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4393 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4394 } 4395 4396 static void guc_context_replay(struct intel_context *ce) 4397 { 4398 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4399 4400 __guc_reset_context(ce, ce->engine->mask); 4401 tasklet_hi_schedule(&sched_engine->tasklet); 4402 } 4403 4404 static void guc_handle_context_reset(struct intel_guc *guc, 4405 struct intel_context *ce) 4406 { 4407 trace_intel_context_reset(ce); 4408 4409 if (likely(!intel_context_is_banned(ce))) { 4410 capture_error_state(guc, ce); 4411 guc_context_replay(ce); 4412 } else { 4413 drm_info(&guc_to_gt(guc)->i915->drm, 4414 "Ignoring context reset notification of banned context 0x%04X on %s", 4415 ce->guc_id.id, ce->engine->name); 4416 } 4417 } 4418 4419 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4420 const u32 *msg, u32 len) 4421 { 4422 struct intel_context *ce; 4423 unsigned long flags; 4424 int ctx_id; 4425 4426 if (unlikely(len != 1)) { 4427 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4428 return -EPROTO; 4429 } 4430 4431 ctx_id = msg[0]; 4432 4433 /* 4434 * The context lookup uses the xarray but lookups only require an RCU lock 4435 * not the full spinlock. So take the lock explicitly and keep it until the 4436 * context has been reference count locked to ensure it can't be destroyed 4437 * asynchronously until the reset is done. 4438 */ 4439 xa_lock_irqsave(&guc->context_lookup, flags); 4440 ce = g2h_context_lookup(guc, ctx_id); 4441 if (ce) 4442 intel_context_get(ce); 4443 xa_unlock_irqrestore(&guc->context_lookup, flags); 4444 4445 if (unlikely(!ce)) 4446 return -EPROTO; 4447 4448 guc_handle_context_reset(guc, ce); 4449 intel_context_put(ce); 4450 4451 return 0; 4452 } 4453 4454 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4455 const u32 *msg, u32 len) 4456 { 4457 u32 status; 4458 4459 if (unlikely(len != 1)) { 4460 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4461 return -EPROTO; 4462 } 4463 4464 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4465 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4466 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space"); 4467 4468 intel_guc_capture_process(guc); 4469 4470 return 0; 4471 } 4472 4473 struct intel_engine_cs * 4474 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4475 { 4476 struct intel_gt *gt = guc_to_gt(guc); 4477 u8 engine_class = guc_class_to_engine_class(guc_class); 4478 4479 /* Class index is checked in class converter */ 4480 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4481 4482 return gt->engine_class[engine_class][instance]; 4483 } 4484 4485 static void reset_fail_worker_func(struct work_struct *w) 4486 { 4487 struct intel_guc *guc = container_of(w, struct intel_guc, 4488 submission_state.reset_fail_worker); 4489 struct intel_gt *gt = guc_to_gt(guc); 4490 intel_engine_mask_t reset_fail_mask; 4491 unsigned long flags; 4492 4493 spin_lock_irqsave(&guc->submission_state.lock, flags); 4494 reset_fail_mask = guc->submission_state.reset_fail_mask; 4495 guc->submission_state.reset_fail_mask = 0; 4496 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4497 4498 if (likely(reset_fail_mask)) 4499 intel_gt_handle_error(gt, reset_fail_mask, 4500 I915_ERROR_CAPTURE, 4501 "GuC failed to reset engine mask=0x%x\n", 4502 reset_fail_mask); 4503 } 4504 4505 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4506 const u32 *msg, u32 len) 4507 { 4508 struct intel_engine_cs *engine; 4509 struct intel_gt *gt = guc_to_gt(guc); 4510 u8 guc_class, instance; 4511 u32 reason; 4512 unsigned long flags; 4513 4514 if (unlikely(len != 3)) { 4515 drm_err(>->i915->drm, "Invalid length %u", len); 4516 return -EPROTO; 4517 } 4518 4519 guc_class = msg[0]; 4520 instance = msg[1]; 4521 reason = msg[2]; 4522 4523 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4524 if (unlikely(!engine)) { 4525 drm_err(>->i915->drm, 4526 "Invalid engine %d:%d", guc_class, instance); 4527 return -EPROTO; 4528 } 4529 4530 /* 4531 * This is an unexpected failure of a hardware feature. So, log a real 4532 * error message not just the informational that comes with the reset. 4533 */ 4534 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4535 guc_class, instance, engine->name, reason); 4536 4537 spin_lock_irqsave(&guc->submission_state.lock, flags); 4538 guc->submission_state.reset_fail_mask |= engine->mask; 4539 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4540 4541 /* 4542 * A GT reset flushes this worker queue (G2H handler) so we must use 4543 * another worker to trigger a GT reset. 4544 */ 4545 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4546 4547 return 0; 4548 } 4549 4550 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4551 { 4552 struct intel_guc *guc = &engine->gt->uc.guc; 4553 struct intel_context *ce; 4554 struct i915_request *rq; 4555 unsigned long index; 4556 unsigned long flags; 4557 4558 /* Reset called during driver load? GuC not yet initialised! */ 4559 if (unlikely(!guc_submission_initialized(guc))) 4560 return; 4561 4562 xa_lock_irqsave(&guc->context_lookup, flags); 4563 xa_for_each(&guc->context_lookup, index, ce) { 4564 if (!kref_get_unless_zero(&ce->ref)) 4565 continue; 4566 4567 xa_unlock(&guc->context_lookup); 4568 4569 if (!intel_context_is_pinned(ce)) 4570 goto next; 4571 4572 if (intel_engine_is_virtual(ce->engine)) { 4573 if (!(ce->engine->mask & engine->mask)) 4574 goto next; 4575 } else { 4576 if (ce->engine != engine) 4577 goto next; 4578 } 4579 4580 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4581 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4582 continue; 4583 4584 intel_engine_set_hung_context(engine, ce); 4585 4586 /* Can only cope with one hang at a time... */ 4587 intel_context_put(ce); 4588 xa_lock(&guc->context_lookup); 4589 goto done; 4590 } 4591 next: 4592 intel_context_put(ce); 4593 xa_lock(&guc->context_lookup); 4594 } 4595 done: 4596 xa_unlock_irqrestore(&guc->context_lookup, flags); 4597 } 4598 4599 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4600 struct i915_request *hung_rq, 4601 struct drm_printer *m) 4602 { 4603 struct intel_guc *guc = &engine->gt->uc.guc; 4604 struct intel_context *ce; 4605 unsigned long index; 4606 unsigned long flags; 4607 4608 /* Reset called during driver load? GuC not yet initialised! */ 4609 if (unlikely(!guc_submission_initialized(guc))) 4610 return; 4611 4612 xa_lock_irqsave(&guc->context_lookup, flags); 4613 xa_for_each(&guc->context_lookup, index, ce) { 4614 if (!kref_get_unless_zero(&ce->ref)) 4615 continue; 4616 4617 xa_unlock(&guc->context_lookup); 4618 4619 if (!intel_context_is_pinned(ce)) 4620 goto next; 4621 4622 if (intel_engine_is_virtual(ce->engine)) { 4623 if (!(ce->engine->mask & engine->mask)) 4624 goto next; 4625 } else { 4626 if (ce->engine != engine) 4627 goto next; 4628 } 4629 4630 spin_lock(&ce->guc_state.lock); 4631 intel_engine_dump_active_requests(&ce->guc_state.requests, 4632 hung_rq, m); 4633 spin_unlock(&ce->guc_state.lock); 4634 4635 next: 4636 intel_context_put(ce); 4637 xa_lock(&guc->context_lookup); 4638 } 4639 xa_unlock_irqrestore(&guc->context_lookup, flags); 4640 } 4641 4642 void intel_guc_submission_print_info(struct intel_guc *guc, 4643 struct drm_printer *p) 4644 { 4645 struct i915_sched_engine *sched_engine = guc->sched_engine; 4646 struct rb_node *rb; 4647 unsigned long flags; 4648 4649 if (!sched_engine) 4650 return; 4651 4652 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4653 atomic_read(&guc->outstanding_submission_g2h)); 4654 drm_printf(p, "GuC tasklet count: %u\n\n", 4655 atomic_read(&sched_engine->tasklet.count)); 4656 4657 spin_lock_irqsave(&sched_engine->lock, flags); 4658 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4659 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4660 struct i915_priolist *pl = to_priolist(rb); 4661 struct i915_request *rq; 4662 4663 priolist_for_each_request(rq, pl) 4664 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4665 rq->context->guc_id.id, 4666 rq->fence.seqno); 4667 } 4668 spin_unlock_irqrestore(&sched_engine->lock, flags); 4669 drm_printf(p, "\n"); 4670 } 4671 4672 static inline void guc_log_context_priority(struct drm_printer *p, 4673 struct intel_context *ce) 4674 { 4675 int i; 4676 4677 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4678 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4679 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4680 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4681 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4682 i, ce->guc_state.prio_count[i]); 4683 } 4684 drm_printf(p, "\n"); 4685 } 4686 4687 static inline void guc_log_context(struct drm_printer *p, 4688 struct intel_context *ce) 4689 { 4690 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4691 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4692 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4693 ce->ring->head, 4694 ce->lrc_reg_state[CTX_RING_HEAD]); 4695 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4696 ce->ring->tail, 4697 ce->lrc_reg_state[CTX_RING_TAIL]); 4698 drm_printf(p, "\t\tContext Pin Count: %u\n", 4699 atomic_read(&ce->pin_count)); 4700 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4701 atomic_read(&ce->guc_id.ref)); 4702 drm_printf(p, "\t\tSchedule State: 0x%x\n\n", 4703 ce->guc_state.sched_state); 4704 } 4705 4706 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4707 struct drm_printer *p) 4708 { 4709 struct intel_context *ce; 4710 unsigned long index; 4711 unsigned long flags; 4712 4713 xa_lock_irqsave(&guc->context_lookup, flags); 4714 xa_for_each(&guc->context_lookup, index, ce) { 4715 GEM_BUG_ON(intel_context_is_child(ce)); 4716 4717 guc_log_context(p, ce); 4718 guc_log_context_priority(p, ce); 4719 4720 if (intel_context_is_parent(ce)) { 4721 struct intel_context *child; 4722 4723 drm_printf(p, "\t\tNumber children: %u\n", 4724 ce->parallel.number_children); 4725 4726 if (ce->parallel.guc.wq_status) { 4727 drm_printf(p, "\t\tWQI Head: %u\n", 4728 READ_ONCE(*ce->parallel.guc.wq_head)); 4729 drm_printf(p, "\t\tWQI Tail: %u\n", 4730 READ_ONCE(*ce->parallel.guc.wq_tail)); 4731 drm_printf(p, "\t\tWQI Status: %u\n\n", 4732 READ_ONCE(*ce->parallel.guc.wq_status)); 4733 } 4734 4735 if (ce->engine->emit_bb_start == 4736 emit_bb_start_parent_no_preempt_mid_batch) { 4737 u8 i; 4738 4739 drm_printf(p, "\t\tChildren Go: %u\n\n", 4740 get_children_go_value(ce)); 4741 for (i = 0; i < ce->parallel.number_children; ++i) 4742 drm_printf(p, "\t\tChildren Join: %u\n", 4743 get_children_join_value(ce, i)); 4744 } 4745 4746 for_each_child(ce, child) 4747 guc_log_context(p, child); 4748 } 4749 } 4750 xa_unlock_irqrestore(&guc->context_lookup, flags); 4751 } 4752 4753 static inline u32 get_children_go_addr(struct intel_context *ce) 4754 { 4755 GEM_BUG_ON(!intel_context_is_parent(ce)); 4756 4757 return i915_ggtt_offset(ce->state) + 4758 __get_parent_scratch_offset(ce) + 4759 offsetof(struct parent_scratch, go.semaphore); 4760 } 4761 4762 static inline u32 get_children_join_addr(struct intel_context *ce, 4763 u8 child_index) 4764 { 4765 GEM_BUG_ON(!intel_context_is_parent(ce)); 4766 4767 return i915_ggtt_offset(ce->state) + 4768 __get_parent_scratch_offset(ce) + 4769 offsetof(struct parent_scratch, join[child_index].semaphore); 4770 } 4771 4772 #define PARENT_GO_BB 1 4773 #define PARENT_GO_FINI_BREADCRUMB 0 4774 #define CHILD_GO_BB 1 4775 #define CHILD_GO_FINI_BREADCRUMB 0 4776 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4777 u64 offset, u32 len, 4778 const unsigned int flags) 4779 { 4780 struct intel_context *ce = rq->context; 4781 u32 *cs; 4782 u8 i; 4783 4784 GEM_BUG_ON(!intel_context_is_parent(ce)); 4785 4786 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 4787 if (IS_ERR(cs)) 4788 return PTR_ERR(cs); 4789 4790 /* Wait on children */ 4791 for (i = 0; i < ce->parallel.number_children; ++i) { 4792 *cs++ = (MI_SEMAPHORE_WAIT | 4793 MI_SEMAPHORE_GLOBAL_GTT | 4794 MI_SEMAPHORE_POLL | 4795 MI_SEMAPHORE_SAD_EQ_SDD); 4796 *cs++ = PARENT_GO_BB; 4797 *cs++ = get_children_join_addr(ce, i); 4798 *cs++ = 0; 4799 } 4800 4801 /* Turn off preemption */ 4802 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4803 *cs++ = MI_NOOP; 4804 4805 /* Tell children go */ 4806 cs = gen8_emit_ggtt_write(cs, 4807 CHILD_GO_BB, 4808 get_children_go_addr(ce), 4809 0); 4810 4811 /* Jump to batch */ 4812 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4813 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4814 *cs++ = lower_32_bits(offset); 4815 *cs++ = upper_32_bits(offset); 4816 *cs++ = MI_NOOP; 4817 4818 intel_ring_advance(rq, cs); 4819 4820 return 0; 4821 } 4822 4823 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4824 u64 offset, u32 len, 4825 const unsigned int flags) 4826 { 4827 struct intel_context *ce = rq->context; 4828 struct intel_context *parent = intel_context_to_parent(ce); 4829 u32 *cs; 4830 4831 GEM_BUG_ON(!intel_context_is_child(ce)); 4832 4833 cs = intel_ring_begin(rq, 12); 4834 if (IS_ERR(cs)) 4835 return PTR_ERR(cs); 4836 4837 /* Signal parent */ 4838 cs = gen8_emit_ggtt_write(cs, 4839 PARENT_GO_BB, 4840 get_children_join_addr(parent, 4841 ce->parallel.child_index), 4842 0); 4843 4844 /* Wait on parent for go */ 4845 *cs++ = (MI_SEMAPHORE_WAIT | 4846 MI_SEMAPHORE_GLOBAL_GTT | 4847 MI_SEMAPHORE_POLL | 4848 MI_SEMAPHORE_SAD_EQ_SDD); 4849 *cs++ = CHILD_GO_BB; 4850 *cs++ = get_children_go_addr(parent); 4851 *cs++ = 0; 4852 4853 /* Turn off preemption */ 4854 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4855 4856 /* Jump to batch */ 4857 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4858 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4859 *cs++ = lower_32_bits(offset); 4860 *cs++ = upper_32_bits(offset); 4861 4862 intel_ring_advance(rq, cs); 4863 4864 return 0; 4865 } 4866 4867 static u32 * 4868 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4869 u32 *cs) 4870 { 4871 struct intel_context *ce = rq->context; 4872 u8 i; 4873 4874 GEM_BUG_ON(!intel_context_is_parent(ce)); 4875 4876 /* Wait on children */ 4877 for (i = 0; i < ce->parallel.number_children; ++i) { 4878 *cs++ = (MI_SEMAPHORE_WAIT | 4879 MI_SEMAPHORE_GLOBAL_GTT | 4880 MI_SEMAPHORE_POLL | 4881 MI_SEMAPHORE_SAD_EQ_SDD); 4882 *cs++ = PARENT_GO_FINI_BREADCRUMB; 4883 *cs++ = get_children_join_addr(ce, i); 4884 *cs++ = 0; 4885 } 4886 4887 /* Turn on preemption */ 4888 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4889 *cs++ = MI_NOOP; 4890 4891 /* Tell children go */ 4892 cs = gen8_emit_ggtt_write(cs, 4893 CHILD_GO_FINI_BREADCRUMB, 4894 get_children_go_addr(ce), 4895 0); 4896 4897 return cs; 4898 } 4899 4900 /* 4901 * If this true, a submission of multi-lrc requests had an error and the 4902 * requests need to be skipped. The front end (execuf IOCTL) should've called 4903 * i915_request_skip which squashes the BB but we still need to emit the fini 4904 * breadrcrumbs seqno write. At this point we don't know how many of the 4905 * requests in the multi-lrc submission were generated so we can't do the 4906 * handshake between the parent and children (e.g. if 4 requests should be 4907 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 4908 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 4909 * has occurred on any of the requests in submission / relationship. 4910 */ 4911 static inline bool skip_handshake(struct i915_request *rq) 4912 { 4913 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 4914 } 4915 4916 #define NON_SKIP_LEN 6 4917 static u32 * 4918 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4919 u32 *cs) 4920 { 4921 struct intel_context *ce = rq->context; 4922 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 4923 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 4924 4925 GEM_BUG_ON(!intel_context_is_parent(ce)); 4926 4927 if (unlikely(skip_handshake(rq))) { 4928 /* 4929 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 4930 * the NON_SKIP_LEN comes from the length of the emits below. 4931 */ 4932 memset(cs, 0, sizeof(u32) * 4933 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 4934 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 4935 } else { 4936 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 4937 } 4938 4939 /* Emit fini breadcrumb */ 4940 before_fini_breadcrumb_user_interrupt_cs = cs; 4941 cs = gen8_emit_ggtt_write(cs, 4942 rq->fence.seqno, 4943 i915_request_active_timeline(rq)->hwsp_offset, 4944 0); 4945 4946 /* User interrupt */ 4947 *cs++ = MI_USER_INTERRUPT; 4948 *cs++ = MI_NOOP; 4949 4950 /* Ensure our math for skip + emit is correct */ 4951 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 4952 cs); 4953 GEM_BUG_ON(start_fini_breadcrumb_cs + 4954 ce->engine->emit_fini_breadcrumb_dw != cs); 4955 4956 rq->tail = intel_ring_offset(rq, cs); 4957 4958 return cs; 4959 } 4960 4961 static u32 * 4962 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4963 u32 *cs) 4964 { 4965 struct intel_context *ce = rq->context; 4966 struct intel_context *parent = intel_context_to_parent(ce); 4967 4968 GEM_BUG_ON(!intel_context_is_child(ce)); 4969 4970 /* Turn on preemption */ 4971 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4972 *cs++ = MI_NOOP; 4973 4974 /* Signal parent */ 4975 cs = gen8_emit_ggtt_write(cs, 4976 PARENT_GO_FINI_BREADCRUMB, 4977 get_children_join_addr(parent, 4978 ce->parallel.child_index), 4979 0); 4980 4981 /* Wait parent on for go */ 4982 *cs++ = (MI_SEMAPHORE_WAIT | 4983 MI_SEMAPHORE_GLOBAL_GTT | 4984 MI_SEMAPHORE_POLL | 4985 MI_SEMAPHORE_SAD_EQ_SDD); 4986 *cs++ = CHILD_GO_FINI_BREADCRUMB; 4987 *cs++ = get_children_go_addr(parent); 4988 *cs++ = 0; 4989 4990 return cs; 4991 } 4992 4993 static u32 * 4994 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4995 u32 *cs) 4996 { 4997 struct intel_context *ce = rq->context; 4998 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 4999 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5000 5001 GEM_BUG_ON(!intel_context_is_child(ce)); 5002 5003 if (unlikely(skip_handshake(rq))) { 5004 /* 5005 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5006 * the NON_SKIP_LEN comes from the length of the emits below. 5007 */ 5008 memset(cs, 0, sizeof(u32) * 5009 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5010 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5011 } else { 5012 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5013 } 5014 5015 /* Emit fini breadcrumb */ 5016 before_fini_breadcrumb_user_interrupt_cs = cs; 5017 cs = gen8_emit_ggtt_write(cs, 5018 rq->fence.seqno, 5019 i915_request_active_timeline(rq)->hwsp_offset, 5020 0); 5021 5022 /* User interrupt */ 5023 *cs++ = MI_USER_INTERRUPT; 5024 *cs++ = MI_NOOP; 5025 5026 /* Ensure our math for skip + emit is correct */ 5027 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5028 cs); 5029 GEM_BUG_ON(start_fini_breadcrumb_cs + 5030 ce->engine->emit_fini_breadcrumb_dw != cs); 5031 5032 rq->tail = intel_ring_offset(rq, cs); 5033 5034 return cs; 5035 } 5036 5037 #undef NON_SKIP_LEN 5038 5039 static struct intel_context * 5040 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5041 unsigned long flags) 5042 { 5043 struct guc_virtual_engine *ve; 5044 struct intel_guc *guc; 5045 unsigned int n; 5046 int err; 5047 5048 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5049 if (!ve) 5050 return ERR_PTR(-ENOMEM); 5051 5052 guc = &siblings[0]->gt->uc.guc; 5053 5054 ve->base.i915 = siblings[0]->i915; 5055 ve->base.gt = siblings[0]->gt; 5056 ve->base.uncore = siblings[0]->uncore; 5057 ve->base.id = -1; 5058 5059 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5060 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5061 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5062 ve->base.saturated = ALL_ENGINES; 5063 5064 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5065 5066 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5067 5068 ve->base.cops = &virtual_guc_context_ops; 5069 ve->base.request_alloc = guc_request_alloc; 5070 ve->base.bump_serial = virtual_guc_bump_serial; 5071 5072 ve->base.submit_request = guc_submit_request; 5073 5074 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5075 5076 intel_context_init(&ve->context, &ve->base); 5077 5078 for (n = 0; n < count; n++) { 5079 struct intel_engine_cs *sibling = siblings[n]; 5080 5081 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5082 if (sibling->mask & ve->base.mask) { 5083 DRM_DEBUG("duplicate %s entry in load balancer\n", 5084 sibling->name); 5085 err = -EINVAL; 5086 goto err_put; 5087 } 5088 5089 ve->base.mask |= sibling->mask; 5090 ve->base.logical_mask |= sibling->logical_mask; 5091 5092 if (n != 0 && ve->base.class != sibling->class) { 5093 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5094 sibling->class, ve->base.class); 5095 err = -EINVAL; 5096 goto err_put; 5097 } else if (n == 0) { 5098 ve->base.class = sibling->class; 5099 ve->base.uabi_class = sibling->uabi_class; 5100 snprintf(ve->base.name, sizeof(ve->base.name), 5101 "v%dx%d", ve->base.class, count); 5102 ve->base.context_size = sibling->context_size; 5103 5104 ve->base.add_active_request = 5105 sibling->add_active_request; 5106 ve->base.remove_active_request = 5107 sibling->remove_active_request; 5108 ve->base.emit_bb_start = sibling->emit_bb_start; 5109 ve->base.emit_flush = sibling->emit_flush; 5110 ve->base.emit_init_breadcrumb = 5111 sibling->emit_init_breadcrumb; 5112 ve->base.emit_fini_breadcrumb = 5113 sibling->emit_fini_breadcrumb; 5114 ve->base.emit_fini_breadcrumb_dw = 5115 sibling->emit_fini_breadcrumb_dw; 5116 ve->base.breadcrumbs = 5117 intel_breadcrumbs_get(sibling->breadcrumbs); 5118 5119 ve->base.flags |= sibling->flags; 5120 5121 ve->base.props.timeslice_duration_ms = 5122 sibling->props.timeslice_duration_ms; 5123 ve->base.props.preempt_timeout_ms = 5124 sibling->props.preempt_timeout_ms; 5125 } 5126 } 5127 5128 return &ve->context; 5129 5130 err_put: 5131 intel_context_put(&ve->context); 5132 return ERR_PTR(err); 5133 } 5134 5135 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5136 { 5137 struct intel_engine_cs *engine; 5138 intel_engine_mask_t tmp, mask = ve->mask; 5139 5140 for_each_engine_masked(engine, ve->gt, mask, tmp) 5141 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5142 return true; 5143 5144 return false; 5145 } 5146 5147 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5148 #include "selftest_guc.c" 5149 #include "selftest_guc_multi_lrc.c" 5150 #endif 5151