1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gem/i915_gem_lmem.h" 10 #include "gt/gen8_engine_cs.h" 11 #include "gt/intel_breadcrumbs.h" 12 #include "gt/intel_context.h" 13 #include "gt/intel_engine_heartbeat.h" 14 #include "gt/intel_engine_pm.h" 15 #include "gt/intel_engine_regs.h" 16 #include "gt/intel_gpu_commands.h" 17 #include "gt/intel_gt.h" 18 #include "gt/intel_gt_clock_utils.h" 19 #include "gt/intel_gt_irq.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_gt_regs.h" 22 #include "gt/intel_gt_requests.h" 23 #include "gt/intel_lrc.h" 24 #include "gt/intel_lrc_reg.h" 25 #include "gt/intel_mocs.h" 26 #include "gt/intel_ring.h" 27 28 #include "intel_guc_ads.h" 29 #include "intel_guc_capture.h" 30 #include "intel_guc_print.h" 31 #include "intel_guc_submission.h" 32 33 #include "i915_drv.h" 34 #include "i915_reg.h" 35 #include "i915_trace.h" 36 37 /** 38 * DOC: GuC-based command submission 39 * 40 * The Scratch registers: 41 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 42 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 43 * triggers an interrupt on the GuC via another register write (0xC4C8). 44 * Firmware writes a success/fail code back to the action register after 45 * processes the request. The kernel driver polls waiting for this update and 46 * then proceeds. 47 * 48 * Command Transport buffers (CTBs): 49 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 50 * - G2H) are a message interface between the i915 and GuC. 51 * 52 * Context registration: 53 * Before a context can be submitted it must be registered with the GuC via a 54 * H2G. A unique guc_id is associated with each context. The context is either 55 * registered at request creation time (normal operation) or at submission time 56 * (abnormal operation, e.g. after a reset). 57 * 58 * Context submission: 59 * The i915 updates the LRC tail value in memory. The i915 must enable the 60 * scheduling of the context within the GuC for the GuC to actually consider it. 61 * Therefore, the first time a disabled context is submitted we use a schedule 62 * enable H2G, while follow up submissions are done via the context submit H2G, 63 * which informs the GuC that a previously enabled context has new work 64 * available. 65 * 66 * Context unpin: 67 * To unpin a context a H2G is used to disable scheduling. When the 68 * corresponding G2H returns indicating the scheduling disable operation has 69 * completed it is safe to unpin the context. While a disable is in flight it 70 * isn't safe to resubmit the context so a fence is used to stall all future 71 * requests of that context until the G2H is returned. Because this interaction 72 * with the GuC takes a non-zero amount of time we delay the disabling of 73 * scheduling after the pin count goes to zero by a configurable period of time 74 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of 75 * time to resubmit something on the context before doing this costly operation. 76 * This delay is only done if the context isn't closed and the guc_id usage is 77 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). 78 * 79 * Context deregistration: 80 * Before a context can be destroyed or if we steal its guc_id we must 81 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 82 * safe to submit anything to this guc_id until the deregister completes so a 83 * fence is used to stall all requests associated with this guc_id until the 84 * corresponding G2H returns indicating the guc_id has been deregistered. 85 * 86 * submission_state.guc_ids: 87 * Unique number associated with private GuC context data passed in during 88 * context registration / submission / deregistration. 64k available. Simple ida 89 * is used for allocation. 90 * 91 * Stealing guc_ids: 92 * If no guc_ids are available they can be stolen from another context at 93 * request creation time if that context is unpinned. If a guc_id can't be found 94 * we punt this problem to the user as we believe this is near impossible to hit 95 * during normal use cases. 96 * 97 * Locking: 98 * In the GuC submission code we have 3 basic spin locks which protect 99 * everything. Details about each below. 100 * 101 * sched_engine->lock 102 * This is the submission lock for all contexts that share an i915 schedule 103 * engine (sched_engine), thus only one of the contexts which share a 104 * sched_engine can be submitting at a time. Currently only one sched_engine is 105 * used for all of GuC submission but that could change in the future. 106 * 107 * guc->submission_state.lock 108 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 109 * list. 110 * 111 * ce->guc_state.lock 112 * Protects everything under ce->guc_state. Ensures that a context is in the 113 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 114 * on a disabled context (bad idea), we don't issue a schedule enable when a 115 * schedule disable is in flight, etc... Also protects list of inflight requests 116 * on the context and the priority management state. Lock is individual to each 117 * context. 118 * 119 * Lock ordering rules: 120 * sched_engine->lock -> ce->guc_state.lock 121 * guc->submission_state.lock -> ce->guc_state.lock 122 * 123 * Reset races: 124 * When a full GT reset is triggered it is assumed that some G2H responses to 125 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 126 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 127 * contexts, release guc_ids, etc...). When this occurs we can scrub the 128 * context state and cleanup appropriately, however this is quite racey. 129 * To avoid races, the reset code must disable submission before scrubbing for 130 * the missing G2H, while the submission code must check for submission being 131 * disabled and skip sending H2Gs and updating context states when it is. Both 132 * sides must also make sure to hold the relevant locks. 133 */ 134 135 /* GuC Virtual Engine */ 136 struct guc_virtual_engine { 137 struct intel_engine_cs base; 138 struct intel_context context; 139 }; 140 141 static struct intel_context * 142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 143 unsigned long flags); 144 145 static struct intel_context * 146 guc_create_parallel(struct intel_engine_cs **engines, 147 unsigned int num_siblings, 148 unsigned int width); 149 150 #define GUC_REQUEST_SIZE 64 /* bytes */ 151 152 /* 153 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 154 * per the GuC submission interface. A different allocation algorithm is used 155 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 156 * partition the guc_id space. We believe the number of multi-lrc contexts in 157 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 158 * multi-lrc. 159 */ 160 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 161 ((guc)->submission_state.num_guc_ids / 16) 162 163 /* 164 * Below is a set of functions which control the GuC scheduling state which 165 * require a lock. 166 */ 167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 168 #define SCHED_STATE_DESTROYED BIT(1) 169 #define SCHED_STATE_PENDING_DISABLE BIT(2) 170 #define SCHED_STATE_BANNED BIT(3) 171 #define SCHED_STATE_ENABLED BIT(4) 172 #define SCHED_STATE_PENDING_ENABLE BIT(5) 173 #define SCHED_STATE_REGISTERED BIT(6) 174 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 175 #define SCHED_STATE_CLOSED BIT(8) 176 #define SCHED_STATE_BLOCKED_SHIFT 9 177 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 178 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 179 180 static inline void init_sched_state(struct intel_context *ce) 181 { 182 lockdep_assert_held(&ce->guc_state.lock); 183 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 184 } 185 186 /* 187 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. 188 * A context close can race with the submission path, so SCHED_STATE_CLOSED 189 * can be set immediately before we try to register. 190 */ 191 #define SCHED_STATE_VALID_INIT \ 192 (SCHED_STATE_BLOCKED_MASK | \ 193 SCHED_STATE_CLOSED | \ 194 SCHED_STATE_REGISTERED) 195 196 __maybe_unused 197 static bool sched_state_is_init(struct intel_context *ce) 198 { 199 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); 200 } 201 202 static inline bool 203 context_wait_for_deregister_to_register(struct intel_context *ce) 204 { 205 return ce->guc_state.sched_state & 206 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 207 } 208 209 static inline void 210 set_context_wait_for_deregister_to_register(struct intel_context *ce) 211 { 212 lockdep_assert_held(&ce->guc_state.lock); 213 ce->guc_state.sched_state |= 214 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 215 } 216 217 static inline void 218 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 219 { 220 lockdep_assert_held(&ce->guc_state.lock); 221 ce->guc_state.sched_state &= 222 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 223 } 224 225 static inline bool 226 context_destroyed(struct intel_context *ce) 227 { 228 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 229 } 230 231 static inline void 232 set_context_destroyed(struct intel_context *ce) 233 { 234 lockdep_assert_held(&ce->guc_state.lock); 235 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 236 } 237 238 static inline bool context_pending_disable(struct intel_context *ce) 239 { 240 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 241 } 242 243 static inline void set_context_pending_disable(struct intel_context *ce) 244 { 245 lockdep_assert_held(&ce->guc_state.lock); 246 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 247 } 248 249 static inline void clr_context_pending_disable(struct intel_context *ce) 250 { 251 lockdep_assert_held(&ce->guc_state.lock); 252 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 253 } 254 255 static inline bool context_banned(struct intel_context *ce) 256 { 257 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 258 } 259 260 static inline void set_context_banned(struct intel_context *ce) 261 { 262 lockdep_assert_held(&ce->guc_state.lock); 263 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 264 } 265 266 static inline void clr_context_banned(struct intel_context *ce) 267 { 268 lockdep_assert_held(&ce->guc_state.lock); 269 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 270 } 271 272 static inline bool context_enabled(struct intel_context *ce) 273 { 274 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 275 } 276 277 static inline void set_context_enabled(struct intel_context *ce) 278 { 279 lockdep_assert_held(&ce->guc_state.lock); 280 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 281 } 282 283 static inline void clr_context_enabled(struct intel_context *ce) 284 { 285 lockdep_assert_held(&ce->guc_state.lock); 286 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 287 } 288 289 static inline bool context_pending_enable(struct intel_context *ce) 290 { 291 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 292 } 293 294 static inline void set_context_pending_enable(struct intel_context *ce) 295 { 296 lockdep_assert_held(&ce->guc_state.lock); 297 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 298 } 299 300 static inline void clr_context_pending_enable(struct intel_context *ce) 301 { 302 lockdep_assert_held(&ce->guc_state.lock); 303 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 304 } 305 306 static inline bool context_registered(struct intel_context *ce) 307 { 308 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 309 } 310 311 static inline void set_context_registered(struct intel_context *ce) 312 { 313 lockdep_assert_held(&ce->guc_state.lock); 314 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 315 } 316 317 static inline void clr_context_registered(struct intel_context *ce) 318 { 319 lockdep_assert_held(&ce->guc_state.lock); 320 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 321 } 322 323 static inline bool context_policy_required(struct intel_context *ce) 324 { 325 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 326 } 327 328 static inline void set_context_policy_required(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 332 } 333 334 static inline void clr_context_policy_required(struct intel_context *ce) 335 { 336 lockdep_assert_held(&ce->guc_state.lock); 337 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 338 } 339 340 static inline bool context_close_done(struct intel_context *ce) 341 { 342 return ce->guc_state.sched_state & SCHED_STATE_CLOSED; 343 } 344 345 static inline void set_context_close_done(struct intel_context *ce) 346 { 347 lockdep_assert_held(&ce->guc_state.lock); 348 ce->guc_state.sched_state |= SCHED_STATE_CLOSED; 349 } 350 351 static inline u32 context_blocked(struct intel_context *ce) 352 { 353 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 354 SCHED_STATE_BLOCKED_SHIFT; 355 } 356 357 static inline void incr_context_blocked(struct intel_context *ce) 358 { 359 lockdep_assert_held(&ce->guc_state.lock); 360 361 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 362 363 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 364 } 365 366 static inline void decr_context_blocked(struct intel_context *ce) 367 { 368 lockdep_assert_held(&ce->guc_state.lock); 369 370 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 371 372 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 373 } 374 375 static struct intel_context * 376 request_to_scheduling_context(struct i915_request *rq) 377 { 378 return intel_context_to_parent(rq->context); 379 } 380 381 static inline bool context_guc_id_invalid(struct intel_context *ce) 382 { 383 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 384 } 385 386 static inline void set_context_guc_id_invalid(struct intel_context *ce) 387 { 388 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 389 } 390 391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 392 { 393 return &ce->engine->gt->uc.guc; 394 } 395 396 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 397 { 398 return rb_entry(rb, struct i915_priolist, node); 399 } 400 401 /* 402 * When using multi-lrc submission a scratch memory area is reserved in the 403 * parent's context state for the process descriptor, work queue, and handshake 404 * between the parent + children contexts to insert safe preemption points 405 * between each of the BBs. Currently the scratch area is sized to a page. 406 * 407 * The layout of this scratch area is below: 408 * 0 guc_process_desc 409 * + sizeof(struct guc_process_desc) child go 410 * + CACHELINE_BYTES child join[0] 411 * ... 412 * + CACHELINE_BYTES child join[n - 1] 413 * ... unused 414 * PARENT_SCRATCH_SIZE / 2 work queue start 415 * ... work queue 416 * PARENT_SCRATCH_SIZE - 1 work queue end 417 */ 418 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 419 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 420 421 struct sync_semaphore { 422 u32 semaphore; 423 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 424 }; 425 426 struct parent_scratch { 427 union guc_descs { 428 struct guc_sched_wq_desc wq_desc; 429 struct guc_process_desc_v69 pdesc; 430 } descs; 431 432 struct sync_semaphore go; 433 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 434 435 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 436 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 437 438 u32 wq[WQ_SIZE / sizeof(u32)]; 439 }; 440 441 static u32 __get_parent_scratch_offset(struct intel_context *ce) 442 { 443 GEM_BUG_ON(!ce->parallel.guc.parent_page); 444 445 return ce->parallel.guc.parent_page * PAGE_SIZE; 446 } 447 448 static u32 __get_wq_offset(struct intel_context *ce) 449 { 450 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 451 452 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 453 } 454 455 static struct parent_scratch * 456 __get_parent_scratch(struct intel_context *ce) 457 { 458 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 459 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 460 461 /* 462 * Need to subtract LRC_STATE_OFFSET here as the 463 * parallel.guc.parent_page is the offset into ce->state while 464 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 465 */ 466 return (struct parent_scratch *) 467 (ce->lrc_reg_state + 468 ((__get_parent_scratch_offset(ce) - 469 LRC_STATE_OFFSET) / sizeof(u32))); 470 } 471 472 static struct guc_process_desc_v69 * 473 __get_process_desc_v69(struct intel_context *ce) 474 { 475 struct parent_scratch *ps = __get_parent_scratch(ce); 476 477 return &ps->descs.pdesc; 478 } 479 480 static struct guc_sched_wq_desc * 481 __get_wq_desc_v70(struct intel_context *ce) 482 { 483 struct parent_scratch *ps = __get_parent_scratch(ce); 484 485 return &ps->descs.wq_desc; 486 } 487 488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 489 { 490 /* 491 * Check for space in work queue. Caching a value of head pointer in 492 * intel_context structure in order reduce the number accesses to shared 493 * GPU memory which may be across a PCIe bus. 494 */ 495 #define AVAILABLE_SPACE \ 496 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 497 if (wqi_size > AVAILABLE_SPACE) { 498 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 499 500 if (wqi_size > AVAILABLE_SPACE) 501 return NULL; 502 } 503 #undef AVAILABLE_SPACE 504 505 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 506 } 507 508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 509 { 510 struct intel_context *ce = xa_load(&guc->context_lookup, id); 511 512 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 513 514 return ce; 515 } 516 517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 518 { 519 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 520 521 if (!base) 522 return NULL; 523 524 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 525 526 return &base[index]; 527 } 528 529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 530 { 531 u32 size; 532 int ret; 533 534 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 535 GUC_MAX_CONTEXT_ID); 536 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 537 (void **)&guc->lrc_desc_pool_vaddr_v69); 538 if (ret) 539 return ret; 540 541 return 0; 542 } 543 544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 545 { 546 if (!guc->lrc_desc_pool_vaddr_v69) 547 return; 548 549 guc->lrc_desc_pool_vaddr_v69 = NULL; 550 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 551 } 552 553 static inline bool guc_submission_initialized(struct intel_guc *guc) 554 { 555 return guc->submission_initialized; 556 } 557 558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 559 { 560 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 561 562 if (desc) 563 memset(desc, 0, sizeof(*desc)); 564 } 565 566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 567 { 568 return __get_context(guc, id); 569 } 570 571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 572 struct intel_context *ce) 573 { 574 unsigned long flags; 575 576 /* 577 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 578 * lower level functions directly. 579 */ 580 xa_lock_irqsave(&guc->context_lookup, flags); 581 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 582 xa_unlock_irqrestore(&guc->context_lookup, flags); 583 } 584 585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 586 { 587 unsigned long flags; 588 589 if (unlikely(!guc_submission_initialized(guc))) 590 return; 591 592 _reset_lrc_desc_v69(guc, id); 593 594 /* 595 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 596 * the lower level functions directly. 597 */ 598 xa_lock_irqsave(&guc->context_lookup, flags); 599 __xa_erase(&guc->context_lookup, id); 600 xa_unlock_irqrestore(&guc->context_lookup, flags); 601 } 602 603 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 604 { 605 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 606 wake_up_all(&guc->ct.wq); 607 } 608 609 static int guc_submission_send_busy_loop(struct intel_guc *guc, 610 const u32 *action, 611 u32 len, 612 u32 g2h_len_dw, 613 bool loop) 614 { 615 /* 616 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 617 * so we don't handle the case where we don't get a reply because we 618 * aborted the send due to the channel being busy. 619 */ 620 GEM_BUG_ON(g2h_len_dw && !loop); 621 622 if (g2h_len_dw) 623 atomic_inc(&guc->outstanding_submission_g2h); 624 625 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 626 } 627 628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 629 atomic_t *wait_var, 630 bool interruptible, 631 long timeout) 632 { 633 const int state = interruptible ? 634 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 635 DEFINE_WAIT(wait); 636 637 might_sleep(); 638 GEM_BUG_ON(timeout < 0); 639 640 if (!atomic_read(wait_var)) 641 return 0; 642 643 if (!timeout) 644 return -ETIME; 645 646 for (;;) { 647 prepare_to_wait(&guc->ct.wq, &wait, state); 648 649 if (!atomic_read(wait_var)) 650 break; 651 652 if (signal_pending_state(state, current)) { 653 timeout = -EINTR; 654 break; 655 } 656 657 if (!timeout) { 658 timeout = -ETIME; 659 break; 660 } 661 662 timeout = io_schedule_timeout(timeout); 663 } 664 finish_wait(&guc->ct.wq, &wait); 665 666 return (timeout < 0) ? timeout : 0; 667 } 668 669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 670 { 671 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 672 return 0; 673 674 return intel_guc_wait_for_pending_msg(guc, 675 &guc->outstanding_submission_g2h, 676 true, timeout); 677 } 678 679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 680 static int try_context_registration(struct intel_context *ce, bool loop); 681 682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 683 { 684 int err = 0; 685 struct intel_context *ce = request_to_scheduling_context(rq); 686 u32 action[3]; 687 int len = 0; 688 u32 g2h_len_dw = 0; 689 bool enabled; 690 691 lockdep_assert_held(&rq->engine->sched_engine->lock); 692 693 /* 694 * Corner case where requests were sitting in the priority list or a 695 * request resubmitted after the context was banned. 696 */ 697 if (unlikely(!intel_context_is_schedulable(ce))) { 698 i915_request_put(i915_request_mark_eio(rq)); 699 intel_engine_signal_breadcrumbs(ce->engine); 700 return 0; 701 } 702 703 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 704 GEM_BUG_ON(context_guc_id_invalid(ce)); 705 706 if (context_policy_required(ce)) { 707 err = guc_context_policy_init_v70(ce, false); 708 if (err) 709 return err; 710 } 711 712 spin_lock(&ce->guc_state.lock); 713 714 /* 715 * The request / context will be run on the hardware when scheduling 716 * gets enabled in the unblock. For multi-lrc we still submit the 717 * context to move the LRC tails. 718 */ 719 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 720 goto out; 721 722 enabled = context_enabled(ce) || context_blocked(ce); 723 724 if (!enabled) { 725 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 726 action[len++] = ce->guc_id.id; 727 action[len++] = GUC_CONTEXT_ENABLE; 728 set_context_pending_enable(ce); 729 intel_context_get(ce); 730 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 731 } else { 732 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 733 action[len++] = ce->guc_id.id; 734 } 735 736 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 737 if (!enabled && !err) { 738 trace_intel_context_sched_enable(ce); 739 atomic_inc(&guc->outstanding_submission_g2h); 740 set_context_enabled(ce); 741 742 /* 743 * Without multi-lrc KMD does the submission step (moving the 744 * lrc tail) so enabling scheduling is sufficient to submit the 745 * context. This isn't the case in multi-lrc submission as the 746 * GuC needs to move the tails, hence the need for another H2G 747 * to submit a multi-lrc context after enabling scheduling. 748 */ 749 if (intel_context_is_parent(ce)) { 750 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 751 err = intel_guc_send_nb(guc, action, len - 1, 0); 752 } 753 } else if (!enabled) { 754 clr_context_pending_enable(ce); 755 intel_context_put(ce); 756 } 757 if (likely(!err)) 758 trace_i915_request_guc_submit(rq); 759 760 out: 761 spin_unlock(&ce->guc_state.lock); 762 return err; 763 } 764 765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 766 { 767 int ret = __guc_add_request(guc, rq); 768 769 if (unlikely(ret == -EBUSY)) { 770 guc->stalled_request = rq; 771 guc->submission_stall_reason = STALL_ADD_REQUEST; 772 } 773 774 return ret; 775 } 776 777 static inline void guc_set_lrc_tail(struct i915_request *rq) 778 { 779 rq->context->lrc_reg_state[CTX_RING_TAIL] = 780 intel_ring_set_tail(rq->ring, rq->tail); 781 } 782 783 static inline int rq_prio(const struct i915_request *rq) 784 { 785 return rq->sched.attr.priority; 786 } 787 788 static bool is_multi_lrc_rq(struct i915_request *rq) 789 { 790 return intel_context_is_parallel(rq->context); 791 } 792 793 static bool can_merge_rq(struct i915_request *rq, 794 struct i915_request *last) 795 { 796 return request_to_scheduling_context(rq) == 797 request_to_scheduling_context(last); 798 } 799 800 static u32 wq_space_until_wrap(struct intel_context *ce) 801 { 802 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 803 } 804 805 static void write_wqi(struct intel_context *ce, u32 wqi_size) 806 { 807 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 808 809 /* 810 * Ensure WQI are visible before updating tail 811 */ 812 intel_guc_write_barrier(ce_to_guc(ce)); 813 814 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 815 (WQ_SIZE - 1); 816 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 817 } 818 819 static int guc_wq_noop_append(struct intel_context *ce) 820 { 821 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 822 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 823 824 if (!wqi) 825 return -EBUSY; 826 827 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 828 829 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 830 FIELD_PREP(WQ_LEN_MASK, len_dw); 831 ce->parallel.guc.wqi_tail = 0; 832 833 return 0; 834 } 835 836 static int __guc_wq_item_append(struct i915_request *rq) 837 { 838 struct intel_context *ce = request_to_scheduling_context(rq); 839 struct intel_context *child; 840 unsigned int wqi_size = (ce->parallel.number_children + 4) * 841 sizeof(u32); 842 u32 *wqi; 843 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 844 int ret; 845 846 /* Ensure context is in correct state updating work queue */ 847 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 848 GEM_BUG_ON(context_guc_id_invalid(ce)); 849 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 850 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 851 852 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 853 if (wqi_size > wq_space_until_wrap(ce)) { 854 ret = guc_wq_noop_append(ce); 855 if (ret) 856 return ret; 857 } 858 859 wqi = get_wq_pointer(ce, wqi_size); 860 if (!wqi) 861 return -EBUSY; 862 863 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 864 865 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 866 FIELD_PREP(WQ_LEN_MASK, len_dw); 867 *wqi++ = ce->lrc.lrca; 868 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 869 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 870 *wqi++ = 0; /* fence_id */ 871 for_each_child(ce, child) 872 *wqi++ = child->ring->tail / sizeof(u64); 873 874 write_wqi(ce, wqi_size); 875 876 return 0; 877 } 878 879 static int guc_wq_item_append(struct intel_guc *guc, 880 struct i915_request *rq) 881 { 882 struct intel_context *ce = request_to_scheduling_context(rq); 883 int ret; 884 885 if (unlikely(!intel_context_is_schedulable(ce))) 886 return 0; 887 888 ret = __guc_wq_item_append(rq); 889 if (unlikely(ret == -EBUSY)) { 890 guc->stalled_request = rq; 891 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 892 } 893 894 return ret; 895 } 896 897 static bool multi_lrc_submit(struct i915_request *rq) 898 { 899 struct intel_context *ce = request_to_scheduling_context(rq); 900 901 intel_ring_set_tail(rq->ring, rq->tail); 902 903 /* 904 * We expect the front end (execbuf IOCTL) to set this flag on the last 905 * request generated from a multi-BB submission. This indicates to the 906 * backend (GuC interface) that we should submit this context thus 907 * submitting all the requests generated in parallel. 908 */ 909 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 910 !intel_context_is_schedulable(ce); 911 } 912 913 static int guc_dequeue_one_context(struct intel_guc *guc) 914 { 915 struct i915_sched_engine * const sched_engine = guc->sched_engine; 916 struct i915_request *last = NULL; 917 bool submit = false; 918 struct rb_node *rb; 919 int ret; 920 921 lockdep_assert_held(&sched_engine->lock); 922 923 if (guc->stalled_request) { 924 submit = true; 925 last = guc->stalled_request; 926 927 switch (guc->submission_stall_reason) { 928 case STALL_REGISTER_CONTEXT: 929 goto register_context; 930 case STALL_MOVE_LRC_TAIL: 931 goto move_lrc_tail; 932 case STALL_ADD_REQUEST: 933 goto add_request; 934 default: 935 MISSING_CASE(guc->submission_stall_reason); 936 } 937 } 938 939 while ((rb = rb_first_cached(&sched_engine->queue))) { 940 struct i915_priolist *p = to_priolist(rb); 941 struct i915_request *rq, *rn; 942 943 priolist_for_each_request_consume(rq, rn, p) { 944 if (last && !can_merge_rq(rq, last)) 945 goto register_context; 946 947 list_del_init(&rq->sched.link); 948 949 __i915_request_submit(rq); 950 951 trace_i915_request_in(rq, 0); 952 last = rq; 953 954 if (is_multi_lrc_rq(rq)) { 955 /* 956 * We need to coalesce all multi-lrc requests in 957 * a relationship into a single H2G. We are 958 * guaranteed that all of these requests will be 959 * submitted sequentially. 960 */ 961 if (multi_lrc_submit(rq)) { 962 submit = true; 963 goto register_context; 964 } 965 } else { 966 submit = true; 967 } 968 } 969 970 rb_erase_cached(&p->node, &sched_engine->queue); 971 i915_priolist_free(p); 972 } 973 974 register_context: 975 if (submit) { 976 struct intel_context *ce = request_to_scheduling_context(last); 977 978 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 979 intel_context_is_schedulable(ce))) { 980 ret = try_context_registration(ce, false); 981 if (unlikely(ret == -EPIPE)) { 982 goto deadlk; 983 } else if (ret == -EBUSY) { 984 guc->stalled_request = last; 985 guc->submission_stall_reason = 986 STALL_REGISTER_CONTEXT; 987 goto schedule_tasklet; 988 } else if (ret != 0) { 989 GEM_WARN_ON(ret); /* Unexpected */ 990 goto deadlk; 991 } 992 } 993 994 move_lrc_tail: 995 if (is_multi_lrc_rq(last)) { 996 ret = guc_wq_item_append(guc, last); 997 if (ret == -EBUSY) { 998 goto schedule_tasklet; 999 } else if (ret != 0) { 1000 GEM_WARN_ON(ret); /* Unexpected */ 1001 goto deadlk; 1002 } 1003 } else { 1004 guc_set_lrc_tail(last); 1005 } 1006 1007 add_request: 1008 ret = guc_add_request(guc, last); 1009 if (unlikely(ret == -EPIPE)) { 1010 goto deadlk; 1011 } else if (ret == -EBUSY) { 1012 goto schedule_tasklet; 1013 } else if (ret != 0) { 1014 GEM_WARN_ON(ret); /* Unexpected */ 1015 goto deadlk; 1016 } 1017 } 1018 1019 guc->stalled_request = NULL; 1020 guc->submission_stall_reason = STALL_NONE; 1021 return submit; 1022 1023 deadlk: 1024 sched_engine->tasklet.callback = NULL; 1025 tasklet_disable_nosync(&sched_engine->tasklet); 1026 return false; 1027 1028 schedule_tasklet: 1029 tasklet_schedule(&sched_engine->tasklet); 1030 return false; 1031 } 1032 1033 static void guc_submission_tasklet(struct tasklet_struct *t) 1034 { 1035 struct i915_sched_engine *sched_engine = 1036 from_tasklet(sched_engine, t, tasklet); 1037 unsigned long flags; 1038 bool loop; 1039 1040 spin_lock_irqsave(&sched_engine->lock, flags); 1041 1042 do { 1043 loop = guc_dequeue_one_context(sched_engine->private_data); 1044 } while (loop); 1045 1046 i915_sched_engine_reset_on_empty(sched_engine); 1047 1048 spin_unlock_irqrestore(&sched_engine->lock, flags); 1049 } 1050 1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1052 { 1053 if (iir & GT_RENDER_USER_INTERRUPT) 1054 intel_engine_signal_breadcrumbs(engine); 1055 } 1056 1057 static void __guc_context_destroy(struct intel_context *ce); 1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1059 static void guc_signal_context_fence(struct intel_context *ce); 1060 static void guc_cancel_context_requests(struct intel_context *ce); 1061 static void guc_blocked_fence_complete(struct intel_context *ce); 1062 1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1064 { 1065 struct intel_context *ce; 1066 unsigned long index, flags; 1067 bool pending_disable, pending_enable, deregister, destroyed, banned; 1068 1069 xa_lock_irqsave(&guc->context_lookup, flags); 1070 xa_for_each(&guc->context_lookup, index, ce) { 1071 /* 1072 * Corner case where the ref count on the object is zero but and 1073 * deregister G2H was lost. In this case we don't touch the ref 1074 * count and finish the destroy of the context. 1075 */ 1076 bool do_put = kref_get_unless_zero(&ce->ref); 1077 1078 xa_unlock(&guc->context_lookup); 1079 1080 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 1081 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { 1082 /* successful cancel so jump straight to close it */ 1083 intel_context_sched_disable_unpin(ce); 1084 } 1085 1086 spin_lock(&ce->guc_state.lock); 1087 1088 /* 1089 * Once we are at this point submission_disabled() is guaranteed 1090 * to be visible to all callers who set the below flags (see above 1091 * flush and flushes in reset_prepare). If submission_disabled() 1092 * is set, the caller shouldn't set these flags. 1093 */ 1094 1095 destroyed = context_destroyed(ce); 1096 pending_enable = context_pending_enable(ce); 1097 pending_disable = context_pending_disable(ce); 1098 deregister = context_wait_for_deregister_to_register(ce); 1099 banned = context_banned(ce); 1100 init_sched_state(ce); 1101 1102 spin_unlock(&ce->guc_state.lock); 1103 1104 if (pending_enable || destroyed || deregister) { 1105 decr_outstanding_submission_g2h(guc); 1106 if (deregister) 1107 guc_signal_context_fence(ce); 1108 if (destroyed) { 1109 intel_gt_pm_put_async(guc_to_gt(guc)); 1110 release_guc_id(guc, ce); 1111 __guc_context_destroy(ce); 1112 } 1113 if (pending_enable || deregister) 1114 intel_context_put(ce); 1115 } 1116 1117 /* Not mutualy exclusive with above if statement. */ 1118 if (pending_disable) { 1119 guc_signal_context_fence(ce); 1120 if (banned) { 1121 guc_cancel_context_requests(ce); 1122 intel_engine_signal_breadcrumbs(ce->engine); 1123 } 1124 intel_context_sched_disable_unpin(ce); 1125 decr_outstanding_submission_g2h(guc); 1126 1127 spin_lock(&ce->guc_state.lock); 1128 guc_blocked_fence_complete(ce); 1129 spin_unlock(&ce->guc_state.lock); 1130 1131 intel_context_put(ce); 1132 } 1133 1134 if (do_put) 1135 intel_context_put(ce); 1136 xa_lock(&guc->context_lookup); 1137 } 1138 xa_unlock_irqrestore(&guc->context_lookup, flags); 1139 } 1140 1141 /* 1142 * GuC stores busyness stats for each engine at context in/out boundaries. A 1143 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1144 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1145 * GuC. 1146 * 1147 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1148 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1149 * active. For an active engine total busyness = total + (now - start), where 1150 * 'now' is the time at which the busyness is sampled. For inactive engine, 1151 * total busyness = total. 1152 * 1153 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1154 * 1155 * The start and total values provided by GuC are 32 bits and wrap around in a 1156 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1157 * increasing ns values, there is a need for this implementation to account for 1158 * overflows and extend the GuC provided values to 64 bits before returning 1159 * busyness to the user. In order to do that, a worker runs periodically at 1160 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1161 * 27 seconds for a gt clock frequency of 19.2 MHz). 1162 */ 1163 1164 #define WRAP_TIME_CLKS U32_MAX 1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1166 1167 static void 1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1169 { 1170 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1171 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1172 1173 if (new_start == lower_32_bits(*prev_start)) 1174 return; 1175 1176 /* 1177 * When gt is unparked, we update the gt timestamp and start the ping 1178 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1179 * is unparked, all switched in contexts will have a start time that is 1180 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1181 * 1182 * If neither gt_stamp nor new_start has rolled over, then the 1183 * gt_stamp_hi does not need to be adjusted, however if one of them has 1184 * rolled over, we need to adjust gt_stamp_hi accordingly. 1185 * 1186 * The below conditions address the cases of new_start rollover and 1187 * gt_stamp_last rollover respectively. 1188 */ 1189 if (new_start < gt_stamp_last && 1190 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1191 gt_stamp_hi++; 1192 1193 if (new_start > gt_stamp_last && 1194 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1195 gt_stamp_hi--; 1196 1197 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1198 } 1199 1200 #define record_read(map_, field_) \ 1201 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1202 1203 /* 1204 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1205 * we run into a race where the value read is inconsistent. Sometimes the 1206 * inconsistency is in reading the upper MSB bytes of the last_in value when 1207 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1208 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1209 * determine validity of these values. Instead we read the values multiple times 1210 * until they are consistent. In test runs, 3 attempts results in consistent 1211 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1212 * any new occurences. 1213 */ 1214 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1215 u32 *last_in, u32 *id, u32 *total) 1216 { 1217 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1218 int i = 0; 1219 1220 do { 1221 *last_in = record_read(&rec_map, last_switch_in_stamp); 1222 *id = record_read(&rec_map, current_context_index); 1223 *total = record_read(&rec_map, total_runtime); 1224 1225 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1226 record_read(&rec_map, current_context_index) == *id && 1227 record_read(&rec_map, total_runtime) == *total) 1228 break; 1229 } while (++i < 6); 1230 } 1231 1232 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1233 { 1234 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1235 struct intel_guc *guc = &engine->gt->uc.guc; 1236 u32 last_switch, ctx_id, total; 1237 1238 lockdep_assert_held(&guc->timestamp.lock); 1239 1240 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1241 1242 stats->running = ctx_id != ~0U && last_switch; 1243 if (stats->running) 1244 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1245 1246 /* 1247 * Instead of adjusting the total for overflow, just add the 1248 * difference from previous sample stats->total_gt_clks 1249 */ 1250 if (total && total != ~0U) { 1251 stats->total_gt_clks += (u32)(total - stats->prev_total); 1252 stats->prev_total = total; 1253 } 1254 } 1255 1256 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1257 { 1258 intel_wakeref_t wakeref; 1259 u32 reg, shift; 1260 1261 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1262 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1263 1264 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1265 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1266 1267 return 3 - shift; 1268 } 1269 1270 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1271 { 1272 struct intel_gt *gt = guc_to_gt(guc); 1273 u32 gt_stamp_lo, gt_stamp_hi; 1274 u64 gpm_ts; 1275 1276 lockdep_assert_held(&guc->timestamp.lock); 1277 1278 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1279 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1280 MISC_STATUS1) >> guc->timestamp.shift; 1281 gt_stamp_lo = lower_32_bits(gpm_ts); 1282 *now = ktime_get(); 1283 1284 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1285 gt_stamp_hi++; 1286 1287 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1288 } 1289 1290 /* 1291 * Unlike the execlist mode of submission total and active times are in terms of 1292 * gt clocks. The *now parameter is retained to return the cpu time at which the 1293 * busyness was sampled. 1294 */ 1295 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1296 { 1297 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1298 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1299 struct intel_gt *gt = engine->gt; 1300 struct intel_guc *guc = >->uc.guc; 1301 u64 total, gt_stamp_saved; 1302 unsigned long flags; 1303 u32 reset_count; 1304 bool in_reset; 1305 1306 spin_lock_irqsave(&guc->timestamp.lock, flags); 1307 1308 /* 1309 * If a reset happened, we risk reading partially updated engine 1310 * busyness from GuC, so we just use the driver stored copy of busyness. 1311 * Synchronize with gt reset using reset_count and the 1312 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1313 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1314 * usable by checking the flag afterwards. 1315 */ 1316 reset_count = i915_reset_count(gpu_error); 1317 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1318 1319 *now = ktime_get(); 1320 1321 /* 1322 * The active busyness depends on start_gt_clk and gt_stamp. 1323 * gt_stamp is updated by i915 only when gt is awake and the 1324 * start_gt_clk is derived from GuC state. To get a consistent 1325 * view of activity, we query the GuC state only if gt is awake. 1326 */ 1327 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1328 stats_saved = *stats; 1329 gt_stamp_saved = guc->timestamp.gt_stamp; 1330 /* 1331 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1332 * start_gt_clk' calculation below for active engines. 1333 */ 1334 guc_update_engine_gt_clks(engine); 1335 guc_update_pm_timestamp(guc, now); 1336 intel_gt_pm_put_async(gt); 1337 if (i915_reset_count(gpu_error) != reset_count) { 1338 *stats = stats_saved; 1339 guc->timestamp.gt_stamp = gt_stamp_saved; 1340 } 1341 } 1342 1343 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1344 if (stats->running) { 1345 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1346 1347 total += intel_gt_clock_interval_to_ns(gt, clk); 1348 } 1349 1350 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1351 1352 return ns_to_ktime(total); 1353 } 1354 1355 static void guc_enable_busyness_worker(struct intel_guc *guc) 1356 { 1357 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); 1358 } 1359 1360 static void guc_cancel_busyness_worker(struct intel_guc *guc) 1361 { 1362 cancel_delayed_work_sync(&guc->timestamp.work); 1363 } 1364 1365 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1366 { 1367 struct intel_gt *gt = guc_to_gt(guc); 1368 struct intel_engine_cs *engine; 1369 enum intel_engine_id id; 1370 unsigned long flags; 1371 ktime_t unused; 1372 1373 guc_cancel_busyness_worker(guc); 1374 1375 spin_lock_irqsave(&guc->timestamp.lock, flags); 1376 1377 guc_update_pm_timestamp(guc, &unused); 1378 for_each_engine(engine, gt, id) { 1379 guc_update_engine_gt_clks(engine); 1380 engine->stats.guc.prev_total = 0; 1381 } 1382 1383 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1384 } 1385 1386 static void __update_guc_busyness_stats(struct intel_guc *guc) 1387 { 1388 struct intel_gt *gt = guc_to_gt(guc); 1389 struct intel_engine_cs *engine; 1390 enum intel_engine_id id; 1391 unsigned long flags; 1392 ktime_t unused; 1393 1394 guc->timestamp.last_stat_jiffies = jiffies; 1395 1396 spin_lock_irqsave(&guc->timestamp.lock, flags); 1397 1398 guc_update_pm_timestamp(guc, &unused); 1399 for_each_engine(engine, gt, id) 1400 guc_update_engine_gt_clks(engine); 1401 1402 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1403 } 1404 1405 static void __guc_context_update_stats(struct intel_context *ce) 1406 { 1407 struct intel_guc *guc = ce_to_guc(ce); 1408 unsigned long flags; 1409 1410 spin_lock_irqsave(&guc->timestamp.lock, flags); 1411 lrc_update_runtime(ce); 1412 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1413 } 1414 1415 static void guc_context_update_stats(struct intel_context *ce) 1416 { 1417 if (!intel_context_pin_if_active(ce)) 1418 return; 1419 1420 __guc_context_update_stats(ce); 1421 intel_context_unpin(ce); 1422 } 1423 1424 static void guc_timestamp_ping(struct work_struct *wrk) 1425 { 1426 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1427 timestamp.work.work); 1428 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1429 struct intel_gt *gt = guc_to_gt(guc); 1430 struct intel_context *ce; 1431 intel_wakeref_t wakeref; 1432 unsigned long index; 1433 int srcu, ret; 1434 1435 /* 1436 * Ideally the busyness worker should take a gt pm wakeref because the 1437 * worker only needs to be active while gt is awake. However, the 1438 * gt_park path cancels the worker synchronously and this complicates 1439 * the flow if the worker is also running at the same time. The cancel 1440 * waits for the worker and when the worker releases the wakeref, that 1441 * would call gt_park and would lead to a deadlock. 1442 * 1443 * The resolution is to take the global pm wakeref if runtime pm is 1444 * already active. If not, we don't need to update the busyness stats as 1445 * the stats would already be updated when the gt was parked. 1446 * 1447 * Note: 1448 * - We do not requeue the worker if we cannot take a reference to runtime 1449 * pm since intel_guc_busyness_unpark would requeue the worker in the 1450 * resume path. 1451 * 1452 * - If the gt was parked longer than time taken for GT timestamp to roll 1453 * over, we ignore those rollovers since we don't care about tracking 1454 * the exact GT time. We only care about roll overs when the gt is 1455 * active and running workloads. 1456 * 1457 * - There is a window of time between gt_park and runtime suspend, 1458 * where the worker may run. This is acceptable since the worker will 1459 * not find any new data to update busyness. 1460 */ 1461 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm); 1462 if (!wakeref) 1463 return; 1464 1465 /* 1466 * Synchronize with gt reset to make sure the worker does not 1467 * corrupt the engine/guc stats. NB: can't actually block waiting 1468 * for a reset to complete as the reset requires flushing out 1469 * this worker thread if started. So waiting would deadlock. 1470 */ 1471 ret = intel_gt_reset_trylock(gt, &srcu); 1472 if (ret) 1473 goto err_trylock; 1474 1475 __update_guc_busyness_stats(guc); 1476 1477 /* adjust context stats for overflow */ 1478 xa_for_each(&guc->context_lookup, index, ce) 1479 guc_context_update_stats(ce); 1480 1481 intel_gt_reset_unlock(gt, srcu); 1482 1483 guc_enable_busyness_worker(guc); 1484 1485 err_trylock: 1486 intel_runtime_pm_put(>->i915->runtime_pm, wakeref); 1487 } 1488 1489 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1490 { 1491 u32 offset = intel_guc_engine_usage_offset(guc); 1492 u32 action[] = { 1493 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1494 offset, 1495 0, 1496 }; 1497 1498 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1499 } 1500 1501 static int guc_init_engine_stats(struct intel_guc *guc) 1502 { 1503 struct intel_gt *gt = guc_to_gt(guc); 1504 intel_wakeref_t wakeref; 1505 int ret; 1506 1507 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1508 ret = guc_action_enable_usage_stats(guc); 1509 1510 if (ret) 1511 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); 1512 else 1513 guc_enable_busyness_worker(guc); 1514 1515 return ret; 1516 } 1517 1518 static void guc_fini_engine_stats(struct intel_guc *guc) 1519 { 1520 guc_cancel_busyness_worker(guc); 1521 } 1522 1523 void intel_guc_busyness_park(struct intel_gt *gt) 1524 { 1525 struct intel_guc *guc = >->uc.guc; 1526 1527 if (!guc_submission_initialized(guc)) 1528 return; 1529 1530 /* 1531 * There is a race with suspend flow where the worker runs after suspend 1532 * and causes an unclaimed register access warning. Cancel the worker 1533 * synchronously here. 1534 */ 1535 guc_cancel_busyness_worker(guc); 1536 1537 /* 1538 * Before parking, we should sample engine busyness stats if we need to. 1539 * We can skip it if we are less than half a ping from the last time we 1540 * sampled the busyness stats. 1541 */ 1542 if (guc->timestamp.last_stat_jiffies && 1543 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1544 (guc->timestamp.ping_delay / 2))) 1545 return; 1546 1547 __update_guc_busyness_stats(guc); 1548 } 1549 1550 void intel_guc_busyness_unpark(struct intel_gt *gt) 1551 { 1552 struct intel_guc *guc = >->uc.guc; 1553 unsigned long flags; 1554 ktime_t unused; 1555 1556 if (!guc_submission_initialized(guc)) 1557 return; 1558 1559 spin_lock_irqsave(&guc->timestamp.lock, flags); 1560 guc_update_pm_timestamp(guc, &unused); 1561 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1562 guc_enable_busyness_worker(guc); 1563 } 1564 1565 static inline bool 1566 submission_disabled(struct intel_guc *guc) 1567 { 1568 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1569 1570 return unlikely(!sched_engine || 1571 !__tasklet_is_enabled(&sched_engine->tasklet) || 1572 intel_gt_is_wedged(guc_to_gt(guc))); 1573 } 1574 1575 static void disable_submission(struct intel_guc *guc) 1576 { 1577 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1578 1579 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1580 GEM_BUG_ON(!guc->ct.enabled); 1581 __tasklet_disable_sync_once(&sched_engine->tasklet); 1582 sched_engine->tasklet.callback = NULL; 1583 } 1584 } 1585 1586 static void enable_submission(struct intel_guc *guc) 1587 { 1588 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1589 unsigned long flags; 1590 1591 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1592 sched_engine->tasklet.callback = guc_submission_tasklet; 1593 wmb(); /* Make sure callback visible */ 1594 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1595 __tasklet_enable(&sched_engine->tasklet)) { 1596 GEM_BUG_ON(!guc->ct.enabled); 1597 1598 /* And kick in case we missed a new request submission. */ 1599 tasklet_hi_schedule(&sched_engine->tasklet); 1600 } 1601 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1602 } 1603 1604 static void guc_flush_submissions(struct intel_guc *guc) 1605 { 1606 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1607 unsigned long flags; 1608 1609 spin_lock_irqsave(&sched_engine->lock, flags); 1610 spin_unlock_irqrestore(&sched_engine->lock, flags); 1611 } 1612 1613 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1614 1615 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1616 { 1617 if (unlikely(!guc_submission_initialized(guc))) { 1618 /* Reset called during driver load? GuC not yet initialised! */ 1619 return; 1620 } 1621 1622 intel_gt_park_heartbeats(guc_to_gt(guc)); 1623 disable_submission(guc); 1624 guc->interrupts.disable(guc); 1625 __reset_guc_busyness_stats(guc); 1626 1627 /* Flush IRQ handler */ 1628 spin_lock_irq(guc_to_gt(guc)->irq_lock); 1629 spin_unlock_irq(guc_to_gt(guc)->irq_lock); 1630 1631 guc_flush_submissions(guc); 1632 guc_flush_destroyed_contexts(guc); 1633 flush_work(&guc->ct.requests.worker); 1634 1635 scrub_guc_desc_for_outstanding_g2h(guc); 1636 } 1637 1638 static struct intel_engine_cs * 1639 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1640 { 1641 struct intel_engine_cs *engine; 1642 intel_engine_mask_t tmp, mask = ve->mask; 1643 unsigned int num_siblings = 0; 1644 1645 for_each_engine_masked(engine, ve->gt, mask, tmp) 1646 if (num_siblings++ == sibling) 1647 return engine; 1648 1649 return NULL; 1650 } 1651 1652 static inline struct intel_engine_cs * 1653 __context_to_physical_engine(struct intel_context *ce) 1654 { 1655 struct intel_engine_cs *engine = ce->engine; 1656 1657 if (intel_engine_is_virtual(engine)) 1658 engine = guc_virtual_get_sibling(engine, 0); 1659 1660 return engine; 1661 } 1662 1663 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1664 { 1665 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1666 1667 if (!intel_context_is_schedulable(ce)) 1668 return; 1669 1670 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1671 1672 /* 1673 * We want a simple context + ring to execute the breadcrumb update. 1674 * We cannot rely on the context being intact across the GPU hang, 1675 * so clear it and rebuild just what we need for the breadcrumb. 1676 * All pending requests for this context will be zapped, and any 1677 * future request will be after userspace has had the opportunity 1678 * to recreate its own state. 1679 */ 1680 if (scrub) 1681 lrc_init_regs(ce, engine, true); 1682 1683 /* Rerun the request; its payload has been neutered (if guilty). */ 1684 lrc_update_regs(ce, engine, head); 1685 } 1686 1687 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1688 { 1689 /* 1690 * Wa_22011802037: In addition to stopping the cs, we need 1691 * to wait for any pending mi force wakeups 1692 */ 1693 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) { 1694 intel_engine_stop_cs(engine); 1695 intel_engine_wait_for_pending_mi_fw(engine); 1696 } 1697 } 1698 1699 static void guc_reset_nop(struct intel_engine_cs *engine) 1700 { 1701 } 1702 1703 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1704 { 1705 } 1706 1707 static void 1708 __unwind_incomplete_requests(struct intel_context *ce) 1709 { 1710 struct i915_request *rq, *rn; 1711 struct list_head *pl; 1712 int prio = I915_PRIORITY_INVALID; 1713 struct i915_sched_engine * const sched_engine = 1714 ce->engine->sched_engine; 1715 unsigned long flags; 1716 1717 spin_lock_irqsave(&sched_engine->lock, flags); 1718 spin_lock(&ce->guc_state.lock); 1719 list_for_each_entry_safe_reverse(rq, rn, 1720 &ce->guc_state.requests, 1721 sched.link) { 1722 if (i915_request_completed(rq)) 1723 continue; 1724 1725 list_del_init(&rq->sched.link); 1726 __i915_request_unsubmit(rq); 1727 1728 /* Push the request back into the queue for later resubmission. */ 1729 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1730 if (rq_prio(rq) != prio) { 1731 prio = rq_prio(rq); 1732 pl = i915_sched_lookup_priolist(sched_engine, prio); 1733 } 1734 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1735 1736 list_add(&rq->sched.link, pl); 1737 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1738 } 1739 spin_unlock(&ce->guc_state.lock); 1740 spin_unlock_irqrestore(&sched_engine->lock, flags); 1741 } 1742 1743 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1744 { 1745 bool guilty; 1746 struct i915_request *rq; 1747 unsigned long flags; 1748 u32 head; 1749 int i, number_children = ce->parallel.number_children; 1750 struct intel_context *parent = ce; 1751 1752 GEM_BUG_ON(intel_context_is_child(ce)); 1753 1754 intel_context_get(ce); 1755 1756 /* 1757 * GuC will implicitly mark the context as non-schedulable when it sends 1758 * the reset notification. Make sure our state reflects this change. The 1759 * context will be marked enabled on resubmission. 1760 */ 1761 spin_lock_irqsave(&ce->guc_state.lock, flags); 1762 clr_context_enabled(ce); 1763 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1764 1765 /* 1766 * For each context in the relationship find the hanging request 1767 * resetting each context / request as needed 1768 */ 1769 for (i = 0; i < number_children + 1; ++i) { 1770 if (!intel_context_is_pinned(ce)) 1771 goto next_context; 1772 1773 guilty = false; 1774 rq = intel_context_get_active_request(ce); 1775 if (!rq) { 1776 head = ce->ring->tail; 1777 goto out_replay; 1778 } 1779 1780 if (i915_request_started(rq)) 1781 guilty = stalled & ce->engine->mask; 1782 1783 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1784 head = intel_ring_wrap(ce->ring, rq->head); 1785 1786 __i915_request_reset(rq, guilty); 1787 i915_request_put(rq); 1788 out_replay: 1789 guc_reset_state(ce, head, guilty); 1790 next_context: 1791 if (i != number_children) 1792 ce = list_next_entry(ce, parallel.child_link); 1793 } 1794 1795 __unwind_incomplete_requests(parent); 1796 intel_context_put(parent); 1797 } 1798 1799 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1800 { 1801 struct intel_context *ce; 1802 unsigned long index; 1803 unsigned long flags; 1804 1805 if (unlikely(!guc_submission_initialized(guc))) { 1806 /* Reset called during driver load? GuC not yet initialised! */ 1807 return; 1808 } 1809 1810 xa_lock_irqsave(&guc->context_lookup, flags); 1811 xa_for_each(&guc->context_lookup, index, ce) { 1812 if (!kref_get_unless_zero(&ce->ref)) 1813 continue; 1814 1815 xa_unlock(&guc->context_lookup); 1816 1817 if (intel_context_is_pinned(ce) && 1818 !intel_context_is_child(ce)) 1819 __guc_reset_context(ce, stalled); 1820 1821 intel_context_put(ce); 1822 1823 xa_lock(&guc->context_lookup); 1824 } 1825 xa_unlock_irqrestore(&guc->context_lookup, flags); 1826 1827 /* GuC is blown away, drop all references to contexts */ 1828 xa_destroy(&guc->context_lookup); 1829 } 1830 1831 static void guc_cancel_context_requests(struct intel_context *ce) 1832 { 1833 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1834 struct i915_request *rq; 1835 unsigned long flags; 1836 1837 /* Mark all executing requests as skipped. */ 1838 spin_lock_irqsave(&sched_engine->lock, flags); 1839 spin_lock(&ce->guc_state.lock); 1840 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1841 i915_request_put(i915_request_mark_eio(rq)); 1842 spin_unlock(&ce->guc_state.lock); 1843 spin_unlock_irqrestore(&sched_engine->lock, flags); 1844 } 1845 1846 static void 1847 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1848 { 1849 struct i915_request *rq, *rn; 1850 struct rb_node *rb; 1851 unsigned long flags; 1852 1853 /* Can be called during boot if GuC fails to load */ 1854 if (!sched_engine) 1855 return; 1856 1857 /* 1858 * Before we call engine->cancel_requests(), we should have exclusive 1859 * access to the submission state. This is arranged for us by the 1860 * caller disabling the interrupt generation, the tasklet and other 1861 * threads that may then access the same state, giving us a free hand 1862 * to reset state. However, we still need to let lockdep be aware that 1863 * we know this state may be accessed in hardirq context, so we 1864 * disable the irq around this manipulation and we want to keep 1865 * the spinlock focused on its duties and not accidentally conflate 1866 * coverage to the submission's irq state. (Similarly, although we 1867 * shouldn't need to disable irq around the manipulation of the 1868 * submission's irq state, we also wish to remind ourselves that 1869 * it is irq state.) 1870 */ 1871 spin_lock_irqsave(&sched_engine->lock, flags); 1872 1873 /* Flush the queued requests to the timeline list (for retiring). */ 1874 while ((rb = rb_first_cached(&sched_engine->queue))) { 1875 struct i915_priolist *p = to_priolist(rb); 1876 1877 priolist_for_each_request_consume(rq, rn, p) { 1878 list_del_init(&rq->sched.link); 1879 1880 __i915_request_submit(rq); 1881 1882 i915_request_put(i915_request_mark_eio(rq)); 1883 } 1884 1885 rb_erase_cached(&p->node, &sched_engine->queue); 1886 i915_priolist_free(p); 1887 } 1888 1889 /* Remaining _unready_ requests will be nop'ed when submitted */ 1890 1891 sched_engine->queue_priority_hint = INT_MIN; 1892 sched_engine->queue = RB_ROOT_CACHED; 1893 1894 spin_unlock_irqrestore(&sched_engine->lock, flags); 1895 } 1896 1897 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1898 { 1899 struct intel_context *ce; 1900 unsigned long index; 1901 unsigned long flags; 1902 1903 xa_lock_irqsave(&guc->context_lookup, flags); 1904 xa_for_each(&guc->context_lookup, index, ce) { 1905 if (!kref_get_unless_zero(&ce->ref)) 1906 continue; 1907 1908 xa_unlock(&guc->context_lookup); 1909 1910 if (intel_context_is_pinned(ce) && 1911 !intel_context_is_child(ce)) 1912 guc_cancel_context_requests(ce); 1913 1914 intel_context_put(ce); 1915 1916 xa_lock(&guc->context_lookup); 1917 } 1918 xa_unlock_irqrestore(&guc->context_lookup, flags); 1919 1920 guc_cancel_sched_engine_requests(guc->sched_engine); 1921 1922 /* GuC is blown away, drop all references to contexts */ 1923 xa_destroy(&guc->context_lookup); 1924 } 1925 1926 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1927 { 1928 /* Reset called during driver load or during wedge? */ 1929 if (unlikely(!guc_submission_initialized(guc) || 1930 intel_gt_is_wedged(guc_to_gt(guc)))) { 1931 return; 1932 } 1933 1934 /* 1935 * Technically possible for either of these values to be non-zero here, 1936 * but very unlikely + harmless. Regardless let's add a warn so we can 1937 * see in CI if this happens frequently / a precursor to taking down the 1938 * machine. 1939 */ 1940 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1941 atomic_set(&guc->outstanding_submission_g2h, 0); 1942 1943 intel_guc_global_policies_update(guc); 1944 enable_submission(guc); 1945 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1946 } 1947 1948 static void destroyed_worker_func(struct work_struct *w); 1949 static void reset_fail_worker_func(struct work_struct *w); 1950 1951 /* 1952 * Set up the memory resources to be shared with the GuC (via the GGTT) 1953 * at firmware loading time. 1954 */ 1955 int intel_guc_submission_init(struct intel_guc *guc) 1956 { 1957 struct intel_gt *gt = guc_to_gt(guc); 1958 int ret; 1959 1960 if (guc->submission_initialized) 1961 return 0; 1962 1963 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { 1964 ret = guc_lrc_desc_pool_create_v69(guc); 1965 if (ret) 1966 return ret; 1967 } 1968 1969 guc->submission_state.guc_ids_bitmap = 1970 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1971 if (!guc->submission_state.guc_ids_bitmap) { 1972 ret = -ENOMEM; 1973 goto destroy_pool; 1974 } 1975 1976 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1977 guc->timestamp.shift = gpm_timestamp_shift(gt); 1978 guc->submission_initialized = true; 1979 1980 return 0; 1981 1982 destroy_pool: 1983 guc_lrc_desc_pool_destroy_v69(guc); 1984 1985 return ret; 1986 } 1987 1988 void intel_guc_submission_fini(struct intel_guc *guc) 1989 { 1990 if (!guc->submission_initialized) 1991 return; 1992 1993 guc_flush_destroyed_contexts(guc); 1994 guc_lrc_desc_pool_destroy_v69(guc); 1995 i915_sched_engine_put(guc->sched_engine); 1996 bitmap_free(guc->submission_state.guc_ids_bitmap); 1997 guc->submission_initialized = false; 1998 } 1999 2000 static inline void queue_request(struct i915_sched_engine *sched_engine, 2001 struct i915_request *rq, 2002 int prio) 2003 { 2004 GEM_BUG_ON(!list_empty(&rq->sched.link)); 2005 list_add_tail(&rq->sched.link, 2006 i915_sched_lookup_priolist(sched_engine, prio)); 2007 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2008 tasklet_hi_schedule(&sched_engine->tasklet); 2009 } 2010 2011 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 2012 struct i915_request *rq) 2013 { 2014 int ret = 0; 2015 2016 __i915_request_submit(rq); 2017 2018 trace_i915_request_in(rq, 0); 2019 2020 if (is_multi_lrc_rq(rq)) { 2021 if (multi_lrc_submit(rq)) { 2022 ret = guc_wq_item_append(guc, rq); 2023 if (!ret) 2024 ret = guc_add_request(guc, rq); 2025 } 2026 } else { 2027 guc_set_lrc_tail(rq); 2028 ret = guc_add_request(guc, rq); 2029 } 2030 2031 if (unlikely(ret == -EPIPE)) 2032 disable_submission(guc); 2033 2034 return ret; 2035 } 2036 2037 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 2038 { 2039 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 2040 struct intel_context *ce = request_to_scheduling_context(rq); 2041 2042 return submission_disabled(guc) || guc->stalled_request || 2043 !i915_sched_engine_is_empty(sched_engine) || 2044 !ctx_id_mapped(guc, ce->guc_id.id); 2045 } 2046 2047 static void guc_submit_request(struct i915_request *rq) 2048 { 2049 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 2050 struct intel_guc *guc = &rq->engine->gt->uc.guc; 2051 unsigned long flags; 2052 2053 /* Will be called from irq-context when using foreign fences. */ 2054 spin_lock_irqsave(&sched_engine->lock, flags); 2055 2056 if (need_tasklet(guc, rq)) 2057 queue_request(sched_engine, rq, rq_prio(rq)); 2058 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 2059 tasklet_hi_schedule(&sched_engine->tasklet); 2060 2061 spin_unlock_irqrestore(&sched_engine->lock, flags); 2062 } 2063 2064 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 2065 { 2066 int ret; 2067 2068 GEM_BUG_ON(intel_context_is_child(ce)); 2069 2070 if (intel_context_is_parent(ce)) 2071 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 2072 NUMBER_MULTI_LRC_GUC_ID(guc), 2073 order_base_2(ce->parallel.number_children 2074 + 1)); 2075 else 2076 ret = ida_simple_get(&guc->submission_state.guc_ids, 2077 NUMBER_MULTI_LRC_GUC_ID(guc), 2078 guc->submission_state.num_guc_ids, 2079 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 2080 __GFP_NOWARN); 2081 if (unlikely(ret < 0)) 2082 return ret; 2083 2084 if (!intel_context_is_parent(ce)) 2085 ++guc->submission_state.guc_ids_in_use; 2086 2087 ce->guc_id.id = ret; 2088 return 0; 2089 } 2090 2091 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2092 { 2093 GEM_BUG_ON(intel_context_is_child(ce)); 2094 2095 if (!context_guc_id_invalid(ce)) { 2096 if (intel_context_is_parent(ce)) { 2097 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2098 ce->guc_id.id, 2099 order_base_2(ce->parallel.number_children 2100 + 1)); 2101 } else { 2102 --guc->submission_state.guc_ids_in_use; 2103 ida_simple_remove(&guc->submission_state.guc_ids, 2104 ce->guc_id.id); 2105 } 2106 clr_ctx_id_mapping(guc, ce->guc_id.id); 2107 set_context_guc_id_invalid(ce); 2108 } 2109 if (!list_empty(&ce->guc_id.link)) 2110 list_del_init(&ce->guc_id.link); 2111 } 2112 2113 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2114 { 2115 unsigned long flags; 2116 2117 spin_lock_irqsave(&guc->submission_state.lock, flags); 2118 __release_guc_id(guc, ce); 2119 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2120 } 2121 2122 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2123 { 2124 struct intel_context *cn; 2125 2126 lockdep_assert_held(&guc->submission_state.lock); 2127 GEM_BUG_ON(intel_context_is_child(ce)); 2128 GEM_BUG_ON(intel_context_is_parent(ce)); 2129 2130 if (!list_empty(&guc->submission_state.guc_id_list)) { 2131 cn = list_first_entry(&guc->submission_state.guc_id_list, 2132 struct intel_context, 2133 guc_id.link); 2134 2135 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2136 GEM_BUG_ON(context_guc_id_invalid(cn)); 2137 GEM_BUG_ON(intel_context_is_child(cn)); 2138 GEM_BUG_ON(intel_context_is_parent(cn)); 2139 2140 list_del_init(&cn->guc_id.link); 2141 ce->guc_id.id = cn->guc_id.id; 2142 2143 spin_lock(&cn->guc_state.lock); 2144 clr_context_registered(cn); 2145 spin_unlock(&cn->guc_state.lock); 2146 2147 set_context_guc_id_invalid(cn); 2148 2149 #ifdef CONFIG_DRM_I915_SELFTEST 2150 guc->number_guc_id_stolen++; 2151 #endif 2152 2153 return 0; 2154 } else { 2155 return -EAGAIN; 2156 } 2157 } 2158 2159 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2160 { 2161 int ret; 2162 2163 lockdep_assert_held(&guc->submission_state.lock); 2164 GEM_BUG_ON(intel_context_is_child(ce)); 2165 2166 ret = new_guc_id(guc, ce); 2167 if (unlikely(ret < 0)) { 2168 if (intel_context_is_parent(ce)) 2169 return -ENOSPC; 2170 2171 ret = steal_guc_id(guc, ce); 2172 if (ret < 0) 2173 return ret; 2174 } 2175 2176 if (intel_context_is_parent(ce)) { 2177 struct intel_context *child; 2178 int i = 1; 2179 2180 for_each_child(ce, child) 2181 child->guc_id.id = ce->guc_id.id + i++; 2182 } 2183 2184 return 0; 2185 } 2186 2187 #define PIN_GUC_ID_TRIES 4 2188 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2189 { 2190 int ret = 0; 2191 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2192 2193 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2194 2195 try_again: 2196 spin_lock_irqsave(&guc->submission_state.lock, flags); 2197 2198 might_lock(&ce->guc_state.lock); 2199 2200 if (context_guc_id_invalid(ce)) { 2201 ret = assign_guc_id(guc, ce); 2202 if (ret) 2203 goto out_unlock; 2204 ret = 1; /* Indidcates newly assigned guc_id */ 2205 } 2206 if (!list_empty(&ce->guc_id.link)) 2207 list_del_init(&ce->guc_id.link); 2208 atomic_inc(&ce->guc_id.ref); 2209 2210 out_unlock: 2211 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2212 2213 /* 2214 * -EAGAIN indicates no guc_id are available, let's retire any 2215 * outstanding requests to see if that frees up a guc_id. If the first 2216 * retire didn't help, insert a sleep with the timeslice duration before 2217 * attempting to retire more requests. Double the sleep period each 2218 * subsequent pass before finally giving up. The sleep period has max of 2219 * 100ms and minimum of 1ms. 2220 */ 2221 if (ret == -EAGAIN && --tries) { 2222 if (PIN_GUC_ID_TRIES - tries > 1) { 2223 unsigned int timeslice_shifted = 2224 ce->engine->props.timeslice_duration_ms << 2225 (PIN_GUC_ID_TRIES - tries - 2); 2226 unsigned int max = min_t(unsigned int, 100, 2227 timeslice_shifted); 2228 2229 msleep(max_t(unsigned int, max, 1)); 2230 } 2231 intel_gt_retire_requests(guc_to_gt(guc)); 2232 goto try_again; 2233 } 2234 2235 return ret; 2236 } 2237 2238 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2239 { 2240 unsigned long flags; 2241 2242 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2243 GEM_BUG_ON(intel_context_is_child(ce)); 2244 2245 if (unlikely(context_guc_id_invalid(ce) || 2246 intel_context_is_parent(ce))) 2247 return; 2248 2249 spin_lock_irqsave(&guc->submission_state.lock, flags); 2250 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2251 !atomic_read(&ce->guc_id.ref)) 2252 list_add_tail(&ce->guc_id.link, 2253 &guc->submission_state.guc_id_list); 2254 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2255 } 2256 2257 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2258 struct intel_context *ce, 2259 u32 guc_id, 2260 u32 offset, 2261 bool loop) 2262 { 2263 struct intel_context *child; 2264 u32 action[4 + MAX_ENGINE_INSTANCE]; 2265 int len = 0; 2266 2267 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2268 2269 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2270 action[len++] = guc_id; 2271 action[len++] = ce->parallel.number_children + 1; 2272 action[len++] = offset; 2273 for_each_child(ce, child) { 2274 offset += sizeof(struct guc_lrc_desc_v69); 2275 action[len++] = offset; 2276 } 2277 2278 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2279 } 2280 2281 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2282 struct intel_context *ce, 2283 struct guc_ctxt_registration_info *info, 2284 bool loop) 2285 { 2286 struct intel_context *child; 2287 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2288 int len = 0; 2289 u32 next_id; 2290 2291 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2292 2293 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2294 action[len++] = info->flags; 2295 action[len++] = info->context_idx; 2296 action[len++] = info->engine_class; 2297 action[len++] = info->engine_submit_mask; 2298 action[len++] = info->wq_desc_lo; 2299 action[len++] = info->wq_desc_hi; 2300 action[len++] = info->wq_base_lo; 2301 action[len++] = info->wq_base_hi; 2302 action[len++] = info->wq_size; 2303 action[len++] = ce->parallel.number_children + 1; 2304 action[len++] = info->hwlrca_lo; 2305 action[len++] = info->hwlrca_hi; 2306 2307 next_id = info->context_idx + 1; 2308 for_each_child(ce, child) { 2309 GEM_BUG_ON(next_id++ != child->guc_id.id); 2310 2311 /* 2312 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2313 * only supports 32 bit currently. 2314 */ 2315 action[len++] = lower_32_bits(child->lrc.lrca); 2316 action[len++] = upper_32_bits(child->lrc.lrca); 2317 } 2318 2319 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2320 2321 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2322 } 2323 2324 static int __guc_action_register_context_v69(struct intel_guc *guc, 2325 u32 guc_id, 2326 u32 offset, 2327 bool loop) 2328 { 2329 u32 action[] = { 2330 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2331 guc_id, 2332 offset, 2333 }; 2334 2335 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2336 0, loop); 2337 } 2338 2339 static int __guc_action_register_context_v70(struct intel_guc *guc, 2340 struct guc_ctxt_registration_info *info, 2341 bool loop) 2342 { 2343 u32 action[] = { 2344 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2345 info->flags, 2346 info->context_idx, 2347 info->engine_class, 2348 info->engine_submit_mask, 2349 info->wq_desc_lo, 2350 info->wq_desc_hi, 2351 info->wq_base_lo, 2352 info->wq_base_hi, 2353 info->wq_size, 2354 info->hwlrca_lo, 2355 info->hwlrca_hi, 2356 }; 2357 2358 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2359 0, loop); 2360 } 2361 2362 static void prepare_context_registration_info_v69(struct intel_context *ce); 2363 static void prepare_context_registration_info_v70(struct intel_context *ce, 2364 struct guc_ctxt_registration_info *info); 2365 2366 static int 2367 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2368 { 2369 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2370 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2371 2372 prepare_context_registration_info_v69(ce); 2373 2374 if (intel_context_is_parent(ce)) 2375 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2376 offset, loop); 2377 else 2378 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2379 offset, loop); 2380 } 2381 2382 static int 2383 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2384 { 2385 struct guc_ctxt_registration_info info; 2386 2387 prepare_context_registration_info_v70(ce, &info); 2388 2389 if (intel_context_is_parent(ce)) 2390 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2391 else 2392 return __guc_action_register_context_v70(guc, &info, loop); 2393 } 2394 2395 static int register_context(struct intel_context *ce, bool loop) 2396 { 2397 struct intel_guc *guc = ce_to_guc(ce); 2398 int ret; 2399 2400 GEM_BUG_ON(intel_context_is_child(ce)); 2401 trace_intel_context_register(ce); 2402 2403 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2404 ret = register_context_v70(guc, ce, loop); 2405 else 2406 ret = register_context_v69(guc, ce, loop); 2407 2408 if (likely(!ret)) { 2409 unsigned long flags; 2410 2411 spin_lock_irqsave(&ce->guc_state.lock, flags); 2412 set_context_registered(ce); 2413 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2414 2415 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2416 guc_context_policy_init_v70(ce, loop); 2417 } 2418 2419 return ret; 2420 } 2421 2422 static int __guc_action_deregister_context(struct intel_guc *guc, 2423 u32 guc_id) 2424 { 2425 u32 action[] = { 2426 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2427 guc_id, 2428 }; 2429 2430 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2431 G2H_LEN_DW_DEREGISTER_CONTEXT, 2432 true); 2433 } 2434 2435 static int deregister_context(struct intel_context *ce, u32 guc_id) 2436 { 2437 struct intel_guc *guc = ce_to_guc(ce); 2438 2439 GEM_BUG_ON(intel_context_is_child(ce)); 2440 trace_intel_context_deregister(ce); 2441 2442 return __guc_action_deregister_context(guc, guc_id); 2443 } 2444 2445 static inline void clear_children_join_go_memory(struct intel_context *ce) 2446 { 2447 struct parent_scratch *ps = __get_parent_scratch(ce); 2448 int i; 2449 2450 ps->go.semaphore = 0; 2451 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2452 ps->join[i].semaphore = 0; 2453 } 2454 2455 static inline u32 get_children_go_value(struct intel_context *ce) 2456 { 2457 return __get_parent_scratch(ce)->go.semaphore; 2458 } 2459 2460 static inline u32 get_children_join_value(struct intel_context *ce, 2461 u8 child_index) 2462 { 2463 return __get_parent_scratch(ce)->join[child_index].semaphore; 2464 } 2465 2466 struct context_policy { 2467 u32 count; 2468 struct guc_update_context_policy h2g; 2469 }; 2470 2471 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2472 { 2473 size_t bytes = sizeof(policy->h2g.header) + 2474 (sizeof(policy->h2g.klv[0]) * policy->count); 2475 2476 return bytes / sizeof(u32); 2477 } 2478 2479 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2480 { 2481 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2482 policy->h2g.header.ctx_id = guc_id; 2483 policy->count = 0; 2484 } 2485 2486 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2487 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2488 { \ 2489 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2490 policy->h2g.klv[policy->count].kl = \ 2491 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2492 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2493 policy->h2g.klv[policy->count].value = data; \ 2494 policy->count++; \ 2495 } 2496 2497 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2498 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2499 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2500 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2501 2502 #undef MAKE_CONTEXT_POLICY_ADD 2503 2504 static int __guc_context_set_context_policies(struct intel_guc *guc, 2505 struct context_policy *policy, 2506 bool loop) 2507 { 2508 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2509 __guc_context_policy_action_size(policy), 2510 0, loop); 2511 } 2512 2513 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2514 { 2515 struct intel_engine_cs *engine = ce->engine; 2516 struct intel_guc *guc = &engine->gt->uc.guc; 2517 struct context_policy policy; 2518 u32 execution_quantum; 2519 u32 preemption_timeout; 2520 unsigned long flags; 2521 int ret; 2522 2523 /* NB: For both of these, zero means disabled. */ 2524 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2525 execution_quantum)); 2526 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2527 preemption_timeout)); 2528 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2529 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2530 2531 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2532 2533 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2534 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2535 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2536 2537 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2538 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2539 2540 ret = __guc_context_set_context_policies(guc, &policy, loop); 2541 2542 spin_lock_irqsave(&ce->guc_state.lock, flags); 2543 if (ret != 0) 2544 set_context_policy_required(ce); 2545 else 2546 clr_context_policy_required(ce); 2547 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2548 2549 return ret; 2550 } 2551 2552 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2553 struct guc_lrc_desc_v69 *desc) 2554 { 2555 desc->policy_flags = 0; 2556 2557 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2558 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2559 2560 /* NB: For both of these, zero means disabled. */ 2561 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2562 desc->execution_quantum)); 2563 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2564 desc->preemption_timeout)); 2565 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2566 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2567 } 2568 2569 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2570 { 2571 /* 2572 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2573 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2574 */ 2575 switch (prio) { 2576 default: 2577 MISSING_CASE(prio); 2578 fallthrough; 2579 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2580 return GEN12_CTX_PRIORITY_NORMAL; 2581 case GUC_CLIENT_PRIORITY_NORMAL: 2582 return GEN12_CTX_PRIORITY_LOW; 2583 case GUC_CLIENT_PRIORITY_HIGH: 2584 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2585 return GEN12_CTX_PRIORITY_HIGH; 2586 } 2587 } 2588 2589 static void prepare_context_registration_info_v69(struct intel_context *ce) 2590 { 2591 struct intel_engine_cs *engine = ce->engine; 2592 struct intel_guc *guc = &engine->gt->uc.guc; 2593 u32 ctx_id = ce->guc_id.id; 2594 struct guc_lrc_desc_v69 *desc; 2595 struct intel_context *child; 2596 2597 GEM_BUG_ON(!engine->mask); 2598 2599 /* 2600 * Ensure LRC + CT vmas are is same region as write barrier is done 2601 * based on CT vma region. 2602 */ 2603 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2604 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2605 2606 desc = __get_lrc_desc_v69(guc, ctx_id); 2607 GEM_BUG_ON(!desc); 2608 desc->engine_class = engine_class_to_guc_class(engine->class); 2609 desc->engine_submit_mask = engine->logical_mask; 2610 desc->hw_context_desc = ce->lrc.lrca; 2611 desc->priority = ce->guc_state.prio; 2612 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2613 guc_context_policy_init_v69(engine, desc); 2614 2615 /* 2616 * If context is a parent, we need to register a process descriptor 2617 * describing a work queue and register all child contexts. 2618 */ 2619 if (intel_context_is_parent(ce)) { 2620 struct guc_process_desc_v69 *pdesc; 2621 2622 ce->parallel.guc.wqi_tail = 0; 2623 ce->parallel.guc.wqi_head = 0; 2624 2625 desc->process_desc = i915_ggtt_offset(ce->state) + 2626 __get_parent_scratch_offset(ce); 2627 desc->wq_addr = i915_ggtt_offset(ce->state) + 2628 __get_wq_offset(ce); 2629 desc->wq_size = WQ_SIZE; 2630 2631 pdesc = __get_process_desc_v69(ce); 2632 memset(pdesc, 0, sizeof(*(pdesc))); 2633 pdesc->stage_id = ce->guc_id.id; 2634 pdesc->wq_base_addr = desc->wq_addr; 2635 pdesc->wq_size_bytes = desc->wq_size; 2636 pdesc->wq_status = WQ_STATUS_ACTIVE; 2637 2638 ce->parallel.guc.wq_head = &pdesc->head; 2639 ce->parallel.guc.wq_tail = &pdesc->tail; 2640 ce->parallel.guc.wq_status = &pdesc->wq_status; 2641 2642 for_each_child(ce, child) { 2643 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2644 2645 desc->engine_class = 2646 engine_class_to_guc_class(engine->class); 2647 desc->hw_context_desc = child->lrc.lrca; 2648 desc->priority = ce->guc_state.prio; 2649 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2650 guc_context_policy_init_v69(engine, desc); 2651 } 2652 2653 clear_children_join_go_memory(ce); 2654 } 2655 } 2656 2657 static void prepare_context_registration_info_v70(struct intel_context *ce, 2658 struct guc_ctxt_registration_info *info) 2659 { 2660 struct intel_engine_cs *engine = ce->engine; 2661 struct intel_guc *guc = &engine->gt->uc.guc; 2662 u32 ctx_id = ce->guc_id.id; 2663 2664 GEM_BUG_ON(!engine->mask); 2665 2666 /* 2667 * Ensure LRC + CT vmas are is same region as write barrier is done 2668 * based on CT vma region. 2669 */ 2670 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2671 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2672 2673 memset(info, 0, sizeof(*info)); 2674 info->context_idx = ctx_id; 2675 info->engine_class = engine_class_to_guc_class(engine->class); 2676 info->engine_submit_mask = engine->logical_mask; 2677 /* 2678 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2679 * only supports 32 bit currently. 2680 */ 2681 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2682 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2683 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2684 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2685 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2686 2687 /* 2688 * If context is a parent, we need to register a process descriptor 2689 * describing a work queue and register all child contexts. 2690 */ 2691 if (intel_context_is_parent(ce)) { 2692 struct guc_sched_wq_desc *wq_desc; 2693 u64 wq_desc_offset, wq_base_offset; 2694 2695 ce->parallel.guc.wqi_tail = 0; 2696 ce->parallel.guc.wqi_head = 0; 2697 2698 wq_desc_offset = i915_ggtt_offset(ce->state) + 2699 __get_parent_scratch_offset(ce); 2700 wq_base_offset = i915_ggtt_offset(ce->state) + 2701 __get_wq_offset(ce); 2702 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2703 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2704 info->wq_base_lo = lower_32_bits(wq_base_offset); 2705 info->wq_base_hi = upper_32_bits(wq_base_offset); 2706 info->wq_size = WQ_SIZE; 2707 2708 wq_desc = __get_wq_desc_v70(ce); 2709 memset(wq_desc, 0, sizeof(*wq_desc)); 2710 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2711 2712 ce->parallel.guc.wq_head = &wq_desc->head; 2713 ce->parallel.guc.wq_tail = &wq_desc->tail; 2714 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2715 2716 clear_children_join_go_memory(ce); 2717 } 2718 } 2719 2720 static int try_context_registration(struct intel_context *ce, bool loop) 2721 { 2722 struct intel_engine_cs *engine = ce->engine; 2723 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2724 struct intel_guc *guc = &engine->gt->uc.guc; 2725 intel_wakeref_t wakeref; 2726 u32 ctx_id = ce->guc_id.id; 2727 bool context_registered; 2728 int ret = 0; 2729 2730 GEM_BUG_ON(!sched_state_is_init(ce)); 2731 2732 context_registered = ctx_id_mapped(guc, ctx_id); 2733 2734 clr_ctx_id_mapping(guc, ctx_id); 2735 set_ctx_id_mapping(guc, ctx_id, ce); 2736 2737 /* 2738 * The context_lookup xarray is used to determine if the hardware 2739 * context is currently registered. There are two cases in which it 2740 * could be registered either the guc_id has been stolen from another 2741 * context or the lrc descriptor address of this context has changed. In 2742 * either case the context needs to be deregistered with the GuC before 2743 * registering this context. 2744 */ 2745 if (context_registered) { 2746 bool disabled; 2747 unsigned long flags; 2748 2749 trace_intel_context_steal_guc_id(ce); 2750 GEM_BUG_ON(!loop); 2751 2752 /* Seal race with Reset */ 2753 spin_lock_irqsave(&ce->guc_state.lock, flags); 2754 disabled = submission_disabled(guc); 2755 if (likely(!disabled)) { 2756 set_context_wait_for_deregister_to_register(ce); 2757 intel_context_get(ce); 2758 } 2759 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2760 if (unlikely(disabled)) { 2761 clr_ctx_id_mapping(guc, ctx_id); 2762 return 0; /* Will get registered later */ 2763 } 2764 2765 /* 2766 * If stealing the guc_id, this ce has the same guc_id as the 2767 * context whose guc_id was stolen. 2768 */ 2769 with_intel_runtime_pm(runtime_pm, wakeref) 2770 ret = deregister_context(ce, ce->guc_id.id); 2771 if (unlikely(ret == -ENODEV)) 2772 ret = 0; /* Will get registered later */ 2773 } else { 2774 with_intel_runtime_pm(runtime_pm, wakeref) 2775 ret = register_context(ce, loop); 2776 if (unlikely(ret == -EBUSY)) { 2777 clr_ctx_id_mapping(guc, ctx_id); 2778 } else if (unlikely(ret == -ENODEV)) { 2779 clr_ctx_id_mapping(guc, ctx_id); 2780 ret = 0; /* Will get registered later */ 2781 } 2782 } 2783 2784 return ret; 2785 } 2786 2787 static int __guc_context_pre_pin(struct intel_context *ce, 2788 struct intel_engine_cs *engine, 2789 struct i915_gem_ww_ctx *ww, 2790 void **vaddr) 2791 { 2792 return lrc_pre_pin(ce, engine, ww, vaddr); 2793 } 2794 2795 static int __guc_context_pin(struct intel_context *ce, 2796 struct intel_engine_cs *engine, 2797 void *vaddr) 2798 { 2799 if (i915_ggtt_offset(ce->state) != 2800 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2801 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2802 2803 /* 2804 * GuC context gets pinned in guc_request_alloc. See that function for 2805 * explaination of why. 2806 */ 2807 2808 return lrc_pin(ce, engine, vaddr); 2809 } 2810 2811 static int guc_context_pre_pin(struct intel_context *ce, 2812 struct i915_gem_ww_ctx *ww, 2813 void **vaddr) 2814 { 2815 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2816 } 2817 2818 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2819 { 2820 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2821 2822 if (likely(!ret && !intel_context_is_barrier(ce))) 2823 intel_engine_pm_get(ce->engine); 2824 2825 return ret; 2826 } 2827 2828 static void guc_context_unpin(struct intel_context *ce) 2829 { 2830 struct intel_guc *guc = ce_to_guc(ce); 2831 2832 __guc_context_update_stats(ce); 2833 unpin_guc_id(guc, ce); 2834 lrc_unpin(ce); 2835 2836 if (likely(!intel_context_is_barrier(ce))) 2837 intel_engine_pm_put_async(ce->engine); 2838 } 2839 2840 static void guc_context_post_unpin(struct intel_context *ce) 2841 { 2842 lrc_post_unpin(ce); 2843 } 2844 2845 static void __guc_context_sched_enable(struct intel_guc *guc, 2846 struct intel_context *ce) 2847 { 2848 u32 action[] = { 2849 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2850 ce->guc_id.id, 2851 GUC_CONTEXT_ENABLE 2852 }; 2853 2854 trace_intel_context_sched_enable(ce); 2855 2856 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2857 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2858 } 2859 2860 static void __guc_context_sched_disable(struct intel_guc *guc, 2861 struct intel_context *ce, 2862 u16 guc_id) 2863 { 2864 u32 action[] = { 2865 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2866 guc_id, /* ce->guc_id.id not stable */ 2867 GUC_CONTEXT_DISABLE 2868 }; 2869 2870 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2871 2872 GEM_BUG_ON(intel_context_is_child(ce)); 2873 trace_intel_context_sched_disable(ce); 2874 2875 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2876 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2877 } 2878 2879 static void guc_blocked_fence_complete(struct intel_context *ce) 2880 { 2881 lockdep_assert_held(&ce->guc_state.lock); 2882 2883 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2884 i915_sw_fence_complete(&ce->guc_state.blocked); 2885 } 2886 2887 static void guc_blocked_fence_reinit(struct intel_context *ce) 2888 { 2889 lockdep_assert_held(&ce->guc_state.lock); 2890 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2891 2892 /* 2893 * This fence is always complete unless a pending schedule disable is 2894 * outstanding. We arm the fence here and complete it when we receive 2895 * the pending schedule disable complete message. 2896 */ 2897 i915_sw_fence_fini(&ce->guc_state.blocked); 2898 i915_sw_fence_reinit(&ce->guc_state.blocked); 2899 i915_sw_fence_await(&ce->guc_state.blocked); 2900 i915_sw_fence_commit(&ce->guc_state.blocked); 2901 } 2902 2903 static u16 prep_context_pending_disable(struct intel_context *ce) 2904 { 2905 lockdep_assert_held(&ce->guc_state.lock); 2906 2907 set_context_pending_disable(ce); 2908 clr_context_enabled(ce); 2909 guc_blocked_fence_reinit(ce); 2910 intel_context_get(ce); 2911 2912 return ce->guc_id.id; 2913 } 2914 2915 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2916 { 2917 struct intel_guc *guc = ce_to_guc(ce); 2918 unsigned long flags; 2919 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2920 intel_wakeref_t wakeref; 2921 u16 guc_id; 2922 bool enabled; 2923 2924 GEM_BUG_ON(intel_context_is_child(ce)); 2925 2926 spin_lock_irqsave(&ce->guc_state.lock, flags); 2927 2928 incr_context_blocked(ce); 2929 2930 enabled = context_enabled(ce); 2931 if (unlikely(!enabled || submission_disabled(guc))) { 2932 if (enabled) 2933 clr_context_enabled(ce); 2934 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2935 return &ce->guc_state.blocked; 2936 } 2937 2938 /* 2939 * We add +2 here as the schedule disable complete CTB handler calls 2940 * intel_context_sched_disable_unpin (-2 to pin_count). 2941 */ 2942 atomic_add(2, &ce->pin_count); 2943 2944 guc_id = prep_context_pending_disable(ce); 2945 2946 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2947 2948 with_intel_runtime_pm(runtime_pm, wakeref) 2949 __guc_context_sched_disable(guc, ce, guc_id); 2950 2951 return &ce->guc_state.blocked; 2952 } 2953 2954 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2955 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2956 #define SCHED_STATE_NO_UNBLOCK \ 2957 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2958 SCHED_STATE_PENDING_DISABLE | \ 2959 SCHED_STATE_BANNED) 2960 2961 static bool context_cant_unblock(struct intel_context *ce) 2962 { 2963 lockdep_assert_held(&ce->guc_state.lock); 2964 2965 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2966 context_guc_id_invalid(ce) || 2967 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2968 !intel_context_is_pinned(ce); 2969 } 2970 2971 static void guc_context_unblock(struct intel_context *ce) 2972 { 2973 struct intel_guc *guc = ce_to_guc(ce); 2974 unsigned long flags; 2975 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2976 intel_wakeref_t wakeref; 2977 bool enable; 2978 2979 GEM_BUG_ON(context_enabled(ce)); 2980 GEM_BUG_ON(intel_context_is_child(ce)); 2981 2982 spin_lock_irqsave(&ce->guc_state.lock, flags); 2983 2984 if (unlikely(submission_disabled(guc) || 2985 context_cant_unblock(ce))) { 2986 enable = false; 2987 } else { 2988 enable = true; 2989 set_context_pending_enable(ce); 2990 set_context_enabled(ce); 2991 intel_context_get(ce); 2992 } 2993 2994 decr_context_blocked(ce); 2995 2996 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2997 2998 if (enable) { 2999 with_intel_runtime_pm(runtime_pm, wakeref) 3000 __guc_context_sched_enable(guc, ce); 3001 } 3002 } 3003 3004 static void guc_context_cancel_request(struct intel_context *ce, 3005 struct i915_request *rq) 3006 { 3007 struct intel_context *block_context = 3008 request_to_scheduling_context(rq); 3009 3010 if (i915_sw_fence_signaled(&rq->submit)) { 3011 struct i915_sw_fence *fence; 3012 3013 intel_context_get(ce); 3014 fence = guc_context_block(block_context); 3015 i915_sw_fence_wait(fence); 3016 if (!i915_request_completed(rq)) { 3017 __i915_request_skip(rq); 3018 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 3019 true); 3020 } 3021 3022 guc_context_unblock(block_context); 3023 intel_context_put(ce); 3024 } 3025 } 3026 3027 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 3028 u16 guc_id, 3029 u32 preemption_timeout) 3030 { 3031 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3032 struct context_policy policy; 3033 3034 __guc_context_policy_start_klv(&policy, guc_id); 3035 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 3036 __guc_context_set_context_policies(guc, &policy, true); 3037 } else { 3038 u32 action[] = { 3039 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 3040 guc_id, 3041 preemption_timeout 3042 }; 3043 3044 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3045 } 3046 } 3047 3048 static void 3049 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 3050 unsigned int preempt_timeout_ms) 3051 { 3052 struct intel_guc *guc = ce_to_guc(ce); 3053 struct intel_runtime_pm *runtime_pm = 3054 &ce->engine->gt->i915->runtime_pm; 3055 intel_wakeref_t wakeref; 3056 unsigned long flags; 3057 3058 GEM_BUG_ON(intel_context_is_child(ce)); 3059 3060 guc_flush_submissions(guc); 3061 3062 spin_lock_irqsave(&ce->guc_state.lock, flags); 3063 set_context_banned(ce); 3064 3065 if (submission_disabled(guc) || 3066 (!context_enabled(ce) && !context_pending_disable(ce))) { 3067 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3068 3069 guc_cancel_context_requests(ce); 3070 intel_engine_signal_breadcrumbs(ce->engine); 3071 } else if (!context_pending_disable(ce)) { 3072 u16 guc_id; 3073 3074 /* 3075 * We add +2 here as the schedule disable complete CTB handler 3076 * calls intel_context_sched_disable_unpin (-2 to pin_count). 3077 */ 3078 atomic_add(2, &ce->pin_count); 3079 3080 guc_id = prep_context_pending_disable(ce); 3081 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3082 3083 /* 3084 * In addition to disabling scheduling, set the preemption 3085 * timeout to the minimum value (1 us) so the banned context 3086 * gets kicked off the HW ASAP. 3087 */ 3088 with_intel_runtime_pm(runtime_pm, wakeref) { 3089 __guc_context_set_preemption_timeout(guc, guc_id, 3090 preempt_timeout_ms); 3091 __guc_context_sched_disable(guc, ce, guc_id); 3092 } 3093 } else { 3094 if (!context_guc_id_invalid(ce)) 3095 with_intel_runtime_pm(runtime_pm, wakeref) 3096 __guc_context_set_preemption_timeout(guc, 3097 ce->guc_id.id, 3098 preempt_timeout_ms); 3099 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3100 } 3101 } 3102 3103 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, 3104 unsigned long flags) 3105 __releases(ce->guc_state.lock) 3106 { 3107 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3108 intel_wakeref_t wakeref; 3109 u16 guc_id; 3110 3111 lockdep_assert_held(&ce->guc_state.lock); 3112 guc_id = prep_context_pending_disable(ce); 3113 3114 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3115 3116 with_intel_runtime_pm(runtime_pm, wakeref) 3117 __guc_context_sched_disable(guc, ce, guc_id); 3118 } 3119 3120 static bool bypass_sched_disable(struct intel_guc *guc, 3121 struct intel_context *ce) 3122 { 3123 lockdep_assert_held(&ce->guc_state.lock); 3124 GEM_BUG_ON(intel_context_is_child(ce)); 3125 3126 if (submission_disabled(guc) || context_guc_id_invalid(ce) || 3127 !ctx_id_mapped(guc, ce->guc_id.id)) { 3128 clr_context_enabled(ce); 3129 return true; 3130 } 3131 3132 return !context_enabled(ce); 3133 } 3134 3135 static void __delay_sched_disable(struct work_struct *wrk) 3136 { 3137 struct intel_context *ce = 3138 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); 3139 struct intel_guc *guc = ce_to_guc(ce); 3140 unsigned long flags; 3141 3142 spin_lock_irqsave(&ce->guc_state.lock, flags); 3143 3144 if (bypass_sched_disable(guc, ce)) { 3145 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3146 intel_context_sched_disable_unpin(ce); 3147 } else { 3148 do_sched_disable(guc, ce, flags); 3149 } 3150 } 3151 3152 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) 3153 { 3154 /* 3155 * parent contexts are perma-pinned, if we are unpinning do schedule 3156 * disable immediately. 3157 */ 3158 if (intel_context_is_parent(ce)) 3159 return true; 3160 3161 /* 3162 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. 3163 */ 3164 return guc->submission_state.guc_ids_in_use > 3165 guc->submission_state.sched_disable_gucid_threshold; 3166 } 3167 3168 static void guc_context_sched_disable(struct intel_context *ce) 3169 { 3170 struct intel_guc *guc = ce_to_guc(ce); 3171 u64 delay = guc->submission_state.sched_disable_delay_ms; 3172 unsigned long flags; 3173 3174 spin_lock_irqsave(&ce->guc_state.lock, flags); 3175 3176 if (bypass_sched_disable(guc, ce)) { 3177 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3178 intel_context_sched_disable_unpin(ce); 3179 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && 3180 delay) { 3181 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3182 mod_delayed_work(system_unbound_wq, 3183 &ce->guc_state.sched_disable_delay_work, 3184 msecs_to_jiffies(delay)); 3185 } else { 3186 do_sched_disable(guc, ce, flags); 3187 } 3188 } 3189 3190 static void guc_context_close(struct intel_context *ce) 3191 { 3192 unsigned long flags; 3193 3194 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 3195 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) 3196 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); 3197 3198 spin_lock_irqsave(&ce->guc_state.lock, flags); 3199 set_context_close_done(ce); 3200 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3201 } 3202 3203 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3204 { 3205 struct intel_guc *guc = ce_to_guc(ce); 3206 struct intel_gt *gt = guc_to_gt(guc); 3207 unsigned long flags; 3208 bool disabled; 3209 3210 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3211 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3212 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3213 GEM_BUG_ON(context_enabled(ce)); 3214 3215 /* Seal race with Reset */ 3216 spin_lock_irqsave(&ce->guc_state.lock, flags); 3217 disabled = submission_disabled(guc); 3218 if (likely(!disabled)) { 3219 __intel_gt_pm_get(gt); 3220 set_context_destroyed(ce); 3221 clr_context_registered(ce); 3222 } 3223 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3224 if (unlikely(disabled)) { 3225 release_guc_id(guc, ce); 3226 __guc_context_destroy(ce); 3227 return; 3228 } 3229 3230 deregister_context(ce, ce->guc_id.id); 3231 } 3232 3233 static void __guc_context_destroy(struct intel_context *ce) 3234 { 3235 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3236 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3237 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3238 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3239 3240 lrc_fini(ce); 3241 intel_context_fini(ce); 3242 3243 if (intel_engine_is_virtual(ce->engine)) { 3244 struct guc_virtual_engine *ve = 3245 container_of(ce, typeof(*ve), context); 3246 3247 if (ve->base.breadcrumbs) 3248 intel_breadcrumbs_put(ve->base.breadcrumbs); 3249 3250 kfree(ve); 3251 } else { 3252 intel_context_free(ce); 3253 } 3254 } 3255 3256 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3257 { 3258 struct intel_context *ce; 3259 unsigned long flags; 3260 3261 GEM_BUG_ON(!submission_disabled(guc) && 3262 guc_submission_initialized(guc)); 3263 3264 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3265 spin_lock_irqsave(&guc->submission_state.lock, flags); 3266 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3267 struct intel_context, 3268 destroyed_link); 3269 if (ce) 3270 list_del_init(&ce->destroyed_link); 3271 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3272 3273 if (!ce) 3274 break; 3275 3276 release_guc_id(guc, ce); 3277 __guc_context_destroy(ce); 3278 } 3279 } 3280 3281 static void deregister_destroyed_contexts(struct intel_guc *guc) 3282 { 3283 struct intel_context *ce; 3284 unsigned long flags; 3285 3286 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3287 spin_lock_irqsave(&guc->submission_state.lock, flags); 3288 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3289 struct intel_context, 3290 destroyed_link); 3291 if (ce) 3292 list_del_init(&ce->destroyed_link); 3293 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3294 3295 if (!ce) 3296 break; 3297 3298 guc_lrc_desc_unpin(ce); 3299 } 3300 } 3301 3302 static void destroyed_worker_func(struct work_struct *w) 3303 { 3304 struct intel_guc *guc = container_of(w, struct intel_guc, 3305 submission_state.destroyed_worker); 3306 struct intel_gt *gt = guc_to_gt(guc); 3307 int tmp; 3308 3309 with_intel_gt_pm(gt, tmp) 3310 deregister_destroyed_contexts(guc); 3311 } 3312 3313 static void guc_context_destroy(struct kref *kref) 3314 { 3315 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3316 struct intel_guc *guc = ce_to_guc(ce); 3317 unsigned long flags; 3318 bool destroy; 3319 3320 /* 3321 * If the guc_id is invalid this context has been stolen and we can free 3322 * it immediately. Also can be freed immediately if the context is not 3323 * registered with the GuC or the GuC is in the middle of a reset. 3324 */ 3325 spin_lock_irqsave(&guc->submission_state.lock, flags); 3326 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3327 !ctx_id_mapped(guc, ce->guc_id.id); 3328 if (likely(!destroy)) { 3329 if (!list_empty(&ce->guc_id.link)) 3330 list_del_init(&ce->guc_id.link); 3331 list_add_tail(&ce->destroyed_link, 3332 &guc->submission_state.destroyed_contexts); 3333 } else { 3334 __release_guc_id(guc, ce); 3335 } 3336 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3337 if (unlikely(destroy)) { 3338 __guc_context_destroy(ce); 3339 return; 3340 } 3341 3342 /* 3343 * We use a worker to issue the H2G to deregister the context as we can 3344 * take the GT PM for the first time which isn't allowed from an atomic 3345 * context. 3346 */ 3347 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3348 } 3349 3350 static int guc_context_alloc(struct intel_context *ce) 3351 { 3352 return lrc_alloc(ce, ce->engine); 3353 } 3354 3355 static void __guc_context_set_prio(struct intel_guc *guc, 3356 struct intel_context *ce) 3357 { 3358 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3359 struct context_policy policy; 3360 3361 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3362 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3363 __guc_context_set_context_policies(guc, &policy, true); 3364 } else { 3365 u32 action[] = { 3366 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3367 ce->guc_id.id, 3368 ce->guc_state.prio, 3369 }; 3370 3371 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3372 } 3373 } 3374 3375 static void guc_context_set_prio(struct intel_guc *guc, 3376 struct intel_context *ce, 3377 u8 prio) 3378 { 3379 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3380 prio > GUC_CLIENT_PRIORITY_NORMAL); 3381 lockdep_assert_held(&ce->guc_state.lock); 3382 3383 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3384 !context_registered(ce)) { 3385 ce->guc_state.prio = prio; 3386 return; 3387 } 3388 3389 ce->guc_state.prio = prio; 3390 __guc_context_set_prio(guc, ce); 3391 3392 trace_intel_context_set_prio(ce); 3393 } 3394 3395 static inline u8 map_i915_prio_to_guc_prio(int prio) 3396 { 3397 if (prio == I915_PRIORITY_NORMAL) 3398 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3399 else if (prio < I915_PRIORITY_NORMAL) 3400 return GUC_CLIENT_PRIORITY_NORMAL; 3401 else if (prio < I915_PRIORITY_DISPLAY) 3402 return GUC_CLIENT_PRIORITY_HIGH; 3403 else 3404 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3405 } 3406 3407 static inline void add_context_inflight_prio(struct intel_context *ce, 3408 u8 guc_prio) 3409 { 3410 lockdep_assert_held(&ce->guc_state.lock); 3411 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3412 3413 ++ce->guc_state.prio_count[guc_prio]; 3414 3415 /* Overflow protection */ 3416 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3417 } 3418 3419 static inline void sub_context_inflight_prio(struct intel_context *ce, 3420 u8 guc_prio) 3421 { 3422 lockdep_assert_held(&ce->guc_state.lock); 3423 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3424 3425 /* Underflow protection */ 3426 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3427 3428 --ce->guc_state.prio_count[guc_prio]; 3429 } 3430 3431 static inline void update_context_prio(struct intel_context *ce) 3432 { 3433 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3434 int i; 3435 3436 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3437 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3438 3439 lockdep_assert_held(&ce->guc_state.lock); 3440 3441 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3442 if (ce->guc_state.prio_count[i]) { 3443 guc_context_set_prio(guc, ce, i); 3444 break; 3445 } 3446 } 3447 } 3448 3449 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3450 { 3451 /* Lower value is higher priority */ 3452 return new_guc_prio < old_guc_prio; 3453 } 3454 3455 static void add_to_context(struct i915_request *rq) 3456 { 3457 struct intel_context *ce = request_to_scheduling_context(rq); 3458 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3459 3460 GEM_BUG_ON(intel_context_is_child(ce)); 3461 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3462 3463 spin_lock(&ce->guc_state.lock); 3464 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3465 3466 if (rq->guc_prio == GUC_PRIO_INIT) { 3467 rq->guc_prio = new_guc_prio; 3468 add_context_inflight_prio(ce, rq->guc_prio); 3469 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3470 sub_context_inflight_prio(ce, rq->guc_prio); 3471 rq->guc_prio = new_guc_prio; 3472 add_context_inflight_prio(ce, rq->guc_prio); 3473 } 3474 update_context_prio(ce); 3475 3476 spin_unlock(&ce->guc_state.lock); 3477 } 3478 3479 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3480 { 3481 lockdep_assert_held(&ce->guc_state.lock); 3482 3483 if (rq->guc_prio != GUC_PRIO_INIT && 3484 rq->guc_prio != GUC_PRIO_FINI) { 3485 sub_context_inflight_prio(ce, rq->guc_prio); 3486 update_context_prio(ce); 3487 } 3488 rq->guc_prio = GUC_PRIO_FINI; 3489 } 3490 3491 static void remove_from_context(struct i915_request *rq) 3492 { 3493 struct intel_context *ce = request_to_scheduling_context(rq); 3494 3495 GEM_BUG_ON(intel_context_is_child(ce)); 3496 3497 spin_lock_irq(&ce->guc_state.lock); 3498 3499 list_del_init(&rq->sched.link); 3500 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3501 3502 /* Prevent further __await_execution() registering a cb, then flush */ 3503 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3504 3505 guc_prio_fini(rq, ce); 3506 3507 spin_unlock_irq(&ce->guc_state.lock); 3508 3509 atomic_dec(&ce->guc_id.ref); 3510 i915_request_notify_execute_cb_imm(rq); 3511 } 3512 3513 static const struct intel_context_ops guc_context_ops = { 3514 .flags = COPS_RUNTIME_CYCLES, 3515 .alloc = guc_context_alloc, 3516 3517 .close = guc_context_close, 3518 3519 .pre_pin = guc_context_pre_pin, 3520 .pin = guc_context_pin, 3521 .unpin = guc_context_unpin, 3522 .post_unpin = guc_context_post_unpin, 3523 3524 .revoke = guc_context_revoke, 3525 3526 .cancel_request = guc_context_cancel_request, 3527 3528 .enter = intel_context_enter_engine, 3529 .exit = intel_context_exit_engine, 3530 3531 .sched_disable = guc_context_sched_disable, 3532 3533 .update_stats = guc_context_update_stats, 3534 3535 .reset = lrc_reset, 3536 .destroy = guc_context_destroy, 3537 3538 .create_virtual = guc_create_virtual, 3539 .create_parallel = guc_create_parallel, 3540 }; 3541 3542 static void submit_work_cb(struct irq_work *wrk) 3543 { 3544 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3545 3546 might_lock(&rq->engine->sched_engine->lock); 3547 i915_sw_fence_complete(&rq->submit); 3548 } 3549 3550 static void __guc_signal_context_fence(struct intel_context *ce) 3551 { 3552 struct i915_request *rq, *rn; 3553 3554 lockdep_assert_held(&ce->guc_state.lock); 3555 3556 if (!list_empty(&ce->guc_state.fences)) 3557 trace_intel_context_fence_release(ce); 3558 3559 /* 3560 * Use an IRQ to ensure locking order of sched_engine->lock -> 3561 * ce->guc_state.lock is preserved. 3562 */ 3563 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3564 guc_fence_link) { 3565 list_del(&rq->guc_fence_link); 3566 irq_work_queue(&rq->submit_work); 3567 } 3568 3569 INIT_LIST_HEAD(&ce->guc_state.fences); 3570 } 3571 3572 static void guc_signal_context_fence(struct intel_context *ce) 3573 { 3574 unsigned long flags; 3575 3576 GEM_BUG_ON(intel_context_is_child(ce)); 3577 3578 spin_lock_irqsave(&ce->guc_state.lock, flags); 3579 clr_context_wait_for_deregister_to_register(ce); 3580 __guc_signal_context_fence(ce); 3581 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3582 } 3583 3584 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3585 { 3586 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3587 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3588 !submission_disabled(ce_to_guc(ce)); 3589 } 3590 3591 static void guc_context_init(struct intel_context *ce) 3592 { 3593 const struct i915_gem_context *ctx; 3594 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3595 3596 rcu_read_lock(); 3597 ctx = rcu_dereference(ce->gem_context); 3598 if (ctx) 3599 prio = ctx->sched.priority; 3600 rcu_read_unlock(); 3601 3602 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3603 3604 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, 3605 __delay_sched_disable); 3606 3607 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3608 } 3609 3610 static int guc_request_alloc(struct i915_request *rq) 3611 { 3612 struct intel_context *ce = request_to_scheduling_context(rq); 3613 struct intel_guc *guc = ce_to_guc(ce); 3614 unsigned long flags; 3615 int ret; 3616 3617 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3618 3619 /* 3620 * Flush enough space to reduce the likelihood of waiting after 3621 * we start building the request - in which case we will just 3622 * have to repeat work. 3623 */ 3624 rq->reserved_space += GUC_REQUEST_SIZE; 3625 3626 /* 3627 * Note that after this point, we have committed to using 3628 * this request as it is being used to both track the 3629 * state of engine initialisation and liveness of the 3630 * golden renderstate above. Think twice before you try 3631 * to cancel/unwind this request now. 3632 */ 3633 3634 /* Unconditionally invalidate GPU caches and TLBs. */ 3635 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3636 if (ret) 3637 return ret; 3638 3639 rq->reserved_space -= GUC_REQUEST_SIZE; 3640 3641 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3642 guc_context_init(ce); 3643 3644 /* 3645 * If the context gets closed while the execbuf is ongoing, the context 3646 * close code will race with the below code to cancel the delayed work. 3647 * If the context close wins the race and cancels the work, it will 3648 * immediately call the sched disable (see guc_context_close), so there 3649 * is a chance we can get past this check while the sched_disable code 3650 * is being executed. To make sure that code completes before we check 3651 * the status further down, we wait for the close process to complete. 3652 * Else, this code path could send a request down thinking that the 3653 * context is still in a schedule-enable mode while the GuC ends up 3654 * dropping the request completely because the disable did go from the 3655 * context_close path right to GuC just prior. In the event the CT is 3656 * full, we could potentially need to wait up to 1.5 seconds. 3657 */ 3658 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) 3659 intel_context_sched_disable_unpin(ce); 3660 else if (intel_context_is_closed(ce)) 3661 if (wait_for(context_close_done(ce), 1500)) 3662 guc_warn(guc, "timed out waiting on context sched close before realloc\n"); 3663 /* 3664 * Call pin_guc_id here rather than in the pinning step as with 3665 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3666 * guc_id and creating horrible race conditions. This is especially bad 3667 * when guc_id are being stolen due to over subscription. By the time 3668 * this function is reached, it is guaranteed that the guc_id will be 3669 * persistent until the generated request is retired. Thus, sealing these 3670 * race conditions. It is still safe to fail here if guc_id are 3671 * exhausted and return -EAGAIN to the user indicating that they can try 3672 * again in the future. 3673 * 3674 * There is no need for a lock here as the timeline mutex ensures at 3675 * most one context can be executing this code path at once. The 3676 * guc_id_ref is incremented once for every request in flight and 3677 * decremented on each retire. When it is zero, a lock around the 3678 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3679 */ 3680 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3681 goto out; 3682 3683 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3684 if (unlikely(ret < 0)) 3685 return ret; 3686 if (context_needs_register(ce, !!ret)) { 3687 ret = try_context_registration(ce, true); 3688 if (unlikely(ret)) { /* unwind */ 3689 if (ret == -EPIPE) { 3690 disable_submission(guc); 3691 goto out; /* GPU will be reset */ 3692 } 3693 atomic_dec(&ce->guc_id.ref); 3694 unpin_guc_id(guc, ce); 3695 return ret; 3696 } 3697 } 3698 3699 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3700 3701 out: 3702 /* 3703 * We block all requests on this context if a G2H is pending for a 3704 * schedule disable or context deregistration as the GuC will fail a 3705 * schedule enable or context registration if either G2H is pending 3706 * respectfully. Once a G2H returns, the fence is released that is 3707 * blocking these requests (see guc_signal_context_fence). 3708 */ 3709 spin_lock_irqsave(&ce->guc_state.lock, flags); 3710 if (context_wait_for_deregister_to_register(ce) || 3711 context_pending_disable(ce)) { 3712 init_irq_work(&rq->submit_work, submit_work_cb); 3713 i915_sw_fence_await(&rq->submit); 3714 3715 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3716 } 3717 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3718 3719 return 0; 3720 } 3721 3722 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3723 struct i915_gem_ww_ctx *ww, 3724 void **vaddr) 3725 { 3726 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3727 3728 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3729 } 3730 3731 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3732 { 3733 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3734 int ret = __guc_context_pin(ce, engine, vaddr); 3735 intel_engine_mask_t tmp, mask = ce->engine->mask; 3736 3737 if (likely(!ret)) 3738 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3739 intel_engine_pm_get(engine); 3740 3741 return ret; 3742 } 3743 3744 static void guc_virtual_context_unpin(struct intel_context *ce) 3745 { 3746 intel_engine_mask_t tmp, mask = ce->engine->mask; 3747 struct intel_engine_cs *engine; 3748 struct intel_guc *guc = ce_to_guc(ce); 3749 3750 GEM_BUG_ON(context_enabled(ce)); 3751 GEM_BUG_ON(intel_context_is_barrier(ce)); 3752 3753 unpin_guc_id(guc, ce); 3754 lrc_unpin(ce); 3755 3756 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3757 intel_engine_pm_put_async(engine); 3758 } 3759 3760 static void guc_virtual_context_enter(struct intel_context *ce) 3761 { 3762 intel_engine_mask_t tmp, mask = ce->engine->mask; 3763 struct intel_engine_cs *engine; 3764 3765 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3766 intel_engine_pm_get(engine); 3767 3768 intel_timeline_enter(ce->timeline); 3769 } 3770 3771 static void guc_virtual_context_exit(struct intel_context *ce) 3772 { 3773 intel_engine_mask_t tmp, mask = ce->engine->mask; 3774 struct intel_engine_cs *engine; 3775 3776 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3777 intel_engine_pm_put(engine); 3778 3779 intel_timeline_exit(ce->timeline); 3780 } 3781 3782 static int guc_virtual_context_alloc(struct intel_context *ce) 3783 { 3784 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3785 3786 return lrc_alloc(ce, engine); 3787 } 3788 3789 static const struct intel_context_ops virtual_guc_context_ops = { 3790 .flags = COPS_RUNTIME_CYCLES, 3791 .alloc = guc_virtual_context_alloc, 3792 3793 .close = guc_context_close, 3794 3795 .pre_pin = guc_virtual_context_pre_pin, 3796 .pin = guc_virtual_context_pin, 3797 .unpin = guc_virtual_context_unpin, 3798 .post_unpin = guc_context_post_unpin, 3799 3800 .revoke = guc_context_revoke, 3801 3802 .cancel_request = guc_context_cancel_request, 3803 3804 .enter = guc_virtual_context_enter, 3805 .exit = guc_virtual_context_exit, 3806 3807 .sched_disable = guc_context_sched_disable, 3808 .update_stats = guc_context_update_stats, 3809 3810 .destroy = guc_context_destroy, 3811 3812 .get_sibling = guc_virtual_get_sibling, 3813 }; 3814 3815 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3816 { 3817 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3818 struct intel_guc *guc = ce_to_guc(ce); 3819 int ret; 3820 3821 GEM_BUG_ON(!intel_context_is_parent(ce)); 3822 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3823 3824 ret = pin_guc_id(guc, ce); 3825 if (unlikely(ret < 0)) 3826 return ret; 3827 3828 return __guc_context_pin(ce, engine, vaddr); 3829 } 3830 3831 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3832 { 3833 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3834 3835 GEM_BUG_ON(!intel_context_is_child(ce)); 3836 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3837 3838 __intel_context_pin(ce->parallel.parent); 3839 return __guc_context_pin(ce, engine, vaddr); 3840 } 3841 3842 static void guc_parent_context_unpin(struct intel_context *ce) 3843 { 3844 struct intel_guc *guc = ce_to_guc(ce); 3845 3846 GEM_BUG_ON(context_enabled(ce)); 3847 GEM_BUG_ON(intel_context_is_barrier(ce)); 3848 GEM_BUG_ON(!intel_context_is_parent(ce)); 3849 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3850 3851 unpin_guc_id(guc, ce); 3852 lrc_unpin(ce); 3853 } 3854 3855 static void guc_child_context_unpin(struct intel_context *ce) 3856 { 3857 GEM_BUG_ON(context_enabled(ce)); 3858 GEM_BUG_ON(intel_context_is_barrier(ce)); 3859 GEM_BUG_ON(!intel_context_is_child(ce)); 3860 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3861 3862 lrc_unpin(ce); 3863 } 3864 3865 static void guc_child_context_post_unpin(struct intel_context *ce) 3866 { 3867 GEM_BUG_ON(!intel_context_is_child(ce)); 3868 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3869 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3870 3871 lrc_post_unpin(ce); 3872 intel_context_unpin(ce->parallel.parent); 3873 } 3874 3875 static void guc_child_context_destroy(struct kref *kref) 3876 { 3877 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3878 3879 __guc_context_destroy(ce); 3880 } 3881 3882 static const struct intel_context_ops virtual_parent_context_ops = { 3883 .alloc = guc_virtual_context_alloc, 3884 3885 .close = guc_context_close, 3886 3887 .pre_pin = guc_context_pre_pin, 3888 .pin = guc_parent_context_pin, 3889 .unpin = guc_parent_context_unpin, 3890 .post_unpin = guc_context_post_unpin, 3891 3892 .revoke = guc_context_revoke, 3893 3894 .cancel_request = guc_context_cancel_request, 3895 3896 .enter = guc_virtual_context_enter, 3897 .exit = guc_virtual_context_exit, 3898 3899 .sched_disable = guc_context_sched_disable, 3900 3901 .destroy = guc_context_destroy, 3902 3903 .get_sibling = guc_virtual_get_sibling, 3904 }; 3905 3906 static const struct intel_context_ops virtual_child_context_ops = { 3907 .alloc = guc_virtual_context_alloc, 3908 3909 .pre_pin = guc_context_pre_pin, 3910 .pin = guc_child_context_pin, 3911 .unpin = guc_child_context_unpin, 3912 .post_unpin = guc_child_context_post_unpin, 3913 3914 .cancel_request = guc_context_cancel_request, 3915 3916 .enter = guc_virtual_context_enter, 3917 .exit = guc_virtual_context_exit, 3918 3919 .destroy = guc_child_context_destroy, 3920 3921 .get_sibling = guc_virtual_get_sibling, 3922 }; 3923 3924 /* 3925 * The below override of the breadcrumbs is enabled when the user configures a 3926 * context for parallel submission (multi-lrc, parent-child). 3927 * 3928 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3929 * safely preempt all the hw contexts configured for parallel submission 3930 * between each BB. The contract between the i915 and GuC is if the parent 3931 * context can be preempted, all the children can be preempted, and the GuC will 3932 * always try to preempt the parent before the children. A handshake between the 3933 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3934 * creating a window to preempt between each set of BBs. 3935 */ 3936 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3937 u64 offset, u32 len, 3938 const unsigned int flags); 3939 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3940 u64 offset, u32 len, 3941 const unsigned int flags); 3942 static u32 * 3943 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3944 u32 *cs); 3945 static u32 * 3946 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3947 u32 *cs); 3948 3949 static struct intel_context * 3950 guc_create_parallel(struct intel_engine_cs **engines, 3951 unsigned int num_siblings, 3952 unsigned int width) 3953 { 3954 struct intel_engine_cs **siblings = NULL; 3955 struct intel_context *parent = NULL, *ce, *err; 3956 int i, j; 3957 3958 siblings = kmalloc_array(num_siblings, 3959 sizeof(*siblings), 3960 GFP_KERNEL); 3961 if (!siblings) 3962 return ERR_PTR(-ENOMEM); 3963 3964 for (i = 0; i < width; ++i) { 3965 for (j = 0; j < num_siblings; ++j) 3966 siblings[j] = engines[i * num_siblings + j]; 3967 3968 ce = intel_engine_create_virtual(siblings, num_siblings, 3969 FORCE_VIRTUAL); 3970 if (IS_ERR(ce)) { 3971 err = ERR_CAST(ce); 3972 goto unwind; 3973 } 3974 3975 if (i == 0) { 3976 parent = ce; 3977 parent->ops = &virtual_parent_context_ops; 3978 } else { 3979 ce->ops = &virtual_child_context_ops; 3980 intel_context_bind_parent_child(parent, ce); 3981 } 3982 } 3983 3984 parent->parallel.fence_context = dma_fence_context_alloc(1); 3985 3986 parent->engine->emit_bb_start = 3987 emit_bb_start_parent_no_preempt_mid_batch; 3988 parent->engine->emit_fini_breadcrumb = 3989 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3990 parent->engine->emit_fini_breadcrumb_dw = 3991 12 + 4 * parent->parallel.number_children; 3992 for_each_child(parent, ce) { 3993 ce->engine->emit_bb_start = 3994 emit_bb_start_child_no_preempt_mid_batch; 3995 ce->engine->emit_fini_breadcrumb = 3996 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3997 ce->engine->emit_fini_breadcrumb_dw = 16; 3998 } 3999 4000 kfree(siblings); 4001 return parent; 4002 4003 unwind: 4004 if (parent) 4005 intel_context_put(parent); 4006 kfree(siblings); 4007 return err; 4008 } 4009 4010 static bool 4011 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 4012 { 4013 struct intel_engine_cs *sibling; 4014 intel_engine_mask_t tmp, mask = b->engine_mask; 4015 bool result = false; 4016 4017 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 4018 result |= intel_engine_irq_enable(sibling); 4019 4020 return result; 4021 } 4022 4023 static void 4024 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 4025 { 4026 struct intel_engine_cs *sibling; 4027 intel_engine_mask_t tmp, mask = b->engine_mask; 4028 4029 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 4030 intel_engine_irq_disable(sibling); 4031 } 4032 4033 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 4034 { 4035 int i; 4036 4037 /* 4038 * In GuC submission mode we do not know which physical engine a request 4039 * will be scheduled on, this creates a problem because the breadcrumb 4040 * interrupt is per physical engine. To work around this we attach 4041 * requests and direct all breadcrumb interrupts to the first instance 4042 * of an engine per class. In addition all breadcrumb interrupts are 4043 * enabled / disabled across an engine class in unison. 4044 */ 4045 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 4046 struct intel_engine_cs *sibling = 4047 engine->gt->engine_class[engine->class][i]; 4048 4049 if (sibling) { 4050 if (engine->breadcrumbs != sibling->breadcrumbs) { 4051 intel_breadcrumbs_put(engine->breadcrumbs); 4052 engine->breadcrumbs = 4053 intel_breadcrumbs_get(sibling->breadcrumbs); 4054 } 4055 break; 4056 } 4057 } 4058 4059 if (engine->breadcrumbs) { 4060 engine->breadcrumbs->engine_mask |= engine->mask; 4061 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 4062 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 4063 } 4064 } 4065 4066 static void guc_bump_inflight_request_prio(struct i915_request *rq, 4067 int prio) 4068 { 4069 struct intel_context *ce = request_to_scheduling_context(rq); 4070 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 4071 4072 /* Short circuit function */ 4073 if (prio < I915_PRIORITY_NORMAL || 4074 rq->guc_prio == GUC_PRIO_FINI || 4075 (rq->guc_prio != GUC_PRIO_INIT && 4076 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 4077 return; 4078 4079 spin_lock(&ce->guc_state.lock); 4080 if (rq->guc_prio != GUC_PRIO_FINI) { 4081 if (rq->guc_prio != GUC_PRIO_INIT) 4082 sub_context_inflight_prio(ce, rq->guc_prio); 4083 rq->guc_prio = new_guc_prio; 4084 add_context_inflight_prio(ce, rq->guc_prio); 4085 update_context_prio(ce); 4086 } 4087 spin_unlock(&ce->guc_state.lock); 4088 } 4089 4090 static void guc_retire_inflight_request_prio(struct i915_request *rq) 4091 { 4092 struct intel_context *ce = request_to_scheduling_context(rq); 4093 4094 spin_lock(&ce->guc_state.lock); 4095 guc_prio_fini(rq, ce); 4096 spin_unlock(&ce->guc_state.lock); 4097 } 4098 4099 static void sanitize_hwsp(struct intel_engine_cs *engine) 4100 { 4101 struct intel_timeline *tl; 4102 4103 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 4104 intel_timeline_reset_seqno(tl); 4105 } 4106 4107 static void guc_sanitize(struct intel_engine_cs *engine) 4108 { 4109 /* 4110 * Poison residual state on resume, in case the suspend didn't! 4111 * 4112 * We have to assume that across suspend/resume (or other loss 4113 * of control) that the contents of our pinned buffers has been 4114 * lost, replaced by garbage. Since this doesn't always happen, 4115 * let's poison such state so that we more quickly spot when 4116 * we falsely assume it has been preserved. 4117 */ 4118 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 4119 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 4120 4121 /* 4122 * The kernel_context HWSP is stored in the status_page. As above, 4123 * that may be lost on resume/initialisation, and so we need to 4124 * reset the value in the HWSP. 4125 */ 4126 sanitize_hwsp(engine); 4127 4128 /* And scrub the dirty cachelines for the HWSP */ 4129 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 4130 4131 intel_engine_reset_pinned_contexts(engine); 4132 } 4133 4134 static void setup_hwsp(struct intel_engine_cs *engine) 4135 { 4136 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 4137 4138 ENGINE_WRITE_FW(engine, 4139 RING_HWS_PGA, 4140 i915_ggtt_offset(engine->status_page.vma)); 4141 } 4142 4143 static void start_engine(struct intel_engine_cs *engine) 4144 { 4145 ENGINE_WRITE_FW(engine, 4146 RING_MODE_GEN7, 4147 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 4148 4149 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 4150 ENGINE_POSTING_READ(engine, RING_MI_MODE); 4151 } 4152 4153 static int guc_resume(struct intel_engine_cs *engine) 4154 { 4155 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 4156 4157 intel_mocs_init_engine(engine); 4158 4159 intel_breadcrumbs_reset(engine->breadcrumbs); 4160 4161 setup_hwsp(engine); 4162 start_engine(engine); 4163 4164 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 4165 xehp_enable_ccs_engines(engine); 4166 4167 return 0; 4168 } 4169 4170 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 4171 { 4172 return !sched_engine->tasklet.callback; 4173 } 4174 4175 static void guc_set_default_submission(struct intel_engine_cs *engine) 4176 { 4177 engine->submit_request = guc_submit_request; 4178 } 4179 4180 static inline int guc_kernel_context_pin(struct intel_guc *guc, 4181 struct intel_context *ce) 4182 { 4183 int ret; 4184 4185 /* 4186 * Note: we purposefully do not check the returns below because 4187 * the registration can only fail if a reset is just starting. 4188 * This is called at the end of reset so presumably another reset 4189 * isn't happening and even it did this code would be run again. 4190 */ 4191 4192 if (context_guc_id_invalid(ce)) { 4193 ret = pin_guc_id(guc, ce); 4194 4195 if (ret < 0) 4196 return ret; 4197 } 4198 4199 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) 4200 guc_context_init(ce); 4201 4202 ret = try_context_registration(ce, true); 4203 if (ret) 4204 unpin_guc_id(guc, ce); 4205 4206 return ret; 4207 } 4208 4209 static inline int guc_init_submission(struct intel_guc *guc) 4210 { 4211 struct intel_gt *gt = guc_to_gt(guc); 4212 struct intel_engine_cs *engine; 4213 enum intel_engine_id id; 4214 4215 /* make sure all descriptors are clean... */ 4216 xa_destroy(&guc->context_lookup); 4217 4218 /* 4219 * A reset might have occurred while we had a pending stalled request, 4220 * so make sure we clean that up. 4221 */ 4222 guc->stalled_request = NULL; 4223 guc->submission_stall_reason = STALL_NONE; 4224 4225 /* 4226 * Some contexts might have been pinned before we enabled GuC 4227 * submission, so we need to add them to the GuC bookeeping. 4228 * Also, after a reset the of the GuC we want to make sure that the 4229 * information shared with GuC is properly reset. The kernel LRCs are 4230 * not attached to the gem_context, so they need to be added separately. 4231 */ 4232 for_each_engine(engine, gt, id) { 4233 struct intel_context *ce; 4234 4235 list_for_each_entry(ce, &engine->pinned_contexts_list, 4236 pinned_contexts_link) { 4237 int ret = guc_kernel_context_pin(guc, ce); 4238 4239 if (ret) { 4240 /* No point in trying to clean up as i915 will wedge on failure */ 4241 return ret; 4242 } 4243 } 4244 } 4245 4246 return 0; 4247 } 4248 4249 static void guc_release(struct intel_engine_cs *engine) 4250 { 4251 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4252 4253 intel_engine_cleanup_common(engine); 4254 lrc_fini_wa_ctx(engine); 4255 } 4256 4257 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4258 { 4259 struct intel_engine_cs *e; 4260 intel_engine_mask_t tmp, mask = engine->mask; 4261 4262 for_each_engine_masked(e, engine->gt, mask, tmp) 4263 e->serial++; 4264 } 4265 4266 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4267 { 4268 /* Default vfuncs which can be overridden by each engine. */ 4269 4270 engine->resume = guc_resume; 4271 4272 engine->cops = &guc_context_ops; 4273 engine->request_alloc = guc_request_alloc; 4274 engine->add_active_request = add_to_context; 4275 engine->remove_active_request = remove_from_context; 4276 4277 engine->sched_engine->schedule = i915_schedule; 4278 4279 engine->reset.prepare = guc_engine_reset_prepare; 4280 engine->reset.rewind = guc_rewind_nop; 4281 engine->reset.cancel = guc_reset_nop; 4282 engine->reset.finish = guc_reset_nop; 4283 4284 engine->emit_flush = gen8_emit_flush_xcs; 4285 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4286 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4287 if (GRAPHICS_VER(engine->i915) >= 12) { 4288 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4289 engine->emit_flush = gen12_emit_flush_xcs; 4290 } 4291 engine->set_default_submission = guc_set_default_submission; 4292 engine->busyness = guc_engine_busyness; 4293 4294 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4295 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4296 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4297 4298 /* Wa_14014475959:dg2 */ 4299 if (engine->class == COMPUTE_CLASS) 4300 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 4301 IS_DG2(engine->i915)) 4302 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4303 4304 /* 4305 * TODO: GuC supports timeslicing and semaphores as well, but they're 4306 * handled by the firmware so some minor tweaks are required before 4307 * enabling. 4308 * 4309 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4310 */ 4311 4312 engine->emit_bb_start = gen8_emit_bb_start; 4313 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4314 engine->emit_bb_start = xehp_emit_bb_start; 4315 } 4316 4317 static void rcs_submission_override(struct intel_engine_cs *engine) 4318 { 4319 switch (GRAPHICS_VER(engine->i915)) { 4320 case 12: 4321 engine->emit_flush = gen12_emit_flush_rcs; 4322 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4323 break; 4324 case 11: 4325 engine->emit_flush = gen11_emit_flush_rcs; 4326 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4327 break; 4328 default: 4329 engine->emit_flush = gen8_emit_flush_rcs; 4330 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4331 break; 4332 } 4333 } 4334 4335 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4336 { 4337 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4338 intel_engine_set_irq_handler(engine, cs_irq_handler); 4339 } 4340 4341 static void guc_sched_engine_destroy(struct kref *kref) 4342 { 4343 struct i915_sched_engine *sched_engine = 4344 container_of(kref, typeof(*sched_engine), ref); 4345 struct intel_guc *guc = sched_engine->private_data; 4346 4347 guc->sched_engine = NULL; 4348 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4349 kfree(sched_engine); 4350 } 4351 4352 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4353 { 4354 struct drm_i915_private *i915 = engine->i915; 4355 struct intel_guc *guc = &engine->gt->uc.guc; 4356 4357 /* 4358 * The setup relies on several assumptions (e.g. irqs always enabled) 4359 * that are only valid on gen11+ 4360 */ 4361 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4362 4363 if (!guc->sched_engine) { 4364 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4365 if (!guc->sched_engine) 4366 return -ENOMEM; 4367 4368 guc->sched_engine->schedule = i915_schedule; 4369 guc->sched_engine->disabled = guc_sched_engine_disabled; 4370 guc->sched_engine->private_data = guc; 4371 guc->sched_engine->destroy = guc_sched_engine_destroy; 4372 guc->sched_engine->bump_inflight_request_prio = 4373 guc_bump_inflight_request_prio; 4374 guc->sched_engine->retire_inflight_request_prio = 4375 guc_retire_inflight_request_prio; 4376 tasklet_setup(&guc->sched_engine->tasklet, 4377 guc_submission_tasklet); 4378 } 4379 i915_sched_engine_put(engine->sched_engine); 4380 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4381 4382 guc_default_vfuncs(engine); 4383 guc_default_irqs(engine); 4384 guc_init_breadcrumbs(engine); 4385 4386 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4387 rcs_submission_override(engine); 4388 4389 lrc_init_wa_ctx(engine); 4390 4391 /* Finally, take ownership and responsibility for cleanup! */ 4392 engine->sanitize = guc_sanitize; 4393 engine->release = guc_release; 4394 4395 return 0; 4396 } 4397 4398 struct scheduling_policy { 4399 /* internal data */ 4400 u32 max_words, num_words; 4401 u32 count; 4402 /* API data */ 4403 struct guc_update_scheduling_policy h2g; 4404 }; 4405 4406 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) 4407 { 4408 u32 *start = (void *)&policy->h2g; 4409 u32 *end = policy->h2g.data + policy->num_words; 4410 size_t delta = end - start; 4411 4412 return delta; 4413 } 4414 4415 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) 4416 { 4417 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; 4418 policy->max_words = ARRAY_SIZE(policy->h2g.data); 4419 policy->num_words = 0; 4420 policy->count = 0; 4421 4422 return policy; 4423 } 4424 4425 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, 4426 u32 action, u32 *data, u32 len) 4427 { 4428 u32 *klv_ptr = policy->h2g.data + policy->num_words; 4429 4430 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); 4431 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | 4432 FIELD_PREP(GUC_KLV_0_LEN, len); 4433 memcpy(klv_ptr, data, sizeof(u32) * len); 4434 policy->num_words += 1 + len; 4435 policy->count++; 4436 } 4437 4438 static int __guc_action_set_scheduling_policies(struct intel_guc *guc, 4439 struct scheduling_policy *policy) 4440 { 4441 int ret; 4442 4443 ret = intel_guc_send(guc, (u32 *)&policy->h2g, 4444 __guc_scheduling_policy_action_size(policy)); 4445 if (ret < 0) { 4446 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", 4447 ERR_PTR(ret)); 4448 return ret; 4449 } 4450 4451 if (ret != policy->count) { 4452 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", 4453 ret, policy->count); 4454 if (ret > policy->count) 4455 return -EPROTO; 4456 } 4457 4458 return 0; 4459 } 4460 4461 static int guc_init_global_schedule_policy(struct intel_guc *guc) 4462 { 4463 struct scheduling_policy policy; 4464 struct intel_gt *gt = guc_to_gt(guc); 4465 intel_wakeref_t wakeref; 4466 int ret; 4467 4468 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) 4469 return 0; 4470 4471 __guc_scheduling_policy_start_klv(&policy); 4472 4473 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 4474 u32 yield[] = { 4475 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, 4476 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, 4477 }; 4478 4479 __guc_scheduling_policy_add_klv(&policy, 4480 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, 4481 yield, ARRAY_SIZE(yield)); 4482 4483 ret = __guc_action_set_scheduling_policies(guc, &policy); 4484 } 4485 4486 return ret; 4487 } 4488 4489 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) 4490 { 4491 struct intel_gt *gt = guc_to_gt(guc); 4492 u32 val; 4493 4494 if (GRAPHICS_VER(gt->i915) < 12) 4495 return; 4496 4497 if (to_guc) 4498 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; 4499 else 4500 val = 0; 4501 4502 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); 4503 } 4504 4505 int intel_guc_submission_enable(struct intel_guc *guc) 4506 { 4507 int ret; 4508 4509 /* Semaphore interrupt enable and route to GuC */ 4510 guc_route_semaphores(guc, true); 4511 4512 ret = guc_init_submission(guc); 4513 if (ret) 4514 goto fail_sem; 4515 4516 ret = guc_init_engine_stats(guc); 4517 if (ret) 4518 goto fail_sem; 4519 4520 ret = guc_init_global_schedule_policy(guc); 4521 if (ret) 4522 goto fail_stats; 4523 4524 return 0; 4525 4526 fail_stats: 4527 guc_fini_engine_stats(guc); 4528 fail_sem: 4529 guc_route_semaphores(guc, false); 4530 return ret; 4531 } 4532 4533 /* Note: By the time we're here, GuC may have already been reset */ 4534 void intel_guc_submission_disable(struct intel_guc *guc) 4535 { 4536 guc_cancel_busyness_worker(guc); 4537 4538 /* Semaphore interrupt disable and route to host */ 4539 guc_route_semaphores(guc, false); 4540 } 4541 4542 static bool __guc_submission_supported(struct intel_guc *guc) 4543 { 4544 /* GuC submission is unavailable for pre-Gen11 */ 4545 return intel_guc_is_supported(guc) && 4546 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4547 } 4548 4549 static bool __guc_submission_selected(struct intel_guc *guc) 4550 { 4551 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4552 4553 if (!intel_guc_submission_is_supported(guc)) 4554 return false; 4555 4556 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4557 } 4558 4559 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) 4560 { 4561 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); 4562 } 4563 4564 /* 4565 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher 4566 * workloads are able to enjoy the latency reduction when delaying the schedule-disable 4567 * operation. This matches the 30fps game-render + encode (real world) workload this 4568 * knob was tested against. 4569 */ 4570 #define SCHED_DISABLE_DELAY_MS 34 4571 4572 /* 4573 * A threshold of 75% is a reasonable starting point considering that real world apps 4574 * generally don't get anywhere near this. 4575 */ 4576 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ 4577 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) 4578 4579 void intel_guc_submission_init_early(struct intel_guc *guc) 4580 { 4581 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4582 4583 spin_lock_init(&guc->submission_state.lock); 4584 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4585 ida_init(&guc->submission_state.guc_ids); 4586 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4587 INIT_WORK(&guc->submission_state.destroyed_worker, 4588 destroyed_worker_func); 4589 INIT_WORK(&guc->submission_state.reset_fail_worker, 4590 reset_fail_worker_func); 4591 4592 spin_lock_init(&guc->timestamp.lock); 4593 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4594 4595 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; 4596 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4597 guc->submission_state.sched_disable_gucid_threshold = 4598 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); 4599 guc->submission_supported = __guc_submission_supported(guc); 4600 guc->submission_selected = __guc_submission_selected(guc); 4601 } 4602 4603 static inline struct intel_context * 4604 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4605 { 4606 struct intel_context *ce; 4607 4608 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4609 guc_err(guc, "Invalid ctx_id %u\n", ctx_id); 4610 return NULL; 4611 } 4612 4613 ce = __get_context(guc, ctx_id); 4614 if (unlikely(!ce)) { 4615 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); 4616 return NULL; 4617 } 4618 4619 if (unlikely(intel_context_is_child(ce))) { 4620 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); 4621 return NULL; 4622 } 4623 4624 return ce; 4625 } 4626 4627 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4628 const u32 *msg, 4629 u32 len) 4630 { 4631 struct intel_context *ce; 4632 u32 ctx_id; 4633 4634 if (unlikely(len < 1)) { 4635 guc_err(guc, "Invalid length %u\n", len); 4636 return -EPROTO; 4637 } 4638 ctx_id = msg[0]; 4639 4640 ce = g2h_context_lookup(guc, ctx_id); 4641 if (unlikely(!ce)) 4642 return -EPROTO; 4643 4644 trace_intel_context_deregister_done(ce); 4645 4646 #ifdef CONFIG_DRM_I915_SELFTEST 4647 if (unlikely(ce->drop_deregister)) { 4648 ce->drop_deregister = false; 4649 return 0; 4650 } 4651 #endif 4652 4653 if (context_wait_for_deregister_to_register(ce)) { 4654 struct intel_runtime_pm *runtime_pm = 4655 &ce->engine->gt->i915->runtime_pm; 4656 intel_wakeref_t wakeref; 4657 4658 /* 4659 * Previous owner of this guc_id has been deregistered, now safe 4660 * register this context. 4661 */ 4662 with_intel_runtime_pm(runtime_pm, wakeref) 4663 register_context(ce, true); 4664 guc_signal_context_fence(ce); 4665 intel_context_put(ce); 4666 } else if (context_destroyed(ce)) { 4667 /* Context has been destroyed */ 4668 intel_gt_pm_put_async(guc_to_gt(guc)); 4669 release_guc_id(guc, ce); 4670 __guc_context_destroy(ce); 4671 } 4672 4673 decr_outstanding_submission_g2h(guc); 4674 4675 return 0; 4676 } 4677 4678 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4679 const u32 *msg, 4680 u32 len) 4681 { 4682 struct intel_context *ce; 4683 unsigned long flags; 4684 u32 ctx_id; 4685 4686 if (unlikely(len < 2)) { 4687 guc_err(guc, "Invalid length %u\n", len); 4688 return -EPROTO; 4689 } 4690 ctx_id = msg[0]; 4691 4692 ce = g2h_context_lookup(guc, ctx_id); 4693 if (unlikely(!ce)) 4694 return -EPROTO; 4695 4696 if (unlikely(context_destroyed(ce) || 4697 (!context_pending_enable(ce) && 4698 !context_pending_disable(ce)))) { 4699 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", 4700 ce->guc_state.sched_state, ctx_id); 4701 return -EPROTO; 4702 } 4703 4704 trace_intel_context_sched_done(ce); 4705 4706 if (context_pending_enable(ce)) { 4707 #ifdef CONFIG_DRM_I915_SELFTEST 4708 if (unlikely(ce->drop_schedule_enable)) { 4709 ce->drop_schedule_enable = false; 4710 return 0; 4711 } 4712 #endif 4713 4714 spin_lock_irqsave(&ce->guc_state.lock, flags); 4715 clr_context_pending_enable(ce); 4716 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4717 } else if (context_pending_disable(ce)) { 4718 bool banned; 4719 4720 #ifdef CONFIG_DRM_I915_SELFTEST 4721 if (unlikely(ce->drop_schedule_disable)) { 4722 ce->drop_schedule_disable = false; 4723 return 0; 4724 } 4725 #endif 4726 4727 /* 4728 * Unpin must be done before __guc_signal_context_fence, 4729 * otherwise a race exists between the requests getting 4730 * submitted + retired before this unpin completes resulting in 4731 * the pin_count going to zero and the context still being 4732 * enabled. 4733 */ 4734 intel_context_sched_disable_unpin(ce); 4735 4736 spin_lock_irqsave(&ce->guc_state.lock, flags); 4737 banned = context_banned(ce); 4738 clr_context_banned(ce); 4739 clr_context_pending_disable(ce); 4740 __guc_signal_context_fence(ce); 4741 guc_blocked_fence_complete(ce); 4742 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4743 4744 if (banned) { 4745 guc_cancel_context_requests(ce); 4746 intel_engine_signal_breadcrumbs(ce->engine); 4747 } 4748 } 4749 4750 decr_outstanding_submission_g2h(guc); 4751 intel_context_put(ce); 4752 4753 return 0; 4754 } 4755 4756 static void capture_error_state(struct intel_guc *guc, 4757 struct intel_context *ce) 4758 { 4759 struct intel_gt *gt = guc_to_gt(guc); 4760 struct drm_i915_private *i915 = gt->i915; 4761 intel_wakeref_t wakeref; 4762 intel_engine_mask_t engine_mask; 4763 4764 if (intel_engine_is_virtual(ce->engine)) { 4765 struct intel_engine_cs *e; 4766 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; 4767 4768 engine_mask = 0; 4769 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { 4770 bool match = intel_guc_capture_is_matching_engine(gt, ce, e); 4771 4772 if (match) { 4773 intel_engine_set_hung_context(e, ce); 4774 engine_mask |= e->mask; 4775 i915_increase_reset_engine_count(&i915->gpu_error, 4776 e); 4777 } 4778 } 4779 4780 if (!engine_mask) { 4781 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s", 4782 ce->guc_id.id, ce->engine->name); 4783 engine_mask = ~0U; 4784 } 4785 } else { 4786 intel_engine_set_hung_context(ce->engine, ce); 4787 engine_mask = ce->engine->mask; 4788 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine); 4789 } 4790 4791 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4792 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4793 } 4794 4795 static void guc_context_replay(struct intel_context *ce) 4796 { 4797 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4798 4799 __guc_reset_context(ce, ce->engine->mask); 4800 tasklet_hi_schedule(&sched_engine->tasklet); 4801 } 4802 4803 static void guc_handle_context_reset(struct intel_guc *guc, 4804 struct intel_context *ce) 4805 { 4806 trace_intel_context_reset(ce); 4807 4808 guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", 4809 ce->guc_id.id, ce->engine->name, 4810 str_yes_no(intel_context_is_exiting(ce)), 4811 str_yes_no(intel_context_is_banned(ce))); 4812 4813 if (likely(intel_context_is_schedulable(ce))) { 4814 capture_error_state(guc, ce); 4815 guc_context_replay(ce); 4816 } else { 4817 guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s", 4818 ce->guc_id.id, ce->engine->name); 4819 } 4820 } 4821 4822 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4823 const u32 *msg, u32 len) 4824 { 4825 struct intel_context *ce; 4826 unsigned long flags; 4827 int ctx_id; 4828 4829 if (unlikely(len != 1)) { 4830 guc_err(guc, "Invalid length %u", len); 4831 return -EPROTO; 4832 } 4833 4834 ctx_id = msg[0]; 4835 4836 /* 4837 * The context lookup uses the xarray but lookups only require an RCU lock 4838 * not the full spinlock. So take the lock explicitly and keep it until the 4839 * context has been reference count locked to ensure it can't be destroyed 4840 * asynchronously until the reset is done. 4841 */ 4842 xa_lock_irqsave(&guc->context_lookup, flags); 4843 ce = g2h_context_lookup(guc, ctx_id); 4844 if (ce) 4845 intel_context_get(ce); 4846 xa_unlock_irqrestore(&guc->context_lookup, flags); 4847 4848 if (unlikely(!ce)) 4849 return -EPROTO; 4850 4851 guc_handle_context_reset(guc, ce); 4852 intel_context_put(ce); 4853 4854 return 0; 4855 } 4856 4857 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4858 const u32 *msg, u32 len) 4859 { 4860 u32 status; 4861 4862 if (unlikely(len != 1)) { 4863 guc_dbg(guc, "Invalid length %u", len); 4864 return -EPROTO; 4865 } 4866 4867 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4868 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4869 guc_warn(guc, "No space for error capture"); 4870 4871 intel_guc_capture_process(guc); 4872 4873 return 0; 4874 } 4875 4876 struct intel_engine_cs * 4877 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4878 { 4879 struct intel_gt *gt = guc_to_gt(guc); 4880 u8 engine_class = guc_class_to_engine_class(guc_class); 4881 4882 /* Class index is checked in class converter */ 4883 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4884 4885 return gt->engine_class[engine_class][instance]; 4886 } 4887 4888 static void reset_fail_worker_func(struct work_struct *w) 4889 { 4890 struct intel_guc *guc = container_of(w, struct intel_guc, 4891 submission_state.reset_fail_worker); 4892 struct intel_gt *gt = guc_to_gt(guc); 4893 intel_engine_mask_t reset_fail_mask; 4894 unsigned long flags; 4895 4896 spin_lock_irqsave(&guc->submission_state.lock, flags); 4897 reset_fail_mask = guc->submission_state.reset_fail_mask; 4898 guc->submission_state.reset_fail_mask = 0; 4899 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4900 4901 if (likely(reset_fail_mask)) { 4902 struct intel_engine_cs *engine; 4903 enum intel_engine_id id; 4904 4905 /* 4906 * GuC is toast at this point - it dead loops after sending the failed 4907 * reset notification. So need to manually determine the guilty context. 4908 * Note that it should be reliable to do this here because the GuC is 4909 * toast and will not be scheduling behind the KMD's back. 4910 */ 4911 for_each_engine_masked(engine, gt, reset_fail_mask, id) 4912 intel_guc_find_hung_context(engine); 4913 4914 intel_gt_handle_error(gt, reset_fail_mask, 4915 I915_ERROR_CAPTURE, 4916 "GuC failed to reset engine mask=0x%x", 4917 reset_fail_mask); 4918 } 4919 } 4920 4921 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4922 const u32 *msg, u32 len) 4923 { 4924 struct intel_engine_cs *engine; 4925 u8 guc_class, instance; 4926 u32 reason; 4927 unsigned long flags; 4928 4929 if (unlikely(len != 3)) { 4930 guc_err(guc, "Invalid length %u", len); 4931 return -EPROTO; 4932 } 4933 4934 guc_class = msg[0]; 4935 instance = msg[1]; 4936 reason = msg[2]; 4937 4938 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4939 if (unlikely(!engine)) { 4940 guc_err(guc, "Invalid engine %d:%d", guc_class, instance); 4941 return -EPROTO; 4942 } 4943 4944 /* 4945 * This is an unexpected failure of a hardware feature. So, log a real 4946 * error message not just the informational that comes with the reset. 4947 */ 4948 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", 4949 guc_class, instance, engine->name, reason); 4950 4951 spin_lock_irqsave(&guc->submission_state.lock, flags); 4952 guc->submission_state.reset_fail_mask |= engine->mask; 4953 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4954 4955 /* 4956 * A GT reset flushes this worker queue (G2H handler) so we must use 4957 * another worker to trigger a GT reset. 4958 */ 4959 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4960 4961 return 0; 4962 } 4963 4964 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4965 { 4966 struct intel_guc *guc = &engine->gt->uc.guc; 4967 struct intel_context *ce; 4968 struct i915_request *rq; 4969 unsigned long index; 4970 unsigned long flags; 4971 4972 /* Reset called during driver load? GuC not yet initialised! */ 4973 if (unlikely(!guc_submission_initialized(guc))) 4974 return; 4975 4976 xa_lock_irqsave(&guc->context_lookup, flags); 4977 xa_for_each(&guc->context_lookup, index, ce) { 4978 bool found; 4979 4980 if (!kref_get_unless_zero(&ce->ref)) 4981 continue; 4982 4983 xa_unlock(&guc->context_lookup); 4984 4985 if (!intel_context_is_pinned(ce)) 4986 goto next; 4987 4988 if (intel_engine_is_virtual(ce->engine)) { 4989 if (!(ce->engine->mask & engine->mask)) 4990 goto next; 4991 } else { 4992 if (ce->engine != engine) 4993 goto next; 4994 } 4995 4996 found = false; 4997 spin_lock(&ce->guc_state.lock); 4998 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4999 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 5000 continue; 5001 5002 found = true; 5003 break; 5004 } 5005 spin_unlock(&ce->guc_state.lock); 5006 5007 if (found) { 5008 intel_engine_set_hung_context(engine, ce); 5009 5010 /* Can only cope with one hang at a time... */ 5011 intel_context_put(ce); 5012 xa_lock(&guc->context_lookup); 5013 goto done; 5014 } 5015 5016 next: 5017 intel_context_put(ce); 5018 xa_lock(&guc->context_lookup); 5019 } 5020 done: 5021 xa_unlock_irqrestore(&guc->context_lookup, flags); 5022 } 5023 5024 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 5025 struct i915_request *hung_rq, 5026 struct drm_printer *m) 5027 { 5028 struct intel_guc *guc = &engine->gt->uc.guc; 5029 struct intel_context *ce; 5030 unsigned long index; 5031 unsigned long flags; 5032 5033 /* Reset called during driver load? GuC not yet initialised! */ 5034 if (unlikely(!guc_submission_initialized(guc))) 5035 return; 5036 5037 xa_lock_irqsave(&guc->context_lookup, flags); 5038 xa_for_each(&guc->context_lookup, index, ce) { 5039 if (!kref_get_unless_zero(&ce->ref)) 5040 continue; 5041 5042 xa_unlock(&guc->context_lookup); 5043 5044 if (!intel_context_is_pinned(ce)) 5045 goto next; 5046 5047 if (intel_engine_is_virtual(ce->engine)) { 5048 if (!(ce->engine->mask & engine->mask)) 5049 goto next; 5050 } else { 5051 if (ce->engine != engine) 5052 goto next; 5053 } 5054 5055 spin_lock(&ce->guc_state.lock); 5056 intel_engine_dump_active_requests(&ce->guc_state.requests, 5057 hung_rq, m); 5058 spin_unlock(&ce->guc_state.lock); 5059 5060 next: 5061 intel_context_put(ce); 5062 xa_lock(&guc->context_lookup); 5063 } 5064 xa_unlock_irqrestore(&guc->context_lookup, flags); 5065 } 5066 5067 void intel_guc_submission_print_info(struct intel_guc *guc, 5068 struct drm_printer *p) 5069 { 5070 struct i915_sched_engine *sched_engine = guc->sched_engine; 5071 struct rb_node *rb; 5072 unsigned long flags; 5073 5074 if (!sched_engine) 5075 return; 5076 5077 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", 5078 guc->submission_version.major, guc->submission_version.minor, 5079 guc->submission_version.patch); 5080 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 5081 atomic_read(&guc->outstanding_submission_g2h)); 5082 drm_printf(p, "GuC tasklet count: %u\n", 5083 atomic_read(&sched_engine->tasklet.count)); 5084 5085 spin_lock_irqsave(&sched_engine->lock, flags); 5086 drm_printf(p, "Requests in GuC submit tasklet:\n"); 5087 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 5088 struct i915_priolist *pl = to_priolist(rb); 5089 struct i915_request *rq; 5090 5091 priolist_for_each_request(rq, pl) 5092 drm_printf(p, "guc_id=%u, seqno=%llu\n", 5093 rq->context->guc_id.id, 5094 rq->fence.seqno); 5095 } 5096 spin_unlock_irqrestore(&sched_engine->lock, flags); 5097 drm_printf(p, "\n"); 5098 } 5099 5100 static inline void guc_log_context_priority(struct drm_printer *p, 5101 struct intel_context *ce) 5102 { 5103 int i; 5104 5105 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 5106 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 5107 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 5108 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 5109 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 5110 i, ce->guc_state.prio_count[i]); 5111 } 5112 drm_printf(p, "\n"); 5113 } 5114 5115 static inline void guc_log_context(struct drm_printer *p, 5116 struct intel_context *ce) 5117 { 5118 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 5119 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 5120 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 5121 ce->ring->head, 5122 ce->lrc_reg_state[CTX_RING_HEAD]); 5123 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 5124 ce->ring->tail, 5125 ce->lrc_reg_state[CTX_RING_TAIL]); 5126 drm_printf(p, "\t\tContext Pin Count: %u\n", 5127 atomic_read(&ce->pin_count)); 5128 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 5129 atomic_read(&ce->guc_id.ref)); 5130 drm_printf(p, "\t\tSchedule State: 0x%x\n", 5131 ce->guc_state.sched_state); 5132 } 5133 5134 void intel_guc_submission_print_context_info(struct intel_guc *guc, 5135 struct drm_printer *p) 5136 { 5137 struct intel_context *ce; 5138 unsigned long index; 5139 unsigned long flags; 5140 5141 xa_lock_irqsave(&guc->context_lookup, flags); 5142 xa_for_each(&guc->context_lookup, index, ce) { 5143 GEM_BUG_ON(intel_context_is_child(ce)); 5144 5145 guc_log_context(p, ce); 5146 guc_log_context_priority(p, ce); 5147 5148 if (intel_context_is_parent(ce)) { 5149 struct intel_context *child; 5150 5151 drm_printf(p, "\t\tNumber children: %u\n", 5152 ce->parallel.number_children); 5153 5154 if (ce->parallel.guc.wq_status) { 5155 drm_printf(p, "\t\tWQI Head: %u\n", 5156 READ_ONCE(*ce->parallel.guc.wq_head)); 5157 drm_printf(p, "\t\tWQI Tail: %u\n", 5158 READ_ONCE(*ce->parallel.guc.wq_tail)); 5159 drm_printf(p, "\t\tWQI Status: %u\n", 5160 READ_ONCE(*ce->parallel.guc.wq_status)); 5161 } 5162 5163 if (ce->engine->emit_bb_start == 5164 emit_bb_start_parent_no_preempt_mid_batch) { 5165 u8 i; 5166 5167 drm_printf(p, "\t\tChildren Go: %u\n", 5168 get_children_go_value(ce)); 5169 for (i = 0; i < ce->parallel.number_children; ++i) 5170 drm_printf(p, "\t\tChildren Join: %u\n", 5171 get_children_join_value(ce, i)); 5172 } 5173 5174 for_each_child(ce, child) 5175 guc_log_context(p, child); 5176 } 5177 } 5178 xa_unlock_irqrestore(&guc->context_lookup, flags); 5179 } 5180 5181 static inline u32 get_children_go_addr(struct intel_context *ce) 5182 { 5183 GEM_BUG_ON(!intel_context_is_parent(ce)); 5184 5185 return i915_ggtt_offset(ce->state) + 5186 __get_parent_scratch_offset(ce) + 5187 offsetof(struct parent_scratch, go.semaphore); 5188 } 5189 5190 static inline u32 get_children_join_addr(struct intel_context *ce, 5191 u8 child_index) 5192 { 5193 GEM_BUG_ON(!intel_context_is_parent(ce)); 5194 5195 return i915_ggtt_offset(ce->state) + 5196 __get_parent_scratch_offset(ce) + 5197 offsetof(struct parent_scratch, join[child_index].semaphore); 5198 } 5199 5200 #define PARENT_GO_BB 1 5201 #define PARENT_GO_FINI_BREADCRUMB 0 5202 #define CHILD_GO_BB 1 5203 #define CHILD_GO_FINI_BREADCRUMB 0 5204 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 5205 u64 offset, u32 len, 5206 const unsigned int flags) 5207 { 5208 struct intel_context *ce = rq->context; 5209 u32 *cs; 5210 u8 i; 5211 5212 GEM_BUG_ON(!intel_context_is_parent(ce)); 5213 5214 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 5215 if (IS_ERR(cs)) 5216 return PTR_ERR(cs); 5217 5218 /* Wait on children */ 5219 for (i = 0; i < ce->parallel.number_children; ++i) { 5220 *cs++ = (MI_SEMAPHORE_WAIT | 5221 MI_SEMAPHORE_GLOBAL_GTT | 5222 MI_SEMAPHORE_POLL | 5223 MI_SEMAPHORE_SAD_EQ_SDD); 5224 *cs++ = PARENT_GO_BB; 5225 *cs++ = get_children_join_addr(ce, i); 5226 *cs++ = 0; 5227 } 5228 5229 /* Turn off preemption */ 5230 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5231 *cs++ = MI_NOOP; 5232 5233 /* Tell children go */ 5234 cs = gen8_emit_ggtt_write(cs, 5235 CHILD_GO_BB, 5236 get_children_go_addr(ce), 5237 0); 5238 5239 /* Jump to batch */ 5240 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5241 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5242 *cs++ = lower_32_bits(offset); 5243 *cs++ = upper_32_bits(offset); 5244 *cs++ = MI_NOOP; 5245 5246 intel_ring_advance(rq, cs); 5247 5248 return 0; 5249 } 5250 5251 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 5252 u64 offset, u32 len, 5253 const unsigned int flags) 5254 { 5255 struct intel_context *ce = rq->context; 5256 struct intel_context *parent = intel_context_to_parent(ce); 5257 u32 *cs; 5258 5259 GEM_BUG_ON(!intel_context_is_child(ce)); 5260 5261 cs = intel_ring_begin(rq, 12); 5262 if (IS_ERR(cs)) 5263 return PTR_ERR(cs); 5264 5265 /* Signal parent */ 5266 cs = gen8_emit_ggtt_write(cs, 5267 PARENT_GO_BB, 5268 get_children_join_addr(parent, 5269 ce->parallel.child_index), 5270 0); 5271 5272 /* Wait on parent for go */ 5273 *cs++ = (MI_SEMAPHORE_WAIT | 5274 MI_SEMAPHORE_GLOBAL_GTT | 5275 MI_SEMAPHORE_POLL | 5276 MI_SEMAPHORE_SAD_EQ_SDD); 5277 *cs++ = CHILD_GO_BB; 5278 *cs++ = get_children_go_addr(parent); 5279 *cs++ = 0; 5280 5281 /* Turn off preemption */ 5282 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5283 5284 /* Jump to batch */ 5285 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5286 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5287 *cs++ = lower_32_bits(offset); 5288 *cs++ = upper_32_bits(offset); 5289 5290 intel_ring_advance(rq, cs); 5291 5292 return 0; 5293 } 5294 5295 static u32 * 5296 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5297 u32 *cs) 5298 { 5299 struct intel_context *ce = rq->context; 5300 u8 i; 5301 5302 GEM_BUG_ON(!intel_context_is_parent(ce)); 5303 5304 /* Wait on children */ 5305 for (i = 0; i < ce->parallel.number_children; ++i) { 5306 *cs++ = (MI_SEMAPHORE_WAIT | 5307 MI_SEMAPHORE_GLOBAL_GTT | 5308 MI_SEMAPHORE_POLL | 5309 MI_SEMAPHORE_SAD_EQ_SDD); 5310 *cs++ = PARENT_GO_FINI_BREADCRUMB; 5311 *cs++ = get_children_join_addr(ce, i); 5312 *cs++ = 0; 5313 } 5314 5315 /* Turn on preemption */ 5316 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5317 *cs++ = MI_NOOP; 5318 5319 /* Tell children go */ 5320 cs = gen8_emit_ggtt_write(cs, 5321 CHILD_GO_FINI_BREADCRUMB, 5322 get_children_go_addr(ce), 5323 0); 5324 5325 return cs; 5326 } 5327 5328 /* 5329 * If this true, a submission of multi-lrc requests had an error and the 5330 * requests need to be skipped. The front end (execuf IOCTL) should've called 5331 * i915_request_skip which squashes the BB but we still need to emit the fini 5332 * breadrcrumbs seqno write. At this point we don't know how many of the 5333 * requests in the multi-lrc submission were generated so we can't do the 5334 * handshake between the parent and children (e.g. if 4 requests should be 5335 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 5336 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 5337 * has occurred on any of the requests in submission / relationship. 5338 */ 5339 static inline bool skip_handshake(struct i915_request *rq) 5340 { 5341 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 5342 } 5343 5344 #define NON_SKIP_LEN 6 5345 static u32 * 5346 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5347 u32 *cs) 5348 { 5349 struct intel_context *ce = rq->context; 5350 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5351 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5352 5353 GEM_BUG_ON(!intel_context_is_parent(ce)); 5354 5355 if (unlikely(skip_handshake(rq))) { 5356 /* 5357 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 5358 * the NON_SKIP_LEN comes from the length of the emits below. 5359 */ 5360 memset(cs, 0, sizeof(u32) * 5361 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5362 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5363 } else { 5364 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 5365 } 5366 5367 /* Emit fini breadcrumb */ 5368 before_fini_breadcrumb_user_interrupt_cs = cs; 5369 cs = gen8_emit_ggtt_write(cs, 5370 rq->fence.seqno, 5371 i915_request_active_timeline(rq)->hwsp_offset, 5372 0); 5373 5374 /* User interrupt */ 5375 *cs++ = MI_USER_INTERRUPT; 5376 *cs++ = MI_NOOP; 5377 5378 /* Ensure our math for skip + emit is correct */ 5379 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5380 cs); 5381 GEM_BUG_ON(start_fini_breadcrumb_cs + 5382 ce->engine->emit_fini_breadcrumb_dw != cs); 5383 5384 rq->tail = intel_ring_offset(rq, cs); 5385 5386 return cs; 5387 } 5388 5389 static u32 * 5390 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5391 u32 *cs) 5392 { 5393 struct intel_context *ce = rq->context; 5394 struct intel_context *parent = intel_context_to_parent(ce); 5395 5396 GEM_BUG_ON(!intel_context_is_child(ce)); 5397 5398 /* Turn on preemption */ 5399 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5400 *cs++ = MI_NOOP; 5401 5402 /* Signal parent */ 5403 cs = gen8_emit_ggtt_write(cs, 5404 PARENT_GO_FINI_BREADCRUMB, 5405 get_children_join_addr(parent, 5406 ce->parallel.child_index), 5407 0); 5408 5409 /* Wait parent on for go */ 5410 *cs++ = (MI_SEMAPHORE_WAIT | 5411 MI_SEMAPHORE_GLOBAL_GTT | 5412 MI_SEMAPHORE_POLL | 5413 MI_SEMAPHORE_SAD_EQ_SDD); 5414 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5415 *cs++ = get_children_go_addr(parent); 5416 *cs++ = 0; 5417 5418 return cs; 5419 } 5420 5421 static u32 * 5422 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5423 u32 *cs) 5424 { 5425 struct intel_context *ce = rq->context; 5426 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5427 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5428 5429 GEM_BUG_ON(!intel_context_is_child(ce)); 5430 5431 if (unlikely(skip_handshake(rq))) { 5432 /* 5433 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5434 * the NON_SKIP_LEN comes from the length of the emits below. 5435 */ 5436 memset(cs, 0, sizeof(u32) * 5437 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5438 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5439 } else { 5440 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5441 } 5442 5443 /* Emit fini breadcrumb */ 5444 before_fini_breadcrumb_user_interrupt_cs = cs; 5445 cs = gen8_emit_ggtt_write(cs, 5446 rq->fence.seqno, 5447 i915_request_active_timeline(rq)->hwsp_offset, 5448 0); 5449 5450 /* User interrupt */ 5451 *cs++ = MI_USER_INTERRUPT; 5452 *cs++ = MI_NOOP; 5453 5454 /* Ensure our math for skip + emit is correct */ 5455 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5456 cs); 5457 GEM_BUG_ON(start_fini_breadcrumb_cs + 5458 ce->engine->emit_fini_breadcrumb_dw != cs); 5459 5460 rq->tail = intel_ring_offset(rq, cs); 5461 5462 return cs; 5463 } 5464 5465 #undef NON_SKIP_LEN 5466 5467 static struct intel_context * 5468 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5469 unsigned long flags) 5470 { 5471 struct guc_virtual_engine *ve; 5472 struct intel_guc *guc; 5473 unsigned int n; 5474 int err; 5475 5476 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5477 if (!ve) 5478 return ERR_PTR(-ENOMEM); 5479 5480 guc = &siblings[0]->gt->uc.guc; 5481 5482 ve->base.i915 = siblings[0]->i915; 5483 ve->base.gt = siblings[0]->gt; 5484 ve->base.uncore = siblings[0]->uncore; 5485 ve->base.id = -1; 5486 5487 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5488 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5489 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5490 ve->base.saturated = ALL_ENGINES; 5491 5492 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5493 5494 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5495 5496 ve->base.cops = &virtual_guc_context_ops; 5497 ve->base.request_alloc = guc_request_alloc; 5498 ve->base.bump_serial = virtual_guc_bump_serial; 5499 5500 ve->base.submit_request = guc_submit_request; 5501 5502 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5503 5504 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); 5505 ve->base.mask = VIRTUAL_ENGINES; 5506 5507 intel_context_init(&ve->context, &ve->base); 5508 5509 for (n = 0; n < count; n++) { 5510 struct intel_engine_cs *sibling = siblings[n]; 5511 5512 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5513 if (sibling->mask & ve->base.mask) { 5514 guc_dbg(guc, "duplicate %s entry in load balancer\n", 5515 sibling->name); 5516 err = -EINVAL; 5517 goto err_put; 5518 } 5519 5520 ve->base.mask |= sibling->mask; 5521 ve->base.logical_mask |= sibling->logical_mask; 5522 5523 if (n != 0 && ve->base.class != sibling->class) { 5524 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", 5525 sibling->class, ve->base.class); 5526 err = -EINVAL; 5527 goto err_put; 5528 } else if (n == 0) { 5529 ve->base.class = sibling->class; 5530 ve->base.uabi_class = sibling->uabi_class; 5531 snprintf(ve->base.name, sizeof(ve->base.name), 5532 "v%dx%d", ve->base.class, count); 5533 ve->base.context_size = sibling->context_size; 5534 5535 ve->base.add_active_request = 5536 sibling->add_active_request; 5537 ve->base.remove_active_request = 5538 sibling->remove_active_request; 5539 ve->base.emit_bb_start = sibling->emit_bb_start; 5540 ve->base.emit_flush = sibling->emit_flush; 5541 ve->base.emit_init_breadcrumb = 5542 sibling->emit_init_breadcrumb; 5543 ve->base.emit_fini_breadcrumb = 5544 sibling->emit_fini_breadcrumb; 5545 ve->base.emit_fini_breadcrumb_dw = 5546 sibling->emit_fini_breadcrumb_dw; 5547 ve->base.breadcrumbs = 5548 intel_breadcrumbs_get(sibling->breadcrumbs); 5549 5550 ve->base.flags |= sibling->flags; 5551 5552 ve->base.props.timeslice_duration_ms = 5553 sibling->props.timeslice_duration_ms; 5554 ve->base.props.preempt_timeout_ms = 5555 sibling->props.preempt_timeout_ms; 5556 } 5557 } 5558 5559 return &ve->context; 5560 5561 err_put: 5562 intel_context_put(&ve->context); 5563 return ERR_PTR(err); 5564 } 5565 5566 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5567 { 5568 struct intel_engine_cs *engine; 5569 intel_engine_mask_t tmp, mask = ve->mask; 5570 5571 for_each_engine_masked(engine, ve->gt, mask, tmp) 5572 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5573 return true; 5574 5575 return false; 5576 } 5577 5578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5579 #include "selftest_guc.c" 5580 #include "selftest_guc_multi_lrc.c" 5581 #include "selftest_guc_hangcheck.c" 5582 #endif 5583