xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision e93e075d340859af772214c267d27f09f9db3e51)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_submission.h"
31 
32 #include "i915_drv.h"
33 #include "i915_reg.h"
34 #include "i915_trace.h"
35 
36 /**
37  * DOC: GuC-based command submission
38  *
39  * The Scratch registers:
40  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
41  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
42  * triggers an interrupt on the GuC via another register write (0xC4C8).
43  * Firmware writes a success/fail code back to the action register after
44  * processes the request. The kernel driver polls waiting for this update and
45  * then proceeds.
46  *
47  * Command Transport buffers (CTBs):
48  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
49  * - G2H) are a message interface between the i915 and GuC.
50  *
51  * Context registration:
52  * Before a context can be submitted it must be registered with the GuC via a
53  * H2G. A unique guc_id is associated with each context. The context is either
54  * registered at request creation time (normal operation) or at submission time
55  * (abnormal operation, e.g. after a reset).
56  *
57  * Context submission:
58  * The i915 updates the LRC tail value in memory. The i915 must enable the
59  * scheduling of the context within the GuC for the GuC to actually consider it.
60  * Therefore, the first time a disabled context is submitted we use a schedule
61  * enable H2G, while follow up submissions are done via the context submit H2G,
62  * which informs the GuC that a previously enabled context has new work
63  * available.
64  *
65  * Context unpin:
66  * To unpin a context a H2G is used to disable scheduling. When the
67  * corresponding G2H returns indicating the scheduling disable operation has
68  * completed it is safe to unpin the context. While a disable is in flight it
69  * isn't safe to resubmit the context so a fence is used to stall all future
70  * requests of that context until the G2H is returned. Because this interaction
71  * with the GuC takes a non-zero amount of time we delay the disabling of
72  * scheduling after the pin count goes to zero by a configurable period of time
73  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
74  * time to resubmit something on the context before doing this costly operation.
75  * This delay is only done if the context isn't closed and the guc_id usage is
76  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
77  *
78  * Context deregistration:
79  * Before a context can be destroyed or if we steal its guc_id we must
80  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
81  * safe to submit anything to this guc_id until the deregister completes so a
82  * fence is used to stall all requests associated with this guc_id until the
83  * corresponding G2H returns indicating the guc_id has been deregistered.
84  *
85  * submission_state.guc_ids:
86  * Unique number associated with private GuC context data passed in during
87  * context registration / submission / deregistration. 64k available. Simple ida
88  * is used for allocation.
89  *
90  * Stealing guc_ids:
91  * If no guc_ids are available they can be stolen from another context at
92  * request creation time if that context is unpinned. If a guc_id can't be found
93  * we punt this problem to the user as we believe this is near impossible to hit
94  * during normal use cases.
95  *
96  * Locking:
97  * In the GuC submission code we have 3 basic spin locks which protect
98  * everything. Details about each below.
99  *
100  * sched_engine->lock
101  * This is the submission lock for all contexts that share an i915 schedule
102  * engine (sched_engine), thus only one of the contexts which share a
103  * sched_engine can be submitting at a time. Currently only one sched_engine is
104  * used for all of GuC submission but that could change in the future.
105  *
106  * guc->submission_state.lock
107  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
108  * list.
109  *
110  * ce->guc_state.lock
111  * Protects everything under ce->guc_state. Ensures that a context is in the
112  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
113  * on a disabled context (bad idea), we don't issue a schedule enable when a
114  * schedule disable is in flight, etc... Also protects list of inflight requests
115  * on the context and the priority management state. Lock is individual to each
116  * context.
117  *
118  * Lock ordering rules:
119  * sched_engine->lock -> ce->guc_state.lock
120  * guc->submission_state.lock -> ce->guc_state.lock
121  *
122  * Reset races:
123  * When a full GT reset is triggered it is assumed that some G2H responses to
124  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
125  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
126  * contexts, release guc_ids, etc...). When this occurs we can scrub the
127  * context state and cleanup appropriately, however this is quite racey.
128  * To avoid races, the reset code must disable submission before scrubbing for
129  * the missing G2H, while the submission code must check for submission being
130  * disabled and skip sending H2Gs and updating context states when it is. Both
131  * sides must also make sure to hold the relevant locks.
132  */
133 
134 /* GuC Virtual Engine */
135 struct guc_virtual_engine {
136 	struct intel_engine_cs base;
137 	struct intel_context context;
138 };
139 
140 static struct intel_context *
141 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
142 		   unsigned long flags);
143 
144 static struct intel_context *
145 guc_create_parallel(struct intel_engine_cs **engines,
146 		    unsigned int num_siblings,
147 		    unsigned int width);
148 
149 #define GUC_REQUEST_SIZE 64 /* bytes */
150 
151 /*
152  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
153  * per the GuC submission interface. A different allocation algorithm is used
154  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
155  * partition the guc_id space. We believe the number of multi-lrc contexts in
156  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
157  * multi-lrc.
158  */
159 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
160 	((guc)->submission_state.num_guc_ids / 16)
161 
162 /*
163  * Below is a set of functions which control the GuC scheduling state which
164  * require a lock.
165  */
166 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
167 #define SCHED_STATE_DESTROYED				BIT(1)
168 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
169 #define SCHED_STATE_BANNED				BIT(3)
170 #define SCHED_STATE_ENABLED				BIT(4)
171 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
172 #define SCHED_STATE_REGISTERED				BIT(6)
173 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
174 #define SCHED_STATE_CLOSED				BIT(8)
175 #define SCHED_STATE_BLOCKED_SHIFT			9
176 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
177 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
178 
179 static inline void init_sched_state(struct intel_context *ce)
180 {
181 	lockdep_assert_held(&ce->guc_state.lock);
182 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
183 }
184 
185 /*
186  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
187  * A context close can race with the submission path, so SCHED_STATE_CLOSED
188  * can be set immediately before we try to register.
189  */
190 #define SCHED_STATE_VALID_INIT \
191 	(SCHED_STATE_BLOCKED_MASK | \
192 	 SCHED_STATE_CLOSED | \
193 	 SCHED_STATE_REGISTERED)
194 
195 __maybe_unused
196 static bool sched_state_is_init(struct intel_context *ce)
197 {
198 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
199 }
200 
201 static inline bool
202 context_wait_for_deregister_to_register(struct intel_context *ce)
203 {
204 	return ce->guc_state.sched_state &
205 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
206 }
207 
208 static inline void
209 set_context_wait_for_deregister_to_register(struct intel_context *ce)
210 {
211 	lockdep_assert_held(&ce->guc_state.lock);
212 	ce->guc_state.sched_state |=
213 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
214 }
215 
216 static inline void
217 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
218 {
219 	lockdep_assert_held(&ce->guc_state.lock);
220 	ce->guc_state.sched_state &=
221 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
222 }
223 
224 static inline bool
225 context_destroyed(struct intel_context *ce)
226 {
227 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
228 }
229 
230 static inline void
231 set_context_destroyed(struct intel_context *ce)
232 {
233 	lockdep_assert_held(&ce->guc_state.lock);
234 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
235 }
236 
237 static inline bool context_pending_disable(struct intel_context *ce)
238 {
239 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
240 }
241 
242 static inline void set_context_pending_disable(struct intel_context *ce)
243 {
244 	lockdep_assert_held(&ce->guc_state.lock);
245 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
246 }
247 
248 static inline void clr_context_pending_disable(struct intel_context *ce)
249 {
250 	lockdep_assert_held(&ce->guc_state.lock);
251 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
252 }
253 
254 static inline bool context_banned(struct intel_context *ce)
255 {
256 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
257 }
258 
259 static inline void set_context_banned(struct intel_context *ce)
260 {
261 	lockdep_assert_held(&ce->guc_state.lock);
262 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
263 }
264 
265 static inline void clr_context_banned(struct intel_context *ce)
266 {
267 	lockdep_assert_held(&ce->guc_state.lock);
268 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
269 }
270 
271 static inline bool context_enabled(struct intel_context *ce)
272 {
273 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
274 }
275 
276 static inline void set_context_enabled(struct intel_context *ce)
277 {
278 	lockdep_assert_held(&ce->guc_state.lock);
279 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
280 }
281 
282 static inline void clr_context_enabled(struct intel_context *ce)
283 {
284 	lockdep_assert_held(&ce->guc_state.lock);
285 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
286 }
287 
288 static inline bool context_pending_enable(struct intel_context *ce)
289 {
290 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
291 }
292 
293 static inline void set_context_pending_enable(struct intel_context *ce)
294 {
295 	lockdep_assert_held(&ce->guc_state.lock);
296 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
297 }
298 
299 static inline void clr_context_pending_enable(struct intel_context *ce)
300 {
301 	lockdep_assert_held(&ce->guc_state.lock);
302 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
303 }
304 
305 static inline bool context_registered(struct intel_context *ce)
306 {
307 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
308 }
309 
310 static inline void set_context_registered(struct intel_context *ce)
311 {
312 	lockdep_assert_held(&ce->guc_state.lock);
313 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
314 }
315 
316 static inline void clr_context_registered(struct intel_context *ce)
317 {
318 	lockdep_assert_held(&ce->guc_state.lock);
319 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
320 }
321 
322 static inline bool context_policy_required(struct intel_context *ce)
323 {
324 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
325 }
326 
327 static inline void set_context_policy_required(struct intel_context *ce)
328 {
329 	lockdep_assert_held(&ce->guc_state.lock);
330 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
331 }
332 
333 static inline void clr_context_policy_required(struct intel_context *ce)
334 {
335 	lockdep_assert_held(&ce->guc_state.lock);
336 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
337 }
338 
339 static inline bool context_close_done(struct intel_context *ce)
340 {
341 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
342 }
343 
344 static inline void set_context_close_done(struct intel_context *ce)
345 {
346 	lockdep_assert_held(&ce->guc_state.lock);
347 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
348 }
349 
350 static inline u32 context_blocked(struct intel_context *ce)
351 {
352 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
353 		SCHED_STATE_BLOCKED_SHIFT;
354 }
355 
356 static inline void incr_context_blocked(struct intel_context *ce)
357 {
358 	lockdep_assert_held(&ce->guc_state.lock);
359 
360 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
361 
362 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
363 }
364 
365 static inline void decr_context_blocked(struct intel_context *ce)
366 {
367 	lockdep_assert_held(&ce->guc_state.lock);
368 
369 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
370 
371 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
372 }
373 
374 static struct intel_context *
375 request_to_scheduling_context(struct i915_request *rq)
376 {
377 	return intel_context_to_parent(rq->context);
378 }
379 
380 static inline bool context_guc_id_invalid(struct intel_context *ce)
381 {
382 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
383 }
384 
385 static inline void set_context_guc_id_invalid(struct intel_context *ce)
386 {
387 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
388 }
389 
390 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
391 {
392 	return &ce->engine->gt->uc.guc;
393 }
394 
395 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
396 {
397 	return rb_entry(rb, struct i915_priolist, node);
398 }
399 
400 /*
401  * When using multi-lrc submission a scratch memory area is reserved in the
402  * parent's context state for the process descriptor, work queue, and handshake
403  * between the parent + children contexts to insert safe preemption points
404  * between each of the BBs. Currently the scratch area is sized to a page.
405  *
406  * The layout of this scratch area is below:
407  * 0						guc_process_desc
408  * + sizeof(struct guc_process_desc)		child go
409  * + CACHELINE_BYTES				child join[0]
410  * ...
411  * + CACHELINE_BYTES				child join[n - 1]
412  * ...						unused
413  * PARENT_SCRATCH_SIZE / 2			work queue start
414  * ...						work queue
415  * PARENT_SCRATCH_SIZE - 1			work queue end
416  */
417 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
418 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
419 
420 struct sync_semaphore {
421 	u32 semaphore;
422 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
423 };
424 
425 struct parent_scratch {
426 	union guc_descs {
427 		struct guc_sched_wq_desc wq_desc;
428 		struct guc_process_desc_v69 pdesc;
429 	} descs;
430 
431 	struct sync_semaphore go;
432 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
433 
434 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
435 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
436 
437 	u32 wq[WQ_SIZE / sizeof(u32)];
438 };
439 
440 static u32 __get_parent_scratch_offset(struct intel_context *ce)
441 {
442 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
443 
444 	return ce->parallel.guc.parent_page * PAGE_SIZE;
445 }
446 
447 static u32 __get_wq_offset(struct intel_context *ce)
448 {
449 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
450 
451 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
452 }
453 
454 static struct parent_scratch *
455 __get_parent_scratch(struct intel_context *ce)
456 {
457 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
458 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
459 
460 	/*
461 	 * Need to subtract LRC_STATE_OFFSET here as the
462 	 * parallel.guc.parent_page is the offset into ce->state while
463 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
464 	 */
465 	return (struct parent_scratch *)
466 		(ce->lrc_reg_state +
467 		 ((__get_parent_scratch_offset(ce) -
468 		   LRC_STATE_OFFSET) / sizeof(u32)));
469 }
470 
471 static struct guc_process_desc_v69 *
472 __get_process_desc_v69(struct intel_context *ce)
473 {
474 	struct parent_scratch *ps = __get_parent_scratch(ce);
475 
476 	return &ps->descs.pdesc;
477 }
478 
479 static struct guc_sched_wq_desc *
480 __get_wq_desc_v70(struct intel_context *ce)
481 {
482 	struct parent_scratch *ps = __get_parent_scratch(ce);
483 
484 	return &ps->descs.wq_desc;
485 }
486 
487 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
488 {
489 	/*
490 	 * Check for space in work queue. Caching a value of head pointer in
491 	 * intel_context structure in order reduce the number accesses to shared
492 	 * GPU memory which may be across a PCIe bus.
493 	 */
494 #define AVAILABLE_SPACE	\
495 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
496 	if (wqi_size > AVAILABLE_SPACE) {
497 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
498 
499 		if (wqi_size > AVAILABLE_SPACE)
500 			return NULL;
501 	}
502 #undef AVAILABLE_SPACE
503 
504 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
505 }
506 
507 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
508 {
509 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
510 
511 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
512 
513 	return ce;
514 }
515 
516 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
517 {
518 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
519 
520 	if (!base)
521 		return NULL;
522 
523 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
524 
525 	return &base[index];
526 }
527 
528 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
529 {
530 	u32 size;
531 	int ret;
532 
533 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
534 			  GUC_MAX_CONTEXT_ID);
535 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
536 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
537 	if (ret)
538 		return ret;
539 
540 	return 0;
541 }
542 
543 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
544 {
545 	if (!guc->lrc_desc_pool_vaddr_v69)
546 		return;
547 
548 	guc->lrc_desc_pool_vaddr_v69 = NULL;
549 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
550 }
551 
552 static inline bool guc_submission_initialized(struct intel_guc *guc)
553 {
554 	return guc->submission_initialized;
555 }
556 
557 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
558 {
559 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
560 
561 	if (desc)
562 		memset(desc, 0, sizeof(*desc));
563 }
564 
565 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
566 {
567 	return __get_context(guc, id);
568 }
569 
570 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
571 				      struct intel_context *ce)
572 {
573 	unsigned long flags;
574 
575 	/*
576 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
577 	 * lower level functions directly.
578 	 */
579 	xa_lock_irqsave(&guc->context_lookup, flags);
580 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
581 	xa_unlock_irqrestore(&guc->context_lookup, flags);
582 }
583 
584 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
585 {
586 	unsigned long flags;
587 
588 	if (unlikely(!guc_submission_initialized(guc)))
589 		return;
590 
591 	_reset_lrc_desc_v69(guc, id);
592 
593 	/*
594 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
595 	 * the lower level functions directly.
596 	 */
597 	xa_lock_irqsave(&guc->context_lookup, flags);
598 	__xa_erase(&guc->context_lookup, id);
599 	xa_unlock_irqrestore(&guc->context_lookup, flags);
600 }
601 
602 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
603 {
604 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
605 		wake_up_all(&guc->ct.wq);
606 }
607 
608 static int guc_submission_send_busy_loop(struct intel_guc *guc,
609 					 const u32 *action,
610 					 u32 len,
611 					 u32 g2h_len_dw,
612 					 bool loop)
613 {
614 	/*
615 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
616 	 * so we don't handle the case where we don't get a reply because we
617 	 * aborted the send due to the channel being busy.
618 	 */
619 	GEM_BUG_ON(g2h_len_dw && !loop);
620 
621 	if (g2h_len_dw)
622 		atomic_inc(&guc->outstanding_submission_g2h);
623 
624 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
625 }
626 
627 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
628 				   atomic_t *wait_var,
629 				   bool interruptible,
630 				   long timeout)
631 {
632 	const int state = interruptible ?
633 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
634 	DEFINE_WAIT(wait);
635 
636 	might_sleep();
637 	GEM_BUG_ON(timeout < 0);
638 
639 	if (!atomic_read(wait_var))
640 		return 0;
641 
642 	if (!timeout)
643 		return -ETIME;
644 
645 	for (;;) {
646 		prepare_to_wait(&guc->ct.wq, &wait, state);
647 
648 		if (!atomic_read(wait_var))
649 			break;
650 
651 		if (signal_pending_state(state, current)) {
652 			timeout = -EINTR;
653 			break;
654 		}
655 
656 		if (!timeout) {
657 			timeout = -ETIME;
658 			break;
659 		}
660 
661 		timeout = io_schedule_timeout(timeout);
662 	}
663 	finish_wait(&guc->ct.wq, &wait);
664 
665 	return (timeout < 0) ? timeout : 0;
666 }
667 
668 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
669 {
670 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
671 		return 0;
672 
673 	return intel_guc_wait_for_pending_msg(guc,
674 					      &guc->outstanding_submission_g2h,
675 					      true, timeout);
676 }
677 
678 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
679 static int try_context_registration(struct intel_context *ce, bool loop);
680 
681 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
682 {
683 	int err = 0;
684 	struct intel_context *ce = request_to_scheduling_context(rq);
685 	u32 action[3];
686 	int len = 0;
687 	u32 g2h_len_dw = 0;
688 	bool enabled;
689 
690 	lockdep_assert_held(&rq->engine->sched_engine->lock);
691 
692 	/*
693 	 * Corner case where requests were sitting in the priority list or a
694 	 * request resubmitted after the context was banned.
695 	 */
696 	if (unlikely(!intel_context_is_schedulable(ce))) {
697 		i915_request_put(i915_request_mark_eio(rq));
698 		intel_engine_signal_breadcrumbs(ce->engine);
699 		return 0;
700 	}
701 
702 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
703 	GEM_BUG_ON(context_guc_id_invalid(ce));
704 
705 	if (context_policy_required(ce)) {
706 		err = guc_context_policy_init_v70(ce, false);
707 		if (err)
708 			return err;
709 	}
710 
711 	spin_lock(&ce->guc_state.lock);
712 
713 	/*
714 	 * The request / context will be run on the hardware when scheduling
715 	 * gets enabled in the unblock. For multi-lrc we still submit the
716 	 * context to move the LRC tails.
717 	 */
718 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
719 		goto out;
720 
721 	enabled = context_enabled(ce) || context_blocked(ce);
722 
723 	if (!enabled) {
724 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
725 		action[len++] = ce->guc_id.id;
726 		action[len++] = GUC_CONTEXT_ENABLE;
727 		set_context_pending_enable(ce);
728 		intel_context_get(ce);
729 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
730 	} else {
731 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
732 		action[len++] = ce->guc_id.id;
733 	}
734 
735 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
736 	if (!enabled && !err) {
737 		trace_intel_context_sched_enable(ce);
738 		atomic_inc(&guc->outstanding_submission_g2h);
739 		set_context_enabled(ce);
740 
741 		/*
742 		 * Without multi-lrc KMD does the submission step (moving the
743 		 * lrc tail) so enabling scheduling is sufficient to submit the
744 		 * context. This isn't the case in multi-lrc submission as the
745 		 * GuC needs to move the tails, hence the need for another H2G
746 		 * to submit a multi-lrc context after enabling scheduling.
747 		 */
748 		if (intel_context_is_parent(ce)) {
749 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
750 			err = intel_guc_send_nb(guc, action, len - 1, 0);
751 		}
752 	} else if (!enabled) {
753 		clr_context_pending_enable(ce);
754 		intel_context_put(ce);
755 	}
756 	if (likely(!err))
757 		trace_i915_request_guc_submit(rq);
758 
759 out:
760 	spin_unlock(&ce->guc_state.lock);
761 	return err;
762 }
763 
764 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
765 {
766 	int ret = __guc_add_request(guc, rq);
767 
768 	if (unlikely(ret == -EBUSY)) {
769 		guc->stalled_request = rq;
770 		guc->submission_stall_reason = STALL_ADD_REQUEST;
771 	}
772 
773 	return ret;
774 }
775 
776 static inline void guc_set_lrc_tail(struct i915_request *rq)
777 {
778 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
779 		intel_ring_set_tail(rq->ring, rq->tail);
780 }
781 
782 static inline int rq_prio(const struct i915_request *rq)
783 {
784 	return rq->sched.attr.priority;
785 }
786 
787 static bool is_multi_lrc_rq(struct i915_request *rq)
788 {
789 	return intel_context_is_parallel(rq->context);
790 }
791 
792 static bool can_merge_rq(struct i915_request *rq,
793 			 struct i915_request *last)
794 {
795 	return request_to_scheduling_context(rq) ==
796 		request_to_scheduling_context(last);
797 }
798 
799 static u32 wq_space_until_wrap(struct intel_context *ce)
800 {
801 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
802 }
803 
804 static void write_wqi(struct intel_context *ce, u32 wqi_size)
805 {
806 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
807 
808 	/*
809 	 * Ensure WQI are visible before updating tail
810 	 */
811 	intel_guc_write_barrier(ce_to_guc(ce));
812 
813 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
814 		(WQ_SIZE - 1);
815 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
816 }
817 
818 static int guc_wq_noop_append(struct intel_context *ce)
819 {
820 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
821 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
822 
823 	if (!wqi)
824 		return -EBUSY;
825 
826 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
827 
828 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
829 		FIELD_PREP(WQ_LEN_MASK, len_dw);
830 	ce->parallel.guc.wqi_tail = 0;
831 
832 	return 0;
833 }
834 
835 static int __guc_wq_item_append(struct i915_request *rq)
836 {
837 	struct intel_context *ce = request_to_scheduling_context(rq);
838 	struct intel_context *child;
839 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
840 		sizeof(u32);
841 	u32 *wqi;
842 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
843 	int ret;
844 
845 	/* Ensure context is in correct state updating work queue */
846 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
847 	GEM_BUG_ON(context_guc_id_invalid(ce));
848 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
849 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
850 
851 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
852 	if (wqi_size > wq_space_until_wrap(ce)) {
853 		ret = guc_wq_noop_append(ce);
854 		if (ret)
855 			return ret;
856 	}
857 
858 	wqi = get_wq_pointer(ce, wqi_size);
859 	if (!wqi)
860 		return -EBUSY;
861 
862 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
863 
864 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
865 		FIELD_PREP(WQ_LEN_MASK, len_dw);
866 	*wqi++ = ce->lrc.lrca;
867 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
868 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
869 	*wqi++ = 0;	/* fence_id */
870 	for_each_child(ce, child)
871 		*wqi++ = child->ring->tail / sizeof(u64);
872 
873 	write_wqi(ce, wqi_size);
874 
875 	return 0;
876 }
877 
878 static int guc_wq_item_append(struct intel_guc *guc,
879 			      struct i915_request *rq)
880 {
881 	struct intel_context *ce = request_to_scheduling_context(rq);
882 	int ret;
883 
884 	if (unlikely(!intel_context_is_schedulable(ce)))
885 		return 0;
886 
887 	ret = __guc_wq_item_append(rq);
888 	if (unlikely(ret == -EBUSY)) {
889 		guc->stalled_request = rq;
890 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
891 	}
892 
893 	return ret;
894 }
895 
896 static bool multi_lrc_submit(struct i915_request *rq)
897 {
898 	struct intel_context *ce = request_to_scheduling_context(rq);
899 
900 	intel_ring_set_tail(rq->ring, rq->tail);
901 
902 	/*
903 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
904 	 * request generated from a multi-BB submission. This indicates to the
905 	 * backend (GuC interface) that we should submit this context thus
906 	 * submitting all the requests generated in parallel.
907 	 */
908 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
909 	       !intel_context_is_schedulable(ce);
910 }
911 
912 static int guc_dequeue_one_context(struct intel_guc *guc)
913 {
914 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
915 	struct i915_request *last = NULL;
916 	bool submit = false;
917 	struct rb_node *rb;
918 	int ret;
919 
920 	lockdep_assert_held(&sched_engine->lock);
921 
922 	if (guc->stalled_request) {
923 		submit = true;
924 		last = guc->stalled_request;
925 
926 		switch (guc->submission_stall_reason) {
927 		case STALL_REGISTER_CONTEXT:
928 			goto register_context;
929 		case STALL_MOVE_LRC_TAIL:
930 			goto move_lrc_tail;
931 		case STALL_ADD_REQUEST:
932 			goto add_request;
933 		default:
934 			MISSING_CASE(guc->submission_stall_reason);
935 		}
936 	}
937 
938 	while ((rb = rb_first_cached(&sched_engine->queue))) {
939 		struct i915_priolist *p = to_priolist(rb);
940 		struct i915_request *rq, *rn;
941 
942 		priolist_for_each_request_consume(rq, rn, p) {
943 			if (last && !can_merge_rq(rq, last))
944 				goto register_context;
945 
946 			list_del_init(&rq->sched.link);
947 
948 			__i915_request_submit(rq);
949 
950 			trace_i915_request_in(rq, 0);
951 			last = rq;
952 
953 			if (is_multi_lrc_rq(rq)) {
954 				/*
955 				 * We need to coalesce all multi-lrc requests in
956 				 * a relationship into a single H2G. We are
957 				 * guaranteed that all of these requests will be
958 				 * submitted sequentially.
959 				 */
960 				if (multi_lrc_submit(rq)) {
961 					submit = true;
962 					goto register_context;
963 				}
964 			} else {
965 				submit = true;
966 			}
967 		}
968 
969 		rb_erase_cached(&p->node, &sched_engine->queue);
970 		i915_priolist_free(p);
971 	}
972 
973 register_context:
974 	if (submit) {
975 		struct intel_context *ce = request_to_scheduling_context(last);
976 
977 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
978 			     intel_context_is_schedulable(ce))) {
979 			ret = try_context_registration(ce, false);
980 			if (unlikely(ret == -EPIPE)) {
981 				goto deadlk;
982 			} else if (ret == -EBUSY) {
983 				guc->stalled_request = last;
984 				guc->submission_stall_reason =
985 					STALL_REGISTER_CONTEXT;
986 				goto schedule_tasklet;
987 			} else if (ret != 0) {
988 				GEM_WARN_ON(ret);	/* Unexpected */
989 				goto deadlk;
990 			}
991 		}
992 
993 move_lrc_tail:
994 		if (is_multi_lrc_rq(last)) {
995 			ret = guc_wq_item_append(guc, last);
996 			if (ret == -EBUSY) {
997 				goto schedule_tasklet;
998 			} else if (ret != 0) {
999 				GEM_WARN_ON(ret);	/* Unexpected */
1000 				goto deadlk;
1001 			}
1002 		} else {
1003 			guc_set_lrc_tail(last);
1004 		}
1005 
1006 add_request:
1007 		ret = guc_add_request(guc, last);
1008 		if (unlikely(ret == -EPIPE)) {
1009 			goto deadlk;
1010 		} else if (ret == -EBUSY) {
1011 			goto schedule_tasklet;
1012 		} else if (ret != 0) {
1013 			GEM_WARN_ON(ret);	/* Unexpected */
1014 			goto deadlk;
1015 		}
1016 	}
1017 
1018 	guc->stalled_request = NULL;
1019 	guc->submission_stall_reason = STALL_NONE;
1020 	return submit;
1021 
1022 deadlk:
1023 	sched_engine->tasklet.callback = NULL;
1024 	tasklet_disable_nosync(&sched_engine->tasklet);
1025 	return false;
1026 
1027 schedule_tasklet:
1028 	tasklet_schedule(&sched_engine->tasklet);
1029 	return false;
1030 }
1031 
1032 static void guc_submission_tasklet(struct tasklet_struct *t)
1033 {
1034 	struct i915_sched_engine *sched_engine =
1035 		from_tasklet(sched_engine, t, tasklet);
1036 	unsigned long flags;
1037 	bool loop;
1038 
1039 	spin_lock_irqsave(&sched_engine->lock, flags);
1040 
1041 	do {
1042 		loop = guc_dequeue_one_context(sched_engine->private_data);
1043 	} while (loop);
1044 
1045 	i915_sched_engine_reset_on_empty(sched_engine);
1046 
1047 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1048 }
1049 
1050 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1051 {
1052 	if (iir & GT_RENDER_USER_INTERRUPT)
1053 		intel_engine_signal_breadcrumbs(engine);
1054 }
1055 
1056 static void __guc_context_destroy(struct intel_context *ce);
1057 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1058 static void guc_signal_context_fence(struct intel_context *ce);
1059 static void guc_cancel_context_requests(struct intel_context *ce);
1060 static void guc_blocked_fence_complete(struct intel_context *ce);
1061 
1062 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1063 {
1064 	struct intel_context *ce;
1065 	unsigned long index, flags;
1066 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1067 
1068 	xa_lock_irqsave(&guc->context_lookup, flags);
1069 	xa_for_each(&guc->context_lookup, index, ce) {
1070 		/*
1071 		 * Corner case where the ref count on the object is zero but and
1072 		 * deregister G2H was lost. In this case we don't touch the ref
1073 		 * count and finish the destroy of the context.
1074 		 */
1075 		bool do_put = kref_get_unless_zero(&ce->ref);
1076 
1077 		xa_unlock(&guc->context_lookup);
1078 
1079 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1080 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1081 			/* successful cancel so jump straight to close it */
1082 			intel_context_sched_disable_unpin(ce);
1083 		}
1084 
1085 		spin_lock(&ce->guc_state.lock);
1086 
1087 		/*
1088 		 * Once we are at this point submission_disabled() is guaranteed
1089 		 * to be visible to all callers who set the below flags (see above
1090 		 * flush and flushes in reset_prepare). If submission_disabled()
1091 		 * is set, the caller shouldn't set these flags.
1092 		 */
1093 
1094 		destroyed = context_destroyed(ce);
1095 		pending_enable = context_pending_enable(ce);
1096 		pending_disable = context_pending_disable(ce);
1097 		deregister = context_wait_for_deregister_to_register(ce);
1098 		banned = context_banned(ce);
1099 		init_sched_state(ce);
1100 
1101 		spin_unlock(&ce->guc_state.lock);
1102 
1103 		if (pending_enable || destroyed || deregister) {
1104 			decr_outstanding_submission_g2h(guc);
1105 			if (deregister)
1106 				guc_signal_context_fence(ce);
1107 			if (destroyed) {
1108 				intel_gt_pm_put_async(guc_to_gt(guc));
1109 				release_guc_id(guc, ce);
1110 				__guc_context_destroy(ce);
1111 			}
1112 			if (pending_enable || deregister)
1113 				intel_context_put(ce);
1114 		}
1115 
1116 		/* Not mutualy exclusive with above if statement. */
1117 		if (pending_disable) {
1118 			guc_signal_context_fence(ce);
1119 			if (banned) {
1120 				guc_cancel_context_requests(ce);
1121 				intel_engine_signal_breadcrumbs(ce->engine);
1122 			}
1123 			intel_context_sched_disable_unpin(ce);
1124 			decr_outstanding_submission_g2h(guc);
1125 
1126 			spin_lock(&ce->guc_state.lock);
1127 			guc_blocked_fence_complete(ce);
1128 			spin_unlock(&ce->guc_state.lock);
1129 
1130 			intel_context_put(ce);
1131 		}
1132 
1133 		if (do_put)
1134 			intel_context_put(ce);
1135 		xa_lock(&guc->context_lookup);
1136 	}
1137 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1138 }
1139 
1140 /*
1141  * GuC stores busyness stats for each engine at context in/out boundaries. A
1142  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1143  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1144  * GuC.
1145  *
1146  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1147  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1148  * active. For an active engine total busyness = total + (now - start), where
1149  * 'now' is the time at which the busyness is sampled. For inactive engine,
1150  * total busyness = total.
1151  *
1152  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1153  *
1154  * The start and total values provided by GuC are 32 bits and wrap around in a
1155  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1156  * increasing ns values, there is a need for this implementation to account for
1157  * overflows and extend the GuC provided values to 64 bits before returning
1158  * busyness to the user. In order to do that, a worker runs periodically at
1159  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1160  * 27 seconds for a gt clock frequency of 19.2 MHz).
1161  */
1162 
1163 #define WRAP_TIME_CLKS U32_MAX
1164 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1165 
1166 static void
1167 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1168 {
1169 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1170 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1171 
1172 	if (new_start == lower_32_bits(*prev_start))
1173 		return;
1174 
1175 	/*
1176 	 * When gt is unparked, we update the gt timestamp and start the ping
1177 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1178 	 * is unparked, all switched in contexts will have a start time that is
1179 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1180 	 *
1181 	 * If neither gt_stamp nor new_start has rolled over, then the
1182 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1183 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1184 	 *
1185 	 * The below conditions address the cases of new_start rollover and
1186 	 * gt_stamp_last rollover respectively.
1187 	 */
1188 	if (new_start < gt_stamp_last &&
1189 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1190 		gt_stamp_hi++;
1191 
1192 	if (new_start > gt_stamp_last &&
1193 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1194 		gt_stamp_hi--;
1195 
1196 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1197 }
1198 
1199 #define record_read(map_, field_) \
1200 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1201 
1202 /*
1203  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1204  * we run into a race where the value read is inconsistent. Sometimes the
1205  * inconsistency is in reading the upper MSB bytes of the last_in value when
1206  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1207  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1208  * determine validity of these values. Instead we read the values multiple times
1209  * until they are consistent. In test runs, 3 attempts results in consistent
1210  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1211  * any new occurences.
1212  */
1213 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1214 				      u32 *last_in, u32 *id, u32 *total)
1215 {
1216 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1217 	int i = 0;
1218 
1219 	do {
1220 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1221 		*id = record_read(&rec_map, current_context_index);
1222 		*total = record_read(&rec_map, total_runtime);
1223 
1224 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1225 		    record_read(&rec_map, current_context_index) == *id &&
1226 		    record_read(&rec_map, total_runtime) == *total)
1227 			break;
1228 	} while (++i < 6);
1229 }
1230 
1231 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1232 {
1233 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1234 	struct intel_guc *guc = &engine->gt->uc.guc;
1235 	u32 last_switch, ctx_id, total;
1236 
1237 	lockdep_assert_held(&guc->timestamp.lock);
1238 
1239 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1240 
1241 	stats->running = ctx_id != ~0U && last_switch;
1242 	if (stats->running)
1243 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1244 
1245 	/*
1246 	 * Instead of adjusting the total for overflow, just add the
1247 	 * difference from previous sample stats->total_gt_clks
1248 	 */
1249 	if (total && total != ~0U) {
1250 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1251 		stats->prev_total = total;
1252 	}
1253 }
1254 
1255 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1256 {
1257 	intel_wakeref_t wakeref;
1258 	u32 reg, shift;
1259 
1260 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1261 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1262 
1263 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1264 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1265 
1266 	return 3 - shift;
1267 }
1268 
1269 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1270 {
1271 	struct intel_gt *gt = guc_to_gt(guc);
1272 	u32 gt_stamp_lo, gt_stamp_hi;
1273 	u64 gpm_ts;
1274 
1275 	lockdep_assert_held(&guc->timestamp.lock);
1276 
1277 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1278 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1279 					  MISC_STATUS1) >> guc->timestamp.shift;
1280 	gt_stamp_lo = lower_32_bits(gpm_ts);
1281 	*now = ktime_get();
1282 
1283 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1284 		gt_stamp_hi++;
1285 
1286 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1287 }
1288 
1289 /*
1290  * Unlike the execlist mode of submission total and active times are in terms of
1291  * gt clocks. The *now parameter is retained to return the cpu time at which the
1292  * busyness was sampled.
1293  */
1294 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1295 {
1296 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1297 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1298 	struct intel_gt *gt = engine->gt;
1299 	struct intel_guc *guc = &gt->uc.guc;
1300 	u64 total, gt_stamp_saved;
1301 	unsigned long flags;
1302 	u32 reset_count;
1303 	bool in_reset;
1304 
1305 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1306 
1307 	/*
1308 	 * If a reset happened, we risk reading partially updated engine
1309 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1310 	 * Synchronize with gt reset using reset_count and the
1311 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1312 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1313 	 * usable by checking the flag afterwards.
1314 	 */
1315 	reset_count = i915_reset_count(gpu_error);
1316 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1317 
1318 	*now = ktime_get();
1319 
1320 	/*
1321 	 * The active busyness depends on start_gt_clk and gt_stamp.
1322 	 * gt_stamp is updated by i915 only when gt is awake and the
1323 	 * start_gt_clk is derived from GuC state. To get a consistent
1324 	 * view of activity, we query the GuC state only if gt is awake.
1325 	 */
1326 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1327 		stats_saved = *stats;
1328 		gt_stamp_saved = guc->timestamp.gt_stamp;
1329 		/*
1330 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1331 		 * start_gt_clk' calculation below for active engines.
1332 		 */
1333 		guc_update_engine_gt_clks(engine);
1334 		guc_update_pm_timestamp(guc, now);
1335 		intel_gt_pm_put_async(gt);
1336 		if (i915_reset_count(gpu_error) != reset_count) {
1337 			*stats = stats_saved;
1338 			guc->timestamp.gt_stamp = gt_stamp_saved;
1339 		}
1340 	}
1341 
1342 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1343 	if (stats->running) {
1344 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1345 
1346 		total += intel_gt_clock_interval_to_ns(gt, clk);
1347 	}
1348 
1349 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1350 
1351 	return ns_to_ktime(total);
1352 }
1353 
1354 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1355 {
1356 	struct intel_gt *gt = guc_to_gt(guc);
1357 	struct intel_engine_cs *engine;
1358 	enum intel_engine_id id;
1359 	unsigned long flags;
1360 	ktime_t unused;
1361 
1362 	cancel_delayed_work_sync(&guc->timestamp.work);
1363 
1364 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1365 
1366 	guc_update_pm_timestamp(guc, &unused);
1367 	for_each_engine(engine, gt, id) {
1368 		guc_update_engine_gt_clks(engine);
1369 		engine->stats.guc.prev_total = 0;
1370 	}
1371 
1372 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1373 }
1374 
1375 static void __update_guc_busyness_stats(struct intel_guc *guc)
1376 {
1377 	struct intel_gt *gt = guc_to_gt(guc);
1378 	struct intel_engine_cs *engine;
1379 	enum intel_engine_id id;
1380 	unsigned long flags;
1381 	ktime_t unused;
1382 
1383 	guc->timestamp.last_stat_jiffies = jiffies;
1384 
1385 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1386 
1387 	guc_update_pm_timestamp(guc, &unused);
1388 	for_each_engine(engine, gt, id)
1389 		guc_update_engine_gt_clks(engine);
1390 
1391 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1392 }
1393 
1394 static void guc_timestamp_ping(struct work_struct *wrk)
1395 {
1396 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1397 					     timestamp.work.work);
1398 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1399 	struct intel_gt *gt = guc_to_gt(guc);
1400 	intel_wakeref_t wakeref;
1401 	int srcu, ret;
1402 
1403 	/*
1404 	 * Synchronize with gt reset to make sure the worker does not
1405 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1406 	 * for a reset to complete as the reset requires flushing out
1407 	 * this worker thread if started. So waiting would deadlock.
1408 	 */
1409 	ret = intel_gt_reset_trylock(gt, &srcu);
1410 	if (ret)
1411 		return;
1412 
1413 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1414 		__update_guc_busyness_stats(guc);
1415 
1416 	intel_gt_reset_unlock(gt, srcu);
1417 
1418 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1419 			 guc->timestamp.ping_delay);
1420 }
1421 
1422 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1423 {
1424 	u32 offset = intel_guc_engine_usage_offset(guc);
1425 	u32 action[] = {
1426 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1427 		offset,
1428 		0,
1429 	};
1430 
1431 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1432 }
1433 
1434 static void guc_init_engine_stats(struct intel_guc *guc)
1435 {
1436 	struct intel_gt *gt = guc_to_gt(guc);
1437 	intel_wakeref_t wakeref;
1438 
1439 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1440 			 guc->timestamp.ping_delay);
1441 
1442 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1443 		int ret = guc_action_enable_usage_stats(guc);
1444 
1445 		if (ret)
1446 			drm_err(&gt->i915->drm,
1447 				"Failed to enable usage stats: %d!\n", ret);
1448 	}
1449 }
1450 
1451 void intel_guc_busyness_park(struct intel_gt *gt)
1452 {
1453 	struct intel_guc *guc = &gt->uc.guc;
1454 
1455 	if (!guc_submission_initialized(guc))
1456 		return;
1457 
1458 	/*
1459 	 * There is a race with suspend flow where the worker runs after suspend
1460 	 * and causes an unclaimed register access warning. Cancel the worker
1461 	 * synchronously here.
1462 	 */
1463 	cancel_delayed_work_sync(&guc->timestamp.work);
1464 
1465 	/*
1466 	 * Before parking, we should sample engine busyness stats if we need to.
1467 	 * We can skip it if we are less than half a ping from the last time we
1468 	 * sampled the busyness stats.
1469 	 */
1470 	if (guc->timestamp.last_stat_jiffies &&
1471 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1472 			(guc->timestamp.ping_delay / 2)))
1473 		return;
1474 
1475 	__update_guc_busyness_stats(guc);
1476 }
1477 
1478 void intel_guc_busyness_unpark(struct intel_gt *gt)
1479 {
1480 	struct intel_guc *guc = &gt->uc.guc;
1481 	unsigned long flags;
1482 	ktime_t unused;
1483 
1484 	if (!guc_submission_initialized(guc))
1485 		return;
1486 
1487 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1488 	guc_update_pm_timestamp(guc, &unused);
1489 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1490 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1491 			 guc->timestamp.ping_delay);
1492 }
1493 
1494 static inline bool
1495 submission_disabled(struct intel_guc *guc)
1496 {
1497 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1498 
1499 	return unlikely(!sched_engine ||
1500 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1501 			intel_gt_is_wedged(guc_to_gt(guc)));
1502 }
1503 
1504 static void disable_submission(struct intel_guc *guc)
1505 {
1506 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1507 
1508 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1509 		GEM_BUG_ON(!guc->ct.enabled);
1510 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1511 		sched_engine->tasklet.callback = NULL;
1512 	}
1513 }
1514 
1515 static void enable_submission(struct intel_guc *guc)
1516 {
1517 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1518 	unsigned long flags;
1519 
1520 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1521 	sched_engine->tasklet.callback = guc_submission_tasklet;
1522 	wmb();	/* Make sure callback visible */
1523 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1524 	    __tasklet_enable(&sched_engine->tasklet)) {
1525 		GEM_BUG_ON(!guc->ct.enabled);
1526 
1527 		/* And kick in case we missed a new request submission. */
1528 		tasklet_hi_schedule(&sched_engine->tasklet);
1529 	}
1530 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1531 }
1532 
1533 static void guc_flush_submissions(struct intel_guc *guc)
1534 {
1535 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1536 	unsigned long flags;
1537 
1538 	spin_lock_irqsave(&sched_engine->lock, flags);
1539 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1540 }
1541 
1542 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1543 
1544 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1545 {
1546 	if (unlikely(!guc_submission_initialized(guc))) {
1547 		/* Reset called during driver load? GuC not yet initialised! */
1548 		return;
1549 	}
1550 
1551 	intel_gt_park_heartbeats(guc_to_gt(guc));
1552 	disable_submission(guc);
1553 	guc->interrupts.disable(guc);
1554 	__reset_guc_busyness_stats(guc);
1555 
1556 	/* Flush IRQ handler */
1557 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1558 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1559 
1560 	guc_flush_submissions(guc);
1561 	guc_flush_destroyed_contexts(guc);
1562 	flush_work(&guc->ct.requests.worker);
1563 
1564 	scrub_guc_desc_for_outstanding_g2h(guc);
1565 }
1566 
1567 static struct intel_engine_cs *
1568 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1569 {
1570 	struct intel_engine_cs *engine;
1571 	intel_engine_mask_t tmp, mask = ve->mask;
1572 	unsigned int num_siblings = 0;
1573 
1574 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1575 		if (num_siblings++ == sibling)
1576 			return engine;
1577 
1578 	return NULL;
1579 }
1580 
1581 static inline struct intel_engine_cs *
1582 __context_to_physical_engine(struct intel_context *ce)
1583 {
1584 	struct intel_engine_cs *engine = ce->engine;
1585 
1586 	if (intel_engine_is_virtual(engine))
1587 		engine = guc_virtual_get_sibling(engine, 0);
1588 
1589 	return engine;
1590 }
1591 
1592 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1593 {
1594 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1595 
1596 	if (!intel_context_is_schedulable(ce))
1597 		return;
1598 
1599 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1600 
1601 	/*
1602 	 * We want a simple context + ring to execute the breadcrumb update.
1603 	 * We cannot rely on the context being intact across the GPU hang,
1604 	 * so clear it and rebuild just what we need for the breadcrumb.
1605 	 * All pending requests for this context will be zapped, and any
1606 	 * future request will be after userspace has had the opportunity
1607 	 * to recreate its own state.
1608 	 */
1609 	if (scrub)
1610 		lrc_init_regs(ce, engine, true);
1611 
1612 	/* Rerun the request; its payload has been neutered (if guilty). */
1613 	lrc_update_regs(ce, engine, head);
1614 }
1615 
1616 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1617 {
1618 	if (!IS_GRAPHICS_VER(engine->i915, 11, 12))
1619 		return;
1620 
1621 	intel_engine_stop_cs(engine);
1622 
1623 	/*
1624 	 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
1625 	 * to wait for any pending mi force wakeups
1626 	 */
1627 	intel_engine_wait_for_pending_mi_fw(engine);
1628 }
1629 
1630 static void guc_reset_nop(struct intel_engine_cs *engine)
1631 {
1632 }
1633 
1634 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1635 {
1636 }
1637 
1638 static void
1639 __unwind_incomplete_requests(struct intel_context *ce)
1640 {
1641 	struct i915_request *rq, *rn;
1642 	struct list_head *pl;
1643 	int prio = I915_PRIORITY_INVALID;
1644 	struct i915_sched_engine * const sched_engine =
1645 		ce->engine->sched_engine;
1646 	unsigned long flags;
1647 
1648 	spin_lock_irqsave(&sched_engine->lock, flags);
1649 	spin_lock(&ce->guc_state.lock);
1650 	list_for_each_entry_safe_reverse(rq, rn,
1651 					 &ce->guc_state.requests,
1652 					 sched.link) {
1653 		if (i915_request_completed(rq))
1654 			continue;
1655 
1656 		list_del_init(&rq->sched.link);
1657 		__i915_request_unsubmit(rq);
1658 
1659 		/* Push the request back into the queue for later resubmission. */
1660 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1661 		if (rq_prio(rq) != prio) {
1662 			prio = rq_prio(rq);
1663 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1664 		}
1665 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1666 
1667 		list_add(&rq->sched.link, pl);
1668 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1669 	}
1670 	spin_unlock(&ce->guc_state.lock);
1671 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1672 }
1673 
1674 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1675 {
1676 	bool guilty;
1677 	struct i915_request *rq;
1678 	unsigned long flags;
1679 	u32 head;
1680 	int i, number_children = ce->parallel.number_children;
1681 	struct intel_context *parent = ce;
1682 
1683 	GEM_BUG_ON(intel_context_is_child(ce));
1684 
1685 	intel_context_get(ce);
1686 
1687 	/*
1688 	 * GuC will implicitly mark the context as non-schedulable when it sends
1689 	 * the reset notification. Make sure our state reflects this change. The
1690 	 * context will be marked enabled on resubmission.
1691 	 */
1692 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1693 	clr_context_enabled(ce);
1694 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1695 
1696 	/*
1697 	 * For each context in the relationship find the hanging request
1698 	 * resetting each context / request as needed
1699 	 */
1700 	for (i = 0; i < number_children + 1; ++i) {
1701 		if (!intel_context_is_pinned(ce))
1702 			goto next_context;
1703 
1704 		guilty = false;
1705 		rq = intel_context_find_active_request(ce);
1706 		if (!rq) {
1707 			head = ce->ring->tail;
1708 			goto out_replay;
1709 		}
1710 
1711 		if (i915_request_started(rq))
1712 			guilty = stalled & ce->engine->mask;
1713 
1714 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1715 		head = intel_ring_wrap(ce->ring, rq->head);
1716 
1717 		__i915_request_reset(rq, guilty);
1718 out_replay:
1719 		guc_reset_state(ce, head, guilty);
1720 next_context:
1721 		if (i != number_children)
1722 			ce = list_next_entry(ce, parallel.child_link);
1723 	}
1724 
1725 	__unwind_incomplete_requests(parent);
1726 	intel_context_put(parent);
1727 }
1728 
1729 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1730 {
1731 	struct intel_context *ce;
1732 	unsigned long index;
1733 	unsigned long flags;
1734 
1735 	if (unlikely(!guc_submission_initialized(guc))) {
1736 		/* Reset called during driver load? GuC not yet initialised! */
1737 		return;
1738 	}
1739 
1740 	xa_lock_irqsave(&guc->context_lookup, flags);
1741 	xa_for_each(&guc->context_lookup, index, ce) {
1742 		if (!kref_get_unless_zero(&ce->ref))
1743 			continue;
1744 
1745 		xa_unlock(&guc->context_lookup);
1746 
1747 		if (intel_context_is_pinned(ce) &&
1748 		    !intel_context_is_child(ce))
1749 			__guc_reset_context(ce, stalled);
1750 
1751 		intel_context_put(ce);
1752 
1753 		xa_lock(&guc->context_lookup);
1754 	}
1755 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1756 
1757 	/* GuC is blown away, drop all references to contexts */
1758 	xa_destroy(&guc->context_lookup);
1759 }
1760 
1761 static void guc_cancel_context_requests(struct intel_context *ce)
1762 {
1763 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1764 	struct i915_request *rq;
1765 	unsigned long flags;
1766 
1767 	/* Mark all executing requests as skipped. */
1768 	spin_lock_irqsave(&sched_engine->lock, flags);
1769 	spin_lock(&ce->guc_state.lock);
1770 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1771 		i915_request_put(i915_request_mark_eio(rq));
1772 	spin_unlock(&ce->guc_state.lock);
1773 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1774 }
1775 
1776 static void
1777 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1778 {
1779 	struct i915_request *rq, *rn;
1780 	struct rb_node *rb;
1781 	unsigned long flags;
1782 
1783 	/* Can be called during boot if GuC fails to load */
1784 	if (!sched_engine)
1785 		return;
1786 
1787 	/*
1788 	 * Before we call engine->cancel_requests(), we should have exclusive
1789 	 * access to the submission state. This is arranged for us by the
1790 	 * caller disabling the interrupt generation, the tasklet and other
1791 	 * threads that may then access the same state, giving us a free hand
1792 	 * to reset state. However, we still need to let lockdep be aware that
1793 	 * we know this state may be accessed in hardirq context, so we
1794 	 * disable the irq around this manipulation and we want to keep
1795 	 * the spinlock focused on its duties and not accidentally conflate
1796 	 * coverage to the submission's irq state. (Similarly, although we
1797 	 * shouldn't need to disable irq around the manipulation of the
1798 	 * submission's irq state, we also wish to remind ourselves that
1799 	 * it is irq state.)
1800 	 */
1801 	spin_lock_irqsave(&sched_engine->lock, flags);
1802 
1803 	/* Flush the queued requests to the timeline list (for retiring). */
1804 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1805 		struct i915_priolist *p = to_priolist(rb);
1806 
1807 		priolist_for_each_request_consume(rq, rn, p) {
1808 			list_del_init(&rq->sched.link);
1809 
1810 			__i915_request_submit(rq);
1811 
1812 			i915_request_put(i915_request_mark_eio(rq));
1813 		}
1814 
1815 		rb_erase_cached(&p->node, &sched_engine->queue);
1816 		i915_priolist_free(p);
1817 	}
1818 
1819 	/* Remaining _unready_ requests will be nop'ed when submitted */
1820 
1821 	sched_engine->queue_priority_hint = INT_MIN;
1822 	sched_engine->queue = RB_ROOT_CACHED;
1823 
1824 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1825 }
1826 
1827 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1828 {
1829 	struct intel_context *ce;
1830 	unsigned long index;
1831 	unsigned long flags;
1832 
1833 	xa_lock_irqsave(&guc->context_lookup, flags);
1834 	xa_for_each(&guc->context_lookup, index, ce) {
1835 		if (!kref_get_unless_zero(&ce->ref))
1836 			continue;
1837 
1838 		xa_unlock(&guc->context_lookup);
1839 
1840 		if (intel_context_is_pinned(ce) &&
1841 		    !intel_context_is_child(ce))
1842 			guc_cancel_context_requests(ce);
1843 
1844 		intel_context_put(ce);
1845 
1846 		xa_lock(&guc->context_lookup);
1847 	}
1848 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1849 
1850 	guc_cancel_sched_engine_requests(guc->sched_engine);
1851 
1852 	/* GuC is blown away, drop all references to contexts */
1853 	xa_destroy(&guc->context_lookup);
1854 }
1855 
1856 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1857 {
1858 	/* Reset called during driver load or during wedge? */
1859 	if (unlikely(!guc_submission_initialized(guc) ||
1860 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1861 		return;
1862 	}
1863 
1864 	/*
1865 	 * Technically possible for either of these values to be non-zero here,
1866 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1867 	 * see in CI if this happens frequently / a precursor to taking down the
1868 	 * machine.
1869 	 */
1870 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1871 	atomic_set(&guc->outstanding_submission_g2h, 0);
1872 
1873 	intel_guc_global_policies_update(guc);
1874 	enable_submission(guc);
1875 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1876 }
1877 
1878 static void destroyed_worker_func(struct work_struct *w);
1879 static void reset_fail_worker_func(struct work_struct *w);
1880 
1881 /*
1882  * Set up the memory resources to be shared with the GuC (via the GGTT)
1883  * at firmware loading time.
1884  */
1885 int intel_guc_submission_init(struct intel_guc *guc)
1886 {
1887 	struct intel_gt *gt = guc_to_gt(guc);
1888 	int ret;
1889 
1890 	if (guc->submission_initialized)
1891 		return 0;
1892 
1893 	if (GET_UC_VER(guc) < MAKE_UC_VER(70, 0, 0)) {
1894 		ret = guc_lrc_desc_pool_create_v69(guc);
1895 		if (ret)
1896 			return ret;
1897 	}
1898 
1899 	guc->submission_state.guc_ids_bitmap =
1900 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1901 	if (!guc->submission_state.guc_ids_bitmap) {
1902 		ret = -ENOMEM;
1903 		goto destroy_pool;
1904 	}
1905 
1906 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1907 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1908 	guc->submission_initialized = true;
1909 
1910 	return 0;
1911 
1912 destroy_pool:
1913 	guc_lrc_desc_pool_destroy_v69(guc);
1914 
1915 	return ret;
1916 }
1917 
1918 void intel_guc_submission_fini(struct intel_guc *guc)
1919 {
1920 	if (!guc->submission_initialized)
1921 		return;
1922 
1923 	guc_flush_destroyed_contexts(guc);
1924 	guc_lrc_desc_pool_destroy_v69(guc);
1925 	i915_sched_engine_put(guc->sched_engine);
1926 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1927 	guc->submission_initialized = false;
1928 }
1929 
1930 static inline void queue_request(struct i915_sched_engine *sched_engine,
1931 				 struct i915_request *rq,
1932 				 int prio)
1933 {
1934 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1935 	list_add_tail(&rq->sched.link,
1936 		      i915_sched_lookup_priolist(sched_engine, prio));
1937 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1938 	tasklet_hi_schedule(&sched_engine->tasklet);
1939 }
1940 
1941 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1942 				     struct i915_request *rq)
1943 {
1944 	int ret = 0;
1945 
1946 	__i915_request_submit(rq);
1947 
1948 	trace_i915_request_in(rq, 0);
1949 
1950 	if (is_multi_lrc_rq(rq)) {
1951 		if (multi_lrc_submit(rq)) {
1952 			ret = guc_wq_item_append(guc, rq);
1953 			if (!ret)
1954 				ret = guc_add_request(guc, rq);
1955 		}
1956 	} else {
1957 		guc_set_lrc_tail(rq);
1958 		ret = guc_add_request(guc, rq);
1959 	}
1960 
1961 	if (unlikely(ret == -EPIPE))
1962 		disable_submission(guc);
1963 
1964 	return ret;
1965 }
1966 
1967 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1968 {
1969 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1970 	struct intel_context *ce = request_to_scheduling_context(rq);
1971 
1972 	return submission_disabled(guc) || guc->stalled_request ||
1973 		!i915_sched_engine_is_empty(sched_engine) ||
1974 		!ctx_id_mapped(guc, ce->guc_id.id);
1975 }
1976 
1977 static void guc_submit_request(struct i915_request *rq)
1978 {
1979 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1980 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
1981 	unsigned long flags;
1982 
1983 	/* Will be called from irq-context when using foreign fences. */
1984 	spin_lock_irqsave(&sched_engine->lock, flags);
1985 
1986 	if (need_tasklet(guc, rq))
1987 		queue_request(sched_engine, rq, rq_prio(rq));
1988 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1989 		tasklet_hi_schedule(&sched_engine->tasklet);
1990 
1991 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1992 }
1993 
1994 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1995 {
1996 	int ret;
1997 
1998 	GEM_BUG_ON(intel_context_is_child(ce));
1999 
2000 	if (intel_context_is_parent(ce))
2001 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2002 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2003 					      order_base_2(ce->parallel.number_children
2004 							   + 1));
2005 	else
2006 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2007 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2008 				     guc->submission_state.num_guc_ids,
2009 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2010 				     __GFP_NOWARN);
2011 	if (unlikely(ret < 0))
2012 		return ret;
2013 
2014 	if (!intel_context_is_parent(ce))
2015 		++guc->submission_state.guc_ids_in_use;
2016 
2017 	ce->guc_id.id = ret;
2018 	return 0;
2019 }
2020 
2021 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2022 {
2023 	GEM_BUG_ON(intel_context_is_child(ce));
2024 
2025 	if (!context_guc_id_invalid(ce)) {
2026 		if (intel_context_is_parent(ce)) {
2027 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2028 					      ce->guc_id.id,
2029 					      order_base_2(ce->parallel.number_children
2030 							   + 1));
2031 		} else {
2032 			--guc->submission_state.guc_ids_in_use;
2033 			ida_simple_remove(&guc->submission_state.guc_ids,
2034 					  ce->guc_id.id);
2035 		}
2036 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2037 		set_context_guc_id_invalid(ce);
2038 	}
2039 	if (!list_empty(&ce->guc_id.link))
2040 		list_del_init(&ce->guc_id.link);
2041 }
2042 
2043 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2044 {
2045 	unsigned long flags;
2046 
2047 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2048 	__release_guc_id(guc, ce);
2049 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2050 }
2051 
2052 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2053 {
2054 	struct intel_context *cn;
2055 
2056 	lockdep_assert_held(&guc->submission_state.lock);
2057 	GEM_BUG_ON(intel_context_is_child(ce));
2058 	GEM_BUG_ON(intel_context_is_parent(ce));
2059 
2060 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2061 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2062 				      struct intel_context,
2063 				      guc_id.link);
2064 
2065 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2066 		GEM_BUG_ON(context_guc_id_invalid(cn));
2067 		GEM_BUG_ON(intel_context_is_child(cn));
2068 		GEM_BUG_ON(intel_context_is_parent(cn));
2069 
2070 		list_del_init(&cn->guc_id.link);
2071 		ce->guc_id.id = cn->guc_id.id;
2072 
2073 		spin_lock(&cn->guc_state.lock);
2074 		clr_context_registered(cn);
2075 		spin_unlock(&cn->guc_state.lock);
2076 
2077 		set_context_guc_id_invalid(cn);
2078 
2079 #ifdef CONFIG_DRM_I915_SELFTEST
2080 		guc->number_guc_id_stolen++;
2081 #endif
2082 
2083 		return 0;
2084 	} else {
2085 		return -EAGAIN;
2086 	}
2087 }
2088 
2089 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2090 {
2091 	int ret;
2092 
2093 	lockdep_assert_held(&guc->submission_state.lock);
2094 	GEM_BUG_ON(intel_context_is_child(ce));
2095 
2096 	ret = new_guc_id(guc, ce);
2097 	if (unlikely(ret < 0)) {
2098 		if (intel_context_is_parent(ce))
2099 			return -ENOSPC;
2100 
2101 		ret = steal_guc_id(guc, ce);
2102 		if (ret < 0)
2103 			return ret;
2104 	}
2105 
2106 	if (intel_context_is_parent(ce)) {
2107 		struct intel_context *child;
2108 		int i = 1;
2109 
2110 		for_each_child(ce, child)
2111 			child->guc_id.id = ce->guc_id.id + i++;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 #define PIN_GUC_ID_TRIES	4
2118 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2119 {
2120 	int ret = 0;
2121 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2122 
2123 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2124 
2125 try_again:
2126 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2127 
2128 	might_lock(&ce->guc_state.lock);
2129 
2130 	if (context_guc_id_invalid(ce)) {
2131 		ret = assign_guc_id(guc, ce);
2132 		if (ret)
2133 			goto out_unlock;
2134 		ret = 1;	/* Indidcates newly assigned guc_id */
2135 	}
2136 	if (!list_empty(&ce->guc_id.link))
2137 		list_del_init(&ce->guc_id.link);
2138 	atomic_inc(&ce->guc_id.ref);
2139 
2140 out_unlock:
2141 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2142 
2143 	/*
2144 	 * -EAGAIN indicates no guc_id are available, let's retire any
2145 	 * outstanding requests to see if that frees up a guc_id. If the first
2146 	 * retire didn't help, insert a sleep with the timeslice duration before
2147 	 * attempting to retire more requests. Double the sleep period each
2148 	 * subsequent pass before finally giving up. The sleep period has max of
2149 	 * 100ms and minimum of 1ms.
2150 	 */
2151 	if (ret == -EAGAIN && --tries) {
2152 		if (PIN_GUC_ID_TRIES - tries > 1) {
2153 			unsigned int timeslice_shifted =
2154 				ce->engine->props.timeslice_duration_ms <<
2155 				(PIN_GUC_ID_TRIES - tries - 2);
2156 			unsigned int max = min_t(unsigned int, 100,
2157 						 timeslice_shifted);
2158 
2159 			msleep(max_t(unsigned int, max, 1));
2160 		}
2161 		intel_gt_retire_requests(guc_to_gt(guc));
2162 		goto try_again;
2163 	}
2164 
2165 	return ret;
2166 }
2167 
2168 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2169 {
2170 	unsigned long flags;
2171 
2172 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2173 	GEM_BUG_ON(intel_context_is_child(ce));
2174 
2175 	if (unlikely(context_guc_id_invalid(ce) ||
2176 		     intel_context_is_parent(ce)))
2177 		return;
2178 
2179 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2180 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2181 	    !atomic_read(&ce->guc_id.ref))
2182 		list_add_tail(&ce->guc_id.link,
2183 			      &guc->submission_state.guc_id_list);
2184 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2185 }
2186 
2187 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2188 					       struct intel_context *ce,
2189 					       u32 guc_id,
2190 					       u32 offset,
2191 					       bool loop)
2192 {
2193 	struct intel_context *child;
2194 	u32 action[4 + MAX_ENGINE_INSTANCE];
2195 	int len = 0;
2196 
2197 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2198 
2199 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2200 	action[len++] = guc_id;
2201 	action[len++] = ce->parallel.number_children + 1;
2202 	action[len++] = offset;
2203 	for_each_child(ce, child) {
2204 		offset += sizeof(struct guc_lrc_desc_v69);
2205 		action[len++] = offset;
2206 	}
2207 
2208 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2209 }
2210 
2211 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2212 					       struct intel_context *ce,
2213 					       struct guc_ctxt_registration_info *info,
2214 					       bool loop)
2215 {
2216 	struct intel_context *child;
2217 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2218 	int len = 0;
2219 	u32 next_id;
2220 
2221 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2222 
2223 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2224 	action[len++] = info->flags;
2225 	action[len++] = info->context_idx;
2226 	action[len++] = info->engine_class;
2227 	action[len++] = info->engine_submit_mask;
2228 	action[len++] = info->wq_desc_lo;
2229 	action[len++] = info->wq_desc_hi;
2230 	action[len++] = info->wq_base_lo;
2231 	action[len++] = info->wq_base_hi;
2232 	action[len++] = info->wq_size;
2233 	action[len++] = ce->parallel.number_children + 1;
2234 	action[len++] = info->hwlrca_lo;
2235 	action[len++] = info->hwlrca_hi;
2236 
2237 	next_id = info->context_idx + 1;
2238 	for_each_child(ce, child) {
2239 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2240 
2241 		/*
2242 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2243 		 * only supports 32 bit currently.
2244 		 */
2245 		action[len++] = lower_32_bits(child->lrc.lrca);
2246 		action[len++] = upper_32_bits(child->lrc.lrca);
2247 	}
2248 
2249 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2250 
2251 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2252 }
2253 
2254 static int __guc_action_register_context_v69(struct intel_guc *guc,
2255 					     u32 guc_id,
2256 					     u32 offset,
2257 					     bool loop)
2258 {
2259 	u32 action[] = {
2260 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2261 		guc_id,
2262 		offset,
2263 	};
2264 
2265 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2266 					     0, loop);
2267 }
2268 
2269 static int __guc_action_register_context_v70(struct intel_guc *guc,
2270 					     struct guc_ctxt_registration_info *info,
2271 					     bool loop)
2272 {
2273 	u32 action[] = {
2274 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2275 		info->flags,
2276 		info->context_idx,
2277 		info->engine_class,
2278 		info->engine_submit_mask,
2279 		info->wq_desc_lo,
2280 		info->wq_desc_hi,
2281 		info->wq_base_lo,
2282 		info->wq_base_hi,
2283 		info->wq_size,
2284 		info->hwlrca_lo,
2285 		info->hwlrca_hi,
2286 	};
2287 
2288 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2289 					     0, loop);
2290 }
2291 
2292 static void prepare_context_registration_info_v69(struct intel_context *ce);
2293 static void prepare_context_registration_info_v70(struct intel_context *ce,
2294 						  struct guc_ctxt_registration_info *info);
2295 
2296 static int
2297 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2298 {
2299 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2300 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2301 
2302 	prepare_context_registration_info_v69(ce);
2303 
2304 	if (intel_context_is_parent(ce))
2305 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2306 							   offset, loop);
2307 	else
2308 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2309 							 offset, loop);
2310 }
2311 
2312 static int
2313 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2314 {
2315 	struct guc_ctxt_registration_info info;
2316 
2317 	prepare_context_registration_info_v70(ce, &info);
2318 
2319 	if (intel_context_is_parent(ce))
2320 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2321 	else
2322 		return __guc_action_register_context_v70(guc, &info, loop);
2323 }
2324 
2325 static int register_context(struct intel_context *ce, bool loop)
2326 {
2327 	struct intel_guc *guc = ce_to_guc(ce);
2328 	int ret;
2329 
2330 	GEM_BUG_ON(intel_context_is_child(ce));
2331 	trace_intel_context_register(ce);
2332 
2333 	if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0))
2334 		ret = register_context_v70(guc, ce, loop);
2335 	else
2336 		ret = register_context_v69(guc, ce, loop);
2337 
2338 	if (likely(!ret)) {
2339 		unsigned long flags;
2340 
2341 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2342 		set_context_registered(ce);
2343 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2344 
2345 		if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0))
2346 			guc_context_policy_init_v70(ce, loop);
2347 	}
2348 
2349 	return ret;
2350 }
2351 
2352 static int __guc_action_deregister_context(struct intel_guc *guc,
2353 					   u32 guc_id)
2354 {
2355 	u32 action[] = {
2356 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2357 		guc_id,
2358 	};
2359 
2360 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2361 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2362 					     true);
2363 }
2364 
2365 static int deregister_context(struct intel_context *ce, u32 guc_id)
2366 {
2367 	struct intel_guc *guc = ce_to_guc(ce);
2368 
2369 	GEM_BUG_ON(intel_context_is_child(ce));
2370 	trace_intel_context_deregister(ce);
2371 
2372 	return __guc_action_deregister_context(guc, guc_id);
2373 }
2374 
2375 static inline void clear_children_join_go_memory(struct intel_context *ce)
2376 {
2377 	struct parent_scratch *ps = __get_parent_scratch(ce);
2378 	int i;
2379 
2380 	ps->go.semaphore = 0;
2381 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2382 		ps->join[i].semaphore = 0;
2383 }
2384 
2385 static inline u32 get_children_go_value(struct intel_context *ce)
2386 {
2387 	return __get_parent_scratch(ce)->go.semaphore;
2388 }
2389 
2390 static inline u32 get_children_join_value(struct intel_context *ce,
2391 					  u8 child_index)
2392 {
2393 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2394 }
2395 
2396 struct context_policy {
2397 	u32 count;
2398 	struct guc_update_context_policy h2g;
2399 };
2400 
2401 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2402 {
2403 	size_t bytes = sizeof(policy->h2g.header) +
2404 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2405 
2406 	return bytes / sizeof(u32);
2407 }
2408 
2409 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2410 {
2411 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2412 	policy->h2g.header.ctx_id = guc_id;
2413 	policy->count = 0;
2414 }
2415 
2416 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2417 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2418 { \
2419 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2420 	policy->h2g.klv[policy->count].kl = \
2421 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2422 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2423 	policy->h2g.klv[policy->count].value = data; \
2424 	policy->count++; \
2425 }
2426 
2427 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2428 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2429 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2430 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2431 
2432 #undef MAKE_CONTEXT_POLICY_ADD
2433 
2434 static int __guc_context_set_context_policies(struct intel_guc *guc,
2435 					      struct context_policy *policy,
2436 					      bool loop)
2437 {
2438 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2439 					__guc_context_policy_action_size(policy),
2440 					0, loop);
2441 }
2442 
2443 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2444 {
2445 	struct intel_engine_cs *engine = ce->engine;
2446 	struct intel_guc *guc = &engine->gt->uc.guc;
2447 	struct context_policy policy;
2448 	u32 execution_quantum;
2449 	u32 preemption_timeout;
2450 	unsigned long flags;
2451 	int ret;
2452 
2453 	/* NB: For both of these, zero means disabled. */
2454 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2455 				  execution_quantum));
2456 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2457 				  preemption_timeout));
2458 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2459 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2460 
2461 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2462 
2463 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2464 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2465 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2466 
2467 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2468 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2469 
2470 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2471 
2472 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2473 	if (ret != 0)
2474 		set_context_policy_required(ce);
2475 	else
2476 		clr_context_policy_required(ce);
2477 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2478 
2479 	return ret;
2480 }
2481 
2482 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2483 					struct guc_lrc_desc_v69 *desc)
2484 {
2485 	desc->policy_flags = 0;
2486 
2487 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2488 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2489 
2490 	/* NB: For both of these, zero means disabled. */
2491 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2492 				  desc->execution_quantum));
2493 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2494 				  desc->preemption_timeout));
2495 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2496 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2497 }
2498 
2499 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2500 {
2501 	/*
2502 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2503 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2504 	 */
2505 	switch (prio) {
2506 	default:
2507 		MISSING_CASE(prio);
2508 		fallthrough;
2509 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2510 		return GEN12_CTX_PRIORITY_NORMAL;
2511 	case GUC_CLIENT_PRIORITY_NORMAL:
2512 		return GEN12_CTX_PRIORITY_LOW;
2513 	case GUC_CLIENT_PRIORITY_HIGH:
2514 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2515 		return GEN12_CTX_PRIORITY_HIGH;
2516 	}
2517 }
2518 
2519 static void prepare_context_registration_info_v69(struct intel_context *ce)
2520 {
2521 	struct intel_engine_cs *engine = ce->engine;
2522 	struct intel_guc *guc = &engine->gt->uc.guc;
2523 	u32 ctx_id = ce->guc_id.id;
2524 	struct guc_lrc_desc_v69 *desc;
2525 	struct intel_context *child;
2526 
2527 	GEM_BUG_ON(!engine->mask);
2528 
2529 	/*
2530 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2531 	 * based on CT vma region.
2532 	 */
2533 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2534 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2535 
2536 	desc = __get_lrc_desc_v69(guc, ctx_id);
2537 	desc->engine_class = engine_class_to_guc_class(engine->class);
2538 	desc->engine_submit_mask = engine->logical_mask;
2539 	desc->hw_context_desc = ce->lrc.lrca;
2540 	desc->priority = ce->guc_state.prio;
2541 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2542 	guc_context_policy_init_v69(engine, desc);
2543 
2544 	/*
2545 	 * If context is a parent, we need to register a process descriptor
2546 	 * describing a work queue and register all child contexts.
2547 	 */
2548 	if (intel_context_is_parent(ce)) {
2549 		struct guc_process_desc_v69 *pdesc;
2550 
2551 		ce->parallel.guc.wqi_tail = 0;
2552 		ce->parallel.guc.wqi_head = 0;
2553 
2554 		desc->process_desc = i915_ggtt_offset(ce->state) +
2555 			__get_parent_scratch_offset(ce);
2556 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2557 			__get_wq_offset(ce);
2558 		desc->wq_size = WQ_SIZE;
2559 
2560 		pdesc = __get_process_desc_v69(ce);
2561 		memset(pdesc, 0, sizeof(*(pdesc)));
2562 		pdesc->stage_id = ce->guc_id.id;
2563 		pdesc->wq_base_addr = desc->wq_addr;
2564 		pdesc->wq_size_bytes = desc->wq_size;
2565 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2566 
2567 		ce->parallel.guc.wq_head = &pdesc->head;
2568 		ce->parallel.guc.wq_tail = &pdesc->tail;
2569 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2570 
2571 		for_each_child(ce, child) {
2572 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2573 
2574 			desc->engine_class =
2575 				engine_class_to_guc_class(engine->class);
2576 			desc->hw_context_desc = child->lrc.lrca;
2577 			desc->priority = ce->guc_state.prio;
2578 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2579 			guc_context_policy_init_v69(engine, desc);
2580 		}
2581 
2582 		clear_children_join_go_memory(ce);
2583 	}
2584 }
2585 
2586 static void prepare_context_registration_info_v70(struct intel_context *ce,
2587 						  struct guc_ctxt_registration_info *info)
2588 {
2589 	struct intel_engine_cs *engine = ce->engine;
2590 	struct intel_guc *guc = &engine->gt->uc.guc;
2591 	u32 ctx_id = ce->guc_id.id;
2592 
2593 	GEM_BUG_ON(!engine->mask);
2594 
2595 	/*
2596 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2597 	 * based on CT vma region.
2598 	 */
2599 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2600 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2601 
2602 	memset(info, 0, sizeof(*info));
2603 	info->context_idx = ctx_id;
2604 	info->engine_class = engine_class_to_guc_class(engine->class);
2605 	info->engine_submit_mask = engine->logical_mask;
2606 	/*
2607 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2608 	 * only supports 32 bit currently.
2609 	 */
2610 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2611 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2612 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2613 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2614 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2615 
2616 	/*
2617 	 * If context is a parent, we need to register a process descriptor
2618 	 * describing a work queue and register all child contexts.
2619 	 */
2620 	if (intel_context_is_parent(ce)) {
2621 		struct guc_sched_wq_desc *wq_desc;
2622 		u64 wq_desc_offset, wq_base_offset;
2623 
2624 		ce->parallel.guc.wqi_tail = 0;
2625 		ce->parallel.guc.wqi_head = 0;
2626 
2627 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2628 				 __get_parent_scratch_offset(ce);
2629 		wq_base_offset = i915_ggtt_offset(ce->state) +
2630 				 __get_wq_offset(ce);
2631 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2632 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2633 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2634 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2635 		info->wq_size = WQ_SIZE;
2636 
2637 		wq_desc = __get_wq_desc_v70(ce);
2638 		memset(wq_desc, 0, sizeof(*wq_desc));
2639 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2640 
2641 		ce->parallel.guc.wq_head = &wq_desc->head;
2642 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2643 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2644 
2645 		clear_children_join_go_memory(ce);
2646 	}
2647 }
2648 
2649 static int try_context_registration(struct intel_context *ce, bool loop)
2650 {
2651 	struct intel_engine_cs *engine = ce->engine;
2652 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2653 	struct intel_guc *guc = &engine->gt->uc.guc;
2654 	intel_wakeref_t wakeref;
2655 	u32 ctx_id = ce->guc_id.id;
2656 	bool context_registered;
2657 	int ret = 0;
2658 
2659 	GEM_BUG_ON(!sched_state_is_init(ce));
2660 
2661 	context_registered = ctx_id_mapped(guc, ctx_id);
2662 
2663 	clr_ctx_id_mapping(guc, ctx_id);
2664 	set_ctx_id_mapping(guc, ctx_id, ce);
2665 
2666 	/*
2667 	 * The context_lookup xarray is used to determine if the hardware
2668 	 * context is currently registered. There are two cases in which it
2669 	 * could be registered either the guc_id has been stolen from another
2670 	 * context or the lrc descriptor address of this context has changed. In
2671 	 * either case the context needs to be deregistered with the GuC before
2672 	 * registering this context.
2673 	 */
2674 	if (context_registered) {
2675 		bool disabled;
2676 		unsigned long flags;
2677 
2678 		trace_intel_context_steal_guc_id(ce);
2679 		GEM_BUG_ON(!loop);
2680 
2681 		/* Seal race with Reset */
2682 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2683 		disabled = submission_disabled(guc);
2684 		if (likely(!disabled)) {
2685 			set_context_wait_for_deregister_to_register(ce);
2686 			intel_context_get(ce);
2687 		}
2688 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2689 		if (unlikely(disabled)) {
2690 			clr_ctx_id_mapping(guc, ctx_id);
2691 			return 0;	/* Will get registered later */
2692 		}
2693 
2694 		/*
2695 		 * If stealing the guc_id, this ce has the same guc_id as the
2696 		 * context whose guc_id was stolen.
2697 		 */
2698 		with_intel_runtime_pm(runtime_pm, wakeref)
2699 			ret = deregister_context(ce, ce->guc_id.id);
2700 		if (unlikely(ret == -ENODEV))
2701 			ret = 0;	/* Will get registered later */
2702 	} else {
2703 		with_intel_runtime_pm(runtime_pm, wakeref)
2704 			ret = register_context(ce, loop);
2705 		if (unlikely(ret == -EBUSY)) {
2706 			clr_ctx_id_mapping(guc, ctx_id);
2707 		} else if (unlikely(ret == -ENODEV)) {
2708 			clr_ctx_id_mapping(guc, ctx_id);
2709 			ret = 0;	/* Will get registered later */
2710 		}
2711 	}
2712 
2713 	return ret;
2714 }
2715 
2716 static int __guc_context_pre_pin(struct intel_context *ce,
2717 				 struct intel_engine_cs *engine,
2718 				 struct i915_gem_ww_ctx *ww,
2719 				 void **vaddr)
2720 {
2721 	return lrc_pre_pin(ce, engine, ww, vaddr);
2722 }
2723 
2724 static int __guc_context_pin(struct intel_context *ce,
2725 			     struct intel_engine_cs *engine,
2726 			     void *vaddr)
2727 {
2728 	if (i915_ggtt_offset(ce->state) !=
2729 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2730 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2731 
2732 	/*
2733 	 * GuC context gets pinned in guc_request_alloc. See that function for
2734 	 * explaination of why.
2735 	 */
2736 
2737 	return lrc_pin(ce, engine, vaddr);
2738 }
2739 
2740 static int guc_context_pre_pin(struct intel_context *ce,
2741 			       struct i915_gem_ww_ctx *ww,
2742 			       void **vaddr)
2743 {
2744 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2745 }
2746 
2747 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2748 {
2749 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2750 
2751 	if (likely(!ret && !intel_context_is_barrier(ce)))
2752 		intel_engine_pm_get(ce->engine);
2753 
2754 	return ret;
2755 }
2756 
2757 static void guc_context_unpin(struct intel_context *ce)
2758 {
2759 	struct intel_guc *guc = ce_to_guc(ce);
2760 
2761 	unpin_guc_id(guc, ce);
2762 	lrc_unpin(ce);
2763 
2764 	if (likely(!intel_context_is_barrier(ce)))
2765 		intel_engine_pm_put_async(ce->engine);
2766 }
2767 
2768 static void guc_context_post_unpin(struct intel_context *ce)
2769 {
2770 	lrc_post_unpin(ce);
2771 }
2772 
2773 static void __guc_context_sched_enable(struct intel_guc *guc,
2774 				       struct intel_context *ce)
2775 {
2776 	u32 action[] = {
2777 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2778 		ce->guc_id.id,
2779 		GUC_CONTEXT_ENABLE
2780 	};
2781 
2782 	trace_intel_context_sched_enable(ce);
2783 
2784 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2785 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2786 }
2787 
2788 static void __guc_context_sched_disable(struct intel_guc *guc,
2789 					struct intel_context *ce,
2790 					u16 guc_id)
2791 {
2792 	u32 action[] = {
2793 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2794 		guc_id,	/* ce->guc_id.id not stable */
2795 		GUC_CONTEXT_DISABLE
2796 	};
2797 
2798 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2799 
2800 	GEM_BUG_ON(intel_context_is_child(ce));
2801 	trace_intel_context_sched_disable(ce);
2802 
2803 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2804 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2805 }
2806 
2807 static void guc_blocked_fence_complete(struct intel_context *ce)
2808 {
2809 	lockdep_assert_held(&ce->guc_state.lock);
2810 
2811 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2812 		i915_sw_fence_complete(&ce->guc_state.blocked);
2813 }
2814 
2815 static void guc_blocked_fence_reinit(struct intel_context *ce)
2816 {
2817 	lockdep_assert_held(&ce->guc_state.lock);
2818 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2819 
2820 	/*
2821 	 * This fence is always complete unless a pending schedule disable is
2822 	 * outstanding. We arm the fence here and complete it when we receive
2823 	 * the pending schedule disable complete message.
2824 	 */
2825 	i915_sw_fence_fini(&ce->guc_state.blocked);
2826 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2827 	i915_sw_fence_await(&ce->guc_state.blocked);
2828 	i915_sw_fence_commit(&ce->guc_state.blocked);
2829 }
2830 
2831 static u16 prep_context_pending_disable(struct intel_context *ce)
2832 {
2833 	lockdep_assert_held(&ce->guc_state.lock);
2834 
2835 	set_context_pending_disable(ce);
2836 	clr_context_enabled(ce);
2837 	guc_blocked_fence_reinit(ce);
2838 	intel_context_get(ce);
2839 
2840 	return ce->guc_id.id;
2841 }
2842 
2843 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2844 {
2845 	struct intel_guc *guc = ce_to_guc(ce);
2846 	unsigned long flags;
2847 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2848 	intel_wakeref_t wakeref;
2849 	u16 guc_id;
2850 	bool enabled;
2851 
2852 	GEM_BUG_ON(intel_context_is_child(ce));
2853 
2854 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2855 
2856 	incr_context_blocked(ce);
2857 
2858 	enabled = context_enabled(ce);
2859 	if (unlikely(!enabled || submission_disabled(guc))) {
2860 		if (enabled)
2861 			clr_context_enabled(ce);
2862 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2863 		return &ce->guc_state.blocked;
2864 	}
2865 
2866 	/*
2867 	 * We add +2 here as the schedule disable complete CTB handler calls
2868 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2869 	 */
2870 	atomic_add(2, &ce->pin_count);
2871 
2872 	guc_id = prep_context_pending_disable(ce);
2873 
2874 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2875 
2876 	with_intel_runtime_pm(runtime_pm, wakeref)
2877 		__guc_context_sched_disable(guc, ce, guc_id);
2878 
2879 	return &ce->guc_state.blocked;
2880 }
2881 
2882 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2883 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2884 #define SCHED_STATE_NO_UNBLOCK \
2885 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2886 	 SCHED_STATE_PENDING_DISABLE | \
2887 	 SCHED_STATE_BANNED)
2888 
2889 static bool context_cant_unblock(struct intel_context *ce)
2890 {
2891 	lockdep_assert_held(&ce->guc_state.lock);
2892 
2893 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2894 		context_guc_id_invalid(ce) ||
2895 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2896 		!intel_context_is_pinned(ce);
2897 }
2898 
2899 static void guc_context_unblock(struct intel_context *ce)
2900 {
2901 	struct intel_guc *guc = ce_to_guc(ce);
2902 	unsigned long flags;
2903 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2904 	intel_wakeref_t wakeref;
2905 	bool enable;
2906 
2907 	GEM_BUG_ON(context_enabled(ce));
2908 	GEM_BUG_ON(intel_context_is_child(ce));
2909 
2910 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2911 
2912 	if (unlikely(submission_disabled(guc) ||
2913 		     context_cant_unblock(ce))) {
2914 		enable = false;
2915 	} else {
2916 		enable = true;
2917 		set_context_pending_enable(ce);
2918 		set_context_enabled(ce);
2919 		intel_context_get(ce);
2920 	}
2921 
2922 	decr_context_blocked(ce);
2923 
2924 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2925 
2926 	if (enable) {
2927 		with_intel_runtime_pm(runtime_pm, wakeref)
2928 			__guc_context_sched_enable(guc, ce);
2929 	}
2930 }
2931 
2932 static void guc_context_cancel_request(struct intel_context *ce,
2933 				       struct i915_request *rq)
2934 {
2935 	struct intel_context *block_context =
2936 		request_to_scheduling_context(rq);
2937 
2938 	if (i915_sw_fence_signaled(&rq->submit)) {
2939 		struct i915_sw_fence *fence;
2940 
2941 		intel_context_get(ce);
2942 		fence = guc_context_block(block_context);
2943 		i915_sw_fence_wait(fence);
2944 		if (!i915_request_completed(rq)) {
2945 			__i915_request_skip(rq);
2946 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2947 					true);
2948 		}
2949 
2950 		guc_context_unblock(block_context);
2951 		intel_context_put(ce);
2952 	}
2953 }
2954 
2955 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2956 						 u16 guc_id,
2957 						 u32 preemption_timeout)
2958 {
2959 	if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) {
2960 		struct context_policy policy;
2961 
2962 		__guc_context_policy_start_klv(&policy, guc_id);
2963 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2964 		__guc_context_set_context_policies(guc, &policy, true);
2965 	} else {
2966 		u32 action[] = {
2967 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
2968 			guc_id,
2969 			preemption_timeout
2970 		};
2971 
2972 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
2973 	}
2974 }
2975 
2976 static void
2977 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
2978 		   unsigned int preempt_timeout_ms)
2979 {
2980 	struct intel_guc *guc = ce_to_guc(ce);
2981 	struct intel_runtime_pm *runtime_pm =
2982 		&ce->engine->gt->i915->runtime_pm;
2983 	intel_wakeref_t wakeref;
2984 	unsigned long flags;
2985 
2986 	GEM_BUG_ON(intel_context_is_child(ce));
2987 
2988 	guc_flush_submissions(guc);
2989 
2990 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2991 	set_context_banned(ce);
2992 
2993 	if (submission_disabled(guc) ||
2994 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
2995 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2996 
2997 		guc_cancel_context_requests(ce);
2998 		intel_engine_signal_breadcrumbs(ce->engine);
2999 	} else if (!context_pending_disable(ce)) {
3000 		u16 guc_id;
3001 
3002 		/*
3003 		 * We add +2 here as the schedule disable complete CTB handler
3004 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3005 		 */
3006 		atomic_add(2, &ce->pin_count);
3007 
3008 		guc_id = prep_context_pending_disable(ce);
3009 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3010 
3011 		/*
3012 		 * In addition to disabling scheduling, set the preemption
3013 		 * timeout to the minimum value (1 us) so the banned context
3014 		 * gets kicked off the HW ASAP.
3015 		 */
3016 		with_intel_runtime_pm(runtime_pm, wakeref) {
3017 			__guc_context_set_preemption_timeout(guc, guc_id,
3018 							     preempt_timeout_ms);
3019 			__guc_context_sched_disable(guc, ce, guc_id);
3020 		}
3021 	} else {
3022 		if (!context_guc_id_invalid(ce))
3023 			with_intel_runtime_pm(runtime_pm, wakeref)
3024 				__guc_context_set_preemption_timeout(guc,
3025 								     ce->guc_id.id,
3026 								     preempt_timeout_ms);
3027 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3028 	}
3029 }
3030 
3031 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3032 			     unsigned long flags)
3033 	__releases(ce->guc_state.lock)
3034 {
3035 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3036 	intel_wakeref_t wakeref;
3037 	u16 guc_id;
3038 
3039 	lockdep_assert_held(&ce->guc_state.lock);
3040 	guc_id = prep_context_pending_disable(ce);
3041 
3042 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3043 
3044 	with_intel_runtime_pm(runtime_pm, wakeref)
3045 		__guc_context_sched_disable(guc, ce, guc_id);
3046 }
3047 
3048 static bool bypass_sched_disable(struct intel_guc *guc,
3049 				 struct intel_context *ce)
3050 {
3051 	lockdep_assert_held(&ce->guc_state.lock);
3052 	GEM_BUG_ON(intel_context_is_child(ce));
3053 
3054 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3055 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3056 		clr_context_enabled(ce);
3057 		return true;
3058 	}
3059 
3060 	return !context_enabled(ce);
3061 }
3062 
3063 static void __delay_sched_disable(struct work_struct *wrk)
3064 {
3065 	struct intel_context *ce =
3066 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3067 	struct intel_guc *guc = ce_to_guc(ce);
3068 	unsigned long flags;
3069 
3070 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3071 
3072 	if (bypass_sched_disable(guc, ce)) {
3073 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3074 		intel_context_sched_disable_unpin(ce);
3075 	} else {
3076 		do_sched_disable(guc, ce, flags);
3077 	}
3078 }
3079 
3080 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3081 {
3082 	/*
3083 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3084 	 * disable immediately.
3085 	 */
3086 	if (intel_context_is_parent(ce))
3087 		return true;
3088 
3089 	/*
3090 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3091 	 */
3092 	return guc->submission_state.guc_ids_in_use >
3093 		guc->submission_state.sched_disable_gucid_threshold;
3094 }
3095 
3096 static void guc_context_sched_disable(struct intel_context *ce)
3097 {
3098 	struct intel_guc *guc = ce_to_guc(ce);
3099 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3100 	unsigned long flags;
3101 
3102 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3103 
3104 	if (bypass_sched_disable(guc, ce)) {
3105 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3106 		intel_context_sched_disable_unpin(ce);
3107 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3108 		   delay) {
3109 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3110 		mod_delayed_work(system_unbound_wq,
3111 				 &ce->guc_state.sched_disable_delay_work,
3112 				 msecs_to_jiffies(delay));
3113 	} else {
3114 		do_sched_disable(guc, ce, flags);
3115 	}
3116 }
3117 
3118 static void guc_context_close(struct intel_context *ce)
3119 {
3120 	unsigned long flags;
3121 
3122 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3123 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3124 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3125 
3126 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3127 	set_context_close_done(ce);
3128 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3129 }
3130 
3131 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3132 {
3133 	struct intel_guc *guc = ce_to_guc(ce);
3134 	struct intel_gt *gt = guc_to_gt(guc);
3135 	unsigned long flags;
3136 	bool disabled;
3137 
3138 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3139 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3140 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3141 	GEM_BUG_ON(context_enabled(ce));
3142 
3143 	/* Seal race with Reset */
3144 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3145 	disabled = submission_disabled(guc);
3146 	if (likely(!disabled)) {
3147 		__intel_gt_pm_get(gt);
3148 		set_context_destroyed(ce);
3149 		clr_context_registered(ce);
3150 	}
3151 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3152 	if (unlikely(disabled)) {
3153 		release_guc_id(guc, ce);
3154 		__guc_context_destroy(ce);
3155 		return;
3156 	}
3157 
3158 	deregister_context(ce, ce->guc_id.id);
3159 }
3160 
3161 static void __guc_context_destroy(struct intel_context *ce)
3162 {
3163 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3164 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3165 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3166 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3167 
3168 	lrc_fini(ce);
3169 	intel_context_fini(ce);
3170 
3171 	if (intel_engine_is_virtual(ce->engine)) {
3172 		struct guc_virtual_engine *ve =
3173 			container_of(ce, typeof(*ve), context);
3174 
3175 		if (ve->base.breadcrumbs)
3176 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3177 
3178 		kfree(ve);
3179 	} else {
3180 		intel_context_free(ce);
3181 	}
3182 }
3183 
3184 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3185 {
3186 	struct intel_context *ce;
3187 	unsigned long flags;
3188 
3189 	GEM_BUG_ON(!submission_disabled(guc) &&
3190 		   guc_submission_initialized(guc));
3191 
3192 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3193 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3194 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3195 					      struct intel_context,
3196 					      destroyed_link);
3197 		if (ce)
3198 			list_del_init(&ce->destroyed_link);
3199 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3200 
3201 		if (!ce)
3202 			break;
3203 
3204 		release_guc_id(guc, ce);
3205 		__guc_context_destroy(ce);
3206 	}
3207 }
3208 
3209 static void deregister_destroyed_contexts(struct intel_guc *guc)
3210 {
3211 	struct intel_context *ce;
3212 	unsigned long flags;
3213 
3214 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3215 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3216 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3217 					      struct intel_context,
3218 					      destroyed_link);
3219 		if (ce)
3220 			list_del_init(&ce->destroyed_link);
3221 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3222 
3223 		if (!ce)
3224 			break;
3225 
3226 		guc_lrc_desc_unpin(ce);
3227 	}
3228 }
3229 
3230 static void destroyed_worker_func(struct work_struct *w)
3231 {
3232 	struct intel_guc *guc = container_of(w, struct intel_guc,
3233 					     submission_state.destroyed_worker);
3234 	struct intel_gt *gt = guc_to_gt(guc);
3235 	int tmp;
3236 
3237 	with_intel_gt_pm(gt, tmp)
3238 		deregister_destroyed_contexts(guc);
3239 }
3240 
3241 static void guc_context_destroy(struct kref *kref)
3242 {
3243 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3244 	struct intel_guc *guc = ce_to_guc(ce);
3245 	unsigned long flags;
3246 	bool destroy;
3247 
3248 	/*
3249 	 * If the guc_id is invalid this context has been stolen and we can free
3250 	 * it immediately. Also can be freed immediately if the context is not
3251 	 * registered with the GuC or the GuC is in the middle of a reset.
3252 	 */
3253 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3254 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3255 		!ctx_id_mapped(guc, ce->guc_id.id);
3256 	if (likely(!destroy)) {
3257 		if (!list_empty(&ce->guc_id.link))
3258 			list_del_init(&ce->guc_id.link);
3259 		list_add_tail(&ce->destroyed_link,
3260 			      &guc->submission_state.destroyed_contexts);
3261 	} else {
3262 		__release_guc_id(guc, ce);
3263 	}
3264 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3265 	if (unlikely(destroy)) {
3266 		__guc_context_destroy(ce);
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * We use a worker to issue the H2G to deregister the context as we can
3272 	 * take the GT PM for the first time which isn't allowed from an atomic
3273 	 * context.
3274 	 */
3275 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3276 }
3277 
3278 static int guc_context_alloc(struct intel_context *ce)
3279 {
3280 	return lrc_alloc(ce, ce->engine);
3281 }
3282 
3283 static void __guc_context_set_prio(struct intel_guc *guc,
3284 				   struct intel_context *ce)
3285 {
3286 	if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) {
3287 		struct context_policy policy;
3288 
3289 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3290 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3291 		__guc_context_set_context_policies(guc, &policy, true);
3292 	} else {
3293 		u32 action[] = {
3294 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3295 			ce->guc_id.id,
3296 			ce->guc_state.prio,
3297 		};
3298 
3299 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3300 	}
3301 }
3302 
3303 static void guc_context_set_prio(struct intel_guc *guc,
3304 				 struct intel_context *ce,
3305 				 u8 prio)
3306 {
3307 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3308 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3309 	lockdep_assert_held(&ce->guc_state.lock);
3310 
3311 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3312 	    !context_registered(ce)) {
3313 		ce->guc_state.prio = prio;
3314 		return;
3315 	}
3316 
3317 	ce->guc_state.prio = prio;
3318 	__guc_context_set_prio(guc, ce);
3319 
3320 	trace_intel_context_set_prio(ce);
3321 }
3322 
3323 static inline u8 map_i915_prio_to_guc_prio(int prio)
3324 {
3325 	if (prio == I915_PRIORITY_NORMAL)
3326 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3327 	else if (prio < I915_PRIORITY_NORMAL)
3328 		return GUC_CLIENT_PRIORITY_NORMAL;
3329 	else if (prio < I915_PRIORITY_DISPLAY)
3330 		return GUC_CLIENT_PRIORITY_HIGH;
3331 	else
3332 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3333 }
3334 
3335 static inline void add_context_inflight_prio(struct intel_context *ce,
3336 					     u8 guc_prio)
3337 {
3338 	lockdep_assert_held(&ce->guc_state.lock);
3339 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3340 
3341 	++ce->guc_state.prio_count[guc_prio];
3342 
3343 	/* Overflow protection */
3344 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3345 }
3346 
3347 static inline void sub_context_inflight_prio(struct intel_context *ce,
3348 					     u8 guc_prio)
3349 {
3350 	lockdep_assert_held(&ce->guc_state.lock);
3351 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3352 
3353 	/* Underflow protection */
3354 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3355 
3356 	--ce->guc_state.prio_count[guc_prio];
3357 }
3358 
3359 static inline void update_context_prio(struct intel_context *ce)
3360 {
3361 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3362 	int i;
3363 
3364 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3365 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3366 
3367 	lockdep_assert_held(&ce->guc_state.lock);
3368 
3369 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3370 		if (ce->guc_state.prio_count[i]) {
3371 			guc_context_set_prio(guc, ce, i);
3372 			break;
3373 		}
3374 	}
3375 }
3376 
3377 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3378 {
3379 	/* Lower value is higher priority */
3380 	return new_guc_prio < old_guc_prio;
3381 }
3382 
3383 static void add_to_context(struct i915_request *rq)
3384 {
3385 	struct intel_context *ce = request_to_scheduling_context(rq);
3386 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3387 
3388 	GEM_BUG_ON(intel_context_is_child(ce));
3389 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3390 
3391 	spin_lock(&ce->guc_state.lock);
3392 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3393 
3394 	if (rq->guc_prio == GUC_PRIO_INIT) {
3395 		rq->guc_prio = new_guc_prio;
3396 		add_context_inflight_prio(ce, rq->guc_prio);
3397 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3398 		sub_context_inflight_prio(ce, rq->guc_prio);
3399 		rq->guc_prio = new_guc_prio;
3400 		add_context_inflight_prio(ce, rq->guc_prio);
3401 	}
3402 	update_context_prio(ce);
3403 
3404 	spin_unlock(&ce->guc_state.lock);
3405 }
3406 
3407 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3408 {
3409 	lockdep_assert_held(&ce->guc_state.lock);
3410 
3411 	if (rq->guc_prio != GUC_PRIO_INIT &&
3412 	    rq->guc_prio != GUC_PRIO_FINI) {
3413 		sub_context_inflight_prio(ce, rq->guc_prio);
3414 		update_context_prio(ce);
3415 	}
3416 	rq->guc_prio = GUC_PRIO_FINI;
3417 }
3418 
3419 static void remove_from_context(struct i915_request *rq)
3420 {
3421 	struct intel_context *ce = request_to_scheduling_context(rq);
3422 
3423 	GEM_BUG_ON(intel_context_is_child(ce));
3424 
3425 	spin_lock_irq(&ce->guc_state.lock);
3426 
3427 	list_del_init(&rq->sched.link);
3428 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3429 
3430 	/* Prevent further __await_execution() registering a cb, then flush */
3431 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3432 
3433 	guc_prio_fini(rq, ce);
3434 
3435 	spin_unlock_irq(&ce->guc_state.lock);
3436 
3437 	atomic_dec(&ce->guc_id.ref);
3438 	i915_request_notify_execute_cb_imm(rq);
3439 }
3440 
3441 static const struct intel_context_ops guc_context_ops = {
3442 	.alloc = guc_context_alloc,
3443 
3444 	.close = guc_context_close,
3445 
3446 	.pre_pin = guc_context_pre_pin,
3447 	.pin = guc_context_pin,
3448 	.unpin = guc_context_unpin,
3449 	.post_unpin = guc_context_post_unpin,
3450 
3451 	.revoke = guc_context_revoke,
3452 
3453 	.cancel_request = guc_context_cancel_request,
3454 
3455 	.enter = intel_context_enter_engine,
3456 	.exit = intel_context_exit_engine,
3457 
3458 	.sched_disable = guc_context_sched_disable,
3459 
3460 	.reset = lrc_reset,
3461 	.destroy = guc_context_destroy,
3462 
3463 	.create_virtual = guc_create_virtual,
3464 	.create_parallel = guc_create_parallel,
3465 };
3466 
3467 static void submit_work_cb(struct irq_work *wrk)
3468 {
3469 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3470 
3471 	might_lock(&rq->engine->sched_engine->lock);
3472 	i915_sw_fence_complete(&rq->submit);
3473 }
3474 
3475 static void __guc_signal_context_fence(struct intel_context *ce)
3476 {
3477 	struct i915_request *rq, *rn;
3478 
3479 	lockdep_assert_held(&ce->guc_state.lock);
3480 
3481 	if (!list_empty(&ce->guc_state.fences))
3482 		trace_intel_context_fence_release(ce);
3483 
3484 	/*
3485 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3486 	 * ce->guc_state.lock is preserved.
3487 	 */
3488 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3489 				 guc_fence_link) {
3490 		list_del(&rq->guc_fence_link);
3491 		irq_work_queue(&rq->submit_work);
3492 	}
3493 
3494 	INIT_LIST_HEAD(&ce->guc_state.fences);
3495 }
3496 
3497 static void guc_signal_context_fence(struct intel_context *ce)
3498 {
3499 	unsigned long flags;
3500 
3501 	GEM_BUG_ON(intel_context_is_child(ce));
3502 
3503 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3504 	clr_context_wait_for_deregister_to_register(ce);
3505 	__guc_signal_context_fence(ce);
3506 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3507 }
3508 
3509 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3510 {
3511 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3512 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3513 		!submission_disabled(ce_to_guc(ce));
3514 }
3515 
3516 static void guc_context_init(struct intel_context *ce)
3517 {
3518 	const struct i915_gem_context *ctx;
3519 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3520 
3521 	rcu_read_lock();
3522 	ctx = rcu_dereference(ce->gem_context);
3523 	if (ctx)
3524 		prio = ctx->sched.priority;
3525 	rcu_read_unlock();
3526 
3527 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3528 
3529 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3530 			  __delay_sched_disable);
3531 
3532 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3533 }
3534 
3535 static int guc_request_alloc(struct i915_request *rq)
3536 {
3537 	struct intel_context *ce = request_to_scheduling_context(rq);
3538 	struct intel_guc *guc = ce_to_guc(ce);
3539 	unsigned long flags;
3540 	int ret;
3541 
3542 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3543 
3544 	/*
3545 	 * Flush enough space to reduce the likelihood of waiting after
3546 	 * we start building the request - in which case we will just
3547 	 * have to repeat work.
3548 	 */
3549 	rq->reserved_space += GUC_REQUEST_SIZE;
3550 
3551 	/*
3552 	 * Note that after this point, we have committed to using
3553 	 * this request as it is being used to both track the
3554 	 * state of engine initialisation and liveness of the
3555 	 * golden renderstate above. Think twice before you try
3556 	 * to cancel/unwind this request now.
3557 	 */
3558 
3559 	/* Unconditionally invalidate GPU caches and TLBs. */
3560 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3561 	if (ret)
3562 		return ret;
3563 
3564 	rq->reserved_space -= GUC_REQUEST_SIZE;
3565 
3566 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3567 		guc_context_init(ce);
3568 
3569 	/*
3570 	 * If the context gets closed while the execbuf is ongoing, the context
3571 	 * close code will race with the below code to cancel the delayed work.
3572 	 * If the context close wins the race and cancels the work, it will
3573 	 * immediately call the sched disable (see guc_context_close), so there
3574 	 * is a chance we can get past this check while the sched_disable code
3575 	 * is being executed. To make sure that code completes before we check
3576 	 * the status further down, we wait for the close process to complete.
3577 	 * Else, this code path could send a request down thinking that the
3578 	 * context is still in a schedule-enable mode while the GuC ends up
3579 	 * dropping the request completely because the disable did go from the
3580 	 * context_close path right to GuC just prior. In the event the CT is
3581 	 * full, we could potentially need to wait up to 1.5 seconds.
3582 	 */
3583 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3584 		intel_context_sched_disable_unpin(ce);
3585 	else if (intel_context_is_closed(ce))
3586 		if (wait_for(context_close_done(ce), 1500))
3587 			drm_warn(&guc_to_gt(guc)->i915->drm,
3588 				 "timed out waiting on context sched close before realloc\n");
3589 	/*
3590 	 * Call pin_guc_id here rather than in the pinning step as with
3591 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3592 	 * guc_id and creating horrible race conditions. This is especially bad
3593 	 * when guc_id are being stolen due to over subscription. By the time
3594 	 * this function is reached, it is guaranteed that the guc_id will be
3595 	 * persistent until the generated request is retired. Thus, sealing these
3596 	 * race conditions. It is still safe to fail here if guc_id are
3597 	 * exhausted and return -EAGAIN to the user indicating that they can try
3598 	 * again in the future.
3599 	 *
3600 	 * There is no need for a lock here as the timeline mutex ensures at
3601 	 * most one context can be executing this code path at once. The
3602 	 * guc_id_ref is incremented once for every request in flight and
3603 	 * decremented on each retire. When it is zero, a lock around the
3604 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3605 	 */
3606 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3607 		goto out;
3608 
3609 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3610 	if (unlikely(ret < 0))
3611 		return ret;
3612 	if (context_needs_register(ce, !!ret)) {
3613 		ret = try_context_registration(ce, true);
3614 		if (unlikely(ret)) {	/* unwind */
3615 			if (ret == -EPIPE) {
3616 				disable_submission(guc);
3617 				goto out;	/* GPU will be reset */
3618 			}
3619 			atomic_dec(&ce->guc_id.ref);
3620 			unpin_guc_id(guc, ce);
3621 			return ret;
3622 		}
3623 	}
3624 
3625 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3626 
3627 out:
3628 	/*
3629 	 * We block all requests on this context if a G2H is pending for a
3630 	 * schedule disable or context deregistration as the GuC will fail a
3631 	 * schedule enable or context registration if either G2H is pending
3632 	 * respectfully. Once a G2H returns, the fence is released that is
3633 	 * blocking these requests (see guc_signal_context_fence).
3634 	 */
3635 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3636 	if (context_wait_for_deregister_to_register(ce) ||
3637 	    context_pending_disable(ce)) {
3638 		init_irq_work(&rq->submit_work, submit_work_cb);
3639 		i915_sw_fence_await(&rq->submit);
3640 
3641 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3642 	}
3643 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3644 
3645 	return 0;
3646 }
3647 
3648 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3649 				       struct i915_gem_ww_ctx *ww,
3650 				       void **vaddr)
3651 {
3652 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3653 
3654 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3655 }
3656 
3657 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3658 {
3659 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3660 	int ret = __guc_context_pin(ce, engine, vaddr);
3661 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3662 
3663 	if (likely(!ret))
3664 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3665 			intel_engine_pm_get(engine);
3666 
3667 	return ret;
3668 }
3669 
3670 static void guc_virtual_context_unpin(struct intel_context *ce)
3671 {
3672 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3673 	struct intel_engine_cs *engine;
3674 	struct intel_guc *guc = ce_to_guc(ce);
3675 
3676 	GEM_BUG_ON(context_enabled(ce));
3677 	GEM_BUG_ON(intel_context_is_barrier(ce));
3678 
3679 	unpin_guc_id(guc, ce);
3680 	lrc_unpin(ce);
3681 
3682 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3683 		intel_engine_pm_put_async(engine);
3684 }
3685 
3686 static void guc_virtual_context_enter(struct intel_context *ce)
3687 {
3688 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3689 	struct intel_engine_cs *engine;
3690 
3691 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3692 		intel_engine_pm_get(engine);
3693 
3694 	intel_timeline_enter(ce->timeline);
3695 }
3696 
3697 static void guc_virtual_context_exit(struct intel_context *ce)
3698 {
3699 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3700 	struct intel_engine_cs *engine;
3701 
3702 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3703 		intel_engine_pm_put(engine);
3704 
3705 	intel_timeline_exit(ce->timeline);
3706 }
3707 
3708 static int guc_virtual_context_alloc(struct intel_context *ce)
3709 {
3710 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3711 
3712 	return lrc_alloc(ce, engine);
3713 }
3714 
3715 static const struct intel_context_ops virtual_guc_context_ops = {
3716 	.alloc = guc_virtual_context_alloc,
3717 
3718 	.close = guc_context_close,
3719 
3720 	.pre_pin = guc_virtual_context_pre_pin,
3721 	.pin = guc_virtual_context_pin,
3722 	.unpin = guc_virtual_context_unpin,
3723 	.post_unpin = guc_context_post_unpin,
3724 
3725 	.revoke = guc_context_revoke,
3726 
3727 	.cancel_request = guc_context_cancel_request,
3728 
3729 	.enter = guc_virtual_context_enter,
3730 	.exit = guc_virtual_context_exit,
3731 
3732 	.sched_disable = guc_context_sched_disable,
3733 
3734 	.destroy = guc_context_destroy,
3735 
3736 	.get_sibling = guc_virtual_get_sibling,
3737 };
3738 
3739 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3740 {
3741 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3742 	struct intel_guc *guc = ce_to_guc(ce);
3743 	int ret;
3744 
3745 	GEM_BUG_ON(!intel_context_is_parent(ce));
3746 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3747 
3748 	ret = pin_guc_id(guc, ce);
3749 	if (unlikely(ret < 0))
3750 		return ret;
3751 
3752 	return __guc_context_pin(ce, engine, vaddr);
3753 }
3754 
3755 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3756 {
3757 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3758 
3759 	GEM_BUG_ON(!intel_context_is_child(ce));
3760 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3761 
3762 	__intel_context_pin(ce->parallel.parent);
3763 	return __guc_context_pin(ce, engine, vaddr);
3764 }
3765 
3766 static void guc_parent_context_unpin(struct intel_context *ce)
3767 {
3768 	struct intel_guc *guc = ce_to_guc(ce);
3769 
3770 	GEM_BUG_ON(context_enabled(ce));
3771 	GEM_BUG_ON(intel_context_is_barrier(ce));
3772 	GEM_BUG_ON(!intel_context_is_parent(ce));
3773 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3774 
3775 	unpin_guc_id(guc, ce);
3776 	lrc_unpin(ce);
3777 }
3778 
3779 static void guc_child_context_unpin(struct intel_context *ce)
3780 {
3781 	GEM_BUG_ON(context_enabled(ce));
3782 	GEM_BUG_ON(intel_context_is_barrier(ce));
3783 	GEM_BUG_ON(!intel_context_is_child(ce));
3784 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3785 
3786 	lrc_unpin(ce);
3787 }
3788 
3789 static void guc_child_context_post_unpin(struct intel_context *ce)
3790 {
3791 	GEM_BUG_ON(!intel_context_is_child(ce));
3792 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3793 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3794 
3795 	lrc_post_unpin(ce);
3796 	intel_context_unpin(ce->parallel.parent);
3797 }
3798 
3799 static void guc_child_context_destroy(struct kref *kref)
3800 {
3801 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3802 
3803 	__guc_context_destroy(ce);
3804 }
3805 
3806 static const struct intel_context_ops virtual_parent_context_ops = {
3807 	.alloc = guc_virtual_context_alloc,
3808 
3809 	.close = guc_context_close,
3810 
3811 	.pre_pin = guc_context_pre_pin,
3812 	.pin = guc_parent_context_pin,
3813 	.unpin = guc_parent_context_unpin,
3814 	.post_unpin = guc_context_post_unpin,
3815 
3816 	.revoke = guc_context_revoke,
3817 
3818 	.cancel_request = guc_context_cancel_request,
3819 
3820 	.enter = guc_virtual_context_enter,
3821 	.exit = guc_virtual_context_exit,
3822 
3823 	.sched_disable = guc_context_sched_disable,
3824 
3825 	.destroy = guc_context_destroy,
3826 
3827 	.get_sibling = guc_virtual_get_sibling,
3828 };
3829 
3830 static const struct intel_context_ops virtual_child_context_ops = {
3831 	.alloc = guc_virtual_context_alloc,
3832 
3833 	.pre_pin = guc_context_pre_pin,
3834 	.pin = guc_child_context_pin,
3835 	.unpin = guc_child_context_unpin,
3836 	.post_unpin = guc_child_context_post_unpin,
3837 
3838 	.cancel_request = guc_context_cancel_request,
3839 
3840 	.enter = guc_virtual_context_enter,
3841 	.exit = guc_virtual_context_exit,
3842 
3843 	.destroy = guc_child_context_destroy,
3844 
3845 	.get_sibling = guc_virtual_get_sibling,
3846 };
3847 
3848 /*
3849  * The below override of the breadcrumbs is enabled when the user configures a
3850  * context for parallel submission (multi-lrc, parent-child).
3851  *
3852  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3853  * safely preempt all the hw contexts configured for parallel submission
3854  * between each BB. The contract between the i915 and GuC is if the parent
3855  * context can be preempted, all the children can be preempted, and the GuC will
3856  * always try to preempt the parent before the children. A handshake between the
3857  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3858  * creating a window to preempt between each set of BBs.
3859  */
3860 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3861 						     u64 offset, u32 len,
3862 						     const unsigned int flags);
3863 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3864 						    u64 offset, u32 len,
3865 						    const unsigned int flags);
3866 static u32 *
3867 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3868 						 u32 *cs);
3869 static u32 *
3870 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3871 						u32 *cs);
3872 
3873 static struct intel_context *
3874 guc_create_parallel(struct intel_engine_cs **engines,
3875 		    unsigned int num_siblings,
3876 		    unsigned int width)
3877 {
3878 	struct intel_engine_cs **siblings = NULL;
3879 	struct intel_context *parent = NULL, *ce, *err;
3880 	int i, j;
3881 
3882 	siblings = kmalloc_array(num_siblings,
3883 				 sizeof(*siblings),
3884 				 GFP_KERNEL);
3885 	if (!siblings)
3886 		return ERR_PTR(-ENOMEM);
3887 
3888 	for (i = 0; i < width; ++i) {
3889 		for (j = 0; j < num_siblings; ++j)
3890 			siblings[j] = engines[i * num_siblings + j];
3891 
3892 		ce = intel_engine_create_virtual(siblings, num_siblings,
3893 						 FORCE_VIRTUAL);
3894 		if (IS_ERR(ce)) {
3895 			err = ERR_CAST(ce);
3896 			goto unwind;
3897 		}
3898 
3899 		if (i == 0) {
3900 			parent = ce;
3901 			parent->ops = &virtual_parent_context_ops;
3902 		} else {
3903 			ce->ops = &virtual_child_context_ops;
3904 			intel_context_bind_parent_child(parent, ce);
3905 		}
3906 	}
3907 
3908 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3909 
3910 	parent->engine->emit_bb_start =
3911 		emit_bb_start_parent_no_preempt_mid_batch;
3912 	parent->engine->emit_fini_breadcrumb =
3913 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3914 	parent->engine->emit_fini_breadcrumb_dw =
3915 		12 + 4 * parent->parallel.number_children;
3916 	for_each_child(parent, ce) {
3917 		ce->engine->emit_bb_start =
3918 			emit_bb_start_child_no_preempt_mid_batch;
3919 		ce->engine->emit_fini_breadcrumb =
3920 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3921 		ce->engine->emit_fini_breadcrumb_dw = 16;
3922 	}
3923 
3924 	kfree(siblings);
3925 	return parent;
3926 
3927 unwind:
3928 	if (parent)
3929 		intel_context_put(parent);
3930 	kfree(siblings);
3931 	return err;
3932 }
3933 
3934 static bool
3935 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3936 {
3937 	struct intel_engine_cs *sibling;
3938 	intel_engine_mask_t tmp, mask = b->engine_mask;
3939 	bool result = false;
3940 
3941 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3942 		result |= intel_engine_irq_enable(sibling);
3943 
3944 	return result;
3945 }
3946 
3947 static void
3948 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3949 {
3950 	struct intel_engine_cs *sibling;
3951 	intel_engine_mask_t tmp, mask = b->engine_mask;
3952 
3953 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3954 		intel_engine_irq_disable(sibling);
3955 }
3956 
3957 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3958 {
3959 	int i;
3960 
3961 	/*
3962 	 * In GuC submission mode we do not know which physical engine a request
3963 	 * will be scheduled on, this creates a problem because the breadcrumb
3964 	 * interrupt is per physical engine. To work around this we attach
3965 	 * requests and direct all breadcrumb interrupts to the first instance
3966 	 * of an engine per class. In addition all breadcrumb interrupts are
3967 	 * enabled / disabled across an engine class in unison.
3968 	 */
3969 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3970 		struct intel_engine_cs *sibling =
3971 			engine->gt->engine_class[engine->class][i];
3972 
3973 		if (sibling) {
3974 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3975 				intel_breadcrumbs_put(engine->breadcrumbs);
3976 				engine->breadcrumbs =
3977 					intel_breadcrumbs_get(sibling->breadcrumbs);
3978 			}
3979 			break;
3980 		}
3981 	}
3982 
3983 	if (engine->breadcrumbs) {
3984 		engine->breadcrumbs->engine_mask |= engine->mask;
3985 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3986 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3987 	}
3988 }
3989 
3990 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3991 					   int prio)
3992 {
3993 	struct intel_context *ce = request_to_scheduling_context(rq);
3994 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3995 
3996 	/* Short circuit function */
3997 	if (prio < I915_PRIORITY_NORMAL ||
3998 	    rq->guc_prio == GUC_PRIO_FINI ||
3999 	    (rq->guc_prio != GUC_PRIO_INIT &&
4000 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4001 		return;
4002 
4003 	spin_lock(&ce->guc_state.lock);
4004 	if (rq->guc_prio != GUC_PRIO_FINI) {
4005 		if (rq->guc_prio != GUC_PRIO_INIT)
4006 			sub_context_inflight_prio(ce, rq->guc_prio);
4007 		rq->guc_prio = new_guc_prio;
4008 		add_context_inflight_prio(ce, rq->guc_prio);
4009 		update_context_prio(ce);
4010 	}
4011 	spin_unlock(&ce->guc_state.lock);
4012 }
4013 
4014 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4015 {
4016 	struct intel_context *ce = request_to_scheduling_context(rq);
4017 
4018 	spin_lock(&ce->guc_state.lock);
4019 	guc_prio_fini(rq, ce);
4020 	spin_unlock(&ce->guc_state.lock);
4021 }
4022 
4023 static void sanitize_hwsp(struct intel_engine_cs *engine)
4024 {
4025 	struct intel_timeline *tl;
4026 
4027 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4028 		intel_timeline_reset_seqno(tl);
4029 }
4030 
4031 static void guc_sanitize(struct intel_engine_cs *engine)
4032 {
4033 	/*
4034 	 * Poison residual state on resume, in case the suspend didn't!
4035 	 *
4036 	 * We have to assume that across suspend/resume (or other loss
4037 	 * of control) that the contents of our pinned buffers has been
4038 	 * lost, replaced by garbage. Since this doesn't always happen,
4039 	 * let's poison such state so that we more quickly spot when
4040 	 * we falsely assume it has been preserved.
4041 	 */
4042 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4043 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4044 
4045 	/*
4046 	 * The kernel_context HWSP is stored in the status_page. As above,
4047 	 * that may be lost on resume/initialisation, and so we need to
4048 	 * reset the value in the HWSP.
4049 	 */
4050 	sanitize_hwsp(engine);
4051 
4052 	/* And scrub the dirty cachelines for the HWSP */
4053 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4054 
4055 	intel_engine_reset_pinned_contexts(engine);
4056 }
4057 
4058 static void setup_hwsp(struct intel_engine_cs *engine)
4059 {
4060 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4061 
4062 	ENGINE_WRITE_FW(engine,
4063 			RING_HWS_PGA,
4064 			i915_ggtt_offset(engine->status_page.vma));
4065 }
4066 
4067 static void start_engine(struct intel_engine_cs *engine)
4068 {
4069 	ENGINE_WRITE_FW(engine,
4070 			RING_MODE_GEN7,
4071 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4072 
4073 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4074 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4075 }
4076 
4077 static int guc_resume(struct intel_engine_cs *engine)
4078 {
4079 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4080 
4081 	intel_mocs_init_engine(engine);
4082 
4083 	intel_breadcrumbs_reset(engine->breadcrumbs);
4084 
4085 	setup_hwsp(engine);
4086 	start_engine(engine);
4087 
4088 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4089 		xehp_enable_ccs_engines(engine);
4090 
4091 	return 0;
4092 }
4093 
4094 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4095 {
4096 	return !sched_engine->tasklet.callback;
4097 }
4098 
4099 static void guc_set_default_submission(struct intel_engine_cs *engine)
4100 {
4101 	engine->submit_request = guc_submit_request;
4102 }
4103 
4104 static inline void guc_kernel_context_pin(struct intel_guc *guc,
4105 					  struct intel_context *ce)
4106 {
4107 	/*
4108 	 * Note: we purposefully do not check the returns below because
4109 	 * the registration can only fail if a reset is just starting.
4110 	 * This is called at the end of reset so presumably another reset
4111 	 * isn't happening and even it did this code would be run again.
4112 	 */
4113 
4114 	if (context_guc_id_invalid(ce))
4115 		pin_guc_id(guc, ce);
4116 
4117 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4118 		guc_context_init(ce);
4119 
4120 	try_context_registration(ce, true);
4121 }
4122 
4123 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
4124 {
4125 	struct intel_gt *gt = guc_to_gt(guc);
4126 	struct intel_engine_cs *engine;
4127 	enum intel_engine_id id;
4128 
4129 	/* make sure all descriptors are clean... */
4130 	xa_destroy(&guc->context_lookup);
4131 
4132 	/*
4133 	 * A reset might have occurred while we had a pending stalled request,
4134 	 * so make sure we clean that up.
4135 	 */
4136 	guc->stalled_request = NULL;
4137 	guc->submission_stall_reason = STALL_NONE;
4138 
4139 	/*
4140 	 * Some contexts might have been pinned before we enabled GuC
4141 	 * submission, so we need to add them to the GuC bookeeping.
4142 	 * Also, after a reset the of the GuC we want to make sure that the
4143 	 * information shared with GuC is properly reset. The kernel LRCs are
4144 	 * not attached to the gem_context, so they need to be added separately.
4145 	 */
4146 	for_each_engine(engine, gt, id) {
4147 		struct intel_context *ce;
4148 
4149 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4150 				    pinned_contexts_link)
4151 			guc_kernel_context_pin(guc, ce);
4152 	}
4153 }
4154 
4155 static void guc_release(struct intel_engine_cs *engine)
4156 {
4157 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4158 
4159 	intel_engine_cleanup_common(engine);
4160 	lrc_fini_wa_ctx(engine);
4161 }
4162 
4163 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4164 {
4165 	struct intel_engine_cs *e;
4166 	intel_engine_mask_t tmp, mask = engine->mask;
4167 
4168 	for_each_engine_masked(e, engine->gt, mask, tmp)
4169 		e->serial++;
4170 }
4171 
4172 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4173 {
4174 	/* Default vfuncs which can be overridden by each engine. */
4175 
4176 	engine->resume = guc_resume;
4177 
4178 	engine->cops = &guc_context_ops;
4179 	engine->request_alloc = guc_request_alloc;
4180 	engine->add_active_request = add_to_context;
4181 	engine->remove_active_request = remove_from_context;
4182 
4183 	engine->sched_engine->schedule = i915_schedule;
4184 
4185 	engine->reset.prepare = guc_engine_reset_prepare;
4186 	engine->reset.rewind = guc_rewind_nop;
4187 	engine->reset.cancel = guc_reset_nop;
4188 	engine->reset.finish = guc_reset_nop;
4189 
4190 	engine->emit_flush = gen8_emit_flush_xcs;
4191 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4192 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4193 	if (GRAPHICS_VER(engine->i915) >= 12) {
4194 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4195 		engine->emit_flush = gen12_emit_flush_xcs;
4196 	}
4197 	engine->set_default_submission = guc_set_default_submission;
4198 	engine->busyness = guc_engine_busyness;
4199 
4200 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4201 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4202 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4203 
4204 	/* Wa_14014475959:dg2 */
4205 	if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
4206 		engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4207 
4208 	/*
4209 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4210 	 * handled by the firmware so some minor tweaks are required before
4211 	 * enabling.
4212 	 *
4213 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4214 	 */
4215 
4216 	engine->emit_bb_start = gen8_emit_bb_start;
4217 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4218 		engine->emit_bb_start = xehp_emit_bb_start;
4219 }
4220 
4221 static void rcs_submission_override(struct intel_engine_cs *engine)
4222 {
4223 	switch (GRAPHICS_VER(engine->i915)) {
4224 	case 12:
4225 		engine->emit_flush = gen12_emit_flush_rcs;
4226 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4227 		break;
4228 	case 11:
4229 		engine->emit_flush = gen11_emit_flush_rcs;
4230 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4231 		break;
4232 	default:
4233 		engine->emit_flush = gen8_emit_flush_rcs;
4234 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4235 		break;
4236 	}
4237 }
4238 
4239 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4240 {
4241 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4242 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4243 }
4244 
4245 static void guc_sched_engine_destroy(struct kref *kref)
4246 {
4247 	struct i915_sched_engine *sched_engine =
4248 		container_of(kref, typeof(*sched_engine), ref);
4249 	struct intel_guc *guc = sched_engine->private_data;
4250 
4251 	guc->sched_engine = NULL;
4252 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4253 	kfree(sched_engine);
4254 }
4255 
4256 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4257 {
4258 	struct drm_i915_private *i915 = engine->i915;
4259 	struct intel_guc *guc = &engine->gt->uc.guc;
4260 
4261 	/*
4262 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4263 	 * that are only valid on gen11+
4264 	 */
4265 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4266 
4267 	if (!guc->sched_engine) {
4268 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4269 		if (!guc->sched_engine)
4270 			return -ENOMEM;
4271 
4272 		guc->sched_engine->schedule = i915_schedule;
4273 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4274 		guc->sched_engine->private_data = guc;
4275 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4276 		guc->sched_engine->bump_inflight_request_prio =
4277 			guc_bump_inflight_request_prio;
4278 		guc->sched_engine->retire_inflight_request_prio =
4279 			guc_retire_inflight_request_prio;
4280 		tasklet_setup(&guc->sched_engine->tasklet,
4281 			      guc_submission_tasklet);
4282 	}
4283 	i915_sched_engine_put(engine->sched_engine);
4284 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4285 
4286 	guc_default_vfuncs(engine);
4287 	guc_default_irqs(engine);
4288 	guc_init_breadcrumbs(engine);
4289 
4290 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4291 		rcs_submission_override(engine);
4292 
4293 	lrc_init_wa_ctx(engine);
4294 
4295 	/* Finally, take ownership and responsibility for cleanup! */
4296 	engine->sanitize = guc_sanitize;
4297 	engine->release = guc_release;
4298 
4299 	return 0;
4300 }
4301 
4302 struct scheduling_policy {
4303 	/* internal data */
4304 	u32 max_words, num_words;
4305 	u32 count;
4306 	/* API data */
4307 	struct guc_update_scheduling_policy h2g;
4308 };
4309 
4310 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4311 {
4312 	u32 *start = (void *)&policy->h2g;
4313 	u32 *end = policy->h2g.data + policy->num_words;
4314 	size_t delta = end - start;
4315 
4316 	return delta;
4317 }
4318 
4319 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4320 {
4321 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4322 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4323 	policy->num_words = 0;
4324 	policy->count = 0;
4325 
4326 	return policy;
4327 }
4328 
4329 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4330 					    u32 action, u32 *data, u32 len)
4331 {
4332 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4333 
4334 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4335 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4336 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4337 	memcpy(klv_ptr, data, sizeof(u32) * len);
4338 	policy->num_words += 1 + len;
4339 	policy->count++;
4340 }
4341 
4342 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4343 						struct scheduling_policy *policy)
4344 {
4345 	int ret;
4346 
4347 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4348 			     __guc_scheduling_policy_action_size(policy));
4349 	if (ret < 0)
4350 		return ret;
4351 
4352 	if (ret != policy->count) {
4353 		drm_warn(&guc_to_gt(guc)->i915->drm, "GuC global scheduler policy processed %d of %d KLVs!",
4354 			 ret, policy->count);
4355 		if (ret > policy->count)
4356 			return -EPROTO;
4357 	}
4358 
4359 	return 0;
4360 }
4361 
4362 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4363 {
4364 	struct scheduling_policy policy;
4365 	struct intel_gt *gt = guc_to_gt(guc);
4366 	intel_wakeref_t wakeref;
4367 	int ret = 0;
4368 
4369 	if (GET_UC_VER(guc) < MAKE_UC_VER(70, 3, 0))
4370 		return 0;
4371 
4372 	__guc_scheduling_policy_start_klv(&policy);
4373 
4374 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4375 		u32 yield[] = {
4376 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4377 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4378 		};
4379 
4380 		__guc_scheduling_policy_add_klv(&policy,
4381 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4382 						yield, ARRAY_SIZE(yield));
4383 
4384 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4385 		if (ret)
4386 			i915_probe_error(gt->i915,
4387 					 "Failed to configure global scheduling policies: %pe!\n",
4388 					 ERR_PTR(ret));
4389 	}
4390 
4391 	return ret;
4392 }
4393 
4394 void intel_guc_submission_enable(struct intel_guc *guc)
4395 {
4396 	struct intel_gt *gt = guc_to_gt(guc);
4397 
4398 	/* Enable and route to GuC */
4399 	if (GRAPHICS_VER(gt->i915) >= 12)
4400 		intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES,
4401 				   GUC_SEM_INTR_ROUTE_TO_GUC |
4402 				   GUC_SEM_INTR_ENABLE_ALL);
4403 
4404 	guc_init_lrc_mapping(guc);
4405 	guc_init_engine_stats(guc);
4406 	guc_init_global_schedule_policy(guc);
4407 }
4408 
4409 void intel_guc_submission_disable(struct intel_guc *guc)
4410 {
4411 	struct intel_gt *gt = guc_to_gt(guc);
4412 
4413 	/* Note: By the time we're here, GuC may have already been reset */
4414 
4415 	/* Disable and route to host */
4416 	if (GRAPHICS_VER(gt->i915) >= 12)
4417 		intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 0x0);
4418 }
4419 
4420 static bool __guc_submission_supported(struct intel_guc *guc)
4421 {
4422 	/* GuC submission is unavailable for pre-Gen11 */
4423 	return intel_guc_is_supported(guc) &&
4424 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4425 }
4426 
4427 static bool __guc_submission_selected(struct intel_guc *guc)
4428 {
4429 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4430 
4431 	if (!intel_guc_submission_is_supported(guc))
4432 		return false;
4433 
4434 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4435 }
4436 
4437 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4438 {
4439 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4440 }
4441 
4442 /*
4443  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4444  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4445  * operation. This matches the 30fps game-render + encode (real world) workload this
4446  * knob was tested against.
4447  */
4448 #define SCHED_DISABLE_DELAY_MS	34
4449 
4450 /*
4451  * A threshold of 75% is a reasonable starting point considering that real world apps
4452  * generally don't get anywhere near this.
4453  */
4454 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4455 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4456 
4457 void intel_guc_submission_init_early(struct intel_guc *guc)
4458 {
4459 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4460 
4461 	spin_lock_init(&guc->submission_state.lock);
4462 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4463 	ida_init(&guc->submission_state.guc_ids);
4464 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4465 	INIT_WORK(&guc->submission_state.destroyed_worker,
4466 		  destroyed_worker_func);
4467 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4468 		  reset_fail_worker_func);
4469 
4470 	spin_lock_init(&guc->timestamp.lock);
4471 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4472 
4473 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4474 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4475 	guc->submission_state.sched_disable_gucid_threshold =
4476 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4477 	guc->submission_supported = __guc_submission_supported(guc);
4478 	guc->submission_selected = __guc_submission_selected(guc);
4479 }
4480 
4481 static inline struct intel_context *
4482 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4483 {
4484 	struct intel_context *ce;
4485 
4486 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4487 		drm_err(&guc_to_gt(guc)->i915->drm,
4488 			"Invalid ctx_id %u\n", ctx_id);
4489 		return NULL;
4490 	}
4491 
4492 	ce = __get_context(guc, ctx_id);
4493 	if (unlikely(!ce)) {
4494 		drm_err(&guc_to_gt(guc)->i915->drm,
4495 			"Context is NULL, ctx_id %u\n", ctx_id);
4496 		return NULL;
4497 	}
4498 
4499 	if (unlikely(intel_context_is_child(ce))) {
4500 		drm_err(&guc_to_gt(guc)->i915->drm,
4501 			"Context is child, ctx_id %u\n", ctx_id);
4502 		return NULL;
4503 	}
4504 
4505 	return ce;
4506 }
4507 
4508 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4509 					  const u32 *msg,
4510 					  u32 len)
4511 {
4512 	struct intel_context *ce;
4513 	u32 ctx_id;
4514 
4515 	if (unlikely(len < 1)) {
4516 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4517 		return -EPROTO;
4518 	}
4519 	ctx_id = msg[0];
4520 
4521 	ce = g2h_context_lookup(guc, ctx_id);
4522 	if (unlikely(!ce))
4523 		return -EPROTO;
4524 
4525 	trace_intel_context_deregister_done(ce);
4526 
4527 #ifdef CONFIG_DRM_I915_SELFTEST
4528 	if (unlikely(ce->drop_deregister)) {
4529 		ce->drop_deregister = false;
4530 		return 0;
4531 	}
4532 #endif
4533 
4534 	if (context_wait_for_deregister_to_register(ce)) {
4535 		struct intel_runtime_pm *runtime_pm =
4536 			&ce->engine->gt->i915->runtime_pm;
4537 		intel_wakeref_t wakeref;
4538 
4539 		/*
4540 		 * Previous owner of this guc_id has been deregistered, now safe
4541 		 * register this context.
4542 		 */
4543 		with_intel_runtime_pm(runtime_pm, wakeref)
4544 			register_context(ce, true);
4545 		guc_signal_context_fence(ce);
4546 		intel_context_put(ce);
4547 	} else if (context_destroyed(ce)) {
4548 		/* Context has been destroyed */
4549 		intel_gt_pm_put_async(guc_to_gt(guc));
4550 		release_guc_id(guc, ce);
4551 		__guc_context_destroy(ce);
4552 	}
4553 
4554 	decr_outstanding_submission_g2h(guc);
4555 
4556 	return 0;
4557 }
4558 
4559 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4560 				     const u32 *msg,
4561 				     u32 len)
4562 {
4563 	struct intel_context *ce;
4564 	unsigned long flags;
4565 	u32 ctx_id;
4566 
4567 	if (unlikely(len < 2)) {
4568 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4569 		return -EPROTO;
4570 	}
4571 	ctx_id = msg[0];
4572 
4573 	ce = g2h_context_lookup(guc, ctx_id);
4574 	if (unlikely(!ce))
4575 		return -EPROTO;
4576 
4577 	if (unlikely(context_destroyed(ce) ||
4578 		     (!context_pending_enable(ce) &&
4579 		     !context_pending_disable(ce)))) {
4580 		drm_err(&guc_to_gt(guc)->i915->drm,
4581 			"Bad context sched_state 0x%x, ctx_id %u\n",
4582 			ce->guc_state.sched_state, ctx_id);
4583 		return -EPROTO;
4584 	}
4585 
4586 	trace_intel_context_sched_done(ce);
4587 
4588 	if (context_pending_enable(ce)) {
4589 #ifdef CONFIG_DRM_I915_SELFTEST
4590 		if (unlikely(ce->drop_schedule_enable)) {
4591 			ce->drop_schedule_enable = false;
4592 			return 0;
4593 		}
4594 #endif
4595 
4596 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4597 		clr_context_pending_enable(ce);
4598 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4599 	} else if (context_pending_disable(ce)) {
4600 		bool banned;
4601 
4602 #ifdef CONFIG_DRM_I915_SELFTEST
4603 		if (unlikely(ce->drop_schedule_disable)) {
4604 			ce->drop_schedule_disable = false;
4605 			return 0;
4606 		}
4607 #endif
4608 
4609 		/*
4610 		 * Unpin must be done before __guc_signal_context_fence,
4611 		 * otherwise a race exists between the requests getting
4612 		 * submitted + retired before this unpin completes resulting in
4613 		 * the pin_count going to zero and the context still being
4614 		 * enabled.
4615 		 */
4616 		intel_context_sched_disable_unpin(ce);
4617 
4618 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4619 		banned = context_banned(ce);
4620 		clr_context_banned(ce);
4621 		clr_context_pending_disable(ce);
4622 		__guc_signal_context_fence(ce);
4623 		guc_blocked_fence_complete(ce);
4624 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4625 
4626 		if (banned) {
4627 			guc_cancel_context_requests(ce);
4628 			intel_engine_signal_breadcrumbs(ce->engine);
4629 		}
4630 	}
4631 
4632 	decr_outstanding_submission_g2h(guc);
4633 	intel_context_put(ce);
4634 
4635 	return 0;
4636 }
4637 
4638 static void capture_error_state(struct intel_guc *guc,
4639 				struct intel_context *ce)
4640 {
4641 	struct intel_gt *gt = guc_to_gt(guc);
4642 	struct drm_i915_private *i915 = gt->i915;
4643 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4644 	intel_wakeref_t wakeref;
4645 
4646 	intel_engine_set_hung_context(engine, ce);
4647 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4648 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4649 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4650 }
4651 
4652 static void guc_context_replay(struct intel_context *ce)
4653 {
4654 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4655 
4656 	__guc_reset_context(ce, ce->engine->mask);
4657 	tasklet_hi_schedule(&sched_engine->tasklet);
4658 }
4659 
4660 static void guc_handle_context_reset(struct intel_guc *guc,
4661 				     struct intel_context *ce)
4662 {
4663 	trace_intel_context_reset(ce);
4664 
4665 	if (likely(intel_context_is_schedulable(ce))) {
4666 		capture_error_state(guc, ce);
4667 		guc_context_replay(ce);
4668 	} else {
4669 		drm_info(&guc_to_gt(guc)->i915->drm,
4670 			 "Ignoring context reset notification of exiting context 0x%04X on %s",
4671 			 ce->guc_id.id, ce->engine->name);
4672 	}
4673 }
4674 
4675 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4676 					const u32 *msg, u32 len)
4677 {
4678 	struct intel_context *ce;
4679 	unsigned long flags;
4680 	int ctx_id;
4681 
4682 	if (unlikely(len != 1)) {
4683 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4684 		return -EPROTO;
4685 	}
4686 
4687 	ctx_id = msg[0];
4688 
4689 	/*
4690 	 * The context lookup uses the xarray but lookups only require an RCU lock
4691 	 * not the full spinlock. So take the lock explicitly and keep it until the
4692 	 * context has been reference count locked to ensure it can't be destroyed
4693 	 * asynchronously until the reset is done.
4694 	 */
4695 	xa_lock_irqsave(&guc->context_lookup, flags);
4696 	ce = g2h_context_lookup(guc, ctx_id);
4697 	if (ce)
4698 		intel_context_get(ce);
4699 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4700 
4701 	if (unlikely(!ce))
4702 		return -EPROTO;
4703 
4704 	guc_handle_context_reset(guc, ce);
4705 	intel_context_put(ce);
4706 
4707 	return 0;
4708 }
4709 
4710 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4711 					const u32 *msg, u32 len)
4712 {
4713 	u32 status;
4714 
4715 	if (unlikely(len != 1)) {
4716 		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4717 		return -EPROTO;
4718 	}
4719 
4720 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4721 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4722 		drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4723 
4724 	intel_guc_capture_process(guc);
4725 
4726 	return 0;
4727 }
4728 
4729 struct intel_engine_cs *
4730 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4731 {
4732 	struct intel_gt *gt = guc_to_gt(guc);
4733 	u8 engine_class = guc_class_to_engine_class(guc_class);
4734 
4735 	/* Class index is checked in class converter */
4736 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4737 
4738 	return gt->engine_class[engine_class][instance];
4739 }
4740 
4741 static void reset_fail_worker_func(struct work_struct *w)
4742 {
4743 	struct intel_guc *guc = container_of(w, struct intel_guc,
4744 					     submission_state.reset_fail_worker);
4745 	struct intel_gt *gt = guc_to_gt(guc);
4746 	intel_engine_mask_t reset_fail_mask;
4747 	unsigned long flags;
4748 
4749 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4750 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4751 	guc->submission_state.reset_fail_mask = 0;
4752 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4753 
4754 	if (likely(reset_fail_mask))
4755 		intel_gt_handle_error(gt, reset_fail_mask,
4756 				      I915_ERROR_CAPTURE,
4757 				      "GuC failed to reset engine mask=0x%x\n",
4758 				      reset_fail_mask);
4759 }
4760 
4761 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4762 					 const u32 *msg, u32 len)
4763 {
4764 	struct intel_engine_cs *engine;
4765 	struct intel_gt *gt = guc_to_gt(guc);
4766 	u8 guc_class, instance;
4767 	u32 reason;
4768 	unsigned long flags;
4769 
4770 	if (unlikely(len != 3)) {
4771 		drm_err(&gt->i915->drm, "Invalid length %u", len);
4772 		return -EPROTO;
4773 	}
4774 
4775 	guc_class = msg[0];
4776 	instance = msg[1];
4777 	reason = msg[2];
4778 
4779 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4780 	if (unlikely(!engine)) {
4781 		drm_err(&gt->i915->drm,
4782 			"Invalid engine %d:%d", guc_class, instance);
4783 		return -EPROTO;
4784 	}
4785 
4786 	/*
4787 	 * This is an unexpected failure of a hardware feature. So, log a real
4788 	 * error message not just the informational that comes with the reset.
4789 	 */
4790 	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4791 		guc_class, instance, engine->name, reason);
4792 
4793 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4794 	guc->submission_state.reset_fail_mask |= engine->mask;
4795 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4796 
4797 	/*
4798 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4799 	 * another worker to trigger a GT reset.
4800 	 */
4801 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4802 
4803 	return 0;
4804 }
4805 
4806 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4807 {
4808 	struct intel_guc *guc = &engine->gt->uc.guc;
4809 	struct intel_context *ce;
4810 	struct i915_request *rq;
4811 	unsigned long index;
4812 	unsigned long flags;
4813 
4814 	/* Reset called during driver load? GuC not yet initialised! */
4815 	if (unlikely(!guc_submission_initialized(guc)))
4816 		return;
4817 
4818 	xa_lock_irqsave(&guc->context_lookup, flags);
4819 	xa_for_each(&guc->context_lookup, index, ce) {
4820 		if (!kref_get_unless_zero(&ce->ref))
4821 			continue;
4822 
4823 		xa_unlock(&guc->context_lookup);
4824 
4825 		if (!intel_context_is_pinned(ce))
4826 			goto next;
4827 
4828 		if (intel_engine_is_virtual(ce->engine)) {
4829 			if (!(ce->engine->mask & engine->mask))
4830 				goto next;
4831 		} else {
4832 			if (ce->engine != engine)
4833 				goto next;
4834 		}
4835 
4836 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4837 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4838 				continue;
4839 
4840 			intel_engine_set_hung_context(engine, ce);
4841 
4842 			/* Can only cope with one hang at a time... */
4843 			intel_context_put(ce);
4844 			xa_lock(&guc->context_lookup);
4845 			goto done;
4846 		}
4847 next:
4848 		intel_context_put(ce);
4849 		xa_lock(&guc->context_lookup);
4850 	}
4851 done:
4852 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4853 }
4854 
4855 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4856 				    struct i915_request *hung_rq,
4857 				    struct drm_printer *m)
4858 {
4859 	struct intel_guc *guc = &engine->gt->uc.guc;
4860 	struct intel_context *ce;
4861 	unsigned long index;
4862 	unsigned long flags;
4863 
4864 	/* Reset called during driver load? GuC not yet initialised! */
4865 	if (unlikely(!guc_submission_initialized(guc)))
4866 		return;
4867 
4868 	xa_lock_irqsave(&guc->context_lookup, flags);
4869 	xa_for_each(&guc->context_lookup, index, ce) {
4870 		if (!kref_get_unless_zero(&ce->ref))
4871 			continue;
4872 
4873 		xa_unlock(&guc->context_lookup);
4874 
4875 		if (!intel_context_is_pinned(ce))
4876 			goto next;
4877 
4878 		if (intel_engine_is_virtual(ce->engine)) {
4879 			if (!(ce->engine->mask & engine->mask))
4880 				goto next;
4881 		} else {
4882 			if (ce->engine != engine)
4883 				goto next;
4884 		}
4885 
4886 		spin_lock(&ce->guc_state.lock);
4887 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4888 						  hung_rq, m);
4889 		spin_unlock(&ce->guc_state.lock);
4890 
4891 next:
4892 		intel_context_put(ce);
4893 		xa_lock(&guc->context_lookup);
4894 	}
4895 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4896 }
4897 
4898 void intel_guc_submission_print_info(struct intel_guc *guc,
4899 				     struct drm_printer *p)
4900 {
4901 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4902 	struct rb_node *rb;
4903 	unsigned long flags;
4904 
4905 	if (!sched_engine)
4906 		return;
4907 
4908 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4909 		   atomic_read(&guc->outstanding_submission_g2h));
4910 	drm_printf(p, "GuC tasklet count: %u\n",
4911 		   atomic_read(&sched_engine->tasklet.count));
4912 
4913 	spin_lock_irqsave(&sched_engine->lock, flags);
4914 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4915 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4916 		struct i915_priolist *pl = to_priolist(rb);
4917 		struct i915_request *rq;
4918 
4919 		priolist_for_each_request(rq, pl)
4920 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4921 				   rq->context->guc_id.id,
4922 				   rq->fence.seqno);
4923 	}
4924 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4925 	drm_printf(p, "\n");
4926 }
4927 
4928 static inline void guc_log_context_priority(struct drm_printer *p,
4929 					    struct intel_context *ce)
4930 {
4931 	int i;
4932 
4933 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4934 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4935 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4936 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4937 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4938 			   i, ce->guc_state.prio_count[i]);
4939 	}
4940 	drm_printf(p, "\n");
4941 }
4942 
4943 static inline void guc_log_context(struct drm_printer *p,
4944 				   struct intel_context *ce)
4945 {
4946 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4947 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4948 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4949 		   ce->ring->head,
4950 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4951 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4952 		   ce->ring->tail,
4953 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4954 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4955 		   atomic_read(&ce->pin_count));
4956 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4957 		   atomic_read(&ce->guc_id.ref));
4958 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
4959 		   ce->guc_state.sched_state);
4960 }
4961 
4962 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4963 					     struct drm_printer *p)
4964 {
4965 	struct intel_context *ce;
4966 	unsigned long index;
4967 	unsigned long flags;
4968 
4969 	xa_lock_irqsave(&guc->context_lookup, flags);
4970 	xa_for_each(&guc->context_lookup, index, ce) {
4971 		GEM_BUG_ON(intel_context_is_child(ce));
4972 
4973 		guc_log_context(p, ce);
4974 		guc_log_context_priority(p, ce);
4975 
4976 		if (intel_context_is_parent(ce)) {
4977 			struct intel_context *child;
4978 
4979 			drm_printf(p, "\t\tNumber children: %u\n",
4980 				   ce->parallel.number_children);
4981 
4982 			if (ce->parallel.guc.wq_status) {
4983 				drm_printf(p, "\t\tWQI Head: %u\n",
4984 					   READ_ONCE(*ce->parallel.guc.wq_head));
4985 				drm_printf(p, "\t\tWQI Tail: %u\n",
4986 					   READ_ONCE(*ce->parallel.guc.wq_tail));
4987 				drm_printf(p, "\t\tWQI Status: %u\n",
4988 					   READ_ONCE(*ce->parallel.guc.wq_status));
4989 			}
4990 
4991 			if (ce->engine->emit_bb_start ==
4992 			    emit_bb_start_parent_no_preempt_mid_batch) {
4993 				u8 i;
4994 
4995 				drm_printf(p, "\t\tChildren Go: %u\n",
4996 					   get_children_go_value(ce));
4997 				for (i = 0; i < ce->parallel.number_children; ++i)
4998 					drm_printf(p, "\t\tChildren Join: %u\n",
4999 						   get_children_join_value(ce, i));
5000 			}
5001 
5002 			for_each_child(ce, child)
5003 				guc_log_context(p, child);
5004 		}
5005 	}
5006 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5007 }
5008 
5009 static inline u32 get_children_go_addr(struct intel_context *ce)
5010 {
5011 	GEM_BUG_ON(!intel_context_is_parent(ce));
5012 
5013 	return i915_ggtt_offset(ce->state) +
5014 		__get_parent_scratch_offset(ce) +
5015 		offsetof(struct parent_scratch, go.semaphore);
5016 }
5017 
5018 static inline u32 get_children_join_addr(struct intel_context *ce,
5019 					 u8 child_index)
5020 {
5021 	GEM_BUG_ON(!intel_context_is_parent(ce));
5022 
5023 	return i915_ggtt_offset(ce->state) +
5024 		__get_parent_scratch_offset(ce) +
5025 		offsetof(struct parent_scratch, join[child_index].semaphore);
5026 }
5027 
5028 #define PARENT_GO_BB			1
5029 #define PARENT_GO_FINI_BREADCRUMB	0
5030 #define CHILD_GO_BB			1
5031 #define CHILD_GO_FINI_BREADCRUMB	0
5032 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5033 						     u64 offset, u32 len,
5034 						     const unsigned int flags)
5035 {
5036 	struct intel_context *ce = rq->context;
5037 	u32 *cs;
5038 	u8 i;
5039 
5040 	GEM_BUG_ON(!intel_context_is_parent(ce));
5041 
5042 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5043 	if (IS_ERR(cs))
5044 		return PTR_ERR(cs);
5045 
5046 	/* Wait on children */
5047 	for (i = 0; i < ce->parallel.number_children; ++i) {
5048 		*cs++ = (MI_SEMAPHORE_WAIT |
5049 			 MI_SEMAPHORE_GLOBAL_GTT |
5050 			 MI_SEMAPHORE_POLL |
5051 			 MI_SEMAPHORE_SAD_EQ_SDD);
5052 		*cs++ = PARENT_GO_BB;
5053 		*cs++ = get_children_join_addr(ce, i);
5054 		*cs++ = 0;
5055 	}
5056 
5057 	/* Turn off preemption */
5058 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5059 	*cs++ = MI_NOOP;
5060 
5061 	/* Tell children go */
5062 	cs = gen8_emit_ggtt_write(cs,
5063 				  CHILD_GO_BB,
5064 				  get_children_go_addr(ce),
5065 				  0);
5066 
5067 	/* Jump to batch */
5068 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5069 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5070 	*cs++ = lower_32_bits(offset);
5071 	*cs++ = upper_32_bits(offset);
5072 	*cs++ = MI_NOOP;
5073 
5074 	intel_ring_advance(rq, cs);
5075 
5076 	return 0;
5077 }
5078 
5079 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5080 						    u64 offset, u32 len,
5081 						    const unsigned int flags)
5082 {
5083 	struct intel_context *ce = rq->context;
5084 	struct intel_context *parent = intel_context_to_parent(ce);
5085 	u32 *cs;
5086 
5087 	GEM_BUG_ON(!intel_context_is_child(ce));
5088 
5089 	cs = intel_ring_begin(rq, 12);
5090 	if (IS_ERR(cs))
5091 		return PTR_ERR(cs);
5092 
5093 	/* Signal parent */
5094 	cs = gen8_emit_ggtt_write(cs,
5095 				  PARENT_GO_BB,
5096 				  get_children_join_addr(parent,
5097 							 ce->parallel.child_index),
5098 				  0);
5099 
5100 	/* Wait on parent for go */
5101 	*cs++ = (MI_SEMAPHORE_WAIT |
5102 		 MI_SEMAPHORE_GLOBAL_GTT |
5103 		 MI_SEMAPHORE_POLL |
5104 		 MI_SEMAPHORE_SAD_EQ_SDD);
5105 	*cs++ = CHILD_GO_BB;
5106 	*cs++ = get_children_go_addr(parent);
5107 	*cs++ = 0;
5108 
5109 	/* Turn off preemption */
5110 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5111 
5112 	/* Jump to batch */
5113 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5114 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5115 	*cs++ = lower_32_bits(offset);
5116 	*cs++ = upper_32_bits(offset);
5117 
5118 	intel_ring_advance(rq, cs);
5119 
5120 	return 0;
5121 }
5122 
5123 static u32 *
5124 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5125 						   u32 *cs)
5126 {
5127 	struct intel_context *ce = rq->context;
5128 	u8 i;
5129 
5130 	GEM_BUG_ON(!intel_context_is_parent(ce));
5131 
5132 	/* Wait on children */
5133 	for (i = 0; i < ce->parallel.number_children; ++i) {
5134 		*cs++ = (MI_SEMAPHORE_WAIT |
5135 			 MI_SEMAPHORE_GLOBAL_GTT |
5136 			 MI_SEMAPHORE_POLL |
5137 			 MI_SEMAPHORE_SAD_EQ_SDD);
5138 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5139 		*cs++ = get_children_join_addr(ce, i);
5140 		*cs++ = 0;
5141 	}
5142 
5143 	/* Turn on preemption */
5144 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5145 	*cs++ = MI_NOOP;
5146 
5147 	/* Tell children go */
5148 	cs = gen8_emit_ggtt_write(cs,
5149 				  CHILD_GO_FINI_BREADCRUMB,
5150 				  get_children_go_addr(ce),
5151 				  0);
5152 
5153 	return cs;
5154 }
5155 
5156 /*
5157  * If this true, a submission of multi-lrc requests had an error and the
5158  * requests need to be skipped. The front end (execuf IOCTL) should've called
5159  * i915_request_skip which squashes the BB but we still need to emit the fini
5160  * breadrcrumbs seqno write. At this point we don't know how many of the
5161  * requests in the multi-lrc submission were generated so we can't do the
5162  * handshake between the parent and children (e.g. if 4 requests should be
5163  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5164  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5165  * has occurred on any of the requests in submission / relationship.
5166  */
5167 static inline bool skip_handshake(struct i915_request *rq)
5168 {
5169 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5170 }
5171 
5172 #define NON_SKIP_LEN	6
5173 static u32 *
5174 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5175 						 u32 *cs)
5176 {
5177 	struct intel_context *ce = rq->context;
5178 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5179 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5180 
5181 	GEM_BUG_ON(!intel_context_is_parent(ce));
5182 
5183 	if (unlikely(skip_handshake(rq))) {
5184 		/*
5185 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5186 		 * the NON_SKIP_LEN comes from the length of the emits below.
5187 		 */
5188 		memset(cs, 0, sizeof(u32) *
5189 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5190 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5191 	} else {
5192 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5193 	}
5194 
5195 	/* Emit fini breadcrumb */
5196 	before_fini_breadcrumb_user_interrupt_cs = cs;
5197 	cs = gen8_emit_ggtt_write(cs,
5198 				  rq->fence.seqno,
5199 				  i915_request_active_timeline(rq)->hwsp_offset,
5200 				  0);
5201 
5202 	/* User interrupt */
5203 	*cs++ = MI_USER_INTERRUPT;
5204 	*cs++ = MI_NOOP;
5205 
5206 	/* Ensure our math for skip + emit is correct */
5207 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5208 		   cs);
5209 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5210 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5211 
5212 	rq->tail = intel_ring_offset(rq, cs);
5213 
5214 	return cs;
5215 }
5216 
5217 static u32 *
5218 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5219 						  u32 *cs)
5220 {
5221 	struct intel_context *ce = rq->context;
5222 	struct intel_context *parent = intel_context_to_parent(ce);
5223 
5224 	GEM_BUG_ON(!intel_context_is_child(ce));
5225 
5226 	/* Turn on preemption */
5227 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5228 	*cs++ = MI_NOOP;
5229 
5230 	/* Signal parent */
5231 	cs = gen8_emit_ggtt_write(cs,
5232 				  PARENT_GO_FINI_BREADCRUMB,
5233 				  get_children_join_addr(parent,
5234 							 ce->parallel.child_index),
5235 				  0);
5236 
5237 	/* Wait parent on for go */
5238 	*cs++ = (MI_SEMAPHORE_WAIT |
5239 		 MI_SEMAPHORE_GLOBAL_GTT |
5240 		 MI_SEMAPHORE_POLL |
5241 		 MI_SEMAPHORE_SAD_EQ_SDD);
5242 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5243 	*cs++ = get_children_go_addr(parent);
5244 	*cs++ = 0;
5245 
5246 	return cs;
5247 }
5248 
5249 static u32 *
5250 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5251 						u32 *cs)
5252 {
5253 	struct intel_context *ce = rq->context;
5254 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5255 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5256 
5257 	GEM_BUG_ON(!intel_context_is_child(ce));
5258 
5259 	if (unlikely(skip_handshake(rq))) {
5260 		/*
5261 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5262 		 * the NON_SKIP_LEN comes from the length of the emits below.
5263 		 */
5264 		memset(cs, 0, sizeof(u32) *
5265 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5266 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5267 	} else {
5268 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5269 	}
5270 
5271 	/* Emit fini breadcrumb */
5272 	before_fini_breadcrumb_user_interrupt_cs = cs;
5273 	cs = gen8_emit_ggtt_write(cs,
5274 				  rq->fence.seqno,
5275 				  i915_request_active_timeline(rq)->hwsp_offset,
5276 				  0);
5277 
5278 	/* User interrupt */
5279 	*cs++ = MI_USER_INTERRUPT;
5280 	*cs++ = MI_NOOP;
5281 
5282 	/* Ensure our math for skip + emit is correct */
5283 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5284 		   cs);
5285 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5286 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5287 
5288 	rq->tail = intel_ring_offset(rq, cs);
5289 
5290 	return cs;
5291 }
5292 
5293 #undef NON_SKIP_LEN
5294 
5295 static struct intel_context *
5296 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5297 		   unsigned long flags)
5298 {
5299 	struct guc_virtual_engine *ve;
5300 	struct intel_guc *guc;
5301 	unsigned int n;
5302 	int err;
5303 
5304 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5305 	if (!ve)
5306 		return ERR_PTR(-ENOMEM);
5307 
5308 	guc = &siblings[0]->gt->uc.guc;
5309 
5310 	ve->base.i915 = siblings[0]->i915;
5311 	ve->base.gt = siblings[0]->gt;
5312 	ve->base.uncore = siblings[0]->uncore;
5313 	ve->base.id = -1;
5314 
5315 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5316 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5317 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5318 	ve->base.saturated = ALL_ENGINES;
5319 
5320 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5321 
5322 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5323 
5324 	ve->base.cops = &virtual_guc_context_ops;
5325 	ve->base.request_alloc = guc_request_alloc;
5326 	ve->base.bump_serial = virtual_guc_bump_serial;
5327 
5328 	ve->base.submit_request = guc_submit_request;
5329 
5330 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5331 
5332 	intel_context_init(&ve->context, &ve->base);
5333 
5334 	for (n = 0; n < count; n++) {
5335 		struct intel_engine_cs *sibling = siblings[n];
5336 
5337 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5338 		if (sibling->mask & ve->base.mask) {
5339 			DRM_DEBUG("duplicate %s entry in load balancer\n",
5340 				  sibling->name);
5341 			err = -EINVAL;
5342 			goto err_put;
5343 		}
5344 
5345 		ve->base.mask |= sibling->mask;
5346 		ve->base.logical_mask |= sibling->logical_mask;
5347 
5348 		if (n != 0 && ve->base.class != sibling->class) {
5349 			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5350 				  sibling->class, ve->base.class);
5351 			err = -EINVAL;
5352 			goto err_put;
5353 		} else if (n == 0) {
5354 			ve->base.class = sibling->class;
5355 			ve->base.uabi_class = sibling->uabi_class;
5356 			snprintf(ve->base.name, sizeof(ve->base.name),
5357 				 "v%dx%d", ve->base.class, count);
5358 			ve->base.context_size = sibling->context_size;
5359 
5360 			ve->base.add_active_request =
5361 				sibling->add_active_request;
5362 			ve->base.remove_active_request =
5363 				sibling->remove_active_request;
5364 			ve->base.emit_bb_start = sibling->emit_bb_start;
5365 			ve->base.emit_flush = sibling->emit_flush;
5366 			ve->base.emit_init_breadcrumb =
5367 				sibling->emit_init_breadcrumb;
5368 			ve->base.emit_fini_breadcrumb =
5369 				sibling->emit_fini_breadcrumb;
5370 			ve->base.emit_fini_breadcrumb_dw =
5371 				sibling->emit_fini_breadcrumb_dw;
5372 			ve->base.breadcrumbs =
5373 				intel_breadcrumbs_get(sibling->breadcrumbs);
5374 
5375 			ve->base.flags |= sibling->flags;
5376 
5377 			ve->base.props.timeslice_duration_ms =
5378 				sibling->props.timeslice_duration_ms;
5379 			ve->base.props.preempt_timeout_ms =
5380 				sibling->props.preempt_timeout_ms;
5381 		}
5382 	}
5383 
5384 	return &ve->context;
5385 
5386 err_put:
5387 	intel_context_put(&ve->context);
5388 	return ERR_PTR(err);
5389 }
5390 
5391 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5392 {
5393 	struct intel_engine_cs *engine;
5394 	intel_engine_mask_t tmp, mask = ve->mask;
5395 
5396 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5397 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5398 			return true;
5399 
5400 	return false;
5401 }
5402 
5403 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5404 #include "selftest_guc.c"
5405 #include "selftest_guc_multi_lrc.c"
5406 #include "selftest_guc_hangcheck.c"
5407 #endif
5408